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Reviewer #1: 
Remarks to the Author: 
This paper conducted the first large-scale GWAS on income among individuals of 
European descent, which provided an important data source for the downstream post- 
GWAS analysis. however, there are important issues that need to be addressed: 
 
1) Please provide the reason why reference 16 and 17 mentioned in the introduction were 
cited as I couldn't find specific heritability estimates during verification.  
Taubman (1976, reference 16) provides heritability estimates of income in Table 3, second 
column (g2). Taubman used a more general model to estimate heritability by allowing shared 
environment correlations to differ among DZ and MZ twins. This led to the slightly unusual 
format of Table 3. Taubman 1976 is the standard reference for the first estimate of income 
heritability in the economics literature. Quoting from p. 866-867: “It is not clear how to allocate 
the covariance term between genetics, family, and other environments (in a standard twin model 
of heritability). But practically any such allocation would indicate that genetics plus family 
environment account for 30-55 percent of the total variance (in income)…” 
 
You are correct that Visscher et al. (2008, reference 17) does not include a heritability estimate 
of income. The reason we included this reference is because it discusses the similarities and 
differences between heritability estimates from family studies (e.g. the classic twin design) and 
heritability estimates based on genomic data (e.g. GREML). Heritability estimates from genomic 
data are typically lower than in family studies for several reasons, including the fact that SNP 
data only cover a part of the total genetic variation between individuals (i.e. excluding structural 
and rare genetic variants).  
 
2) Although time-specific intercepts were employed, how authors controlled the effects of 
inflation to ensure comparability between longitudinal data and cross-sectional survey 
data? 
The cohort-specific GWAS results were meta-analysis using sample-size weighting (SI p. 8), i.e. 
we meta-analyzed the Z-statistics of each SNP rather than effect size estimates (betas).  
At the cohort level, our preregistered analysis plan (https://osf.io/7z45j, p. 10-11) contained 
separate instructions for cross-section and panel data analyses. In both cases, the effect of 
inflation was controlled by including dummy variables for the year of observation. Panel data 
(i.e. multiple observations of income per individual) were averaged over all observation periods 
after residualizing for year of observation dummy variables.   
 
  

https://osf.io/7z45j
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3) According to the current results from Supplementary Table 22, I can’t deduce how these 
estimates were developed. 
a) “These results imply that only 24.0% or 25.7% of the INC factor PGI’s predictive power 
was due to direct genetic effects, which was very close to the result for the EA PGI 
estimated elsewhere (25.5%).38” 
According to Young et al. (2022), the fraction of variance explained by the direct effect is the 
square of the ratio of direct-to-population effect. Thus, the results from Supplementary Table 22 
implies the INC factor PGI’s predictive power for household and occupational income are 
(0.09467/0.19342)2 = 0.240 and (0.11127/0.21962)2 = 0.257, respectively. 
 
4) Please provide the proportion of original parental genotypes, imputed parental 
genotypes with observed data, and imputed parental genotypes with the frequency (f) of 
allele 1. 
In UKB, we found 19,353 pairs of full siblings and 5,342 parent-offspring pairs. The average 
number of shared non-missing SNPs that passed INFO and MAF filtering among these pairs is 
544,256 (STD=2,603), which accounts for 43.75% of the HapMap3 SNPs (Supplementary 
Information section 5.2). 
 
In STR, we did not use any imputed parental genotypes since we don't have income data for 
parents in the genotyped sample. The proportion of both genotyped and imputed parents is 
therefore zero in this sample. 
 
5) Page 21, there is a clerical error in the Neff of the GWAS in USA. 
Thank you, we fixed this (Neff = 30,855). 
 
6) The total results section lacks a clear structure. For instance, in the polygenic prediction, 
the author has actually covered a substantial amount of content, including estimates of 
direct effect proportions and PheWAS. These results address different scientific questions, 
but the author just combined them in a crude way without proper organization. Then, they 
moved on to genetic correlation, which is more closely related with the previous section 
(Comparison with educational attainment), both in terms of research methods and content. 
We improved the organization and readability of the paper. The results section is now structured 
as follows: 
 

1. Multivariate GWAS of income 
○ GWAS of four different measures of income 
○ The Income Factor 
○ Identification of genetic loci  
○ Effect sizes  
○ Cross-sex and cross-country heterogeneity  

2. Comparison with educational attainment 
○ Genetic correlation with educational attainment 
○ GWAS-by-Subtraction  

3. Polygenic prediction 
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4. Direct vs. indirect genetic effects 
5. Income and health 

○ Genetic correlations with psychiatric and health traits 
○ Phenome-wide association study (PheWAS) on electronic health records 

6. Biological annotation 
 

This structure provides a logic flow and clearly separates different analyses that address distinct 
scientific questions. 
 
7) Figures provided by the author were incomplete. 
We apologize. This probably happened during the PDF assembly stage in the submission 
system. We double-checked that all Figures are included in the resubmission package.  
 
8) Authors needs to add explanation why the genetic correlations estimated were greater 
than 1. Did it imply data quality is actually very poor? 
The possibility of obtaining genetic correlation estimates of >1 with LDSC is a well-known 
property of the method. For example, the original paper (Bulik-Sullivan 2014, 
doi:10.1038/ng.3406) contained various rg estimates >1 in Supplementary Table 4 (e.g., 1.467 
for fasting insulin and HOMA-IR).  
 
The support page for the LDSC software (https://github.com/bulik/ldsc/issues/78) explains this 
phenomenon: “The estimate of rg is unbounded and consists of the true signal plus random 
error. When sample overlap is high, this error becomes greater. Similarly, when two highly 
similar traits are analyzed, there is an increased chance that the estimated rg will exceed 1.” 
Thus, this is not a sign of low data quality.  
 
 
9) Personally, I don't think the title is accurate. The incremental R2 didn’t reflect the 
relationship between polygenic score and income. Authors needs to provide a detailed 
distribution of polygenic scores, e.g correlations with income or in the form of percentiles, 
to better capture the “gradient. It’s a necessary step before the phenome-wide association 
study of the INC factor PGI on socioeconomic health. 
We added Extended Fig 3.b, which shows average levels of individual/occupational/household 
income per PGI quintile in STR, along with 95% confidence intervals. The analyses contain N = 
28,359 / 21,990 / 17,418 observations respectively. Outcome variables were residualised on sex 
and the first 20 principal components. The residuals have a mean of zero and a standard 
deviation of one. Predictive accuracy is highest for individual income, which is also the best 
measure of income available (derived from Swedish registry data). Prediction accuracy is lowest 
for household income, with a difference of ~0.15 standard deviations between the lowest and 
highest quintile of the PGI distribution.  
 
 
We added the following text to the Polygenic Prediction section of the main manuscript: 
 

https://github.com/bulik/ldsc/issues/78
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“Extended Fig 3b shows average income levels per PGI quintile in the STR sample. The 
expected income of individuals increases monotonically for higher PGI quintiles. Predictive 
accuracy is highest for individual income, the most accurate measure of income (derived from 
Swedish registry data). The difference in average income for individuals in the lowest and 
highest quintile of the PGI distribution is ~0.2 standard deviations.” 
 
 
Furthermore, the following scatter plot is included in the FAQ on p. 13, with a discussion of the 
results on p. 12:

 
 
Note: The figure presents a scatter plot for the Health and Retirement Study (N=6,171). The x-axis shows standardized values of 
the Income Factor PGI, constructed from a GWAS meta-analyses that excluded the Health and Retirement Study. The y-axis 
shows log self-reported income, which was constructed as follows: within each wave, the log income was regressed on 
demographic variables (sex, age, age2, age3, and the interactions between sex and the age terms) and genetic control variables 
(top 20 genetic principal components and genotyping batches). Then, the mean of the residuals from the regressions was obtained 
for each individual, which was then standardized. The dotted line is a regression line with slope 0.172 (p = 5.3× 10−42 ). 

https://nodes.desci.com/dpid/149/v5/root/FAQs.pdf
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10)this research was pre-registered on August 30 2018. And the study is generally 
consistent with the protocol. However, the INC factor was not included in the protocol. 
Moreover, the correlation between the constructed INC factor and the actual income was not 
explained in the manuscript. 
Correct, we pre-registered our analysis plan on 30 Aug 2018. At that time, the genomic 
structural equation modelling (GSEM) method was not published yet. The GSEM method was 
published almost a year later, in April 2019 (see https://www.nature.com/articles/s41562-019-
0566-x). This and the ex-ante unknown genetic correlations between the various measures of 
income included in our study were the main reasons we did not pre-commit to run GSEM 
analyses in the analysis plan.  
Fig 1b includes genetic correlation estimates between the INC factor and all other income 
measures. Specifically, the INC factor has a genetic correlation with individual income 
indistinguishable from 1. We now mention this finding in the main manuscript.   
 
 
Reviewer #2: 
Remarks to the Author: 
 
The authors conducted a GWAS of income on individuals of all European ancestry. 
Although the study has strength of big sample size, I have several major concerns about 
the study design and GWAS methodology. Below are my specific comments: 
The biggest issue of this study is the bias coming from phenotype (i.e., income) and 
population ancestry (i.e., European). It is well-known that race/ethnicity is strongly related 
to economic status (e.g., income). However, this study only investigated the European 
population, which cannot truly reflect the GWAS signal for income due to the lack of other 
races/ethnicities. 
 
Although the same size is huge, most samples are from UK Biobank. This study is a 
metaanalysis (i.e., not single cohort GWAS), I think it will be nice to have individual GWAS of 
other ancestries, then meta-analysis with European ancestry. 
This will benefit from studying population-specific GWAS signals and comparing GWAS signals 
across different population ancestry. This is especially important for the income phenotype. 
We appreciate the reviewer’s suggestion and agree that race/ethnicity is strongly related to 
income in many countries. However, one of our study's main findings is the considerable 
heterogeneity in the genetic architecture of income across the included European populations. 
Specifically, we examined cross-cohort genetic correlations and found that the inverse-variance 
weighted mean genetic correlations across pairs of cohorts were 0.45 (s.e. = 0.22) for individual 
income, 0.52 (s.e. = 0.13) for household income, and 0.90 (s.e. = 0.24) for occupational income 
(Supplementary Tables 28a-c).  
 
Furthermore, we meta-analyzed cohorts from the same country with the same income measure 
available and estimated the genetic correlations across these countries. We found that 
occupational income in Norway displayed lower genetic correlations with occupational or 

https://www.nature.com/articles/s41562-019-0566-x
https://www.nature.com/articles/s41562-019-0566-x
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household income in other countries, ranging from only 0.43 (s.e. = 0.23) to 0.82 (s.e. = 0.10). 
Similarly, occupational income’s genetic correlation with educational attainment (EA) was also 
lower in Norway (rg = 0.69, s.e. = 0.08) compared to the other countries. 
 
This series of analyses evinces the heterogeneity of GWAS on income across European 
samples and casts doubt on the idea that a “true,” universal genetic architecture of income 
exists. By including samples with different genetic ancestries or other cultures where this signal 
may be very different, these sample-specific associations would be lost: While meta-analysis 
increases statistical power and yields more precise estimates of the average effect size, it also 
tends to mask non-random heterogeneity in effect size estimates across samples.  
 
Inspired by the reviewer’s comment, we clarified the discussion section of the manuscript as 
follows: 
 
“It is important to point out that the results of our study reflect the specific social realities of the 
analysed samples and are not universal or unchangeable. This is exemplified by the substantial 
heterogeneity in the genetic architecture of income that we found across our cohorts of 
European descent, as well as the non-perfect genetic correlation between sexes. This 
heterogeneity is consistent with previous findings where the polygenic signal for other measures 
of SES (such as educational attainment) varies by culture (Rimfeld et al. 2018, 
https://www.nature.com/articles/s41562-018-0332-5) and by country (Tropf et al. 2017, 
https://www.nature.com/articles/s41562-017-0195-1). This genetic heterogeneity is indicative of 
phenotypic heterogeneity between cultures, where the heritable traits linked to income may not 
be universal but rather vary and reflect the differences between societies in which heritable 
traits are facilitative of income differences. 
  
We emphasise that our results are limited to individuals whose genotypes are genetically most 
similar to the EUR panel of the 1000 Genomes reference panel compared to people sampled in 
other parts of the world. Our results have limited generalizability and do not warrant meaningful 
comparisons across different groups or predictions of income for specific individuals (FAQ). To 
increase the representation of individuals from diverse backgrounds, cohort and longitudinal 
studies should seek to sample more diverse and representative samples of the global 
population.” 
 
However, the latter and the inclusion of non-European samples are beyond the scope and 
possibilities of the current project.  
 
I am not clear why age3 needs to be adjusted in the model for revisualization. I have seen 
age and age2, but it is very rare to adjust age3 unless it is well-justified. 
We chose to include Age3 as a control variable because the relationships between age, income, 
and genotypes are likely to be highly complex. For example, individual income varies over time 
not only as a function of labour market experience, performance, and seniority, but also due to 
business cycle dynamics and long-term economic growth. Furthermore, age may also be 
related to the observed genotypes in a sample due to survival effects: Most cohorts included in 
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our study comprise a substantial proportion of elderly individuals. The probability of having them 
included in a study depends on whether they survived long enough and are healthy enough to 
participate, which in turn can depend on their (health- and longevity-related) genotypes. It is 
ultimately an empirical question if Age and Age2 are sufficient as control variables, or whether 
Age3 needs to be included as well.  
 
In any case, including Age3 in addition to Age and Age2 as control variables is a conservative 
approach that protects against potential biases. In particular, if Age3 is relevant but not included, 
the GWAS results would be biased. If Age3 is relevant and included, no bias is expected, but the 
variance of the estimates increases, which leads to higher p-values. Finally, if Age3 is irrelevant 
but included, the estimates remain unaffected. 

To see why, consider the standard ordinary least squares regression (OLS) model without the 
cubic age term 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝐺𝐺 + 𝜖𝜖, 

where Y is the phenotype; 𝑋𝑋1 is the covariates matrix; G is the genotype; and 𝜖𝜖 is the error term. 
The variance of 𝛽𝛽2 estimated with OLS is given by  

𝑉𝑉𝑉𝑉𝑉𝑉(𝛽̂𝛽2) = 𝜎𝜎2

∑ (𝐺𝐺−𝐺𝐺)2
, 

where 𝜎𝜎2 is the variance of error term, 𝐺𝐺 is the genotype, and 𝐺𝐺 is its mean.  

By including the cubic age term into the model, we obtain the following model: 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝐺𝐺 + 𝛽𝛽3𝐴𝐴𝐴𝐴𝐴𝐴3 + 𝜖𝜖. 

Under the classical linear regression assumptions, OLS estimators are unbiased, meaning that 
on average, across many samples, they correctly estimate the true population parameters. This 
property holds even when irrelevant variables are included because the expected estimate for 
𝛽𝛽3 is 0. Including Age3  changes the variance of the estimated 𝛽𝛽2 to  

𝑉𝑉𝑉𝑉𝑉𝑉(𝛽̂𝛽2) = 𝜎𝜎2

∑ (𝐺𝐺−𝐺𝐺)2(1−𝑅𝑅𝐺𝐺,𝐴𝐴𝐴𝐴𝐴𝐴3
2 )

, 

where 𝑅𝑅𝐺𝐺,𝐴𝐴𝐴𝐴𝐴𝐴3
2  is the coefficient of determination between the genotype and Age3.  

If G and Age3 are uncorrelated, then both the estimate of 𝛽𝛽2 and its variance are the same as 
previously. Thus, including Age3 as an irrelevant control variable does not change the results. 

If, however, G and Age3 as well as Y and Age3 are correlated, the omission of Age3  would lead 
to omitted variable bias of estimates of 𝛽𝛽2. Furthermore, the variance of the 𝛽𝛽2 estimates would 
become larger because the denominator multiplies with the result of one subtracting the 
proportion term, which is a decimal smaller than one (Greene, 2003; Wooldridge, 2009). A 

https://www.zotero.org/google-docs/?QZ3srs
https://www.zotero.org/google-docs/?QZ3srs
https://www.zotero.org/google-docs/?QZ3srs
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larger variance of 𝛽𝛽2 implies lower t-statistics, which in turn imply that the chance of finding p-
values <5x108 decreases. Thus, including Age3 as a control variable is a conservative approach.  

 
After GWAS meta-analysis, it is unclear whether the signals are LD-independent or not. It 
seems like the authors did not perform a clumping analysis. 
We can confirm that clumping was used to identify independent loci. Specifically, LD-based 
clumping was performed using FUMA. The details of how FUMA is used to identify independent 
loci can now be found in the method section titled “GWAS meta-analysis.” The additional text 
now included has been copied below for convenience. 
 
“Independent loci were identified using FUMA (https://www.nature.com/articles/s41467-017-
01261-5). First, independent significant SNPs were defined using a cut-off of P < 5×10‑8 and as 
independent from any other SNP (r2 <0.6) within a 1-mb window. Next, lead SNPs are identified 
as significant SNPs independent from each other at r2 <0.1. Finally, independent genomic loci 
are formed from all independent signals that are in physical proximity to each other by merging 
independent significant SNPs closer than 250kb into a single locus using the 1000 genomes 
EUR reference panel to ensure the accuracy of the loci borders were not influenced by missing 
data in our GWAS. As such, the distance between two loci defined by FUMA is between the 
SNPs in LD with the independent significant SNPs rather than between the independent 
significant SNPs themselves.” 
 
 
In addition, a conditional analysis needs to be performed to identify secondary loci that are 
conditioned on the primary loci, such as using COJO. 
We ran Conditional and Joint Association Analysis (COJO) using the Genome-wide Complex 
Trait Analysis (GCTA) software to refine our understanding of the genetic architecture 
underlying the trait of interest (J. Yang et al., 2012). The analysis was performed with a window 
size of 100,000 base pairs (bp), conditioned on 207 primary lead SNPs from 162 loci, previously 
identified as significantly associated with the Income Factor. Our COJO analysis revealed 57 
secondary lead SNPs that surpassed the Bonferroni corrected threshold for statistical 
significance (p <=5x10-8), conditioning on the primary lead SNPs. Notably, 55 of these 
secondary lead SNPs were located within the original primary genomic loci, underscoring their 
potential role in the same genetic regions initially implicated in the association with the Income 
Factor. The remaining two secondary lead SNPs were identified as novel loci. See details of 
these secondary lead SNPs in Supplementary Table 30 and section 2.6 of the Supplementary 
Information. 
 
We added the following section to the main manuscript (section Identification of Genomic Loci): 
 
“Furthermore, we conducted Conditional and Joint Association Analysis (COJO) using the 207 lead SNPs 
associated with the Income Factor (J. Yang et al., 2012), revealing 57 secondary lead SNPs (p <= 5⨯10-8). 55 of 
these secondary lead SNPs were located within the original primary genomic loci 
(Supplementary Table 30, Supplementary Information 2.6).” 

https://www.zotero.org/google-docs/?lQBlDb
https://www.zotero.org/google-docs/?lQBlDb
https://www.zotero.org/google-docs/?lQBlDb
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The fine-mapping analysis is also missing from this study, but this is standard for GWAS 
and has to be done. 
We created Locus Zoom plots for all lead SNPs and made them available at 
https://beta.dpid.org/149 (folder Locus Zoom plots). 
 
Furthermore, we applied CARMA, a Bayesian fine-mapping method, to identify the most likely 
causal SNP within a locus. CARMA is reported to outperform existing methods by achieving 
lower false discovery rates (FDR) and greater statistical power, making it especially useful for 
GWAS meta-analyses involving multiple cohorts (Z. Yang et al., 2023). Specifically, we used 
CARMA to deduce each SNP's posterior inclusion probability (PIP) across 162 genomic loci 
associated with the Income Factor.  
 
The reference panel for calculating linkage disequilibrium (LD) was the Haplotype Reference 
Consortium (HRC) (https://ega-archive.org/datasets/EGAD00001002729). We performed 
genotype and sample quality control (QC) by keeping only bi-allelic SNPs with a minor allele 
frequency above 1% (with option --maf 0.01), filtering out related individuals (with option --rel-
cutoff 0.025) and samples with any missing genotypes (with option --geno 0). These filtering 
steps reduce the sample size from 22,691 to 17,774 unrelated individuals, resulting in a high-
quality reference panel suitable for subsequent fine-mapping analysis. 
 
Likely causal candidates SNPs with the highest PIP in each locus are reported in 
Supplementary Table 31. Notably, six SNPs were found to have a PIP greater than 0.95, 
suggesting a high probability of being causal for the Income Factor. These SNPs are 
rs17571877 (Locus 4, PIP=1.00), rs13022707 (Locus 18, PIP=1.00), rs9821311 (Locus 32, 
PIP=1.00), rs13107325 (Locus 41, PIP=0.99), rs77543296 (Locus 45, PIP=1.00), and 
rs59378495 (Locus 69, PIP=0.99). Among these variants, rs13107325 is a (benign) missense 
variant of SLC39A8 that was previously reported in more than 50 publications 
(https://www.ncbi.nlm.nih.gov/snp/rs13107325#publications). The other five causal SNP 
candidates are intronic variants with unknown clinical significance.  
 
The results of functional analysis from this study are only confirmatory to the previous 
findings (references 21 and 24), and not novel. In addition to central nervous system, any 
new biological function/tissue/system was identified?  
The referee is correct that our original analysis based on LDSC partitioned heritability analyses 
did not yield any novel insight. Given that our phenotype is a social construct rather than a 
disease or a physiological characteristic, we consciously decided to keep the biological 
annotation of our GWAS results to a minimum in the original draft of the paper. 
 
However, we now performed additional biological annotations to address this question. 
  
Because Lee et al. (2018), Hill et al. (2019), and our study used different methods to define 
candidate genes associated with their target traits, we re-ran gene-based analyses in MAGMA 

https://beta.dpid.org/149
https://www.zotero.org/google-docs/?qSqP72
https://www.zotero.org/google-docs/?qSqP72
https://www.zotero.org/google-docs/?qSqP72


10 

using summary statistics from all three studies. (Note that 23andMe data are excluded in the 
public release of Lee et al. summary statistics). Then, we extracted genes significantly 
associated with the three target traits at P.adjust < 0.05 (Bonferroni correction for each study). 
The overlap among these genes is shown below. Although EA3 (Lee et al. 2018) has much 
greater statistical power due to its larger sample size, we identified 98 genes for our Income 
Factor that were not previously discovered to be associated with income or education. 
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Using FUMA GENE2FUNC, we further examined the biological processes of these genes. The 
overlap among biological processes detected for each trait at FDR < 0.05 is shown below. We 
found three processes that were only discovered for our Income Factor:  
 
GOBP_NEURON_MIGRATION (fdr = 0.012), 
GOBP_ENDOCHONDRAL_BONE_MORPHOGENESIS (fdr = 0.036), and 
GOBP_REGULATION_OF_AXONOGENESIS (fdr = 0.047).  
 
There are also three processes that were missed in earlier income GWAS (Hill et al. 2019), but 
were detected in EA3 (Lee et al. 2018):  
 
GOBP_CELL_JUNCTION_ORGANIZATION (FDR = 9.8x10-5), 
GOBP_DENDRITE_DEVELOPMENT (FDR = 3.66x10-3), and 
GOBP_TELENCEPHALON_DEVELOPMENT (FDR = 0.047). 
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We added the following paragraph to the main manuscript in response to the reviewer's 
comment: 
 
“Next, we compared the genes identified with MAGMA for the Income Factor with those 
identified previously for EA and household income. We find that of the 368 genes associated 
with the Income Factor, 98 were not discovered for educational attainment or household income 
yet (Extended Fig. 5b (a) & Supplementary Tables 32-34). We further examined the biological 
processes of genes associated with the Income Factor, EA, and household income with FUMA 
GENE2FUNC. Using a test of overrepresentation, we find three biological processes at FDR < 
0.05 that are unique to the Income Factor: neuronal migration (FDR = 0.012), bone formation in 
early development (FDR = 0.036), and the formation of axons (FDR = 0.047). The overlap 
among biological processes detected for each trait at FDR < 0.05 is shown in Extended Fig 5b 
(b) (Supplementary Tables 35-37).” 
 
In the Supplementary Information, we have added the following text: 
 
 
“4.1. Biological annotation 
To examine if the Income Factor was capturing the same underlying biology as household 
income and educational attainment, we used MAGMA and a test of overrepresentation 
performed using the GENE2FUNC process in FUMA (version 1.5.2). First, gene-based statistics 
were derived for the INC factor and educational attainment (Lee et al. 2018) using MAGMA. For 
household income, the MAGMA gene-based statistics were taken from Supplementary Table 18 
in Hill et al. (2019). Next, genes that passed a Bonferroni correction were retained and 
compared across the Income Factor, educational attainment (Lee et al. 2018), and household 
income (Hill et al. 2019). This comparison can be seen in the Venn diagram in Extended Fig 5b 
(a). 
  
Second, using the GENE2FUNC in FUMA, we performed a hypergeometric test to determine if 
the genes identified using MAGMA were overrepresented in biological pathways using MsigDB. 
Gene sets that attained statistical significance (FDR <0.05) in the Income Factor, educational 
attainment, and household income were retained and compared against each other (Extended 
Fig 5b (b)).” 
 
 
The extended figure 5 was cut in half, and not showing these results. 
We apologize for the inconvenience. This might have happened during the PDF assembly in the 
submission system. We double-checked that all Figures are included in the submission 
package. 
 
In addition, all analyses were based in silico, it will be much stronger to have more 
mechanistic data (e.g., in vitro, in vivo) to validate the function of identified loci. 
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Given that our phenotype is a social construct rather than a disease or a physiological 
characteristic, we consciously decided to keep the biological annotation of our GWAS results to 
a necessary minimum.  
 
The abbreviation “INC” used in this manuscript is not very helpful because it does not 
shorten the whole word; instead, it just represents income. So why not just use “income”, 
which is clearer? 
We changed the wording from “INC factor” to “Income Factor” throughout and from “NonEA-
INC” to “NonEA-Income.” 
 
 
Reviewer #3: 
Remarks to the Author: 
 
I trust this letter finds you well. I am writing to convey the positive outcome of the review 
process for your manuscript. The quality of your research, the robustness of your 
methodology, and the clarity of presentation have all contributed to this positive 
recommendation. 
 
The study is well-organized, the literature review is comprehensive, and the conclusions 
drawn are supported by the presented data. While the manuscript is well-documented as it 
stands, I would like to highlight some minor suggestions for improvement that you may 
consider addressing. 
 
(1) In the first paragraph of results section, four distinct measures of income were 
delineated. Subsequently, independent GWAS were performed on each of these measures, 
leading to the identification of 86 non-overlapping loci. However, the biological functions 
of these loci remain unclear, and it is currently unknown how many loci are shared among 
the four income measures. 
We added the following Venn diagram of the 86 non-overlapping loci across the four distinct 
measures of income as Extended Fig 5c: 
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Next, we extracted high-confidence genes mapped to those 86 loci. Gene-based statistics were 
derived using MAGMA for genes whose physical boundaries overlapped with these genome-
wide significant loci. A Venn diagram of the derived genes across the four income measures is 
shown below and in Extended Fig. 5c (b). 
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Next, we took 63 genes unique to occupational income, 24 unique household income genes, 
and 55 genes shared between occupational and household income into FUMA GENE2FUNC 
for gene-set enrichment analysis to evaluate their differences and similarities in biological 
annotations. We found that shared genes are down-regulated in blood vessels, while genes 
unique to household income are up-regulated in the brain and nerves. Genes unique to 
household or occupational income were not found to be enriched for any biological processes, 
cellular components, or molecular function gene sets. In contrast, shared genes are enriched to 
regulate the modification of synaptic structure and synapse organization gene sets. These 
results are shown in the table below.   
 

 
 
Note that the differences we identified across the four income measures could be driven by 
differences in statistical power and measurement accuracy rather than by different biological 
processes.  
 
This figure shows the p-value for trait-associated loci across traits. The Y-axis represents the 
minimum p-value of association of any SNP within a locus from a certain GWAS. The X-axis 
represents the trait-associated loci from of which traits. Taking the third column (occupational) 
as an example: Cells in the top row are colored in dark red because these loci are occupational 
income loci. The second row represents the strongest SNP association of these occupational 
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loci in household GWAS. Some are marginally significant in household GWAS (coloured in 
yellow), some passed the suggestive significance level (coloured in orange), and some are GW-
significant (coloured in dark brown).  
Looking at the plot vertically, we find that for any occupational income locus, there is at least 
one statistical evidence that SNPs in this region is associated with another income index. 
Hence, each locus in the plot is at least associated with 2 indices at p < 0.05, suggesting the 
signal discovered from four different income measures is quite homogeneous. 
 
 

 
 
We have now amended the manuscript to include this additional information regarding how the 
significant loci and the genes within these loci overlap between the four income traits. The 
additional text is copied below. 
 
“Across the four GWAS on different income measures, we identified 86 non-overlapping loci in 
the genome (see Supplementary Information section 2.6 for the definition of loci and lead SNPs, 
and Extended Fig 5c (a) for the distribution of associated loci across the four income traits). 
Table 1 summarises the results. Occupational and household income showed the most genetic 
associations (59 and 41 loci, respectively), as expected based on sample sizes and SNP-based 
heritability estimates based on linkage disequilibrium score regression (LDSC) (h2 = 0.08 (s.e. = 
0.003) and 0.06 (s.e. = 0.003), respectively). Gene-based analysis was performed on the genes 
that overlapped with each loci using MAGMA, where 102 attained genome-wide significance, 
with 63 being unique to occupational income, 24 unique to household income, and 55 shared 
between the two. No other genes attained statistical significance (Extended Fig. 5c (b)).” 
 
 
(2) In the analysis of "Cross-sex and cross-country heterogeneity," were the cohorts 
included in the meta-analysis exclusively of European ancestry? 
Yes. All individuals and samples included in this study are of European descent. 
 
(3) Additional evidence is required to substantiate the functional role of rs34177108, 
which was identified through the NonEA-INC GWAS. 
To examine the functionality of the NonEA Income locus, we extracted the three lead SNPs 
from this locus. We compared the association test statistics across educational attainment, the 
Income Factor, a GWAS on red vs. non-red hair, and a GWAS on blond vs. non-blond hair. We 
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found the A allele of rs34177108 is associated with a decrease in NonEA-Income (β = -0.013, 
SE = 0.002) as well as a negative effect on income that is not genome-wide significant (β = -
0.010, SE = 0.002, P = 1.44×10-6). There was no evidence that this A allele had an effect on 
educational attainment (β = 0.001, SE = 0.002, P = 0.51). However, this allele was associated 
with a greater instance of red (β = 104, SE = 0.001, P = 0) and blond hair (β = 0.023, SE = 
0.001, P = 5.68×10-157) than all other hair colors. This pattern was directionally consistent across 
the three lead SNPs, and rs1805007 retained statistical significance for the income factor 
(Supplementary Table 38). 
 
This pattern of associations across non-EA Income, the Income Factor, educational attainment, 
and red and blond hair indicates that the red and blond hair genotypes at this locus have no 
effect on educational attainment. However, they are related to a lower income level. 
 
We next examined the relationship between the broader polygenic signal for red and blond hair 
with Non-EA Income, educational attainment, and the Income Factor. We used publicly 
available GWAS summary data on hair color (Supplementary Table 39) from the IEU GWAS 
database (https://gwas.mrcieu.ac.uk/). These include three case-control phenotypes (Red vs 
Non-Red, Blonde vs Non-Blond, and Dark Brown vs Non-Dark-Brown) from Neale et al. 
(https://www.nealelab.is/uk-biobank), two case-control phenotypes (Blond vs Non-Blond labeled 
as HC_Blond and Dark Brown vs Non-Dark-Brown labeled as HC_DarkBrown) from Loh et al. 
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309610/), and one integer phenotypes from 
Loh et al. (labeled HC and recorded from light hair color (higher numbers) to dark hair color 
(lower numbers). 
 
Using linkage disequilibrium score regression, we found little evidence of a sufficient polygenic 
signal to examine red hair (h2 = 0.018, SE = 0.013, Z = 1.31), as evidenced by a heritability Z 
score of less than 4. The heritability of each other category of hair color could be measured with 
sufficient accuracy to perform genetic correlations (Supplementary Table 40). 
 
Significant genetic correlations were present between the Income Factor with blond (rg = -0.06, 
SE = 0.02, P = 0.015), dark brown (rg = 0.012, SE = 0.025, P = 3.35×10-6), HC (rg = -0.06, SE = 
0.02, P = 0.006), HC_blond (rg = -0.053, SE = 0.021, P = 0.012), and HC_DarkBrown (rg = 
0.120, SE = 0.024, P = 4.12×10-7). The direction of association across each of these traits is 
consistent with the idea that the genetic antecedents of darker hair are also associated with 
higher income.  
 
This genetic relationship between darker hair and a greater level of income was not significant 
for Non-EA Inc as evidenced by the genetic correlations with blond (rg = -0.077, SE = 0.047, P = 
0.102), darkbrown (rg = 0.071, SE = 0.049, P = 0.152), HC (rg = -0.051, SE = 0.038, P = 0.173), 
HC_blond (rg = -0.050, SE = 0.043, P = 0.248), and HC_DarkBrown (rg = 0.058, SE = 0.045, P = 
0.201). However, the direction of these genetic correlations was consistent with those of the 
Income Factor. 
 

https://gwas.mrcieu.ac.uk/
https://www.nealelab.is/uk-biobank
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309610/
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Genetic correlations with red hair are also presented in Supplementary Table 41 for 
completeness. Whilst these are directionally consistent with the findings presented above (i.e. 
lighter hair is genetically related to a lower level of income), no strong conclusions should be 
drawn from these data due to the poor accuracy of the heritability that could be estimated. 
 
As a next step, we investigated relationships between hair color and income using phenotyping 
data from UK Biobank (data-field 1747). Regression analyses showed that individuals with black 
hair would be more likely to have lower income (relative to blond hair), while those with dark 
brown hair are more likely to have higher income (see Response Letter Table 1 below).  
 

Response Letter Table 1 

HI ~ Hair Colour Estimate Std. Error t value Pr(>|t|) 

(Intercept Blond) 2.595 0.006 450.470 <2×10-16 *** 

Red 0.004 0.011 0.391 0.695 
 

LightBrown 0.009 0.007 1.323 0.186 
 

DarkBrown 0.066 0.007 10.024 <2×10-16 *** 

Black -0.138 0.011 -12.546 <2×10-16 *** 

Note: Only participants of European descent were included. 

 
Finally, we included educational attainment in these regressions, allowing for an interaction 
between hair color and education on income. Our results show that the effect of education on 
income is greatest for those with black hair. In contrast, those with dark brown benefitted the 
least from a university-level degree, leading to a greater similarity of income in those attaining a 
university-level degree compared to those who did not attain a university degree (Response 
Letter Figure 1). 
 
Overall, this highly complex -- and partially contradictory -- set of results does not point to a 
clear story about discrimination. A further investigation of this finding is beyond the scope of this 
paper. Therefore, we simply deleted “discrimination” as a potential explanation of this finding. 
The GWAS-by-Subtraction section of the main manuscript now reads as follows: 
 

“We employed the GWAS-by-subtraction approach using Genomic SEM33 to identify this 
residual genetic signal (referred to as ‘NonEA-Income’). We identified one locus of genome-wide 
significance for NonEA-Income, marked by the lead SNP rs34177108 on chromosome 16 
(Extended Data Fig 2c). This locus was previously found to be associated with vitamin D levels, 
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cancer, as well as hair and skin-related traits such as colour, sun exposure, possibly picking up 
on uncontrolled population stratification (Supplementary Tables 38-41).” 

 

Response Letter Table 2. 

HI ~ HC + EA + 
HCxEA 

Estimate Std. Error t value Pr(>|t|) 

(Intercept Blond) 2.313 0.007 348.888 <2×10-16 *** 

Red -0.007 0.013 -0.547 0.585  

LightBrown 0.008 0.007 1.083 0.279  

DarkBrown 0.047 0.008 6.200 5.66×10-

10 
*** 

Black -0.120 0.012 -9.696 <2×10-16 *** 

EA 0.872 0.012 75.369 <2×10-16 *** 

Red:EA -0.027 0.021 -1.261 0.207  

LightBrown:EA -0.015 0.013 -1.182 0.237  

DarkBrown:EA -0.035 0.013 -2.638 0.008 ** 

Black:EA 0.061 0.023 2.688 0.007 ** 

Table 2. The results of multiple regression examining hair color (HC) and educational attainment (EA) on 
household income (HI). Education is coded as 1 for those with a university-level degree and 0 for those 
without. Participants were included if they were of European descent. 
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Response Letter Figure 1.  

 

Figure 1. This figure shows how income differences between different hair color groupings are 
smaller in those with a higher educational attainment than those with a lower level of education. 
First, the average income level was derived for the two education groupings. Second, the 
average income level was derived for each hair color group separately in the two education 
groupings. Third, the average income level of each education grouping was subtracted from the 
income level within each hair color grouping. Each bar shows the average income level of each 
hair color group following the subtraction of the average income level within the two education 
groupings. 
 


