model: class_path: watch.tasks.fusion.methods.HeterogeneousModel init_args: token_width: 10 token_dim: 16 position_encoding_frequencies: 16 backbone_encoder_depth: 6 spatial_scale_base: 1.0 temporal_scale_base: 1.0 ignore_scale: false global_change_weight: 0.0 global_class_weight: 0.0 global_saliency_weight: 1.0 saliency_loss: focal data: batch_size: 24 time_steps: 1 chip_dims: 256 channels: red|green|blue chip_overlap: 0 dist_weights: 0 exclude_sensors: null ignore_dilate: 0 input_space_scale: 30GSD output_space_scale: null window_space_scale: null min_spacetime_weight: 0.5 neg_to_pos_ratio: 0.25 normalize_inputs: true normalize_perframe: false resample_invalid_frames: true temporal_dropout: 0.0 time_sampling: auto time_span: 6m torch_sharing_strategy: default torch_start_method: default upweight_centers: true use_centered_positives: true use_cloudmask: false use_grid_positives: true verbose: 1 optimizer: class_path: torch.optim.AdamW init_args: lr: 1e-4 weight_decay: 0.0 #1e-5 profile: false seed_everything: true trainer: callbacks: null check_val_every_n_epoch: 5 enable_checkpointing: true enable_model_summary: true enable_progress_bar: true gradient_clip_algorithm: null gradient_clip_val: null log_every_n_steps: 50 logger: true max_steps: 200000 num_sanity_val_steps: 2 replace_sampler_ddp: true track_grad_norm: 2