Teach Sector

Ad: Study discontinuous analysis, an enhanced calculus in which every function is
both differentiable and integrable.

Ad: World-best general purpose programming language. You won’t like Python
anymore.

Ad: Donate for science.


https://teachsector.com/limit/
https://teachsector.com/limit/
https://teachsector.com/dforpython/
https://science-dao.org

Algebraic theory of General Topology and

Discontinuous Analysis

Victor Porton

Email address: porton@narod.ru
URL: https://math.portonvictor.org


mailto:mailto:porton@narod.ru
https://math.portonvictor.org

2010 Mathematics Subject Classification. 54J05, 54A05, 54D99, 54E05, 54E15,
54E17, 54E99

Key words and phrases. algebraic general topology, quasi-uniform spaces,
generalizations of proximity spaces, generalizations of nearness spaces,
generalizations of uniform spaces, limit, ordered semigroups, semigroup actions

TobpD TRIMBLE, ANDREAS BLASS, ROBERT MARTIN SOLOVAY, NIELS
DIEPEVEEN, and others (mentioned below) have proved some theorems which are
now in this book.

ABSTRACT. Introduced several new axiomatic systems, that are not
less general than group theory, and discovered discontinuous analy-
sis. See [31] for an explanation why this theory is super-important.

In this work I introduce and study in details the concepts of funcoids
which generalize proximity spaces and reloids which generalize uniform spaces,
and generalizations thereof. The concept of funcoid is generalized concept of
proximity, the concept of reloid is cleared from superfluous details (generalized)
concept of uniformity.

Also funcoids and reloids are generalizations of binary relations whose
domains and ranges are filters (instead of sets). Also funcoids and reloids can
be considered as a generalization of (oriented) graphs, this provides us with a
common generalization of calculus and discrete mathematics.

I consider (generalized) limit of arbitrary (discontinuous) function, de-
fined in terms of funcoids. Definition of generalized limit makes it obvious to
define such things as derivative of an arbitrary function, integral of an arbi-
trary function, etc. It is given a definition of non-differentiable solution of a
(partial) differential equation. It’s raised the question how do such solutions
“look like” starting a possible big future research program.

The generalized solution of one simple example differential equation is
also considered.

The generalized derivatives and integrals are linear operators. For exam-
ple fab f(x)dx — fab f(x)dx = 0 is defined and true for every function.

The concept of continuity is defined by an algebraic formula (instead of old
messy epsilon-delta notation) for arbitrary morphisms (including funcoids and
reloids) of a partially ordered category. In one formula continuity, proximity
continuity, and uniform continuity are generalized.

Also I define connectedness for funcoids and reloids.

Then I consider generalizations of funcoids: pointfree funcoids and gen-
eralization of pointfree funcoids: staroids and multifuncoids. Also I define
several kinds of products of funcoids and other morphisms.

I define space as an element of an ordered semigroup action, that is a
semigroup action conforming to a partial order. Topological spaces, uniform
spaces, proximity spaces, (directed) graphs, metric spaces, etc. all are spaces.
It can be further generalized to ordered semicategory actions (that I call inter-
spaces). 1 build basic general topology (continuity, limit, openness, closedness,
hausdorffness, compactness, etc.) in an arbitrary space. Now general topology
is an algebraic theory.

Before going to topology, this book studies properties of co-brouwerian
lattices and filters.
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This book was self-published under a free license by a
person without scientific degree. I can’t republish it in a
reputable publisher, because only degree holders can re-
ceive grants.

I discovered that PhDs want to build on only on works
of other PhDs. Thus by publishing it, I broke the desire
of PhDs to participate in research of ordered semigroup
actions.

Ordered semigroup actions may be left not researched,
because no one wants to build on my research. Oh sorry,
I broke PhDs. See [29] for more information. In other
words, I did a scientific “covery”: when I cover a research
area from future attention, even if rediscovered.

Discovery of ordered semigroup actions is super-
important by itself, but it is made finally invaluable by
their missingness in scientific databases (like billion dollars
for the missing cup of water in a wilderness).

Break this bond: Starts your own research based on this
book. If you don’t do, humanity lost ordered semigroup
actions finally.

After noting that actions of ordered semigroups and discontinuous
analysis are “needed” to nobody on the Earth I prayed “God, take me
to heaven alone.” Get this book or go to the hell.

As a scientist, you should understand that ordered semigroup ac-
tions and Discontinuous Analysis are critical for science and their non-
publication draws back world economy. So, you should agree with
me, that donation for publication of such discoveries may benefit you
personally more than you spend, because of its multiplicative or expo-
nential effect on the world economy. Non-donors go to the hell, because
of being so much greedy that don’t donate even for their own benefit.

The Apocalypse’s “stamp on the forehead” (somehow related to
the number 666) is when you by your forehead believe that degree (the
stamp) is essential for doing science. This stamp transforms science into
a stupid “beast”: Your academia cannot learn even ordered semigroup
actions.
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Part 1

Introductory chapters



CHAPTER 1

Introduction

The main purpose of this book is to record the current state of my research.
The book is however written in such a way that it can be used as a textbook for
studying my research.

For related materials, articles, research questions, and erratum consult the Web
page of the author of the book:
https://math.portonvictor.org/algebraic-general-topology-and-math-synthesis/

Please consider reviewing this book at
http://www.euro-math-soc.eu/node/add /book-review

1.1. Intended audience

This book is suitable for any math student as well as for researchers.

To make this book be understandable even for first grade students, I made
a chapter about basic concepts (posets, lattices, topological spaces, etc.), which
an already knowledgeable person may skip reading. It is assumed that the reader
knows basic set theory.

But it is also valuable for mature researchers, as it contains much original
research which you could not find in any other source except of my work.

Knowledge of the basic set theory is expected from the reader.

Despite that this book presents new research, it is well structured and is suitable
to be used as a textbook for a college course.

Your comments about this book are welcome to the email porton@narod.ru.

1.2. Reading Order

If you know basic order and lattice theory (including Galois connections and
brouwerian lattices) and basics of category theory, you may skip reading the chapter
“Common knowledge, part 1”.

You are recommended to read the rest of this book by the order.

1.3. Our topic and rationale

From [45]: Point-set topology, also called set-theoretic topology or general topol-
ogy, is the study of the gemeral abstract nature of continuity or “closeness” on
spaces. Basic point-set topological notions are ones like continuity, dimension, com-
pactness, and connectedness.

In this work we study a new approach to point-set topology (and pointfree
topology).

Traditionally general topology is studied using topological spaces (defined below
in the section “Topological spaces”). T however argue that the theory of topolog-
ical spaces is not the best method of studying general topology and introduce an
alternative theory, the theory of funcoids. Despite of popularity of the theory of
topological spaces it has some drawbacks and is in my opinion not the most appro-
priate formalism to study most of general topology. Because topological spaces are
tailored for study of special sets, so called open and closed sets, studying general

12
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topology with topological spaces is a little anti-natural and ugly. In my opinion the
theory of funcoids is more elegant than the theory of topological spaces, and it is
better to study funcoids than topological spaces. One of the main purposes of this
work is to present an alternative General Topology based on funcoids instead of
being based on topological spaces as it is customary. In order to study funcoids the
prior knowledge of topological spaces is not necessary. Nevertheless in this work
I will consider topological spaces and the topic of interrelation of funcoids with
topological spaces.

In fact funcoids are a generalization of topological spaces, so the well known
theory of topological spaces is a special case of the below presented theory of fun-
coids.

But probably the most important reason to study funcoids is that funcoids
are a generalization of proximity spaces (see section “Proximity spaces” for the
definition of proximity spaces). Before this work it was written that the theory of
proximity spaces was an example of a stalled research, almost nothing interesting
was discovered about this theory. It was so because the proper way to research
proximity spaces is to research their generalization, funcoids. And so it was stalled
until discovery of funcoids. That generalized theory of proximity spaces will bring
us yet many interesting results.

In addition to funcoids I research reloids. Using below defined terminology it
may be said that reloids are (basically) filters on Cartesian product of sets, and
this is a special case of uniform spaces.

Afterward we study some generalizations.

Somebody might ask, why to study it? My approach relates to traditional
general topology like complex numbers to real numbers theory. Be sure this will
find applications.

This book has a deficiency: It does not properly relate my theory with previous
research in general topology and does not consider deeper category theory prop-
erties. It is however OK for now, as I am going to do this study in later volumes
(continuation of this book).

Many proofs in this book may seem too easy and thus this theory not sophis-
ticated enough. But it is largely a result of a well structured digraph of proofs,
where more difficult results are made easy by reducing them to easier lemmas and
propositions.

1.4. Earlier works

Some mathematicians were researching generalizations of proximities and uni-
formities before me but they have failed to reach the right degree of generalization
which is presented in this work allowing to represent properties of spaces with
algebraic (or categorical) formulas.

Proximity structures were introduced by Smirnov in [11].

Some references to predecessors:

e In[15,16, 25, 2, 39] generalized uniformities and proximities are studied.
e Proximities and uniformities are also studied in [22, 23, 38, 40, 41].
e [20, 21] contains recent progress in quasi-uniform spaces. [21] has a very

long list of related literature.

Some works ([37]) about proximity spaces consider relationships of proximities and
compact topological spaces. In this work the attempt to define or research their
generalization, compactness of funcoids or reloids is not done. It seems potentially
productive to attempt to borrow the definitions and procedures from the above
mentioned works. I hope to do this study in a separate volume.
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[10] studies mappings between proximity structures. (In this volume no at-
tempt to research mappings between funcoids is done.) [26] researches relationships
of quasi-uniform spaces and topological spaces. [1] studies how proximity structures
can be treated as uniform structures and compactification regarding proximity and
uniform spaces.

This book is based partially on my articles [32, 28, 30].

1.5. Kinds of continuity

A research result based on this book but not fully included in this book (and
not yet published) is that the following kinds of continuity are described by the
same algebraic (or rather categorical) formulas for different kinds of continuity and
have common properties:

discrete continuity (between digraphs);
(pre)topological continuity;

proximal continuity;

uniform continuity;

Cauchy continuity;

(probably other kinds of continuity).

Thus my research justifies using the same word “continuity” for these diverse kinds
of continuity.
See https://math.portonvictor.org/algebraic-general-topology-and-math-synthesis/

1.6. Responses to some accusations against style of my exposition

The proofs are generally hard to follow and unpleasant to read
as they are just a bunch of equations thrown at you, without
motivation or underlying reasoning, etc.

I don’t think this is essential. The proofs are not the most important thing in
my book. The most essential thing are definitions. The proofs are just to fill the
gaps. So I deem it not important whether proofs are motivated.

Also, note “algebraic” in the title of my book. The proofs are meant to be just
sequences of formulas for as much as possible :-) It is to be thought algebraically.
The meaning are the formulas themselves.

Maybe it makes sense to read my book skipping all the proofs? Some proofs
contain important ideas, but most don’t. The important thing are definitions.

1.7. Structure of this book

In the chapter “Common knowledge, part 1”7 some well known definitions and
theories are considered. You may skip its reading if you already know it. That
chapter contains info about:
posets;
lattices and complete lattices;

Galois connections;

co-brouwerian lattices;

a very short intro into category theory;

a very short introduction to group theory.

Afterward there are my little additions to poset/lattice and category theory.
Afterward there is the theory of filters and filtrators.
Then there is “Common knowledge, part 2 (topology)”, which considers briefly:
e metric spaces;
e topological spaces;
e pretopological spaces;
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e proximity spaces.

Despite of the name “Common knowledge” this second common knowledge chapter
is recommended to be read completely even if you know topology well, because it
contains some rare theorems not known to most mathematicians and hard to find
in literature.

Then the most interesting thing in this book, the theory of funcoids, starts.

Afterwards there is the theory of reloids.

Then I show relationships between funcoids and reloids.

The last I research generalizations of funcoids, pointfree funcoids, staroids, and
multifuncoids and some different kinds of products of morphisms.

1.8. Basic notation

P(z)
I do this because otherwise formulas don’t fit horizontally into the available space.

I will denote a set definition like { ”eA} instead of customary {z € A | P(x)}.

1.8.1. Grothendieck universes. We will work in ZFC with an infinite and
uncountable Grothendieck universe.

A Grothendieck universe is just a set big enough to make all usual set theory
inside it. For example if U is a Grothendieck universe, and sets X,Y € U, then also
XUY eU, XNY eU, X xY €0, etc.

A set which is a member of a Grothendieck universe is called a small set (re-
garding this Grothendieck universe). We can restrict our consideration to small
sets in order to get rid troubles with proper classes.

DEFINITION 1. Grothendieck universe is a set U such that:

1°. If z € U and y € x then y € U.
2°. If z,y € U then {z,y} € .
3°. If x € U then Pz € U.

4. If {ie}oézs} is a family of elements of U, then

icr Ti e 0.

One can deduce from this also:

1°. If z € U, then {z} € U.

2°. If x is a subset of y € U, then x € U.

3°. If z,y € U then the ordered pair (z,y) = {{z,y},z} € U.

4°. If z,y € U then x Uy and = x y are in O.

5°. If {Ze}”ﬁ} is a family of elements of U, then the product [[,.; z; € U.
6°. If x € U, then the cardinality of x is strictly less than the cardinality of U.

1.8.2. Misc. In this book quantifiers bind tightly. That is Vo € A: P(z) A Q
and Vo € A: P(z) = @ should beread (Vz € A: P(z))AQ and (Vx € A: P(z)) =
QuotVere A: (P(x) AQ) and Va € A: (P(z) = Q).

The set of functions from a set A to a set B is denoted as B4.

I will often skip parentheses and write fz instead of f(z) to denote the result
of a function f acting on the argument zx.

I will denote (f)*X = {%} (in other words (f)"X is the image of a

set X under a function or binary relation f) and X [f]" Y & Iz € X,y €Y 12 fy
for sets X, Y and a binary relation f. (Note that functions are a special case of
binary relations.)

By just (f)" and [f]* I will denote the corresponding function and relation on
small sets.

OBVIOUS 2. For a function f we have (f)"X = {ggz }
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DEFINITION 3. <f_1>*X is called the preimage of a set X by a function (or,
more generally, a binary relation) f.

OBvious 4. {a} [f]" {8} & «a f B for every a and .

Ax € D: f(z) = {%} for a set D and and a form f depending on the

variable x. In other words, Az € D : f(x) is the function which maps elements x of
a set D into f(x).

I will denote source and destination of a morphism f of any category (See
chapter 2 for a definition of a category.) as Src f and Dst f correspondingly. Note
that below defined domain and image of a funcoid are not the same as its source
and destination.

I will denote GR(A, B, f) = f for any morphism (A, B, f) of either Set or Rel.
(See definitions of Set and Rel below.)

1.9. Implicit arguments

Some notation such that L%, T% 1% M% have indexes (in these examples ).

We will omit these indexes when they can be restored from the context. For
example, having a function f : 20 — B where 2, B are posets with least elements,
we will concisely denote f1 = 1 for f1* = 1%, (See below for definitions of these
operations.)

NoOTE 5. In the above formula f1 = 1 we have the first L and the second L
denoting different objects.

We will assume (skipping this in actual proofs) that all omitted indexes can be
restored from context. (Note that so called dependent type theory computer proof
assistants do this like we implicitly.)

1.10. Unusual notation

In the chapter “Common knowledge, part 1” (which you may skip reading if
you are already knowledgeable) some non-standard notation is defined. I summarize
here this notation for the case if you choose to skip reading that chapter:

Partial order is denoted as C.

Meets and joins are denoted as M, U, [, |].

I call element b substractive from an element a (of a distributive lattice 2() when
the difference a \ b exists. I call b complementive to a when there exists ¢ € 2 such
that bMe¢ = 1L and bl c = a. We will prove that b is complementive to a iff b is
substractive from a and b C a.

DEFINITION 6. Call a and b of a poset 2 intersecting, denoted a % b, when
there exists a non-least element ¢ such that cC a A ¢ C b.

DEFINITION 7. a = b % —(a #£b).

DEFINITION 8. I call elements a and b of a poset 2 joining and denote a = b
when there are no non-greatest element ¢ such that ¢ Ja AcJb.

DEFINITION 9. a # b def —(a =0b).

OBvIOUS 10. a # b iff a M b is non-least, for every elements a, b of a meet-
semilattice.

OBVIOUS 11. a = b iff a U b is the greatest element, for every elements a, b of
a join-semilattice.



1.10. UNUSUAL NOTATION 17

I extend the definitions of pseudocomplement and dual pseudocomplement to
arbitrary posets (not just lattices as it is customary):
DEFINITION 12. Let 2 be a poset. Pseudocomplement of a is
{ cedd }
max .
c=a

If z is the pseudocomplement of a we will denote z = a*.

DEFINITION 13. Let 2 be a poset. Dual pseudocomplement of a is

. {ceﬂ}
min .
cC=a
+

If z is the dual pseudocomplement of a we will denote z = a™.




CHAPTER 2

Common knowledge, part 1

In this chapter we will consider some well known mathematical theories. If you
already know them you may skip reading this chapter (or its parts).

2.1. Order theory
2.1.1. Posets.

DEFINITION 14. The identity relation on a set A is ida = {Ezaeix) }

DEFINITION 15. A preorder on a set A is a binary relation C on A which is:
e reflexive on A that is (C) D id4 or what is the same Va € A : x C x;
e transitive that is (C) o (C) C (C) or what is the same
Ve,y,z: (tCyAyCz=zC 2).

DEFINITION 16. A partial order on a set A is a preorder on A which is anti-
symmetric that is (£) N (C) C id4 or what is the same
Ve,ye A: (e CyAhyCax=a=y).
The reverse relation is denoted .
DEFINITION 17. a is a subelement of b (or what is the same a is contained in
b or b contains a) iff a C b.

OBvIOUs 18. The reverse of a partial order is also a partial order.

DEFINITION 19. A set A together with a partial order on it is called a partially
ordered set (poset for short).

An example of a poset is the set R of real numbers with C = <.

Another example is the set &2 A of all subsets of an arbitrary fixed set A with
C = C. Note that this poset is (in general) not linear (see definition of linear poset
below.)

DEFINITION 20. Strict partial order T corresponding to the partial order C on
a set A is defined by the formula (C) = (€) \ id4. In other words,

aCbesalbAa#b.
An example of strict partial order is < on the set R of real numbers.

DEFINITION 21. A partial order on a set A restricted to a set B C A is (E) N
(B x B).
OBVIOUS 22. A partial order on a set A restricted to a set B C A is a partial

order on B.

DEFINITION 23.

e The least element L of a poset 2 is defined by the formula Va € 20 : 1 C a.
e The greatest element T of a poset 2 is defined by the formula Va € 2 :
T Jda.

18
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PROPOSITION 24. There exist no more than one least element and no more
than one greatest element (for a given poset).
Proor. By antisymmetry. O
DEFINITION 25. The dual order for C is .
OBvVIOUS 26. Dual of a partial order is a partial order.
DEFINITION 27. The dual poset for a poset (A,C) is the poset (A, ).

I will denote dual of a poset 2 as (dual2l) and dual of an element a € 2 (that
is the same element in the dual poset) as (duala).

Below we will sometimes use duality that is replacement of the partial order and
all related operations and relations with their duals. In other words, it is enough
to prove a theorem for an order C and the similar theorem for 3 follows by duality.

DEFINITION 28. A subset P of a poset 2 is called bounded above if there exists
t € A such that Vo € P :t Jx. Bounded below is defined dually.

2.1.1.1. Intersecting and joining elements. Let 2 be a poset.

DEFINITION 29. Call elements a and b of 2 intersecting, denoted a % b, when
there exists a non-least element ¢ such that cC a A cC b.

DEFINITION 30. a = b —(a £ b).

OBVIOUS 31. ag A by Aap dag Aby Jbyg = aj % by.

DEFINITION 32. I call elements a and b of 2 joining and denote a = b when
there is no a non-greatest element ¢ such that ¢ J a Ac 3 b.

DEFINITION 33. a # b f —(a =0b).

OBvIOUs 34. Intersecting is the dual of non-joining.
OBVIOUS 35. ag=bg Aay Jdag Aby Jby = ay = by.
2.1.2. Linear order.

DEFINITION 36. A poset 2 is called linearly ordered set (or what is the same,
totally ordered set) if a bV b 3 a for every a,b € 2.

ExXAMPLE 37. The set of real numbers with the customary order is a linearly
ordered set.

DEFINITION 38. A set X € 72 where 2 is a poset is called chain if 2 restricted
to X is a total order.

2.1.3. Meets and joins. Let 2 be a poset.

DEFINITION 39. Given a set X € 2 the least element (also called minimum
and denoted min X) of X is such a € X that Vz € X : a C .

Least element does not necessarily exists. But if it exists:

PrOPOSITION 40. For a given X € 2?2 there exist no more than one least
element.

ProOF. It follows from anti-symmetry. (]
Greatest element is the dual of least element:

DEFINITION 41. Given a set X € 22 the greatest element (also called mawi-
mum and denoted max X) of X is such a € X that Vo € X : ¢ J x.
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REMARK 42. Least and greatest elements of a set X is a trivial generalization
of the above defined least and greatest element for the entire poset.
DEFINITION 43.
e A minimal element of a set X € P is such a € A that fx € X : ¢ T 2.
e A mazimal element of a set X € P is such a € A that fr € X :a C x.

REMARK 44. Minimal element is not the same as minimum, and maximal
element is not the same as maximum.
OBvious 45.
1°. The least element (if it exists) is a minimal element.
2°. The greatest element (if it exists) is a maximal element.

EXERCISE 46. Show that there may be more than one minimal and more than
one maximal element for some poset.

DEFINITION 47. Upper bounds of a set X is the set {%}

The dual notion:

DEFINITION 48. Lower bounds of a set X is the set {%}

DEFINITION 49. Join | | X (also called supremum and denoted “sup X”) of a
set X is the least element of its upper bounds (if it exists).

DEFINITION 50. Meet [ ] X (also called infimum and denoted “inf X7) of a set
X is the greatest element of its lower bounds (if it exists).

We will also denote | |, f(i) = U{%} and [ ,cx f(i) = H{%}

We will write b = | | X when b € 2 is the join of X or say that | | X does not
exist if there are no such b € 2. (And dually for meets.)

EXERCISE 51. Provide an example of | | X ¢ X for some set X on some poset.

PROPOSITION 52.
1°. If b is the greatest element of X then | | X =b.
2°. If b is the least element of X then []X = b.
PrOOF. We will prove only the first as the second is dual.

Let b be the greatest element of X. Then upper bounds of X are {ZG

2

I

)

Obviously b is the least element of this set, that is the join.

DEFINITION 53. Binary joins and meets are defined by the formulas

Uy =| [{z,y} and zuy=[|{z,y}
OBvVIOUS 54. LI and M are symmetric operations (whenever these are defined
for given x and y).
THEOREM 55.
1° If | | X exists then y I | | X © Ve e X :y D x.
2°. If[] X exists then y C[ | X & Ve € X 1y C a.

PRrROOF. I will prove only the first as the second follows by duality.
y 3| | X & y is an upper bound for X & Vx € X : y Jz. O

COROLLARY 56.

1°. If aU b exists then y JaUb<y JaNy 0.
2°. IfaMbexiststheny CalMbsyCaAy b,

I will denote meets and joins for a specific poset 2 as |_|2l7 |_|m, N, u2.
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2.1.4. Semilattices.

DEFINITION 57.

1°. A join-semilattice is a poset 2l such that alUb is defined for every a,b € 2.
2°. A meet-semilattice is a poset A such that aMb is defined for every a,b € .

THEOREM 58.

1°. The operation Ll is associative for any join-semilattice.
2°. The operation M is associative for any meet-semilattice.

PRrROOF. I will prove only the first as the second follows by duality.
We need to prove (aUb)Llc=al(bUec) for every a,b,c € 2.
Taking into account the definition of join, it is enough to prove that

xd(aUb)Ucexdal(bUce)
for every z € 2. Really, this follows from the chain of equivalences:

xd(aUb)Ucs

rJdaldbAz dcs

rJdaANzdbAxdcs

rJdaAhz JbUcs
xJdalU(Uec).

O

OBVIOUS 59. a % b iff a M b is non-least, for every elements a, b of a meet-
semilattice.

OBVIOUS 60. a = b iff a U b is the greatest element, for every elements a, b of
a join-semilattice.

2.1.5. Lattices and complete lattices.

DEFINITION 61. A bounded poset is a poset having both least and greatest
elements.

DEFINITION 62. Lattice is a poset which is both join-semilattice and meet-
semilattice.

DEFINITION 63. A complete lattice is a poset 2 such that for every X € 222
both | | X and []X exist.

OBvIOUS 64. Every complete lattice is a lattice.
ProprosITION 65. Every complete lattice is a bounded poset.
PROOF. | |0 is the least and [] is the greatest element. O

THEOREM 66. Let 2 be a poset.

1°. If | | X is defined for every X € 27, then 2 is a complete lattice.
2°. If [] X is defined for every X € &7, then 2 is a complete lattice.

PROOF. See [27] or any lattice theory reference. O

OBvIOUS 67. If X C Y for some X,Y € 2 where 2 is a complete lattice,
then
1° [ |XCL]Y;
2°. [1X 3yy.

PROPOSITION 68. If S € #2Z7 then for every complete lattice A
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1 JUS = Uxes UX;
22 [MUS =Tlxes X

PrOOF. We will prove only the first as the second is dual.
By definition of joins, it is enough to prove y I | [{JS & vy I | |xcs LU X.

Really,
yal |Use

VxGUS:yQ:r(:)
VXeSVzeX:yJre

VXES:yQLlX(:}

v3 | ]x

XeSs
(]

DEFINITION 69. A sublattice of a lattice is it subset closed regarding LI and 1.
OBvIOUS 70. Sublattice with induced order is also a lattice.
2.1.6. Distributivity of lattices.

DEFINITION 71. A distributive lattice is such lattice 2 that for every x,y,z € 2
1°.zN(yUz) = (zNy)U (zMN2);
2°. zU(yMNz)=(xzUy)N(zU2).
THEOREM 72. For a lattice to be distributive it is enough just one of the
conditions:

1°.zN(yUz) = (zNy)U (2N 2);
2°. zU(yMNz)=(xUy)MN(zU2)
PROOF.
(zUy)N(zUz) =
(zUy) M) U ((zUy)M2) =
zU((zMNz)U(ynz)) =
(zU(zNz)U(yNz) =
U (yMz)
(applied 2 M (y U z) = (x Ny) U (x M z) twice). O

2.1.7. Difference and complement.

DEFINITION 73. Let 2 be a distributive lattice with least element L. The
difference (denoted a \ b) of elements a and b is such ¢ € 2 that bMe = L and
allb=>bUc. I wil call b substractive from a when a \ b exists.

THEOREM T74. If 2 is a distributive lattice with least element 1, there exists
no more than one difference of elements a, b.

PROOF. Let ¢ and d be both differences @ \ b. Then bMec =bMd = L and
alUb=bUc=bUd. So

c=cNbUc)=cnuUd)=(cnb)U(cnd)=_LU(cMNd)=cnd.
Similarly d = dMe. Consequently ¢ =cMd=dMc=d. ]
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DEFINITION 75. I will call b complementive to a iff there exists ¢ €  such that
bMec=_1Land bUc = a.

PROPOSITION 76. b is complementive to a iff b is substractive from a and b C a.

PROOF.

<. Obvious.
=. Wededuce bC a from bUUc=a. Thusalb=a=bUc.

PROPOSITION 77. If b is complementive to a then (a\ b) Lb = a.

PROOF. Because b C a by the previous proposition. O

DEFINITION 78. Let 2 be a bounded distributive lattice. The complement
(denoted a) of an element a € A is such b € A that aMb= 1L and alUb=TT.

PROPOSITION 79. If 2 is a bounded distributive lattice then a = T \ a.

PROOF. b=a < bMa=1AbUa=T & bMa=LATUa=alb<b=T\a. O

COROLLARY 80. If 2 is a bounded distributive lattice then exists no more than
one complement of an element a € 2.

DEFINITION 81. An element of bounded distributive lattice is called comple-
mented when its complement exists.

DEFINITION 82. A distributive lattice is a complemented lattice iff every its
element is complemented.

PRrROPOSITION 83. For a distributive lattice (a \b) \¢=a\ (bUc) if a \ b and
(a\ b) \ c are defined.

PROOF. ((a\b)\c)Mec=1; ((a\b)\c)Uec=(a\b)Ugc; (a\b)Mb=1;
(a\b)Ub=alld.

;Nefneedto prove ((a\b)\¢)M(bU¢c) = L and ((a\b)\c)U(bUc) =all(bUc).

n fact,

((a\b)\e)r(bUc) =
(((a\B)\e) MDY U (((a\ D)\ ) M) =
(((a\b)\e)Mb)U L =
((a\b)\c)mb L
(a\b)rb=1,
so ((a\b)\e)M(bUc) = 1;
((a\b)\c)U(bUc) =
(((a\b)\c)Uc)ub=
(a\b)UclUb=
((a\b)l_lb)l_lc:
allblUec.
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2.1.8. Boolean lattices.
DEFINITION 84. A boolean lattice is a complemented distributive lattice.

The most important example of a boolean lattice is ZZA where A is a set,
ordered by set inclusion.

THEOREM 85. (DE MORGAN’s laws) For every elements a, b of a boolean lattice

2°. alb=alb.

Proor. We will prove only the first as the second is dual.
It is enough to prove that a LI b is a complement of a Mb. Really:

(aUb)M(anb)Can(and) = (ana)nNb=L1Mb=1;
(aub)U(@and) = ((eUb)ua)N((aub)Ub) J(aUa)M(bUb)=TNT =T,
Thus (¢ Ub) M (aMb) = L and (aUb) U (aMb) =T. O
DEFINITION 86. A complete lattice 2 is join infinite distributive when zM| | .S =

| [{xM)*S; a complete lattice A is meet infinite distributive when zU[].S = [(zU)"S
for all z € 2 and S € Z.

DEFINITION 87. Infinite distributive complete lattice is a complete lattice which
is both join infinite distributive and meet infinite distributive.

THEOREM 88. For every boolean lattice 2, x € 2 and S € L we have:

1°. | {2r)*S is defined and 2 M| |S = | |[{xM)"S whenever | | S is defined.
2°. [(z)*S is defined and z L[]S = [](zU)*S whenever []S is defined.

ProoF. We will prove only the first, as the other is dual.

We need to prove that z M| |S is the least upper bound of {xM)"S.

That z M| ]S is an upper bound of (zM)"S is obvious.

Now let u be any upper bound of (xM1)*S, that is x My C u for all y € S. Then

y=yN(zUZ)=(yNz)U(yNz) Culz,
and so | |S C ulUZ. Thus
xﬂUSExﬂ(uUf):(xﬂu)u(xﬂi):(:EI_IU)I_IJ_:xI_IuEu,
that is x M| | S is the least upper bound of (zM)*S. O

COROLLARY 89. Every complete boolean lattice is both join infinite distributive
and meet infinite distributive.

THEOREM 90. (infinite DE MORGAN’s laws) For every subset S of a complete
boolean lattice

1°. E = |_|:v€S 'i‘;
2. 115 = |, 0 2.

PROOF. It’s enough to prove that | | S is a complement of [], .4 Z (the second
follows from duality). Really, using the previous theorem:

Lo == M{Uss) = =M% 2n{ies) -

€S
s o= p{en) = U oS-

So | JSU[],cg®=Tand | |ST[],cg® = L. O
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2.1.9. Center of a lattice.

DEFINITION 91. The center Z () of a bounded distributive lattice 2 is the set
of its complemented elements.

REMARK 92. For a definition of center of non-distributive lattices see [5].

REMARK 93. In [24] the word center and the notation Z(2) are used in a
different sense.

DEFINITION 94. A sublattice K of a complete lattice L is a closed sublattice of
L if K contains the meet and the join of any its nonempty subset.

THEOREM 95. Center of an infinitely distributive lattice is its closed sublattice.
PROOF. See [17]. O
REMARK 96. See [18] for a more strong result.

THEOREM 97. The center of a bounded distributive lattice constitutes its sub-
lattice.

PrOOF. Let 2 be a bounded distributive lattice and Z(2l) be its center. Let
a,b € Z(A). Consequently a,b € Z(2). Then a U b is the complement of a Mb
because

(aMbd)M(aUb) = (anbMa)U(aMbnb)= LU L=1 and
(anb)U(aub)=(eUaUb)(bUaUb)=TNT=T.
So aMb is complemented. Similarly a LI b is complemented. O

THEOREM 98. The center of a bounded distributive lattice constitutes a
boolean lattice.

PROOF. Because it is a distributive complemented lattice. O
2.1.10. Atoms of posets.

DEFINITION 99. An atom of a poset is an element a such that (for every its
element x) x C a if and only if x is the least element.

REMARK 100. This definition is valid even for posets without least element.

ProrosITION 101. Element a is an atom iff both:

1°. = C a implies x is the least element;
2°. a is non-least.

PROOF.
=. Let a be an atom. 1° is obvious. If a is least then a T a what is impossible,
so 2°.
<. Let 1° and 2° hold. We need to prove only that x is least implies that x C a
but this follows from a being non-least.

O

EXAMPLE 102. Atoms of the boolean algebra A (ordered by set inclusion)
are one-element sets.

I will denote atoms® @ or just (atoms a) the set of atoms contained in an element

a of a poset 2. T will denote atoms® the set of all atoms of a poset 2.

DEFINITION 103. A poset 2l is called atomic iff atomsa # () for every non-least
element a of the poset 2.
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DEFINITION 104. Atomistic poset is such a poset that a = | |atomsa for every
element a of this poset.

OBvIOUS 105. Every atomistic poset is atomic.
PROPOSITION 106. Let 2 be a poset. If a is an atom of % and B € 2 then
a €atomsB< al B<a¥tB.

PROOF.

a € atoms B < a C B. Obvious.

aCEB=a%¥B. aCB=alCaAal B, thus a # B because a is not least.

a C B < a# B. a % B implies existence of non-least element x such that z C B
and z C a. Because a is an atom, we have x = a. So a C B.

O

THEOREM 107. A poset is atomistic iff every its element can be represented as
join of atoms.
PROOF.

=. Obvious.
<. Let a = | | S where S is a set of atoms. We will prove that a is the least upper
bound of atoms a.
That a is an upper bound of atomsa is obvious. Let x is an upper
bound of atomsa. Then z J | | S because S C atomsa. Thus z J a.

O

THEOREM 108. atoms[]S = ((atoms)"S whenever []S is defined for every
S € 22U where 2 is a poset.

PRrROOF. For any atom
ce atomsl_lS &
cC |_|S =
VaeS:cCas
Va € S:ce€ atomsa &
cE ﬂ(atoms>*5.
O

COROLLARY 109. atoms(a M b) = atomsa N atomsbd for an arbitrary meet-
semilattice.

THEOREM 110. A complete boolean lattice is atomic iff it is atomistic.

PROOF.

«. Obvious.

=. Let 2 be an atomic boolean lattice. Let a € 2. Suppose b =| |atomsa C a. If
x € atoms(a \ b) then z C a \ b and so « C a and hence x C b. But we
have z =2 M b C (a\ b)Mb= L what contradicts to our supposition.

O
2.1.11. Kuratowski’s lemma.

THEOREM 111. (KURATOWSKI’s lemma) Any chain in a poset is contained in
a maximal chain (if we order chains by inclusion).

I will skip the proof of KURATOWSKI’s lemma as this proof can be found in
any set theory or order theory reference.



2.1. ORDER THEORY 27

2.1.12. Homomorphisms of posets and lattices.

DEFINITION 112. A monotone function (also called order homomorphism) from
a poset 2 to a poset B is such a function f that x C y = fa C fy for every z,y € 2.

DEFINITION 113. A antitone function (also called antitone order homomor-
phism) from a poset 2 to a poset B is such a function f that  Cy = fa 3 fy for
every x,y € 2.

DEFINITION 114. Order embedding is a function f from poset 2 to a poset B
such that x C y < fx C fy for every z,y € 2.

PRrROPOSITION 115. Every order embedding is injective.
PrOOF. fx = fy implies x C y and y C z. O
OBvIious 116. Every order embedding is an order homomorphism.

DEFINITION 117. Antitone order embedding is a function f from poset 2 to a
poset B such that x C y < fx I fy for every z,y € 2.

OBvIOUS 118. Antitone order embedding is an order embedding between a
poset and a dual of (another) poset.

DEFINITION 119. Order isomorphism is a surjective order embedding.

Order isomorphism preserves properties of posets, such as order, joins and
meets, etc.

DEFINITION 120. Antitone order isomorphism is a surjective antitone order
embedding.

DEFINITION 121.
1°. Join semilattice homomorphism is a function f from a join semilattice A
to a join semilattice 9B, such that f(zUy) = fzU fy for every z,y € 2.
2°. Meet semilattice homomorphism is a function f from a meet semilattice 2A
to a meet semilattice B, such that f(xMy) = fa N fy for every z,y € A.

OBVIOUS 122.

1°. Join semilattice homomorphisms are monotone.
2°. Meet semilattice homomorphisms are monotone.

DEFINITION 123. A lattice homomorphism is a function from a lattice to a
lattice, which is both join semilattice homomorphism and meet semilattice homo-
morphism.

DEFINITION 124. Complete lattice homomorphism from a complete lattice A
to a complete lattice B is a function f from 2 to B which preserves all meets and

joins, that is £ |.S = [ |(f)"S and f[S =[(f)"S for every S € 2.

2.1.13. Galois connections. See [3, 12] for more detailed treatment of Ga-
lois connections.

DEFINITION 125. Let 2 and 8 be two posets. A Galois connection between A
and B is a pair of functions f = (f*, fi) with f*: 2 — B and f, : B — A such
that:

VeeAyeB: (ffzxCy<sazl fy).

f+« is called the upper adjoint of f* and f* is called the lower adjoint of f,.

THEOREM 126. A pair (f*, f.) of functions f* :2A — B and f, : B — Ais a
Galois connection iff both of the following:
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1°. f* and f, are monotone.
2°. z C f.f*x and f*f.y C y for every z € A and y € *B.

PROOF.

2°. x C f.f*x since f*x C f*z; f*f.y C y since f.y C f.y.
1°. Let a,b € A and a C b. Then a C b C f,f*b. So by definition
f*a C f*b that is f* is monotone. Analogously f, is monotone.
<. ffrCy= f.f*r C f.y = x C f,y. The other direction is analogous.

THEOREM 127.

1°. f*o fyo f* = f*.
2°. fao fro fi = fu
PRrROOF.

1°. Let z € 2. We have z C f, f*x; consequently f*z T f*f.f*x. On the
other hand, f*f.f*x C f*x. So f*f.f*x = f*z.
2°.  Similar.

O

DEFINITION 128. A function f is called idempotent iff f(f(X)) = f(X) for
every argument X.

PROPOSITION 129. f*o f, and f, o f* are idempotent.
PROOF. f*of, isidempotent because f* fi f* foy = f* fey. feof* issimilar. O
THEOREM 130. Each of two adjoints is uniquely determined by the other.

PROOF. Let p and ¢ be both upper adjoints of f. We have for all z € 2 and
y € *B:

zCply) e flz) Cy s xCq(y).
For & = p(y) we obtain p(y) T q(y) and for = g(y) we obtain g(y) T p(y). So

q(y) = p(y)- O
THEOREM 131. Let f be a function from a poset 2l to a poset B.
1°. Both:
(a) If f is monotone and g(b) = max{ ;”fglb} is defined for every b € B

then g is the upper adjoint of f.
(b) If g : B — 2 is the upper adjoint of f then g(b) = max{ ffélb} for
every b € 'B.

2°. Both:

(a) If f is monotone and g(b) = min{ ffjmb} is defined for every b € B

then g is the lower adjoint of f.
(b) If g : 9B — 9 is the lower adjoint of f then g(b) = min{ ffﬁ%} for
every b € B.

PRrROOF. We will prove only the first as the second is its dual.

1°a. Let g(b) = max{ Jffé[b} for every b € B. Then

e
Cy

T
xggy@xgmax{

}=>fxEy
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(because f is monotone) and
re
feCy

So fr E y < x C gy that is f is the lower adjoint of g.
1°b. We have

reA
g(b) = max{ FrTh

ngyﬁxEmax{

}<:fxEy.

}@fngb/\Vin’l:(fbeéa:Egb).

what is true by properties of adjoints.

THEOREM 132. Let f be a function from a poset 2 to a poset 8.

1°. If f is an upper adjoint, f preserves all existing infima in .

2°. If A is a complete lattice and f preserves all infima, then f is an upper
adjoint of a function B — 2.

3°. If f is a lower adjoint, f preserves all existing suprema in 2.

4°. If 2 is a complete lattice and f preserves all suprema, then f is a lower
adjoint of a function B — 2.

PRrROOF. We will prove only first two items because the rest items are similar.

1°. Let S € 22 and [ S exists. f[]S is a lower bound for (f)*S because
f is order-preserving. If a is a lower bound for (f)*S then Vo € S : a C fx that

is Vx € S : ga C z where g is the lower adjoint of f. Thus ga C [].S and hence
fT1S 3 a. So £S5 is the greatest lower bound for (f)*S.
2°. Let 2 be a complete lattice and f preserves all infima. Let

g(a) = |_|{ fxf;; }

Since f preserves infima, we have

@) =T 5o romaf 20

g(f) = T{ 5% } Cb.
Obviously f is monotone and thus g is also monotone.
So f is the upper adjoint of g.

O

COROLLARY 133. Let f be a function from a complete lattice 2 to a poset B.
Then:

1°. f is an upper adjoint of a function B — 2 iff f preserves all infima in 2.
2°. f is a lower adjoint of a function B — 2 iff f preserves all suprema in 2.

2.1.13.1. Order and composition of Galois connections. Following [35] we will
denote the set of Galois connection between posets 2 and B as A ® B.

DEFINITION 134. T will order Galois connections by the formula: f C g
f*Eg* (where f*Cg* < Vre: f*a C g*x).

OBvIOUs 135. Galois connections 2®*B between two given posets form a poset.

PROPOSITION 136. fC g < f, 3 g..
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PROOF. It is enough to prove f C g = f. O g. (the rest follows from the fact
that a Galois connection is determined by one adjoint).

Really, let f C ¢g. Then f§ C f{ and thus:

fou () = maxc{ £}, f1.(b) = max{ 255 .

Thus fo.(b) 3 f1.(b) for every b € B and so fox I fis- O

DEFINITION 137. Composition of Galois connections is defined by the formula:
gof=I(g"of" fiog.).

ProprosiTION 138. Composition of Galois connections is a Galois connection.
PROOF. g*o f* and f,og. are monotone as composition of monotone functions;
(FofN2Cze g ffelze ffeCgzeorl fuigiz o x C (fiogl)z.

O
OBvIous 139. Composition of Galois connections preserves order.
2.1.13.2. Antitone Galois connections.

DEFINITION 140. An antitone Galois connection between posets 2l and B is a
Galois connection between 2l and dual B.

OBVIOUS 141. An antitone Galois connection is a pair of antitone functions f :
A— B, g:B — Asuch that bC fa < a T gb for every a € A, b € B.

Such f and g are called polarities (between 2 and B).
OBVIOUS 142. f||S =[{f)"Sif f is a polarity between 2l and B and S € .

Galois connections (particularly between boolean lattices) are studied in [35]
and [36].

2.1.14. Co-Brouwerian lattices.

DEFINITION 143. Let 2 be a poset. Pseudocomplement of a € 2 is

ced
max .
cxa

If z is the pseudocomplement of a we will denote z = a*.

DEFINITION 144. Let 2 be a poset. Dual pseudocomplement of a € 2 is

. {ceﬂ}
min )
cC=a
+

If 2z is the dual pseudocomplement of a we will denote z = a™.

PROPOSITION 145. If a is a complemented element of a bounded distributive
lattice, then a is both pseudocomplement and dual pseudocomplement of a.

PROOF. Because of duality it is enough to prove that a is pseudocomplement
of a.

We need to prove ¢ < a = ¢ C a for every element ¢ of our poset, and a < a.
The second is obvious. Let’s prove ¢ <xa = cC a.

Really, let ¢ < a. Then cMa = 1; al(cMa) =a; (aUc)N(ala) = a; alc = a;
cCa. O

DEFINITION 146. Let 2 be a join-semilattice. Let a,b € 2A. Pseudodifference

of a and b is
. zedA
min{ ——— 5.
alCblUz

If z is a pseudodifference of a and b we will denote z = a \* b.
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REMARK 147. I do not require that a* is undefined if there are no pseudocom-
plement of a and likewise for dual pseudocomplement and pseudodifference. In fact
below I will define quasicomplement, dual quasicomplement, and quasidifference
which generalize pseudo-* counterparts. I will denote a* the more general case of
quasicomplement than of pseudocomplement, and likewise for other notation.

OBvIOUs 148. Dual pseudocomplement is the dual of pseudocomplement.

THEOREM 149. Let 2 be a distributive lattice with least element. Let a,b € 2.
If a \ b exists, then a \* b also exists and a \*b=a\ b.

PROOF. Because 2 be a distributive lattice with least element, the definition
of a '\ b is correct.

Letx:a\bandletS:{ yea }

albly
‘We need to show

1°. z € S,

2°. ye S=axCy (for every y € A).

Really,

1°. Because bUzx =allb.

2°.

y€eSs

= albUy (by definition of .5)
= aUbCbUy
= zUbLCbUy (since x Ub=alb)
= zMN(xUbCzn(BUy)
= (zMNz)U(xMNd) C(xMNb)U(zMNy) (by distributive law)
= zULC LU(xNy) (since xMb= 1)
= zLzxMNy
= zLuy.

O

DEFINITION 150. Co-brouwerian lattice is a lattice for which pseudodifference
of any two its elements is defined.

PrOPOSITION 151. Every non-empty co-brouwerian lattice 2 has least element.

PROOF. Let a be an arbitrary lattice element. Then
ze

a\*a =ming ——

aCalz

So min 2 exists. O

} = min .

DEFINITION 152. Co-Heyting lattice is co-brouwerian lattice with greatest ele-
ment.

DEFINITION 153. A co-frame is the same as a complete co-brouwerian lattice.

THEOREM 154. For a co-brouwerian lattice a U — is an upper adjoint of — \* a
for every a € 2.

PRrROOF. ¢g(b) = min{ aﬁé%b} = b \* a exists for every b € 2 and thus is the

lower adjoint of a LI —. O

COROLLARY 155. Va,z,y € A: (z\*a C y & 2 C aUy) for a co-brouwerian
lattice.



2.1. ORDER THEORY 32

COROLLARY 156. For a co-brouwerian lattice a L[]S = [(al)"S whenever
[]S exists (for a being a lattice element and S being a set of lattice elements).

DEFINITION 157. Let a,b € 2 where 2 is a complete lattice. Quasidifference
a \* b is defined by the formula:

zed
b= —_— .
2\ I_l{ albUz }
REMARK 158. A more detailed theory of quasidifference (as well as quasicom-
plement and dual quasicomplement) will be considered below.

LEMMA 159. (a\*b)Ub = alUb for elements a, b of a meet infinite distributive
complete lattice.

PROOF.
(a\"b)ub=

zeA
M2 Ly, -
{aEbUz}
zeAal bz -
|—| ted _
tJdbaCtf

alb.

THEOREM 160. The following are equivalent for a complete lattice 2A:

1°. 2 is a co-frame.

2°. 2l is meet infinite distributive.

3°. 2 is a co-brouwerian lattice.

4°. A is a co-Heyting lattice.

5°. a U — has lower adjoint for every a € 2.

PROOF. O

1°<3°. Because it is complete.

3°<4°. Obvious (taking into account completeness of ).

5°=2°. Let — \* a be the lower adjoint of a LI —. Let S € 2. For every y € S
we have y 3 (aUy) \* a by properties of Galois connections; consequently

y 3 (|—]<GU>*S) \*a; [15 3 (ﬂ(aLI)*S) \*a. So
all |_|S | ((H(au>*5’> \* a) Ua 3 |_|<au)*S.

But a U[]S C[]{al)*S is obvious.

2°=3° Let a \* b = H{aéelzﬁz } To prove that 2 is a co-brouwerian lattice it is

enough to prove a C bU (a \* b). But it follows from the lemma.

3°=5% a\*b= min{ azgebilz } So a U — is the upper adjoint of — \* a.

2°=-5°. Because a LI — preserves all meets.

COROLLARY 161. Co-brouwerian lattices are distributive.
The following theorem is essentially borrowed from [19]:

THEOREM 162. A lattice 2 with least element L is co-brouwerian with pseu-
dodifference \* iff \* is a binary operation on 2 satisfying the following identities:

1°. a\*a = 1;
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2°. al(b\*a)=ald;

3°. bU(b\*a) = b;

4°. (bUe)\*a=(b\*a)U(c\* a).

PROOF.

«. We have
cdb\*a=cUaJdaU(b\*a)=albIb;

cadb=c=cU(c\*a)d(a\"a)U(c\"a)=(alUc)\*a D b\*a
So ¢ Jb\*a < clUa Jbthat is all— is an upper adjoint of —\*a. By

a theorem above our lattice is co-brouwerian. By another theorem above
\* is a pseudodifference.

1°. Obvious.
2°.

|—| allz
zeAbCallz

allb.

I_l{ zEle‘l;léal_lz } =b.
*aand (bUc¢)\*a J ¢c\* a. Thus

32 bU(b\*a)=bUT] 5}‘2}
4°. Obviously buc)\*a 3D

Ue)\*aJ (b\*a)U (c\* a). We have
O\ a)U(c\"a)Ua=
(0\"a)Ua)U((c\"a)Ua) =
(bUa)U(cUa) =

aldbUcd

bUe.

From this by definition of adjoints: (b\*a)U (c\*a) T (bUc)\*a
U

THEOREM 163. (| ]S)\"a =|],cq(xz\" a) for all a € A and S € FPA where A
is a co-brouwerian lattice and | |S is defined.

PRrOOF. Because lower adjoint preserves all suprema. O

THEOREM 164. (a\*b) \* ¢ =a\* (bUc) for elements a, b, ¢ of a co-frame.

PROOF. a\*b= |_|{ e }
@\ o)\ o=}
o\t U =N{E2s )

It is left to prove a \* b C cUz < a C bUcU 2z But this follows from
corollary 155. O

COROLLARY 165. (((ag \*a1) \*...)\*an) =ao \* (a1 U---Uay,).

Proor. By math induction. (I
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2.1.15. Dual pseudocomplement on co-Heyting lattices.
THEOREM 166. For co-Heyting algebras T \* b = b™.

PROOF.

fp o zed | _ . zed | [zeA |

THEOREM 167. (aMb)T = at Ub" for every elements a, b of a co-Heyting
algebra.

O

PrOOF. al(aMb)t J(anb)U(anb)t I T. Soal(alb)t I T; (amb)t 3
T\*a=a".

We have (aMb)* Ja™. Similarly (aMb)™ 36T, Thus (aMb)T Jat UbT.

On the other hand, a* Ub* U (aMb) = (a* UbT Ua) M (aTUbT Ub) . Obviously
atUbtUa=atUbTUb=T. SoatUbtU(amb) 3T and thus a™ LUbT 3
T\*(alb) = (alb)* .

So (anb)t =at Ubt. O

2.2. Intro to category theory
This is a very basic introduction to category theory.

DEFINITION 168. A directed multigraph (also known as quiver) is:

1°. a set O (vertices);
2°. a set M (edges);
3°. functions Src and Dst (source and destination) from M to O.

Note that in category theory vertices are called objects and edges are called
morphisms.

DEFINITION 169. A semicategory is a directed multigraph together with a par-
tial binary operation o on the set M such that go f is defined iff Dst f = Srcg (for
every morphisms f and g) such that

1°. Src(g o f) = Src f and Dst(g o f) = Dst g whenever the composition g o f
of morphisms f and g is defined.
2°. (hog)o f = ho(go f) whenever compositions in this equation are defined.

DEFINITION 170. The set Hom(A, B) (also denoted as Home(A, B) or just
C(A, B), where C' is our category) (morphisms from an object A to an object B)
is exactly morphisms which have A as the source and B as the destination.

DEFINITION 171. Identity morphism is such a morphism e that eo f = f and
g o e = g whenever compositions in these formulas are defined.

DEFINITION 172. A category is a semicategory with additional requirement
that for every object X there exists identity morphism 1x.

ProprosITION 173. For every object X there exist no more than one identity
morphism.

PROOF. Let p and g be both identity morphisms for a object X. Then p =
poq=gq. O

DEFINITION 174. An isomorphism is such a morphism f of a category that there
exists a morphism f~! (inverse of f) such that fof™' = 1pg s and f~lof = lgwf.

PROPOSITION 175. An isomorphism has exactly one inverse.
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Proor. Let g and h be both inverses of f. Then h = holpg, s =ho fog =
lswcfog=g. O

DEFINITION 176. A groupoid is a category all of whose morphisms are isomor-
phisms.

DEFINITION 177. A morphism whose source is the same as destination is called
endomorphism.

DEFINITION 178. An involution or involutive morphism is an endomorphism f
that fo f = lops. In other words, an involution is such a self-inverse (that is
conforming to the formula f = f~!) isomorphism.

DEFINITION 179. Functor from category C to category D is a mapping F’ which
associates every object X of C' with an object F'(X) of D and every morphism f :
X =Y of C with morphism F(f): F(X) — F(Y) of D, such that:

1°. F(go f) = F(g)o F(f) for every composable morphisms f, g of C;
2°. F(1§) = 12, for every object X of C.

DEFINITION 180. Opposite category C°P of category C is the category where
“all arrows are reversed” that is every morphism f is replaced with so called opposite
morphism f°P such that Src f°P = Dst f, Dst fP = Src f and g°P o f°P = (f o g)°P
(composition taken in the “opposite order”).

DEFINITION 181. A monomorphism (also called a monic morphism or a mono)
is a left-cancellative morphism. That is, an arrow f: X — Y such that for all
objects Z and all morphisms ¢g1,92: Z7 — X,

fogi=fog:= g1 =g

Monomorphisms are a categorical generalization of injective functions (also
called “one-to-one functions”); in some categories the notions coincide, but
monomorphisms are more general.

DEFINITION 182. The categorical dual of a monomorphism is an epimorphism,
i.e. a monomorphism in a category C' is an epimorphism in the dual category C°P
that is it conforms to the formula

grof=g20f=g1 =g
2.2.1. Some important examples of categories.

EXERCISE 183. Prove that the below examples of categories are really cate-
gories.

DEFINITION 184. The category Set is:
e Objects are small sets.
e Morphisms from an object A to an object B are triples (A, B, f) where f
is a function from A to B.
e Composition of morphisms is defined by the formula: (B,C,g) o
(A,B,f)=(A,C,go f) where g o f is function composition.

DEFINITION 185. The category Rel is:
e Objects are small sets.
e Morphisms from an object A to an object B are triples (A, B, f) where f
is a binary relation between A and B.
e Composition of morphisms is defined by the formula: (B,C,g) o
(A, B, f)=(A,C,go f) where g o f is relation composition.

I will denote GR(A, B, f) = f for any morphism (A, B, f) of either Set or Rel.
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DEFINITION 186. A subcategory of a category C' is a category whose set of
objects is a subset of the set of objects of C' and whose set of morphisms is a subset
of the set of morphisms of C.

DEFINITION 187. Wide subcategory of a category (O, M) is a category (O, M’)
where M C M’ and the composition on (O, M’) is a restriction of composition of
(O, M). (Similarly wide sub-semicategory can be defined.)

2.2.2. Commutative diagrams.

DEFINITION 188. A finite path in directed multigraph is a tuple [eg, ..., e,] of
edges (where i € N) such that Dste; = Srce 4 for every i =0,...,n — 1.

DEFINITION 189. The vertices of a finite path are Srceqg, Dstey = Srceq,
Dste; = Srceg, ..., Dste,.

DEFINITION 190. Composition of finite paths [eg,...,e,] and [ex,...,emn]
(where Dste, = Srcey) is the path [eg,...,en, ek, ...€,]. (It is a path because
Dste,, = Srceg.)

DEFINITION 191. A cycle is a finite path whose first vertex is the same as the
last vertex (in other words Dst e,, = Srcey).

DEFINITION 192. A diagram in C is a directed multigraph, whose vertices are
labeled with objects of C' and whose edges are labeled with morphisms of C.
I will denote the morphism corresponding to a edge e as D(e).

DEerFINITION 193. A diagram in C is commutative when the composition of
morphisms corresponding to a finite path is always the same for finite paths from
a fixed vertex A to a fixed vertex B independently of the path choice.

We will say “commutative diagram” when commutativity of a diagram is im-
plied by the context.

REMARK 194. See Wikipedia for more on definition and examples of commu-
tative diagrams.

The following is an example of a commutative diagram in Set (because z+5—
3=x+4-2):
NN
T
N—% N
We are especially interested in the special case of commutative diagrams every
morphism of which is an isomorphism. So, the below theorem.
THEOREM 195. If morphisms corresponding to every edge e; of a cycle
[eo, - - -, en] are isomorphisms then the following are equivalent:

The morphism induced by [ey,...,e,] is identity.
The morphism induced by [e,, eq, ..., en—1] is identity.
The morphism induced by [e,—1, €n, €0, ..., en—2] is identity.

The morphism induced by [e1,ea, ..., en, €] is identity.
In other words, the cycle being an identity does not depend on the choice of the
start edge in the cycle.

PROOF. Each step in the proof is like:
D(n) 0--0 D(BO) = 1SrcD(eo) A
D(n)~" o D(n) o-- -0 D(eg) o D(n) = D(n) ™" 0 Lgye p(en) © D(n) &
D(TL - 1) 00 D(60> ° D(’I’L) = 1SrcD(en)-


https://en.wikipedia.org/wiki/Commutative_diagram
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O

LEMMA 196. Let f, g, h be isomorphisms. Let g o f = h~!. The diagram at
the figure 1 is commutative, every cycle in the diagram is an identity.

FIiGURE 1

Proor. We will prove by induction that every cycle of the length NV in the
diagram is an identity.

For cycles of length 2 it holds by definition of isomorphism.

For cycles of length 3 it holds by theorem 195.

Consider a cycle of length above 3. It is easy to show that this cycle contains
a sub-cycle of length 3 or below. (Consider three first edges a <% b < ¢ 3 d of the
path, by pigeonhole principle we have that there are equal elements among a, b,
¢, d.) We can exclude the sub-cycle because it is identity. Thus we reduce to cycles
of lesser length. Applying math induction, we get that every cycle in the diagram
is an identity.

That the diagram is commutative follows from it (because for paths o, 7 we
have the paths o o 771 and 7 0 07! being identities). O

LeMMA 197. Let f, g, h, t be isomorphisms. Let tohogo f = lg.cf. The
diagram at the figure 2 is commutative, every cycle in the diagram is an identity.

|
®

f71

~~
—
%
o~
L
Q
|
—
%
Q

j
¢

FIGURE 2

PROOF. Assign to every vertex (i,7) of the diagram morphism W (¢, j) defined
by the table 1.

It is easy to verify by induction that the morphism corresponding to every
path in the diagram starting at the vertex (0,0) and ending with a vertex (z,y) is
W(z,y).

Thus the morphism corresponding to every cycle starting at the vertex (0,0) is
identity.

By symmetry, the morphism corresponding to every cycle is identity.
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TABLE 1

Wi, j)
1Srcf
f
t71
golf

~

== OO
= o= O

That the diagram is commutative follows from it (because for paths o, 7 we
have the paths o o 771 and 7 0 0~! being identities). t

2.3. Intro to group theory

DEFINITION 198. A semigroup is a pair of a set G and an associative binary
operation on G.

DEFINITION 199. A group is a pair of a set G and a binary operation - on G
such that:

1°. (h-g)-f=h-(g-f) for every f,g,h € G.

2°. There exists an element e (identity) of G such that f-e=e- f = f for
every f € G.

3°. For every element f there exists an element f~! (inverse of f) such that

ff ==
OBvious 200. Every group is a semigroup.
ProrosiTiON 201. In every group there exists exactly one identity element.
PROOF. If p and ¢ are both identities, then p=p-q=gq. O
ProprosiTION 202. Every group element has exactly one inverse.

PrOOF. Let p and ¢ be both inverses of f € G. Then f-p =p- - f = e and
fra=q-f=e Thenp=p-e=p-f-q=e-q=q. .
PROPOSITION 203. (g- f)~t= f~1.g7! for every group elements f and g.

PROOF. (f1-g71)-(g-f) = fL-g7 -g-f = f ™ -e-f = f~1-f = e. Similarly
(g-f)-(ft-g7 ) =e So f~1.g~1is the inverse of g - f. O

DEFINITION 204. A permutation group on a set D is a group whose elements
are functions on D and whose composition is function composition.

OBvIOUS 205. Elements of a permutation group are bijections.

DEFINITION 206. A transitive permutation group on a set D is such a per-
mutation group G on D that for every x,y € D there exists r € G such that

y=r(z).
A groupoid with single (arbitrarily chosen) object corresponds to every group.

The morphisms of this category are elements of the group and the composition of
morphisms is the group operation.



CHAPTER 3

More on order theory

3.1. Straight maps and separation subsets
3.1.1. Straight maps.

DEFINITION 207. An order reflecting map from a poset 2 to a poset B is such
a function f that (for every z,y € )
frEfy=xCy.
OBvVIOUS 208. Order embeddings are exactly the same as monotone and order
reflecting maps.
DEFINITION 209. Let f be a monotone map from a meet-semilattice 2 to some
poset B. I call f a straight map when
Va,beA: (faC fb= fa= f(aMb)).
ProrosITION 210. The following statements are equivalent for a monotone
map f:
1°. f is a straight map.
2°. Va,beA: (faC fb= fa T f(aMb)).
3°. Va,be: (faC fb= fa A f(alb)).
4°. Ya,b e A: (fad f(aMb) = fa L fb).

ProOOF.
1°2°<3°. Due fa 3 f(amb).
3°<4°. Obvious.
O

REMARK 211. The definition of straight map can be generalized for any poset
2 by the formula

Va,beA: (faC fb=3JceWA: (cCaAcCbA fa= fc)).
This generalization is not yet researched however.

PROPOSITION 212. Let f be a monotone map from a meet-semilattice 2 to a
meet-semilattice B. If

VYa,be A : f(aMb) = fan fb
then f is a straight map.
PROOF. Let fa C fb. Then f(aTb) = fan fb= fa. O

ProrosiTION 213. Let f be a monotone map from a meet-semilattice 2 to
some poset B. If f is order reflecting, then f is a straight map.

PROOF. faC fb=aCb=a=aNb= fa= f(aMb). O

The following theorem is the main reason of why we are interested in straight
maps:

39
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THEOREM 214. If f is a straight monotone map from a meet-semilattice 2 then

the following statements are equivalent:

1°. f is an injection.

2°. f is order reflecting.

3°. Va,beA: (a” b= fa T fb).

4°. Ya,beA: (aC b= fa# fb).

5°. Va,beA: (a” b= fa 2D fb).

6°. VYa,beA: (faC fb=a Ab).

PROOF.

1°=3°. Let a,b € A. Let fa = fb=a=1>0. Let a C b. fa # fb because a # b.
fa C fbbecause a C b. So fa C fb.

2°=1°. Let a,b € A. Let faC fb=a Cb. Let fa = fb. Thena C band bC a
and consequently a = b.

3°=2°. Let Va,b € A : (a T b= fa T fb). Let @« £ b. Then a 3 aMb. So
fa 3 f(and). If fa C fbthen fa T f(aMb) what is a contradiction.

3°=5°=4°. Obvious.

4°=-3°. Becausea Cb=aC b= faC fb.

5°<6°. Obvious.

3.1.2. Separation subsets and full stars.

DEFINITION 215. Oya = {fﬁ;’;} for an element a of a poset 2l and Y € 2.

DEFINITION 216. Full star of a € 2 is xa = Oya.
ProrosiTiON 217. If 2 is a meet-semilattice, then * is a straight monotone
map.

PROOF. Monotonicity is obvious. Let xa [Z x(al1b). Then it exists x € xa such
that = ¢ x(aMb). So xMa ¢ xb but x Ma € xa and consequently xa £ xb. O

DEFINITION 218. A separation subset of a poset 2 is such its subset Y that
Va,be A : (Oya=0yb=a=0»).

DEFINITION 219. T call separable such poset that x is an injection.

DEFINITION 220. I call strongly separable such poset that x is order reflecting.

OBVIOUS 221. A poset is separable iff it has a separation subset.

OBVIOUS 222. A poset is strongly separable iff x is order embedding.

OBVIOUS 223. Strong separability implies separability.

DEFINITION 224. A poset 2 has disjunction property of Wallman iff for any
a,b € 2 either b C a or there exists a non-least element ¢ C b such that a < c.

THEOREM 225. For a meet-semilattice with least element the following state-

ments are equivalent:

1°. 2 is separable.

2°. 2l is strongly separable.

3°. Va,beA: (a T b= xa C *b).

4°. Ya,b € A: (a C b= xa # *b).

5°. Va,be A : (a T b= *a A b).

6°. Va,beA: (xaC xb=a Ab).

7°. 2 conforms to Wallman’s disjunction property.
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8. Va,beUA:(aCb=TceA\{L}: (cxaAcTb)).

PROOF.

1°62°63°=4°5°<6°. By the above theorem.

8°=-4°. Let property 8° hold. Let a C b. Then it exists element ¢ C b such that
c# Land cMa= 1. But ¢cMb# L. So xa # xb.

2°=7°. Let property 2° hold. Let a [Z b. Then xa [Z xb that is it there exists ¢ € xa
such that ¢ ¢ *b, in other words ¢Ma # L and ¢Mb= 1. Let d =cMa.
Then d C a and d # 1 and dMb = L. So disjunction property of Wallman
holds.

7°=-8°. Obvious.

8°=7°. Let b Z a. Then aMb C b that is @’ = b where a’ = aMb. Consequently
JeeA\{L}: (¢ xad' AcCb). Wehave cla=cMNbNa=cNad = L.
SocC band cMa= 1. Thus Wallman’s disjunction property holds.

O

PROPOSITION 226. Every boolean lattice is strongly separable.

PROOF. Let a,b € A where 2 is a boolean lattice an a # b. Then aMb # L or
amb# L because otherwise aMb= L and aUb = T and thus a = b. Without loss
of generality assume aMb# L. Then aMe# L and bMe= 1L forc=amMb# 1,
that is our lattice is separable.

It is strongly separable by theorem 225. O

3.1.3. Atomically Separable Lattices.

PROPOSITION 227. “atoms” is a straight monotone map (for any meet-
semilattice).

PROOF. Monotonicity is obvious. The rest follows from the formula
atoms(a Mb) = atoms a N atoms b

(corollary 109). O

DEFINITION 228. T will call atomically separable such a poset that “atoms” is
an injection.

PROPOSITION 229. Va,b € 2 : (a C b= atomsa C atomsb) iff 2 is atomically
separable for a poset 2.
PRrROOF.

«. Obvious.
=. Let a # b for example @ Z b. Then aMb C a; atomsa D atoms(a Mb) =
atoms a Natoms b and thus atoms a # atoms b.

O
PROPOSITION 230. Any atomistic poset is atomically separable.

PROOF. We need to prove that atomsa = atomsb = a = b. But it is obvious
because

a= |_|at0msa and b= |_|atoms b.
O

THEOREM 231. A complete lattice is atomistic iff it is atomically separable.
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PrOOF. Direct implication is the above proposition. Let’s prove the reverse
implication.

Let “atoms” be injective. Consider an element a of our poset. Let b =
| Jatomsa. Obviously b C a and thus atomsb C atomsa. But if 2 € atomsa
then z C b and thus € atomsb. So atomsa = atomsb. By injectivity a = b that
is a = | |atomsa. O

THEOREM 232. If a lattice with least element is atomic and separable then it
is atomistic.

PROOF. Suppose the contrary that is @ 1| |atoms a. Then, because our lattice
is separable, there exists ¢ € 2 such that ¢cMa # L and ¢M| Jatomsa = L. There
exists atom d C ¢ such that d C ¢Ma. dM| |atomsa E ¢M| Jatomsa = L. But
d € atoms a. Contradiction. O

THEOREM 233. Let 2 be an atomic meet-semilattice with least element. Then
the following statements are equivalent:

1°. 2 is separable.

2°. 2 is strongly separable.

3°. 2l is atomically separable.

4°. A conforms to Wallman’s disjunction property.

5°. Va,beA:(aCb=3cecA\{L}: (cxanclD)).

PRrROOF.

1°2°<4°<5°, Proved above.

3°=5°. Let our semilattice be atomically separable. Let a C b. Then atomsa C
atoms b and there exists ¢ € atomsb such that ¢ ¢ atomsa. ¢ # L and
¢ C b, from which (taking into account that ¢ is an atom) ¢ C b and
cMa = L. So our semilattice conforms to the formula 5°.

5°=3°. Let formula 5° hold. Then for any elements a C b there exists ¢ # L such
that ¢ C b and cMa = L. Because 2l is atomic there exists atom d C ¢. d €
atomsb and d ¢ atomsa. So atomsa # atomsb and atomsa C atomsb.
Consequently atoms a C atoms b.

O
THEOREM 234. Any atomistic poset is strongly separable.

PROOF. xx C xy = atomsx C atomsy = z C y because atomsz = xz N
atoms™. O
3.2. Quasidifference and Quasicomplement

I've got quasidifference and quasicomplement (and dual quasicomplement) re-
placing max and min in the definition of pseudodifference and pseudocomplement
(and dual pseudocomplement) with | | and []. Thus quasidifference and (dual)
quasicomplement are generalizations of their pseudo- counterparts.

REMARK 235. Pseudocomplements and pseudodifferences are standard termi-
nology. Quasi- counterparts are my neologisms.

DEFINITION 236. Let 2 be a poset, a € A. Quasicomplement of a is

. e
“ _U{Zxa}'

DEFINITION 237. Let % be a poset, a € A. Dual quasicomplement of a is

i =t
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I will denote quasicomplement and dual quasicomplement for a specific poset 2A
as a* and o+,

DEFINITION 238. Let a,b € 2 where 2 is a distributive lattice. Quasidifference

of a and b is
—_ ze
a\ b_l_l{aEbUZ}'

DEFINITION 239. Let a,b € 2 where 2 is a distributive lattice. Second quasid-

ifference of a and b is
zed
b= —_— .
a#t u{z;a/\sz}

THEOREM 240. a \* b = ﬂ{zztf/\eﬁ} where 2( is a distributive lattice and
a,be A

PRrOOF. Obviously {z;ai\igglbuz} - {GZE%QULZ}. Thus ﬂ{%} Ja\*b.

Let z€Aand 2/ = 2MNa.

aCblz=al (bUz)Na<aC (bMNa)U(zMa) < aC (bMa)Uz' = a T bUZ
anda CbUz<alblUz. ThusaCblUz<all bU 2.

Ifze{ zeA }thenagbu,zandthus

alCblz
/ ze
z € .
zCaANalbUz

But 2’ C 2z thus having ﬂ{i} C |_|{ zEA } O

zCaAalCblUz alCbUz

REMARK 241. If we drop the requirement that 2 is distributive, two formulas
for quasidifference (the definition and the last theorem) fork.

OBVIOUS 242. Dual quasicomplement is the dual of quasicomplement.

OBVIOUS 243.

e Every pseudocomplement is quasicomplement.
e Every dual pseudocomplement is dual quasicomplement.
e Every pseudodifference is quasidifference.

Below we will stick to the more general quasies than pseudos. If needed, one can
check that a quasicomplement a* is a pseudocomplement by the equation a* =< a
(and analogously with other quasies).

Next we will express quasidifference through quasicomplement.

PROPOSITION 244.
1°. a\*b=a\* (aMb) for any distributive lattice;
2°. a#b=a#(aMb) for any distributive lattice with least element.
Proor.
1°. aC(aNb)Uzeal (alUz)N(bUz) e alalzAalbUzs albUz.
Thus a\" (a110) = [ szt b =N{aE2 =\,

al(alb)Uz albUz
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2°.

|_| ZEQ[
zCaNzMalb= 1

}
U{zga/\(zéi)glilal‘lsz_}:

}

|

|—| zlMa
zeA, zMaMNb= L

|_| 2691
zCa,zMb= 1L

I will denote Da the lattice {%}

THEOREM 245. For a,b € A where 2 is a distributive lattice
1°. a\*b= (a1 b)TPv;
2°. a# b= (amb)*P2) if 2 has least element.
PROOF.
1°.
(am b)+(Da) _

MNevtarn=a) -

|
H{(CUa)cﬂe(fuab) - a} -
5

|—|{ ce
cCaAclUbIa
a\"b.
2°,
(amb) P —

c€ Da B
Ll{cl‘lal‘lb:i}

ce _
u{cEaAcl_lal_lb:J_}_

|_| CGQ[ _
cCaAhcnNb=1/[""

a#b.

PROPOSITION 246. (aUb)\* b C a for an arbitrary complete lattice.

allbCbliz

PROOF. (al_lb)\*b:ﬂ{ z€3 }

2

ButaCz=alUbLCblUz So {#E%LZ}Q{ZGEZ}.

Consequently, (aLlb) \* b C |_|{ zem} =a.

alz

44
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3.3. Several equal ways to express pseudodifference

THEOREM 247. For an atomistic co-brouwerian lattice 21 and a,b € 2A the
following expressions are always equal:

1°. a\*b= |_|{ 2E } (quasidifference of a and b);

alCblz

zEaAzMb=_1

2°. a#b= U{A} (second quasidifference of a and b);

3°. | |(atomsa \ atomsb).

PRrROOF.
Proof of 1°=3°.

a\*b=
<|_| atoms a) \* b= (theorem 163)

L] @vo)=

A€atomsa

|_| A if A¢atomsb |
1 if A€ atomsb/

A€atomsa

A
|—|{A € atomsa, A ¢ atomsb} B
Ll(atoms a\ atomsb).

Proof of 2°=3°. a \* b is defined because our lattice is co-brouwerian. Taking the

above into account, we have
a\*b=
|_|(at0ms a\ atomsb) =
|_|{ z € atomsa }
zMb=1 [

So | J{zsatemsat js defined.

zMb=_1
If 2zCaAzmb= L then 2/ U{Iiﬁtbomjz} is defined because
' = z\* b (atomisticity taken into account) z' is a lower bound for
{zEatomsa
zMb=_1

’ z€A zE€atomsa | :
Thus z (S {m} and so U{m} 1S an upper bound of

ze2U
zCanzMb=1 [*

If y is above every 2’ € {zgaf\i%} then y is above every z €

z€atomsa

atoms a such that zMb = L and thus y is above | |{ Zaiems
Thus | |{52iemsat ig Jeast upper bound of

zMb=_1
zed
z2CanzNb=1]"

|_| ZEQ[
zCaNnzNb=_1L
|_| z € atomsa
zMb= 1
)-

Ll(atomb a\ atoms b

that is
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3.4. Partially ordered categories
3.4.1. Definition.

DEFINITION 248. T will call a partially ordered (pre)category a (pre)category
together with partial order C on each of its Mor-sets with the additional requirement
that

HEfAgEg=>gofiCgof
for every morphisms fi, g1, f2, g2 such that Src f; = Src fo and Dst f; = Dst fo =
Src g1 = Srcgo and Dst g1 = Dst gs.

I will denote lattice operations on a Hom-set C'(A, B) of a category (or any
directed multigraph) like LI® instead of writing LCAB) explicitly.

3.4.2. Dagger categories.

DEFINITION 249. T will call a dagger semicategory a semicategory together with
an involutive contravariant identity-on-objects prefunctor z — .

In other words, a dagger semicategory is a semicategory equipped with a func-
tion = — 2t on its set of morphisms which reverses the source and the destination
and is subject to the following identities for every morphisms f and g:

. fit=f;
2°. (go )T = fTogl.

DEFINITION 250. I will call a dagger category a category together with an
involutive contravariant identity-on-objects functor z — 1.

In other words, a dagger category is a category equipped with a function = + xf
on its set of morphisms which reverses the source and the destination and is subject
to the following identities for every morphisms f and g and object A:

1o, fit = f;
2°. (go f)f = fTogh;
3. (1)1 = 1.

THEOREM 251. If a category is a dagger semicategory then it is a dagger
category.

PRrOOF. We need to prove only that (14)" = 14. Really,

(L) =) ola= (1) o (1) = (1a)T o 14)" = (14)T = 14.
O
For a partially ordered dagger (pre)category I will additionally require (for
every morphisms f and g with the same source and destination)
ffEd'efCy
An example of dagger category is the category Rel whose objects are sets and

whose morphisms are binary relations between these sets with usual composition
of binary relations and with ff = f=1.

DEFINITION 252. A morphism f of a dagger category is called unitary when it
is an isomorphism and ff = f~1.

DEFINITION 253. Symmetric (endo)morphism of a dagger semicategory is such
a morphism f that f = f%.

DEFINITION 254. Transitive (endo)morphism of a semicategory is such a mor-
phism f that f = fo f.
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THEOREM 255. The following conditions are equivalent for a morphism f of a
dagger semicategory:
1°. f is symmetric and transitive.
2°. f=flof.
PROOF.
1°=2°, If f is symmetric and transitive then ffo f = fo f = f.
20=1°, fI = (flof)t = flofft = flof = £, s0 f is symmetric. f= flof = fof,

so f is transitive.
O

3.4.2.1. Some special classes of morphisms.

DEFINITION 256. For a partially ordered dagger category I will call monovalued
morphism such a morphism f that fo fT T 1pg I

DEFINITION 257. For a partially ordered dagger category I will call entirely
defined morphism such a morphism f that ffo f 3 lsre g

DEFINITION 258. For a partially ordered dagger category I will call injective
morphism such a morphism f that ffo f C lsre f-

DEFINITION 259. For a partially ordered dagger category I will call surjective
morphism such a morphism f that fo fT 3 1pg ;.

REMARK 260. It is easy to show that this is a generalization of monovalued,
entirely defined, injective, and surjective functions as morphisms of the category
Rel.

OBvVIOUS 261. “Injective morphism” is a dual of “monovalued morphism” and
“surjective morphism” is a dual of “entirely defined morphism”.

DEFINITION 262. For a given partially ordered dagger category C' the cate-
gory of monovalued (entirely defined, injective, surjective) morphisms of C' is the
category with the same set of objects as of C' and the set of morphisms being the
set of monovalued (entirely defined, injective, surjective) morphisms of C' with the
composition of morphisms the same as in C.

We need to prove that these are really categories, that is that composition
of monovalued (entirely defined, injective, surjective) morphisms is monovalued
(entirely defined, injective, surjective) and that identity morphisms are monovalued,
entirely defined, injective, and surjective.

PrROOF. We will prove only for monovalued morphisms and entirely defined
morphisms, as injective and surjective morphisms are their duals.

Monovalued. Let f and g be monovalued morphisms, Dst f = Srcg. Then
(gof)o(go )l =
gofofioghC
golsicgo g1L =

gog'

]-Dstg - 1Dst(gof)~

M1

So g o f is monovalued.
That identity morphisms are monovalued follows from the following:

lao(la)l =1401a=14=1Ips1, = Ipst1,-
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Entirely defined. Let f and g be entirely defined morphisms, Dst f = Srcg. Then
(gofNfo(gof)=
flogtogofd
fT o 1Srcg © f =
fJ( ° let fo f =
flof3
]-Srcf = ]-Src(gof)~
So g o f is entirely defined.
That identity morphisms are entirely defined follows from the follow-
ing:
(1A)T oly=1p0lp=1x= 1Src1A J 1SrclA-
O

DEFINITION 263. I will call a bijective morphism a morphism which is entirely
defined, monovalued, injective, and surjective.

PRrOPOSITION 264. If a morphism is bijective then it is an isomorphism.

PROOF. Let f be bijective. Then fo fT C 1pg f, fTof D lswey, flof C lswey,
foff O1psys. Thus fo fT =1pgsand fTo f = lg. s that is fT is an inverse of
7 0

Let Hom-sets be complete lattices.

DEFINITION 265. A morphism f of a partially ordered category is metamono-
valued when ([1G) o f = [],c5(g o f) whenever G is a set of morphisms with a
suitable source and destination.

DEFINITION 266. A morphism f of a partially ordered category is metainjective
when fo ([1G) =[1],cq(f ©g) whenever G is a set of morphisms with a suitable
source and destination.

OBVIOUS 267. Metamonovaluedness and metainjectivity are dual to each other.

DEFINITION 268. A morphism f of a partially ordered category is metacomplete
when fo (lJG) = |,cq(f o g) whenever G is a set of morphisms with a suitable
source and destination.

DEFINITION 269. A morphism f of a partially ordered category is co-
metacomplete when (| JG) o f = | cq(g © f) whenever G is a set of morphisms
with a suitable source and destination.

Let now Hom-sets be meet-semilattices.

DEFINITION 270. A morphism f of a partially ordered category is weakly meta-
monovalued when (gMh)o f = (go f)M(ho f) whenever g and h are morphisms
with a suitable source and destination.

DEFINITION 271. A morphism f of a partially ordered category is weakly
metainjective when fo (gMh) = (fog)MN(foh) whenever g and h are morphisms
with a suitable source and destination.

Let now Hom-sets be join-semilattices.

DEFINITION 272. A morphism f of a partially ordered category is weakly meta-
complete when fo(gUh) = (fog)U(foh) whenever g and h are morphisms with
a suitable source and destination.
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DEFINITION 273. A morphism f of a partially ordered category is weakly co-
metacomplete when (gl h)o f = (go f)U (ho f) whenever g and h are morphisms
with a suitable source and destination.

OBVIOUS 274.

1°. Metamonovalued morphisms are weakly metamonovalued.
2°. Metainjective morphisms are weakly metainjective.

3°. Metacomplete morphisms are weakly metacomplete.

4°. Co-metacomplete morphisms are weakly co-metacomplete.

3.5. Partitioning

DEFINITION 275. Let 2 be a complete lattice. Torning of an element a € A is
aset S € ZA\ {L} such that

|_|S’:a and Vz,ye S:(x#£y=zxy).

DEFINITION 276. Let 2 be a complete lattice. Weak partition of an element
acAisaset S € PA\ {L} such that

|_|S:a and VacGS:xxI_l(S\{x}).

DEFINITION 277. Let 2 be a complete lattice. Strong partition of an element
acAisaset S PA\{L} such that

| |S=a and VA,Be2S:(A<B=||Ax<]||B).

OBVIOUS 278.

1°. Every strong partition is a weak partition.
2°. Every weak partition is a torning.

DEFINITION 279. Complete lattice generated by a set P (on a complete lattice)
is the set (obviously having the structure of complete lattice) Py U Py U... where

Py =P and Py = { LY

OBvIous 280. Complete lattice generated by a set is indeed a complete lattice.

EXAMPLE 281. [S] # {%}, where [S] is the complete lattice generated by
a strong partition S of a filter on a set.

U
PRrROOF. Consider any infinite set U and its strong partition S = {M}

zeU
The set S consists only of principal filters. But [S] contains (exercise!) some
nonprincipal filters. i
By the way:

®
PRrOPOSITION 282. {%} is closed under binary meets, if S is a strong
partition of an element of a complete lattice.
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PROOF. Let R = {)I(.I;@S} Then for every X,Y € &S
A A
| Jxm*| |y =
A A
| ((xnyvyux\y)m*| |y =
A A A
(|_|(XmY) L |_|(X\Y)> m| |y =

<|i|(XﬂY)FIQ‘ Y>|_|Q‘< (X\Y) HQ‘UY>
(ﬁXﬁY m“|_|Y) LA 1% =

2
|_|(X ny)n*| |v.
Applying the formula |_|Ql X% |_|Ql Y = |_|gl(X ny)m* |_|QL Y twice we get
2 2
|_| X |_| Y =
2

| Jxny)mn® E|(Yﬂ (XNY)) =

A A
| J&xny)ym®* | jxnY) =
A
| Jxny).
But for any A, B € R there exist X,Y € 28 such that A= | [* X, B=["Y.
SoAMm B=|*xn| Yy =*XnY)eR. 0

3.6. A proposition about binary relations
ProroSITION 283. Let f, g, h be binary relations. Then go f %4 h & g #
ho f~L
PROOF.

gof#he

Ja,c:a((go f)Nh)ce

Jda,c:(a(go f)chahc) &

Ja,b,c:(a fbAbgcAhahc) <
Jb,c:(bgenb(hof 1 e)
Jb,c:b(gn(hofH))e
g#hof

=
4

3.7. Infinite associativity and ordinated product

3.7.1. Introduction. We will consider some function f which takes an arbi-
trary ordinal number of arguments. That is f can be taken for arbitrary (small,
if to be precise) ordinal number of arguments. More formally: Let x = z;¢, be a
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family indexed by an ordinal n. Then f(z) can be taken. The same function f can
take different number of arguments. (See below for the exact definition.)

Some of such functions f are associative in the sense defined below. If a function
is associative in the below defined sense, then the binary operation induced by this
function is associative in the usual meaning of the word “associativity” as defined
in basic algebra.

I also introduce and research an important example of infinitely associative
function, which I call ordinated product.

Note that my searching about infinite associativity and ordinals in Internet has
provided no useful results. As such there is a reason to assume that my research of
generalized associativity in terms of ordinals is novel.

3.7.2. Used notation. We identify natural numbers with finite Von Neu-
mann’s ordinals (further just ordinals or ordinal numbers).

For simplicity we will deal with small sets (members of a Grothendieck uni-
verse). We will denote the Grothendieck universe (aka universal set) as O.

I will denote a tuple of n elements like [ag, ..., a,—1]. By definition

[ao,- - an—1] = {(0,a0),...,(n — 1 an—1)}.

Note that an ordered pair (a,b) is not the same as the tuple [a,b] of two
elements. (However, we will use them interchangeably.)

DEFINITION 284. An anchored relation is a tuple [n,r] where n is an index set
and 7 is an n-ary relation.

For an anchored relation arity[n,7] = n. The graph' of [n,r] is defined as
follows: GR[n,r] =r.

DEFINITION 285. Pr; f is a function defined by the formula

P?rf:{xg:f}

for every small n-ary relation f where n is an ordinal number and ¢ € n. Particularly
for every n-ary relation f and ¢ € n where n € N

;
f;rfz {[[xo,...,zn_l]] Ef}

Recall that Cartesian product is defined as follows:
Ha* z € (Jima)®™®
- |Vicdoma:z(i)€a; [

OBVIOUS 286. If a is a small function, then [Ja = {L}

Viedoma:z(i)€E€a,

3.7.2.1. Currying and uncurrying.

The customary definition. Let X, Y, Z be sets.

We will consider variables z € X and y € Y.

Let a function f € ZX*Y. Then curry(f) € (Z¥)X is the function defined by
the formula (curry(f)z)y = f(x,y).

Let now f € (ZY)X. Then uncurry(f) € ZX*Y is the function defined by the
formula uncurry(f)(z,y) = (fz)y.

OBVIOUS 287.

1°. uncurry(curry(f)) = f for every f € ZX*Y,
2°. curry(uncurry(f)) = f for every f € (Z¥)X.

1t is unrelated with graph theory.
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Currying and uncurrying with a dependent variable. Let X, Z be sets and Y
be a function with the domain X. (Vaguely saying, Y is a variable dependent on
X.)

The disjoint union [TY = U, cqomy ({i} X Yi) = {zedor(:liyxey}

We will consider variables x € X and y € Y.

Let a function f € Zliex Vi (or equivalently f € ZHY). Then curry(f) €
[Ticx 2" is the function defined by the formula (curry(f)z)y = f(z,y).

Let now f € [;cx 2. Then uncurry(f) € 7Ziex Y i the function defined
by the formula uncurry(f)(z,y) = (fx)y.

OBvIOUS 288.
1°. uncurry(curry(f)) = f for every f € Zlliex Y
2°. curry(uncurry(f)) = f for every f € [[;cy 27"

3.7.2.2. Functions with ordinal numbers of arguments. Let Ord be the set of
small ordinal numbers.
If X and Y are sets and n is an ordinal number, the set of functions taking n
arguments on the set X and returning a value in Y is YX".
UThe set of all small functions taking ordinal numbers of arguments is
Y Yneora X"

I will denote OrdVar(X) = OUneora X" and call it ordinal variadic. (“Var” in
this notation is taken from the word wariadic in the collocation variadic function
used in computer science.)

3.7.3. On sums of ordinals. Let a be an ordinal-indexed family of ordinals.
PROPOSITION 289. []a with lexicographic order is a well-ordered set.

PROOF. Let S be non-empty subset of | ] a.

Take 49 = minPrgS and z¢ = min{yeslzﬁ} (these exist by properties of
ordinals). Then (i, z¢) is the least element of S. O

DEFINITION 290. )" a is the unique ordinal order-isomorphic to [ ] a.
EXERCISE 291. Prove that for finite ordinals it is just a sum of natural numbers.
This ordinal exists and is unique because our set is well-ordered.

REMARK 292. An infinite sum of ordinals is not customary defined.

The structured sum € a of a is an order isomorphism from lexicographically
ordered set [[a into ) a.

There exists (for a given a) exactly one structured sum, by properties of well-
ordered sets.

OBVIOUS 293. Y a=im@Pa.

THEOREM 294. (Pa)(n,x) =), a;i + .

PROOF. We need to prove that it is an order isomorphism. Let’s prove it is an
injection thatism >n=> . ai+z>> .. a+zandy>x=> . a;+y>
D ien @i + .

Really, if m > n then ), a;+x > ZiEn—H a;+x >, a;+z. The second
formula is true by properties of ordinals.

Let’s prove that it is a surjection. Let r € Y a. There exist n € doma and
T € ap such that r = (Pa)(n,x). Thus r = (Pa)(n,0)+x =3, a; + because
(B a)(n,0) =", a; since (n,0) has ), a; predecessors. O

iEm 1EN 1EN
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3.7.4. Ordinated product.

3.7.4.1. Introduction. Ordinated product defined below is a variation of Carte-
sian product, but is associative unlike Cartesian product. However, ordinated prod-
uct unlike Cartesian product is defined not for arbitrary sets, but only for relations
having ordinal numbers of arguments.

Let F' indexed by an ordinal number be a small family of anchored relations.

3.7.4.2. Concatenation.

DEFINITION 295. Let z be an indexed by an ordinal number family of functions
each taking an ordinal number of arguments. The concatenation of z is

concat z = uncurry(z) o (@(dom oz)) 71.

EXERCISE 296. Prove, that if z is a finite family of finitary tuples, it is con-
catenation of dom z tuples in the usual sense (as it is commonly used in computer
science).

PropPosITION 297. If 2 € [J(GRoF) then concatz = uncurry(z) o
(B (arity oF)) .

ProoOF. If z € [[(GRoF) then dom z(i) = dom(GR oF); = arity F; for every
1 € dom F'. Thus dom oz = arity oF'. (]

PROPOSITION 298. dom concatz = dom z;.

i€dom z
PROOF. Because dom(@)(domoz))™" = > icdom f(domoz), it is enough to
prove that
dom uncurry(z) = dom @(dom 0z).

Really,

Z (domoz) =

i€dom f
(i, ) B
i € dom(domoz),x € domz; |

(4, )
i€domz,r € domz; |
I1E
and dom uncurry(z) = [[;c x zi = [] 2. 0

3.7.4.3. Finite example. If F is a finite family (indexed by a natural number
dom F) of anchored finitary relations, then by definition

(ord)
GR H _ [ao,05 - - -, @0 arity Fo—1, - - - s Gdom F—1,05 - - -  Adom F—1,arity Fapm r_1—1]
Hao,Oa s 7a0,arityFo—1]] € GR FO VANWAN
IIadom F—1,arity Fd(nnF_lfl]] € GR Fdom F—1
and

(ord)
arity H F = arity Fy + ... + arity Foom r—1-
The above formula can be shortened to
(ord

il - { )
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3.7.4.4. The definition.

DEFINITION 299. The anchored relation (which I call ordinated product)
[1"Y F is defined by the formulas:

(ord)
arity H F= Z(arity of);

(ord)
concat z
GR F=q——/ ».
ILr={ Trcnem )
ProposITION 300. [[*Y F is a properly defined anchored relation.

PROOF. domconcatz = ), g0 pdomz; = >, o oarity fi = ) (arity oF).
U

3.7.4.5. Definition with composition for every multiplier.
q(F); % (curry (@(arity oF)))i.

(ord) Leaz(arity oF)
PROPOSITION 301. [ F' = § Gicqon i Loa(F),€ORF, (-

Proor. GR[[“VF = {Zeﬁn(cc%};

GR H(Ord) F— { uncurry(z)o(@(arityof))71 }

ZeHiedom L 0% Fi Yicdom F:z(i) EGR F;
Let L = uncurry(z). Then z = curry(L).

GR H(Ord) F— { Lo(ea(alrityof))i1 };

curry(L)EHiedom ” varity Fi viedom F:curry(L)i€GR F;
—1
d Lo arity of
GRITY F = (Dary o) :
arity F;
revticdom ™ * Vi€dom F:curry(L)i€GR F;

GR, H(Ord) F = LEUZ(amy °h .
Vicdom F:curry(Lo@(arity oF))iEGR F; [’

(curry(L o @@ (arity oF))i)x = L((curry(€D(arity oF))i)z) = L(q(F);x) = (L o

q(F)i)z;
curry(L o @P(arity oF))i = L o q(F);;
(ord) 1 L UZ(amy oF)
H TUF = {ViedoﬁF:Loq(F)ieGRFi : O

Viedom F:Loq(F),€GR F;

im o Z(arity oF)
CoroLLARY 302. [[Y F = {LG(U (GRoF)) |

COROLLARY 303. H(Ord) F is small if F' is small.

3.7.4.6. Definition with shifting arguments. Let F! = {%#}

PROPOSITION 304. F! = {%}
PRrOOF. If L € GR F; then dom L = arity F;. Thus

Lobr iy xarity 7, = Lo Pr l{i}xdomrL = Lo Pr l{iyxo-

PROPOSITION 305. F/ is an ({i} x arity F;)-ary relation.
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PrOOF. We need to prove that dom(L o Pry |{i}xarityFi) = {i} x arity F; for
L € GR Fj;, but that’s obvious. O

OBvious 306. [](arity oF) = J;cqom ({7} X arity Fi) = U;cqom r dom Fy.

LEMMA 307. P € [[;cqom p Fi & curry(Jim P) € [[(GR oF) for a (dom F)-

indexed family P where P; € U<ty Fi for every i € dom F, that is for P €
G{i}xarity Fi

HiedomF
PROOF. For every P € [[;cqom p OV @ Fi we have:

pe ] Fle

i€dom F

dom F'
PE{ 2€0 }

Vi€ dom F : z(i) € F]
PcUmF AVicdomF: P(i) € F &

P ev®m AV € dom FAL € GRF; : P, = Lo (Pr|(iyxs) &
P e 5% F AV € dom F3L € GRF; : (P, € OVt B A vy e arity Fy : Py(i,2) = La) <
P c 5™ F AV € dom F3L € GRF; : (P, € O Fi A curry(P))i = L) <
P e AviedomF : (P, € GBI B curry(P))i € GRF) <
Vi € dom F3Q; € (5™ Fy{ih - (P, = uncurry(Qy) A (Qi)i € U™ Fi A Qi € GRF) &
Vi € dom F3Q; € (U"”ityFl){i} : (P- = uncurry(Q; < U Qi )z € GRF>

i€dom F

Vi € dom FAQ; € (U1t Fiylit . (P = uncurry(Q U Qi € H (GR oF))

i€dom F

Vi € dom F : U curry(P;) € H(GR oF) &
i€dom F

Curry< U Pi> € H(GROF) &

i€dom F

curry(U im P) € H(GR oF).

d

LEMMA 308. {Cur;y(é;?—a[gz?:m} [T(GRoF).

PROOF. First GR[[Y F = {““”Y(e)l_[((?éd;)”) } that is

f _ uncurry(z)o(@(arity oF))_1
feGR][Y F z€[[(GRoF) :

Since @ (arity oF) is a bijection, we have

{ fo@(arlty oF) } uncurry(z)

feGRH“’”’) F z€[[(GRoF)

curry(f @(arlty oF) . curry(f)o@(arity oF) _
{ fGGRH(ord) I } { ZEH GRoF) } that is { fGGRH(md) - } =
t

} what is equivalent to

[I(GRoF).

im P
LEMMA Y .
PGHzEdomF Zi{i}xar‘ v lAcurry(U im P)GH(GROF)

{LeUHiEdomF arity Fy }

curry(L)EH(GR oF)
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arity F;

ProoF. Let L' € {LeUHiEdomF

curry(L)GH(GRoF)
curry(L') € [[(GR oF).
Let P = Xi € domF : L'|{iyxarity ,- Then P € []

: . I UimP
UlmP =IL'".So L' e {PEHiedomFU{'i}XarityF‘j/\curry(U imP)EH(GROF)

}. Then L' € U]—LedomFarityFi and

{i} xarity F;
i€dom F' O " and

’ im P
Let now L' € P?HiedomF GUTxamy Fi pcurey (U im P)e] [(GR oF) } Then there ex-
ists P € [[;cqom p OV Fi such that L' = (Jim P and curry(L') € [[(GRoF).
Evidently 1/ € 5Llceonr P g0 17 ¢ { zepllican s 0
vidently - 90 Curry(L)EH(GRoF) :

LEMMA 310. {f"@(a’ltym} - {U’mp}

. (ord) ’
fGGRH F PeHiEdomF‘Fi

PROOF.

P
Le{ Uim }@
P e HzEdomF

3

I e Jim P
P € I;cdom p OU>aiy Fi A curry(|Jim P) € [[(GR oF)
Le O icaom 21V Fi 5 curry(L) € H (GRoF) &

= UHiGdomF arity Fy A curry(L) S {curry(f) arlty OF }

i3

feGRI[“YF
(because @ (arity oF') is a bijection)

curry(L) o (@(arity OF)>_1 € { curry({) } &

feGRI[“YF

. -1 f
Le (®(arlty OF)) € {f c GR H(ord) F} <

(because @(arity oF") is a bijection)

e | fo®larityor) |
feCGRI[YF

. . —1
THEOREM 311. GRT[Y F = {(Ulmp)"(@(“‘ty"”) }
H PeHiEdomF FL/

PROOF. From the lemma, because @ (arity oF) is a bijection. O

) Pm(@(arityof))_l)
THEOREM 312. CRT]Y F = {U*E(“’mF( .
H PEHiEdolnF F"l

PROOF. From the previous theorem. O

o arity o
PEHiedom F { — jer }

PrROOF. From the previous. O
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REMARK 314. Note that the above formulas contain both ( J; 4o, » dom Fy and
Uicdom r Fi- These forms are similar but different.

3.7.4.7. Associativity of ordinated product. Let f be an ordinal variadic func-
tion.
Let S be an ordinal indexed family of functions of ordinal indexed families of
functions each taking an ordinal number of arguments in a set X.
I call f infinite associative when
1°. f(foS) = f(concatS) for every S;
2°. f([z]) = = for z € X.

Infinite associativity implies associativity.
ProprosITION 315. Let f be an infinitely associative function taking an ordinal

number of arguments in a set X. Define x xy = f[z,y] for z,y € X. Then the
binary operation x is associative.

PROOF. Let 2,3,z € X. Then (z+y) 2 = f[f[e,yl, 2] = £(fLw ], FI2])
flz,y, z]. Similarly x x (y x z) = f[z,y,z]. So (x*y) *xz =z * (y * 2).

ol

Concatenation is associative. First we will prove some lemmas.
Let a and b be functions on a poset. Let a ~ b iff there exist an order isomor-
phism f such that a = bo f. Evidently ~ is an equivalence relation.

OBVIOUS 316. concata = concat b < uncurry(a) ~ uncurry(b) for every ordi-
nal indexed families a and b of functions taking an ordinal number of arguments.

Thank to the above, we can reduce properties of concat to properties of uncurry.

LEMMA 317. a ~ b = uncurry a ~ uncurry b for every ordinal indexed families
a and b of functions taking an ordinal number of arguments.

PROOF. There exists an order isomorphism f such that a =bo f.
uncurry(a)(w, y) = (az)y = (bfa)y =
uncurry(b)(fz, y) = uncurry (b)g(z, y)

where g(z,y) = (fz,y).
g is an order isomorphism because g(xo,yo) > g(z1,v1) < (zo,%0) > (z1,91).
(Injectivity and surjectivity are obvious.) U

LEMMA 318. Let a; ~ b; for every i. Then uncurrya ~ uncurryb for every
ordinal indexed families a and b of ordinal indexed families of functions taking an
ordinal number of arguments.

PROOF. Let a; = b; o f; where f; is an order isomorphism for every i.

uncurry(a)(i,y) = a;y = b fiy =
uncurry(b) (i, fiy) = uncurry(b)g(i,y) = (uncurry(b) o g)(¢, y)

where g(i,y) = (i, fiy).
g is an order isomorphism because ¢(i,y0) > g(i,y1) < fivo = fiva < Yo > 11
and ig > i1 = g(4,90) > 9(i,y1). (Injectivity and surjectivity are obvious.) O

Let now S be an ordinal indexed family of ordinal indexed families of functions
taking an ordinal number of arguments.

LEMMA 319. uncurry(uncurry oS) ~ uncurry(uncurry .S).
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PROOF. uncurryoS = Xi € S : uncurry(S;);

(uncurry(uncurry oS))((z, z),y) = (uncurry S;)(z,y) = (S;z)y;

(uncurry(uncurry S))((¢,x),y) = ((uncurry S)(4, z))y = (Siz)y.

Thus (uncurry(uncurry oS))((¢,x),y) = (uncurry(uncurry S))((i,z),y) and
thus evidently uncurry(uncurry oS) ~ uncurry(uncurry ). O

THEOREM 320. concat is an infinitely associative function.

PROOF. concat([z]) = « for a function x taking an ordinal number of argument
is obvious. It is remained to prove
concat(concat 0S) = concat(concat S);
We have, using the lemmas,
concat(concat oS) ~
uncurry(concat 0S) ~
(by lemma 318

~

uncurry(uncurry oS

~

uncurry(uncurry S

—_— — — " —

~

uncurry(concat S

concat(concat S).

Consequently concat(concat 0S) = concat(concat S). O

COROLLARY 321. Ordinated product is an infinitely associative function.

3.8. Galois surjections

DEFINITION 322. Galois surjection is the special case of Galois connection such
that f* o f, is identity.

ProroSITION 323. For Galois surjection 21 — ‘B such that 2 is a join-
semilattice we have (for every y € B)

zed
{725

PROOF. We need to prove (theorem 131)

max{m} _max{xem}
[fe=y [faCyl’

To prove it, it’s enough to show that for each f*z C y there exists an ' J x such
that f*a’ = y.

Really, y = f* f.y. It’s enough to prove f*(x U f.y) = y.

Indeed (because lower adjoints preserve joins), f*(z U f.y) = ffaz U f*fiy =
ffely=uy. O

3.9. Some properties of frames

This section is based on a TODD TRIMBLE’s proof. A shorter but less elemen-
tary proof (also by ToDD TRIMBLE) is available at
http://ncatlab.org/toddtrimble/published /topogeny

I will abbreviate join-semilattice with least element as JSWLE.

OBvIous 324. JSWLEs are the same as finitely join-closed posets (with nullary
joins included).


http://ncatlab.org/toddtrimble/published/topogeny
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DEFINITION 325. It is said that a function f from a poset 2 to a poset B
preserves finite joins, when for every finite set S € &2 such that |_|Ql S exists we

have | [P (f)*S = f|*S.

OBVIOUS 326. A function between JSWLESs preserves finite joins iff it preserves
binary joins (f(z Ly) = fz U fy) and nullary joins (f(L1%) = L%).

DEFINITION 327. A fized point of a function F is such z that F(z) = z. We
will denote Fix(F') the set of all fixed points of a function F.

DEFINITION 328. Let 2 be a JSWLE. A co-nucleus is a function F' : A — 2
such that for every p,q € 2 we have:

1°. F(p) C p;
2°. F(F(p)) = F(p);
3°. F(pUq) = F(p) UF(q).

PROPOSITION 329. Every co-nucleus is a monotone function.

Proor. It follows from F(pUgq) = F(p) U F(q). O

LemMa 330. | [T 8 = | | S for every § € 2 Fix(F) for every co-nucleus F
on a complete lattice.

PROOF. Obviously | | S O z for every z € S.

Suppose z J x for every x € S for a z € Fix(F'). Then z J | |S.

F(]S) 3 F(x) for every x € S. Thus F(||S) 3 | |,.q F(z) = [|S. But
F(]S) E|]S. Thus F(| |S) =|]S that is | | S € Fix(F).

So | ["*)'§ =| | S by the definition of join. O

zeS

COROLLARY 331. L]FiX(F) S is defined for every S € Z Fix(F).

LemMa 332, [T s = F(M8) for every S € ZFix(F) for every co-
nucleus F' on a complete lattice.

PRrROOF. Obviously F([]S) C z for every z € S.

Suppose z C z for every x € S for a z € Fix(#). Then z C []S and thus
zC F([9).

So [T7*)'§ = F(I1S) by the definition of meet. O

CoroLLARY 333. [T7*%) & is defined for every § € 2 Fix(F).

OBvIOUS 334. Fix(F') with induced order is a complete lattice.

LEmMA 335. If F is a co-nucleus on a co-frame 2, then the poset Fix(F') of
fixed points of F, with order inherited from %I, is also a co-frame.
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PROOF. Let b € Fix(F), S € ZFix(F). Then

Fix(F)
b uFix(F) |_| S =

U p([7s) =

F(b) U F(|—| S) -

F(bulls) =
F([e0)s)

Fix(F)

[] ouys =

Fix(F)

|_| <buFiX(F)>*S.
t

DEFINITION 336. Denote Up(2l) the set of upper sets on 2 ordered reverse to
set theoretic inclusion.

DEFINITION 337. Denote T a = {zte} € Up(2).

xda
LEMMA 338. The set Up(2l) is closed under arbitrary meets and joins.

ProoF. Let S € & Up().

Let X e JS and Y J X for an Y € 2. Then there is P € S such that X € P
and thus Y € Pand so Y € [JS. So|JS € Up(2).

Let now X e (1Sand Y J X foran Y € A. Then VI € S: X € T and so
VI'eS:YeT, thusY €S. So[)S € Up(). O

THEOREM 339. A poset 2 is a complete lattice iff there is a antitone map
s: Up(2A) — A such that

1°. s(1 p) = p for every p € A,
2°. D Ct s(D) for every D € Up().
Moreover, in this case s(D) =[] D for every D € Up(2l).

PRrROOF.

=. Take s(D) =[]D.
<. Vo € D:xz ds(D) from the second formula.
Let Vx € D : y C x. Then =z €1y, D Ct y; because s is an antitone
map, thus follows s(D) J s(Ty) =y. SoVer € D:yLC s(D).
That s is the meet follows from the definition of meets.
It remains to prove that 2l is a complete lattice.
Take any subset .S of 2. Let D be the smallest upper set containing S.
(It exists because Up(2) is closed under arbitrary joins.) This is

e
p={—*"==
{HSGS:sz}

Any lower bound of D is clearly a lower bound of S since D O S. Con-
versely any lower bound of S is a lower bound of D. Thus S and D have
the same set of lower bounds, hence have the same greatest lower bound.

O
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PROPOSITION 340. For any poset 2 the following are mutually reverse order
isomorphisms between upper sets F' (ordered reverse to set-theoretic inclusion) on
2 and order homomorphisms ¢ : AP — 2 (here 2 is the partially ordered set of two
elements: 0 and 1 where 0 C 1), defined by the formulas

o |1 ifaeF )
1.<p(a)—{0 ifadF for every a € 2;
2. F = (1)

PROOF. Let X € p71(1) and Y O X. Then ¢(X) = 1 and thus (V) = 1.
Thus ¢~ (1) is a upper set.

It is easy to show that ¢ defined by the formula 1° is an order homomorphism
A°P — 2 whenever F is a upper set.

Finally we need to prove that they are mutually inverse. Really: Let ¢ be de-
fined by the formula 1°. Then take F’ = ¢ ~!(1) and define ¢’(a) by the formula 1°.
We have

, 1 ifaep (1) 1 ifga) =1
“"(“):{0 ifagég*l(l) :{0 ifg(a);él = ().

1 ifaeF
o / —
Let now F be defined by the formula 2°. Then take ¢'(a) = { 0 ifagF as
defined by the formula 1° and define F' = ¢'~!(1). Then
F'=¢7Y1)=F.
O

LEMMA 341. For a complete lattice 2, the map [] : Up(2) — 2 preserves
arbitrary meets.

PROOF. Let S € £ Up(A) . We have [ ]S € Up(2).
1S =11 xes X =[lxes[1X is what we needed to prove. O

LEMMA 342. A complete lattice 2 is a co-frame iff [] : Up(2) — 2 preserves
finite joins.

PROOF.

=. Let %A be a co-frame. Let D, D" € Up(2(). Obviously [ (DU D’) J[]D and
[(DUD)3[D,so[|(DUD)YZI[DU[]D.
Also

|_|D u |—|D' = UD U UD' = (because 2 is a co-frame) =
dud
U{deD,d’ eD'}'

Obviously dUd’ € DN D', thus []D U] D' € (D N D) = [1(D N D)
that is [|DU[|D' I [|(DND). So[|[(DUD')=[]DUJ[]D’ that is
[1: Up(A) — A preserves binary joins.

It preserves nullary joins since []"P®) LUp() — [UP(M g — | 2
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<. Suppose []: Up() — 2 preserves finite joins. Let b € A, S € PA. Let D be
the smallest upper set containing S (so D = [J(1)"S). Then

bul ]S =

[TrouUlm"s =
|_| tou |_| U<T>*S = (since |_| preserves finite joins)

M(teulUms) =
U(tenUirs) =
[TUdbnta) =

a€sS

|—| U 1 (bUa) = (since |_| preserves all meets)

a€S

U]t 0ua) =
a€S
U(bl_la)z

a€S
|_| (bUa).
a€S
O

COROLLARY 343. If 2 is a co-frame, then the composition F =1 o[ ]: Up(2) —
Up(2l) is a co-nucleus. The embedding 1: 2 — Up(2) is an isomorphism of 2l onto
the co-frame Fix(F).

Proor. D J F(D) follows from theorem 339.

We have F(F(D)) = F(D) for all D € Up(2) since F(F(D)) =t[]1[]D =
(because [ |1 s = s for any s) =1[]D = F(D).

And since both []: Up(2) — 2 and 1 preserve finite joins, F' preserves finite
joins. Thus F' is a co-nucleus.

Finally, we have a J @’ if and only if + a Ct o/, so that 1: 2 — Up(2) maps
2l isomorphically onto its image (1)*2(. This image is Fix(F) because if D is any
fixed point (i.e. if D =1[] D), then D clearly belongs to (1)*2l; and conversely 1 a
is always a fixed point of F' =1 o[ ] since F(1 a) =1[]1 a =1 a. d

DEFINITION 344. If 2, B are two JSWLEs, then Join(2, ) is the (ordered
pointwise) set of finite joins preserving maps 2 — B.

OBvious 345. Join(2A,B) is a JSWLE, where f Ul g is given by the formula
(fug)p) = f(p)Ugp), 170mn(%B) j5 given by the formula J_J"in(m7%)(p) =173,

DEFINITION 346. Let h : Q — R be a finite joins preserving map. Then
by definition Join(P, k) : Join(P,Q) — Join(P, R) takes f € Join(P, Q) into the
composition ho f € Join(P, R).

LEMMA 347. Above defined Join(P, h) is a finite joins preserving map.

PROOF.

(ho(fuf)e=h(fuf)z=n(fzufz)=
hfrUhf'x = (ho flxU (ho fYz = ((ho f)U (ho f'))x.



3.9. SOME PROPERTIES OF FRAMES 63

Thus ho (fU f') = (ho f)u (ho f').
(ho LIom(P@yg = p 1 Join(PQly = p1Q = | R, O

PROPOSITION 348. If h,h' : Q — R are finite join preserving maps and h 3 b/,
then Join(P, h) J Join(P,h').

ProoF. Join(P,h)(f)(z) = (ho f)(x) = hfx 3 W fzx = (K o f)(z) =
Join(P, ") (f)(z). O

LEMMA 349. If g: Q@ — R and h: R — S are finite joins preserving, then the
composition Join(P, h) o Join(P, g) is equal to Join(P, h o g). Also Join(P,idg) for
identity map idg on @ is the identity map idjoin(p,g) on Join(P, Q).

PRrOOF. Join(P, h) Join(P, g)f = Join(P,h)(go f) = hogo f = Join(P,hog)f.
Join(P,idg)f =idgof = f. O

COROLLARY 350. If @ is a JSWLE and F' : Q — @ is a co-nucleus, then for
any JSWLE P we have that

Join(P, F) : Join(P, Q) — Join(P, Q)
is also a co-nucleus.

PrROOF. From idg J F (co-nucleus axiom 1°) we have Join(P,idg) I
Join(P, F) and since by the last lemma the left side is the identity on Join(P, Q),
we see that Join(P, F') also satisfies co-nucleus axiom 1°.

Join(P, F) o Join(P,F) = Join(P,F o F) by the same lemma and thus
Join(P, F')oJoin(P, F') = Join(P, F') by the second co-nucleus axiom for F', showing
that Join(P, F) satisfies the second co-nucleus axiom.

By an other lemma, we have that Join(P, F') preserves binary joins, given that
F preserves binary joins, which is the third co-nucleus axiom. O

LeMMA 351. Fix(Join(P, F')) = Join(P, Fix(F")) for every JSWLEs P, @ and
a join preserving function F : Q — Q.

PROOF. a € Fix(Join(P,F)) & a€ FPAFoa=a& ac FPAVz € P :
F(a(z)) = a(z).

a € Join(P,Fix(F)) © a € Fix(F) & ac FP AVz € P: F(a(x)) = a(x).

Thus Fix(Join(P, F')) = Join(P, Fix(F')). That the order of the left and right
sides of the equality agrees is obvious. O

DEFINITION 352. Pos(2l,B) is the pointwise ordered poset of monotone maps
from a poset 2 to a poset B.

LEMMA 353. If Q, R are JSWLEs and P is a poset, then Pos(P, R) is a JSWLE
and Pos(P, Join(Q, R)) is isomorphic to Join(Q,Pos(P, R)). If R is a co-frame,
then also Pos(P, R) is a co-frame.

ProOOF. Let f,g € Pos(P, R). Then Az € P: (fx U gx) is obviously monotone
and then it is evident that f PSP g =\ € P: (fxlgz). Az € P: L% is also
obviously monotone and it is evident that LPos(PR) = \g e P: LR,

Obviously both Pos(P,Join(Q, R)) and Join(Q,Pos(P, R)) are sets of order
preserving maps.

Let f be a monotone map.

o P
f € Pos(P,Join(Q, R)) iff f € Join(Q, R)” iff f € { 9€R } iff

g preserves finite joins

f € (R?)P and every g = f(z) (for z € P) preserving finite joins. This is bijectively
equivalent (f — f') to f' € (RF)? preserving finite joins.



3.9. SOME PROPERTIES OF FRAMES 64

f' € Join(Q, Pos(P, R)) iff f’ preserves finite joins and f’ € Pos(P, R)? iff
P

/' preserves finite joins and f’ € {g(z)g#ogzm
f e (RP)9.

So we have proved that f — f’ is a bijection between Pos(P, Join(Q, R)) and
Join(@, Pos(P, R)). That it preserves order is obvious.

It remains to prove that if R is a co-frame, then also Pos(P, R) is a co-frame.

First, we need to prove that Pos(P, R) is a complete lattice. But it is easy
to prove that for every set S € ZPos(P,R) we have Az € P : | |5 f(z) and
Az € P :[];eq f(z) are monotone and thus are the joins and meets on Pos(P, R).

Next we need to prove that

Pos(P,R) Pos(P,R)
b LjPos(P.R) |—| g — |—| <b|_|Pos(P,R)>*S'

Really (for every x € P),

} iff f' preserves finite joins and

Pos(P,R) Pos(P,R)

b LPos(P.R) |_| S|z=0b(x)U |_| S|z=

by U [ fl@) = [] (@) U f(2) = [] (6P 1) =

fes fes fes
Pos(P,R)
|—| (b | Pos(P,R) f) .
fes
Thus
Pos(P,R)
b uPos(P,R) |—| S =
Pos(P,R) Pos(P,R) "
|_| (b uPos(RR) f) _ |—| <b|_|Pos(P,R)> S.

fes
O

DEFINITION 354. P 2 ) means that posets P and @ are isomorphic.



CHAPTER 4

Typed sets and category Rel

4.1. Relational structures

DEFINITION 355. A relational structure is a pair consisting of a set and a tuple
of relations on this set.

A poset (2(,C) can be considered as a relational structure: (2L, [C]).

A set can X be considered as a relational structure with zero relations: (X, []).

This book is not about relational structures. So I will not introduce more
examples.

Think about relational structures as a common place for sets or posets, as far
as they are considered in this book.

We will denote x € (A, R) iff z € A for a relational structure (2, R).

4.2. Typed elements and typed sets

We sometimes want to differentiate between the same element of two different
sets. For example, we may want to consider different the natural number 3 and the
rational number 3. In order to describe this in a formal way we consider elements
of sets together with sets themselves. For example, we can consider the pairs (N, 3)

and (Q, 3).

DEFINITION 356. A typed element is a pair (2, a) where 2 is a relational struc-
ture and a € 2.
I denote type(2,a) =2 and GR(2,a) = a.

DEFINITION 357. T will denote typed element (2, a) as @%a or just @a when
2 is clear from context.

DEFINITION 358. A typed set is a typed element equal to (2U, A) where U is
a set and A is its subset.

REMARK 359. Typed sets is an awkward formalization of type theory sets in
ZFC (U is meant to express the type of the set). This book could be better written
using type theory instead of ZFC, but I want my book to be understandable for
everyone knowing ZFC. (LU, A) should be understood as a set A of type U. For
an example, consider (R, [0;10]); it is the closed interval [0; 10] whose elements
are considered as real numbers.

DEFINITION 360. T = {(amegl)} = {2} x 2 for every relational structure 2.
REMARK 361. T2 is the set of typed elements of 2.

DEFINITION 362. If 2 is a poset, we introduce order on its typed elements
isomorphic to the order of the original poset: (,a) C (A,b) < a C b.

DEFINITION 363. T denote GR (2, a) = a for a typed element (2, a).

DEFINITION 364. I will denote typed subsets of a typed poset (LU, A) as
P(PU, A) = {g@)g} — [PU} x PA.

65
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OBVIOUS 365. Z(LU, A) is also a set of typed sets.
DEFINITION 366. I will denote JU = T2U.
REMARK 367. This means that ZU is the set of typed subsets of a set U.

OBVIOUS 368. TU = {ggg} — (DU} x PU = 2(2U,U).

OBVIOUS 369. JU is a complete atomistic boolean lattice. Particularly:
1°. L7V = (2U,0);
20, TV = (22U,U);
3°. (LU, A) U (LU,B) = (£U, AU B);
4°. (2U,A) N (LU, B) = (LU, AN B);
5°. UAGS(@U’ A) = (:@U, UAeS A);

Nacs A HAF#D
6°. PU,A) = | 2U, €s ;
Maes( ) ( {U if A=10
7°. (2U,A) = (2U,U \ A);
8°. atomic elements are (2U, {x}) where z € U.
Typed sets are “better” than regular sets as (for example) for a set U and a typed

set X the following are defined by regular order theory:

e atoms X;

. X;

e 1790,
For regular (“non-typed”) sets these are not defined (except of atoms X which how-
ever needs a special definition instead of using the standard order-theory definition
of atoms).

Typed sets are convenient to be used together with filters on sets (see below),
because both typed sets and filters have a set 22U as their type.

Another advantage of typed sets is that their binary product (as defined below)
is a Rel-morphism. This is especially convenient because below defined products
of filters are also morphisms of related categories.

Well, typed sets are also quite awkward, but the proper way of doing modern

mathematics is type theory not ZFC, what is however outside of the topic of this
book.

4.3. Category Rel

I remind that Rel is the category of (small) binary relations between sets, and
Set is its subcategory where only monovalued entirely defined morphisms (func-
tions) are considered.

DEeFINITION 370. Order on Rel(A, B) is defined by the formula f C g <
GR f C GRy.

OBvious 371. This order is isomorphic to the natural order of subsets of the
set A x B.

DEFINITION 372. X [f]" YV & GRX [GRf]" GRY and (f)'X =
(Dst f,(GR f)" GR X) for a Rel-morphism f and typed sets X € J Srcf, Y €
T Dst f.

DEFINITION 373. For category Rel there is defined reverse morphism:
(A7 B7 F)_1 = (B7 A7 F_l)'

OBvious 374. (f~1)~! = f for every Rel-morphism f.
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OBvIOUS 375. [f’l]*:[f]’kl for every Rel-morphism f.

OBVIOUS 376. (go f)~! = f~1og~! for every composable Rel-morphisms f
and g.

PROPOSITION 377. {go f)* = (g)" o (f)* for every composable Rel-morphisms
f and g.

ProoOF. Exercise. O

ProrosiTION 378. The above definitions of monovalued morphisms of Rel
and of injective morphisms of Set coincide with how mathematicians usually define
monovalued functions (that is morphisms of Set) and injective functions.

PROOF. Let f be a Rel-morphism A — B.
The following are equivalent:
e f is a monovalued relation;

Ve € A,yo,yh € Bi(z fyoANw fyr = yo=11);
Vo € Ayo,y1 € B (yo #y1 = ~(x fyo) V(2 f o)
VYo, 91 € BYz € A (yo #y1 = ~(x fyo) V(2 f y1));
Yyo,y1 € B (yo # 1 = Ve € A: (=(z fyo) V —(z fy1))
Vyo,y1 € B:(Fx € A: (z fyoAx fur) = yo=u1);
Yyo,y1 € B yo (fo f~) y1 = yo = y1;
foftClp.
Let now f be a Set-morphism A — B.

The following are equivalent:

e f is an injective function;

e Vye Bya,beA:(afyAbfy=a=Db)
eVyeBia,beA:(a£b=—(afy)V-(bfy));
eVyeB:(aZb=Va,be A: (=(a fy)V-(bfy)));
eVyeB:(Ja,beA:(afynbfy) =a=Db);

o fTlofE 14

PRrROPOSITION 379. For a binary relation f we have:

1° (f)"US =U{(f)*)"S for a set of sets S;
2. US[fI'Y ©3IX eS: X [f]"Y for a set of sets S;

3°. X [fI'UT < 3IY e T: X [f]"Y for a set of sets T}
4°. US[f'UT < 3IX €S, Y €T : X [f]" Y for sets of sets S and T}
5. X [fI"Y & 3ae X,BeY : {a} [f]" {B} for sets X and Y;

6°. (f)"X = UJ((f)") atoms X for a set X (where atoms X = {jg(})

PRrROOF.
1°.

ye(Y | USeme|S:afyeIPecSaecP afys
IPeS:ye(f)’P=3IQe((f))S:yeQeyec| JUNT)S
2°.
US[f]*Yc)Ha:EUS,yEY:xfyﬁ
IXeSreXyeY :rfyesdXesS: X[f]"Y.
3°. By symmetry.
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4°. From two previous formulas.
5. X[f'YeJaeX,feY afBfeTacX,BeY  {a}][f]" {8}
6°. Obvious.

COROLLARY 380. For a Rel-morphism f we have:

1o (A US =L(f)*)S for S € 2T Sre f;

2. S [f' Y« 3IXeS: X [f]"Y for S € LT Src f;

. X[ UT &3V eT: X [f"Y for T € 27 Dst f;

22 1S I UT ¢ 3IX eS,Y eT: X [f]" YforSe T Srcf, T €
P T Dst f;

5. X [f]" Y & 3z € atoms X,y € atomsY : x [f]" y for X € 7 Srcf,
Y € I Dst f;

6°. (f)"X = [J{((f)") atoms X for X € 7 Src f.

COROLLARY 381. A Rel-morphism f can be restored knowing either (f)*z for
atoms x € .7 Src f or z [f]" y for atoms x € T Src f, y € 7 Dst f.
ProrosITION 382. Let A, B be sets, R be a set of binary relations.
°. (UR)'X = Uf€R<f>*X for every set X;
2°. (NR){a} = ﬂf€R<f>*{oz} for every «, if R is nonempty;
3°. X [UR"Y & 3f e R: X [f]" Y for every sets X, Y;
4°. a(NR) B VfeR: afpforevery a and S, if R is nonempty.
PRroOOF.
1°.

y€<UR>*X<:>EIxeX:x(UR>y(:)EIxeX,fER:xfy@)
feR:ye ()’ Xeye [ JHX

fER
2°.
ye <ﬂR>*{a} avVfeR:afysvfeRiye () {ateye (A {a}
fER
3°.

X[UR}*Y@EIxeX,yGY:x(UR)y@
JreX,yeY,feR:x fyeIfeR: X[f]'Y.

4°. Obvious.

COROLLARY 383. Let A, B be sets, R € ZRel(A4, B).
. (R X = |_|f€R<f>*X for X € T A;
2°. ([TR) = =g (f) "z for atomic x € T A;

3. X[ UR"Y S 3feR: X [f]' Y for X € TA, Y € TB;
4°. 2 [MR]"y & Vf e R:x[f]" y for every atomic v € T A, y € TB.

PROPOSITION 384. X [go f]* Z < 3B : (X [f]" {B} A B} [9]" Z) for every
binary relation f and sets X and Y.
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PROOF.

X[gof]"ZeImeX,z€Z:x(gof) 2z
JreX,z2eZB:(xfBANBg2) &
P:(FreX:afBAIyeY :Bgz)e P (X [fI" {BIA{B} 9] 2).

O

COROLLARY 385. X [go f]* Z & 3y € atoms”® : (X [f]" y Ay [g]" Z) for
f € Rel(A, B), g € Rel(B,C) (for sets A, B, C).

PROPOSITION 386. folJG = cq(fog) and JGo f =,cq(go f) for every
binary relation f and set G of binary relations.

ProOF. We will prove only (JGo f =, (g0 f) as the other formula follows
from duality. Really

(x,2) EUGOf@Ely:((x,y) € fA(y2) 6UG)<:>
Jy,9€G:((w,y) € fA(y,2) €g) & TgeG:(x,2) €Egof & (x,2) € U(gof).

geG

O

COROLLARY 387. Every Rel-morphism is metacomplete and co-metacomplete.

ProrosITION 388. The following are equivalent for a Rel-morphism f:

1°. f is monovalued.

2°. f is metamonovalued.

3°. f is weakly metamonovalued.

4°. (f)*a is either atomic or least whenever a € atoms? 57/,

5o (fNY Iy = (D) TR {1 for every 1,.J € T Src f.
6°. <f_1>* [1S= |_|Y6S<f_1>*Y for every S € 227 Src f.

PRrROOF.

2°=-3°. Obvious.
1°=2°. Take z € atoms” 5°/; then fz € atoms? Pt U{ L7 Pst/} and thus

<(|_| G) Of>*='17 _ <|_|G>*<f>*ft _ |—| <g>*<f>*17 _
geG
|_|<gof>*z<|_|<gof>> z;

geG geG

so (MG)o f=T[lyec(go f)

3°=1°. Take g = {(a,y)} and h = {(b,y)} for arbitrary a # b and arbitrary y. We
have gNh = §; thus (go f)N(ho f) = (¢gNh)o f = L and thus impossible
x faAz fbasotherwise (x,y) € (go f)N(ho f). Thus f is monovalued.
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4°=6°. Let a € atoms” S (f)'a = b Then because b €
atomsgDstf U{J_ﬂDstf}

[]Snb#LevweS:YNb#L;
alfI'[]Seves:alf]"Y;
[1S[f ] aewes: Y [f '] a
at(FY[]5evwWweS:akt(f)Y;
ok T8 eakt [1(7DY

TS = [

6°=5°. Obvious.
5o=1°. <f_1>*a|7 <f_1>*b = <f_1>*(al_l b) = <f_1>*J_ = 1 for every two distinct
atoms a = {a},b= {8} € Z Dst f. From this

a(fof)Be3yebstf:(aftyryfh) e
JyeDstf:(ye <f71>*a/\y € <f71>*b)
is impossible. Thus fo f~! C IPD{Setlf.
—4°= —1°. Suppose (f)*a ¢ atoms? PtF U{ L7 Pstf} for some a € atoms” St/

Then there exist distinct points p, ¢ such that p,q € (f)*a. Thus
p(fof ) gandso fofZIRel.

O
4.4. Product of typed sets
DEFINITION 389. Product of typed sets is defined by the formula
(LU, A) x (W,B) = (U,W,A x B).
PRroOPOSITION 390. Product of typed sets is a Rel-morphism.
PROOF. We need to prove A x B C U x W, but this is obvious. O

OBvIOUsS 391. Atoms of Rel(A, B) are exactly products a x b where a and b
are atoms correspondingly of 7 A and 7 B. Rel(A, B) is an atomistic poset.

PROPOSITION 392. f # A x B & A [f]" B for every Rel-morphism f and
Ae TSref, Be I Dstf.

PROOF.
Alf]" B 3z € atoms A,y € atoms B : x [f]" y &
3z € atoms” 57y € atoms” P/ s (e xyC fArxyC Ax B) & f # Ax B.
U

DEFINITION 393. Image and domain of a Rel-morphism f are typed sets de-
fined by the formulas

dom(U, W, f) = (L£U,dom f) and im(U, W, f)= (LW, im f).
OBvVIOUS 394. Image and domain of a Rel-morphism are really typed sets.

DEFINITION 395. Restriction of a Rel-morphism to a typed set is defined by
the formula (U, W, f)|(zv.x) = (U W, f|x).
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OBVIOUS 396. Restriction of a Rel-morphism is Rel-morphism.

OBVIOUS 397. fla = f N (A x TZDPf) for every Rel-morphism f and A €
T Sre f.

OBvIOUs 398. (f)"X = (f)"(XNdom f) = im(f|x) for every Rel-morphism f
and X € 7 Src f.

OBVIOUS 399. fC Ax B < dom f C AAim f C B for every Rel-morphism f
and A€ I Srcf, Be I Dstf.

THEOREM 400. Let A, B be sets. If S € #(T A x 7 B) then
[] (AxB)=[]doms x| |imS.
(A,B)esS
PRrooF. For every atomic z € T A, y € I B we have
rxyC [] (AxB)&V(A B eS:axyCAxB&
(A,B)eS
V(A,B)e S: (e CAAyCB)&VAcedomS: 2 CAAVBeimS:yC B&
xEHdomS/\yEﬂimS@zxyEﬂdomeﬂimS.
U

OBvious 401. If U, W are sets and A € (U) then Ax is a complete homo-
morphism from the lattice 7 (W) to the lattice Rel(U, W), if also A # L then it

is an order embedding.



CHAPTER 5

Filters and filtrators

This chapter is based on my article [32].
This chapter is grouped in the following way:

e First it goes a short introduction in pedagogical order (first less general
stuff and examples, last the most general stuff):
— filters on a set;
— filters on a meet-semilattice;
— filters on a poset.
e Then it goes the formal part.

5.1. Implication tuples

DEFINITION 402. An implications tuple is a tuple (P, ..., P,) such that P, =
...=> P,.

OBvious 403. (P, ..., P,) is an implications tuple iff P; = P; for every i < j
(where i,5 € {1,...,n}).

The following is an example of a theorem using an implication tuple:

ExAMPLE 404. The following is an implications tuple:
1°. A.
2°. B.
3°. C.

This example means just that A = B = C.

I prefer here a verbal description instead of symbolic implications A = B = C,
because A, B, C' may be long English phrases and they may not fit into the formula
layout.

The main (intuitive) idea of the theorem is expressed by the implication P; =
P, the rest implications (P» = P,, P; = P,, ...) are purely technical, as they
express generalizations of the main idea.

For uniformity theorems in the section about filters and filtrators start with
the same Py: “(2, 3) is a powerset filtrator.” (defined below) That means that the
main idea of the theorem is about powerset filtrators, the rest implications (like
P, = P,, P3 = P,, ...) are just technical generalizations.

5.2. Introduction to filters and filtrators

5.2.1. Filters on a set. We sometimes want to define something resembling
an infinitely small (or infinitely big) set, for example the infinitely small interval
near 0 on the real line. Of course there is no such set, just like as there is no natural
number which is the difference 2 — 3. To overcome this shortcoming we introduce
whole numbers, and 2 — 3 becomes well defined. In the same way to consider things
which are like infinitely small (or infinitely big) sets we introduce filters.

An example of a filter is the infinitely small interval near 0 on the real line. To
come to infinitely small, we consider all intervals | — ¢; €[ for all € > 0. This filter

72
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consists of all intervals | — ;€[ for all € > 0 and also all subsets of R containing
such intervals as subsets. Informally speaking, this is the greatest filter contained
in every interval | — ¢; ¢[ for all € > 0.

DEFINITION 405. A filter on a set U is a F € 20U such that:

1°. VA, Be F: ANB € F;
2°. VA, Be PU: (A€ FABDA= BEF).

EXERCISE 406. Verify that the above introduced infinitely small interval near
0 on the real line is a filter on R.

EXERCISE 407. Describe “the neighborhood of positive infinity” filter on R.
DEFINITION 408. A filter not containing empty set is called a proper filter.
OBVIOUS 409. The non-proper filter is £20.

REMARK 410. Some other authors require that all filters are proper. This is a
stupid idea and we allow non-proper filters, in the same way as we allow to use the
number 0.

5.2.2. Intro to filters on a meet-semilattice. A trivial generalization of
the above:

DEFINITION 411. A filter on a meet-semilattice 3 is a F € £?3 such that:

1°. VA,Be F: ANB € F;
2°. VA, Be3: (A€c FABJA= BecF).

5.2.3. Intro to filters on a poset.

DEFINITION 412. A filter on a poset 3 is a F € 3 such that:
1°. VA, Be FAC e F: C C A, B;
2°. VA, Be3: (A€ FABJA= BecF).

It is easy to show (and there is a proof of it somewhere below) that this coincides
with the above definition in the case if 3 is a meet-semilattice.

5.3. Filters on a poset
5.3.1. Filters on posets. Let 3 be a poset.
DEFINITION 413. Filter base is a nonempty subset F' of 3 such that
VX, Ye FAZeF:(ZCXAZLCY).
DEFINITION 414. Ideal base is a nonempty subset F' of 3 such that
VX,)YeF3ZeF:(ZJXANZY).
OBVIOUS 415. Ideal base is the dual of filter base.

OBvIOUS 416.
1°. A poset with a lowest element is a filter base.
2°. A poset with a greatest element is an ideal base.
OBvIOoUs 417.
1°. A meet-semilattice is a filter base.
2°. A join-semilattice is an ideal base.

OBVIOUS 418. A nonempty chain is a filter base and an ideal base.

DEFINITION 419. Filter is a subset of 3 which is both a filter base and an upper
set.
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I will denote the set of filters (for a given or implied poset 3) as §F and call §
the set of filters over the poset 3.

PROPOSITION 420. If T is the maximal element of 3 then T € F for every
filter F.

PrOOF. If T ¢ F then VK € 3: K ¢ F and so F is empty what is impossible.
O

PROPOSITION 421. Let S be a filter base on a poset. If Ag,..., A, € S (n € N),
then

ICeS:(CCAN...NCLCA,).

PROOF. Tt can be easily proved by induction. O

DEFINITION 422. A function f from a poset 2| to a poset B preserves filtered
meets iff whenever [].S is defined for a filter base S on 2 we have f[]S =[](f)"S.

5.3.2. Filters on meet-semilattices.

THEOREM 423. If 3 is a meet-semilattice and F' is a nonempty subset of 3 then
the following conditions are equivalent:

1°. F is a filter.
2°. VX, Y € F: XY € F and F is an upper set.
F.VX,)Ye3: (X, YeF&XNY erl).

PRrROOF.

1°=2°. Let F be a filter. Then F'is an upperset. If X, Y € Fthen ZC XAZCY
for some Z € F. Because F'is an upper set and Z C XT1Y then XMY € F.

2°=1° Let VX,Y € F: XY € F and F be an upper set. We need to prove that
F is a filter base. But it is obvious taking Z = X MY (we have also taken
into account that F # ().

2°=3° Let VX, Y € FF: XY € F and F be an upper set. Then

VX, Y €3:(X,Y e F= XNY € F).

Let X MY € F; then X,Y € F because F' is an upper set.
3°=2°. Let
VX, Ye€3:(X,)YeF& XNY eF).

Then VX, Y €e FF: XY € F. Let X € Fand X C Y € 3. Then
XNY =X € F. Consequently X,Y € F. So F is an upper set.

O
PROPOSITION 424. Let S be a filter base on a meet-semilattice. If Ag,..., A, €
S (n € N), then
JCeS:CCAn---MA,.
PROOF. It can be easily proved by induction. O

PROPOSITION 425. If 3 is a meet-semilattice and S is a filter base on it, A € 3,
then (AM)*S is also a filter base.

PROOF. (Ar)"S # () because S # 0.
Let X,Y € (AM)*S. Then X = ANX’and Y = ANY’ where X', Y’ € S. There
exists Z’ € Ssuch that 2/ C X'MY’. So XNY = ANX'NY’ 23 ANz’ € (Am)*S. O
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5.3.3. Order of filters. Principal filters. I will make the set of filters §
into a poset by the order defined by the formula: a £ b < a 2 b.

DEFINITION 426. The principal filter corresponding to an element a € 3 is

TEJ
Ta{mga}.

Elements of B = (1)*3 are called principal filters.

OBVIOUS 427. Principal filters are filters.
OBVIOUS 428. 1 is an order embedding from 3 to §.
COROLLARY 429. 1 is an order isomorphism between 3 and .

We will equate principal filters with corresponding elements of the base poset
(in the same way as we equate for example nonnegative whole numbers and natural
numbers).

ProroSITION 430. 1 K J A& K € A.

ProoF. 1 K JASTKCAS K € A O

5.4. Filters on a Set

Consider filters on the poset 3 = 24 (where 4l is some fixed set) with the order
AC B&< ACB (for A, B e 2).

In fact, it is a complete atomistic boolean lattice with [1S =S, | ]S =U S,
A =4\ A for every S € P4 and A € P4, atoms being one-element sets.

DEFINITION 431. I will call a filter on the lattice of all subsets of a given set 4
as a filter on set.

DEFINITION 432. I will denote the set on which a filter F is defined as Base(F).
OBvIOUS 433. Base(F) = JF.

ProprosiTIiON 434. The following are equivalent for a non-empty set F &
PP

1°. F'is a filter.
2°. VX, Y €e F: XNY € F and F is an upper set.
. VX, Ye2U: (X,)Ye Fe&XNY €cF).

PROOF. By theorem 423. O

OBvVIOUS 435. The minimal filter on L4 is L.
OBVIOUS 436. The maximal filter on P4l is {4l}.

I will denote T A =t A =1? A, (The distinction between conflicting nota-
tions 1% A and 7% A will be clear from the context.)

PROPOSITION 437. Every filter on a finite set is principal.

PRrROOF. Let F be a filter on a finite set. Then obviously F = |_|3 up F and
thus F is principal. O
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5.5. Filtrators

(F,B) is a poset and its subset (with induced order on the subset). I call pairs
of a poset and its subset like this filtrators.

DEFINITION 438. I will call a filtrator a pair (2, 3) of a poset 2 and its subset
3 C A. I call A the base of the filtrator and 3 the core of the filtrator. I will also
say that (2, 3) is a filtrator over poset 3.

I will denote base(2, 3) = 2, core(2A, 3) = 3 for a filtrator (2, 3).

While filters are customary and well known mathematical objects, the concept
of filtrators is probably first researched by me.

When speaking about filters, we will imply that we consider the filtrator (F, )
or what is the same (as we equate principal filters with base elements) the filtrator

($,3)

DEFINITION 439. I will call a lattice filtrator a pair (2, 3) of a lattice 2 and its
subset 3 C 2.

DEFINITION 440. T will call a complete lattice filtrator a pair (2, 3) of a complete
lattice 21 and its subset 3 C 2.

DEFINITION 441. I will call a central filtrator a filtrator (A, Z(2)) where Z ()
is the center of a bounded lattice 2I.

DEFINITION 442. I will call element of a filtrator an element of its base.

DEFINITION 443. up®a = upa = {063 } for an element a of a filtrator.

cJda

DEFINITION 444. down® a = downa = {063} for an element a of a filtrator.

cCa
OBvVIOUS 445. “up” and “down” are dual.

Our main purpose here is knowing properties of the core of a filtrator to in-
fer properties of the base of the filtrator, specifically properties of upa for every
element a.

DEFINITION 446. T call a filtrator with join-closed core such a filtrator (2, 3)
that |_|3 S =|* S whenever |_|3 S exists for S € Z3.

DEFINITION 447. T call a filtrator with meet-closed core such a filtrator (2, 3)
that |_|3 S =[S whenever |—|3 S exists for S € &3.

DEFINITION 448. I call a filtrator with binarily join-closed core such a filtrator
(2, 3) that a U3 b = a U* b whenever a U3 b exists for a,b € 3.

DEFINITION 449. I call a filtrator with binarily meet-closed core such a filtrator
(21,3) that a3 b = a N> b whenever a M3 b exists for a,b € 3.

DEFINITION 450. Prefiltered filtrator is a filtrator (2, 3) such that “up” is in-
jective.

DEFINITION 451. Filtered filtrator is a filtrator (2, 3) such that
Va,be A : (upa 2 upb=aCbh).
THEOREM 452. A filtrator (2, 3) is filtered iff Va € A : a = [T upa.

Proor.
<. upa D upb= Hmupag ﬂmupb:agb.
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=.a= |—|Ql up a is equivalent to a is a greatest lower bound of upa. That is the
implication that b is lower bound of up a implies a 3 b.
b is lower bound of up a implies upb D upa. So as it is filtered a J b.

O
OBvVIOUS 453. Every filtered filtrator is prefiltered.

OBVIOUS 454. “up” is a straight map from 2( to the dual of the poset 223 if
(2, 3) is a filtered filtrator.

DEFINITION 455. An isomorphism between filtrators (2o, 30) and (1,31) is
an isomorphism between posets 2y and 2(; such that it maps 3¢ into 31.

OBVIOUS 456. Isomorphism isomorphically maps the order on 3¢ into order
on 3.

DEFINITION 457. Two filtrators are isomorphic when there exists an isomor-
phism between them.

DEFINITION 458. I will call primary filtrator a filtrator isomorphic to the fil-
trator consisting of the set of filters on a poset and the set of principal filters on
this poset.

OBvVIOUS 459. The order on a primary filtrator is defined by the formula a =
b< upa 2 upb.

DEFINITION 460. I will call a primary filtrator over a poset isomorphic to a

powerset as powerset filtrator.

OBVIOUS 461. up F is a filter for every element F of a primary filtrator. Re-
versely, there exists a filter F if up F is a filter.

THEOREM 462. For every poset 3 there exists a poset 2 O 3 such that (2, 3)
is a primary filtrator.

PROOF. See appendix A. O
5.5.1. Filtrators with Separable Core.

DEFINITION 463. Let (2, 3) be a filtrator. It is a filtrator with separable core
when
Ve,yeA: (z=xPy=3X cupz: X <% y).
PROPOSITION 464. Let (2, 3) be a filtrator. It is a filtrator with separable core
iff
Ve,yeA: (z=x*y=3X cupz,Y cupy: X <*Y).
PROOF.

=-. Apply the definition twice.
<. Obvious.

O

DEFINITION 465. Let (2, 3) be a filtrator. It is a filtrator with co-separable core
when
Ve,yeA: (x="y=3X edownz: X =2 y).

OBVIOUS 466. Co-separability is the dual of separability.

DEFINITION 467. Let (2, 3) be a filtrator. It is a filtrator with co-separable core
when
Ve,y e A: (x ="y =3X cdownz,Y € downy: X =2Y).

PRrOOF. By duality. O
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5.6. Alternative primary filtrators
5.6.1. Lemmas.
LEMMA 468. A set F is a lower set iff F is an upper set.

PROOF. XEFAZQX:ZefisequivalenttoZeF:XEF\/Z,@Xis
equivalent Z € F = (Z JX = X € F)isequivalent Z e FAXC Z= X e F. O

PROPOSITION 469. Let 3 be a poset with least element L. Then for upper
set F' we have FF # 3 < L ¢ F.

PROOF.

=. If 1L € F then F = 23 because F' is an upper set.
<. Obvious.

O

5.6.2. Informal introduction. We have already defined filters on a poset.
Now we will define three other sets which are order-isomorphic to the set of filters
on a poset: ideals (J), free stars (&), and mixers (907).

These four kinds of objects are related through commutative diagrams. First
we will paint an informal commutative diagram (it makes no formal sense because
it is not pointed the poset for which the filters are defined):

(dual)™
—

3 J

om 0 &

Then we can define ideals, free stars, and mixers as sets following certain for-
mulas. You can check that the intuition behind these formulas follows the above
commutative diagram. (That is transforming these formulas by the course of the
above diagram, you get formulas of the other objects in this list.)

After this, we will paint some formal commutative diagrams similar to the

above diagram but with particular posets at which filters, ideals, free stars, and
mixers are defined.

5.6.3. Definitions of ideals, free stars, and mixers. Filters and ideals
are well known concepts. The terms free stars and mizers are my new terminology.

Recall that filters are nonempty sets F' with A, B € F & 3Z ¢ F : (Z C
ANZC B) (for every A, B € 3).

DEFINITION 470. Ideals are nonempty sets F with A, Be€ F< 3Z € F:(Z 1
AN Z 3 B) (for every A, B € 3).

DEFINITION 471. Free stars are sets F' not equal to &3 with A, B € F &
AZ e F:(Z 23 ANZ 3 B) (for every A, B € 3).

~ DEFINITION 472. Mizers are sets F' not equal to &3 with A, B € F&3Zc
F:(ZCTAANZC B) (for every A, B € 3).

By duality and and an above theorem about filters, we have:

PROPOSITION 473.

e Filters are nonempty upper sets F' with A, B € F = 3Z € F : (Z C
ANZLC B) (for every A, B € 3).

e Ideals are nonempty lower sets F with A,B € F = 3Z € F : (Z 3
ANZ 3 B) (for every A, B € 3).
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o Free stars are upper sets F not equal to #3 with A, Be€ F =3Z ¢ F :
(Z3JANZ 3 B) (for every A, B € 3).

e Mixers are lower sets F not equal to 3 with A, Be F=3Z € F:(ZLC
ANZC B) (for every A, B € 3).

PROPOSITION 474. The following are equivalent:
1°. F is a free star.
2°.VZ€3:(ZJANZIB=ZcF)s AcFVvBeFforevery A/B€3
and F # 23.
3. VZe€3:(ZJANZIB=ZcF)=AcFVvBeFforevery A,B€e3
and F' is an upper set and F # £3.

PRrROOF.

1°<2°. The following is a chain of equivalencies:
1Ze€F:(ZJANZJIB)& A¢ FAB¢F;
VZEF:~(ZJANZJIB)& AcFVBEF;
VZe€3:(Z¢F=~(ZJANZ1IB))AcFVBcF,
VZe€3:(ZJANZIB=Z€c€F)& A€ FVBEF.

2°=3°. et A=B€F. Then Ac FVBeF. SoVZe€3:(Z3JANZIB=
Z e F)thatisVZ €3:(Z 3 A= Z € F) that is F is an upper set.

3°=2°. We need to prove that F is an upper set. let A € FFand AC B € 3. Then
Ae FVBeFandthusVZe€3:(ZJ3JANZ 3B = Zc¢cF)thatis
VZe€3:(Z2B=Z¢€F)andso BeF.

O

COROLLARY 475. The following are equivalent:

1°. F'is a mixer.

2°.VZ€3:(ZCANZEB=ZcF)s Ac FVvBe Fforevery A/B€e3
and F' # Z3.

3. VZe€3: (ZECANZCEB=ZcF)=AcFVvBecFforevery A;B€3
and F' is an lower set and F' # £23.

OBVIOUS 476.

1°. A free star cannot contain the least element of the poset.
2°. A mixer cannot contain the greatest element of the poset.

5.6.4. Filters, ideals, free stars, and mixers on semilattices.

PROPOSITION 477.

o Free stars are sets F not equal to 3 with Aec FVBe F& -3ZcF:
(Z3JANZ 3 B) (for every A, B € 3).

e Free stars are upper sets F' not equal to #3 with A € FV B € F <
-3Z € F:(Z 3 AANZ 2 B) (for every A, B € 3).

e Mixers are sets F' not equal to #3 with Ac FVBc F & -3Z c F:
(ZCT ANZ C B) (for every A, B € 3).

e Mixers are lower sets F' not equal to 3 with Aec FVB e F <« —37 €

F:(ZCT ANZC B) (for every A, B € 3).
Proor. By duality. O
By duality and and an above theorem about filters, we have:

PROPOSITION 478.
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Filters are nonempty sets F' with ANMB &€ F< A€ FAB € F (for every
A, B € 3), whenever 3 is a meet-semilattice.

e Ideals are nonempty sets F' with AUB € F < A€ FABEeEF (for every
A, B € 3), whenever 3 is a join-semilattice.

Free stars are sets F' not equal to 3 with AUBe F & A€ FVBeEF
(for every A, B € 3), whenever 3 is a join-semilattice.

e Mixers are sets I’ not equal to 3 with ANBe F& Ae FVBeF
(for every A, B € 3), whenever 3 is a meet-semilattice.

By duality and and an above theorem about filters, we have:

PROPOSITION 479.

e Filters are nonempty upper sets F with AMB € F < A€ FAB € F (for
every A, B € 3), whenever 3 is a meet-semilattice.

e Ideals are nonempty lower sets F with ALUBe€ F< A€ FAB¢€ F (for
every A, B € 3), whenever 3 is a join-semilattice.

e Free stars are upper sets F' not equal to &3 with AUB € F = A €
F vV B e F (for every A, B € 3), whenever 3 is a join-semilattice.

e Mixers are lower sets F' not equal to 3 with AMBe F = A€ FVBe F
(for every A, B € 3), whenever 3 is a meet-semilattice.

5.6.5. The general diagram. Let 2 and B be two posets connected by an
order reversing isomorphism 6 : A — B. We have commutative diagram on the
figure 3 in the category Set:

PUN——————— B

o)

FIGURE 3

THEOREM 480. This diagram is commutative, every arrow of this diagram is
an isomorphism, every cycle in this diagrams is an identity (therefore “parallel”
arrows are mutually inverse).

PrOOF. That every arrow is an isomorphism is obvious.
Show that (8)" =X = —(0)" X for every set X € 2.
Really,

peEB'-Xeoec-X:p=OgeIgc-X:0p=gqadpc-Xs
e X q=0""pesgcX:0g=pespd (0)'X ©pc—{0)"X.

Thus the theorem follows from lemma 197. O

This diagram can be restricted to filters, ideals, free stars, and mixers, see
figure 4:

THEOREM 481. It is a restriction of the above diagram. Every arrow of this
diagram is an isomorphism, every cycle in these diagrams is an identity. (To prove
that, is an easy application of duality and the above lemma.)
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I o I
(0
MERA) ———— &(B)

()
FIGURE 4
5.6.6. Special diagrams. Here are two important special cases of the above

diagram:
(="

F@) 2 5(qual 1) F@) <1 )
N S S S
m@) Y S(dual2) m@) <5 s@)

(the second diagram is defined for a boolean lattice 2).

5.6.7. Order of ideals, free stars, mixers. Define order of ideals, free
stars, mixers in such a way that the above diagrams isomorphically preserve order
of filters:

e AL B & A D B for filters and ideals;
e AL B & A C B for free stars and mixers.

5.6.8. Principal ideals, free stars, mixers.
DEFINITION 482. Principal ideal generated by an element a of poset 2 is | a =
{ €A }
zCa [

DEFINITION 483. An ideal is principal iff it is generated by some poset element.

DEFINITION 484. The filtrator of ideals on a given poset is the pair consisting
of the set of ideals and the set of principal ideals.

The above poset isomorphism maps principal filters into principal ideals and
thus is an isomorphism between the filtrator of filters on a poset and the filtrator
of ideals on the dual poset.

EXERCISE 485. Define principal free stars and mixers, filtrators of free stars and
mixers and isomorphisms of these with the filtrator of filters (these isomorphisms
exist because the posets of free stars and mixers are isomorphic to the poset of
filters).

OBvVIOUS 486. The following filtrators are primary:
filtrators of filters;

filtrators of ideals;

filtrators of free stars;

filtrators of mixers.

5.6.8.1. Principal free stars.

PROPOSITION 487. An upper set F' € &3 is a principal filter iff 37 € FVP €
F:ZCP.

PRrROOF.
=. Obvious.
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<. Let Z € Fand VP € F: Z C P. F is nonempty because Z € F. It remains
to prove that Z C P < P € F. The reverse implication follows from
VP € F : Z C P. The direct implication follows from that F' is an upper
set.

O

LEMMA 488. If S € £3 is not the complement of empty set and for every
TeZ3

VZe3:(VXeT:Z3IX=2ZeS)=TnNS#0,

then S is a free star.

ProOF. Take T ={A,B}. ThenVZ €3:(ZJANZIB=ZcS)< Ac
SV BeS. So S is a free star. O

PROPOSITION 489. A set S € 3 is a principal free star iff S is not the
complement of empty set and for every T' € &3

VZe3:VWXeT:Z1X=2ZeS)«TnS #0.

PROOF. Let S = (dual)*F. We need to prove that F' is a principal filter iff the
above formula holds. Really, we have the following chain of equivalencies:
VZe3:(VXeT:Z12X=>ZeS)a&TnS £
VZe€3: (VX eT:Z1X = Z¢ (dual)*F) & T N {dual)*F = {;
VZedwal3: (VX eT: ZCX=2¢F)<TNF #0;
VZedual3: VX eT:ZCX=>2Z¢F)=TZF,
TCFe-VZedul3: (ZeF=-VXeT:ZLCX),
TCF&-VZeduwl3: (Z¢FVv-VYXecT:ZCX);
TCFe3Zecdull3: (ZeFAVX eT: : ZL X);
TCFeIZe VX eT: ZLC X,
3Z € FVX € F : Z C X that is F is a principal filter (S is an upper set
because by the lemma it is a free star; thus F is also an upper set). O

PROPOSITION 490. S € £3 where 3 is a poset is a principal free star iff all
the following:

1°. The least element (if it exists) is not in S.
2°.VZ€3:(VXeT:Zd2X=272€8)=TnNS #0 for every T € Z3.
3°. S is an upper set.
PROOF.
=. 1° and 2° are obvious. S is an upper set because S is a free star.
<. We need to prove that
VZe3:. (VXeT:Z1IX=2eS)<TnNS#0.
Let X’ €eTNS. ThenvVX €T:Z 31X =27Z1X' = Z € S because S is
an upper set.
O
PROPOSITION 491. Let 3 be a complete lattice. S € &3 is a principal free star
iff all the following;:

1°. The least element is not in S.
2°. T € S=TnNS #0 for every T € Z3.
3°. S is an upper set.

PROOF.
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=. We need to prove only | |T € S = TNS # (. Let | |T € S. Because S is
an upper set, we have VX € T: Z 1 X = Z J | |T = Z € S for every
Z € 3; from which we conclude TN S # 0.
<. Weneed toproveonlyVZ €3: (VX e€eT:Z13X=2€S5)=TnNS#0.
Really, if VZ € 3 : (WX € T:Z 3 X = Z € S) then | |T € S and
thus | [T € S=TnNS #0.

O

PROPOSITION 492. Let 3 be a complete lattice. S € &3 is a principal free star
iff the least element is not in S and for every T' € &3

| |[TeseTns+#0.

PROOF.

=. We need to prove only | [T € S < T' NS # () what follows from that S is an
upper set.

<. We need to prove only that S is an upper set. To prove this we can use the
fact that S is a free star.

O
EXERCISE 493. Write down similar formulas for mixers.
5.6.9. Starrish posets.

DEFINITION 494. 1 will call a poset starrish when the full star xa is a free star
for every element a of this poset.

ProprosITION 495. Every distributive lattice is starrish.

PROOF. Let 2 be a distributive lattice, a € 2. Obviously L ¢ xa (if L exists);
obviously xa is an upper set. If z Uy € xa, then (z Uy) Ma is non-least that is
(xMa)U (yMa) is non-least what is equivalent to  Ma or y M a being non-least
that is ¢ € xa V y € *a. (]

THEOREM 496. If 2 is a starrish join-semilattice lattice then
atoms(a U b) = atoms a U atoms b
for every a,b € 2.
PROOF. For every atom ¢ we have:

¢ € atoms(a Ub)
ctalbs
allb € xc s
a€xcVbexce
ckaVektbs

c € atomsa V ¢ € atoms b.

5.6.9.1. Completely starrish posets.

DEFINITION 497. I will call a poset completely starrish when the full star *a is
a principal free star for every element a of this poset.

OBvIOUS 498. Every completely starrish poset is starrish.

PROPOSITION 499. Every complete join infinite distributive lattice is com-
pletely starrish.
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PROOF. Let 2 be a join infinite distributive lattice, a € 2. Obviously L ¢ xa
(if L exists); obviously *a is an upper set. If | |T € *a, then (| |T) Ma is non-least
that is | J(aM)*T is non-least what is equivalent to a Mz being non-least for some
x € T that is x € *a. g

THEOREM 500. If 2 is a completely starrish complete lattice lattice then
atoms |_| T = U(atoms>*T.
for every T € 22.

PROOF. For every atom ¢ we have:
cGatomsl_'T@c;ﬁl_'T@UTG*c@ElXGT:X€*c¢>

3X€T:XXC@>E|XET:ceatomsX@ceU(atoms>*T.
(]

5.7. Basic properties of filters

PRrOPOSITION 501. up. A = A for every filter A (provided that we equate ele-
ments of the base poset 3 with corresponding principal filters.

ProoF. Acupp A AJASTATASTACAS Ac A O
5.7.1. Minimal and maximal filters.

OBvIOUS 502. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.

2°. (U, 3) is a primary filtrator.

3°. 1% (equal to the principal filter for the least element of 3 if it exists)
defined by the formula up 1% = 3 is the least element of 2.

ProPOSITION 503. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator with greatest element.
3°. T* defined by the formula up T* = {T3} is the greatest element of 2.

PRrROOF. Take into account that filters are nonempty. (]
5.7.2. Alignment.

DEFINITION 504. I call down-aligned filtrator such a filtrator (2, 3) that 2 and
3 have common least element. (Let’s denote it L.)

DEFINITION 505. I call up-aligned filtrator such a filtrator (2, 3) that 2 and 3
have common greatest element. (Let’s denote it T.)

OBVIOUS 506.

1°. If 3 has least element, the primary filtrator is down-aligned.
2°. If 3 has greatest element, the primary filtrator is up-aligned.

COROLLARY 507. Every powerset filtrator is both up and down-aligned.

We can also define (without requirement of having least and greatest elements,
but coinciding with the above definitions if least/greatest elements are present):

DEFINITION 508. I call weakly down-aligned filtrator such a filtrator (2, 3) that
whenever 13 exists, L% also exists and 13 = 1%,

DEFINITION 509. I call weakly up-aligned filtrator such a filtrator (2(,3) that
whenever T3 exists, T2 also exists and T3 = T2,
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OBvIOUS 510.

1°. Every up-aligned filtrator is weakly up-aligned.
2°. Every down-aligned filtrator is weakly down-aligned.

OBviIOUS 511.
1°. Every primary filtrator is weakly down-aligned.
2°. Every primary filtrator is weakly up-aligned.

5.8. More advanced properties of filters
5.8.1. Formulas for Meets and Joins of Filters.

LEMMA 512. If f is an order embedding from a poset 2 to a complete lattice B
and S € 22 and there exists such F € 2 that fF = | |®(f)*S, then | [* S exists

and fJ"S =% (f)"S.
PROOF. f is an order isomorphism from 2 to B sy=e. fF € B pya.
Consequently, | |®(f)*S € B| )2 and LBl =y s =2 ()S.
f |_|Qt S = |_|%‘<f>*°“" (f)"S because f is an order isomorphism.
Combining, f|_|91 S = u%<f>*5. O

COROLLARY 513. If B is a complete lattice and 2 is its subset and S € P
and | |® S € 2, then | [* S exists and | [* 5 =| | S.

EXERCISE 514. The below theorem does not work for S = (). Formulate the
general case.

THEOREM 515.
1°. If 3 is a meet-semilattice, then |_|5(3) S exists and |_|S(3) S =[S for every
bounded above set S € 2F(3) \ {0}.
2°. If 3 is a join-semilattice, then |_|j(3) S exists and |_|j(3) S =S for for
every bounded below set S € 23(3) \ {0}.
PROOF.

1°. Taking into account the lemma, it is enough to prove that () S is a filter.
Let’s prove that (.S is nonempty. There is an upper bound 7 of S. Take arbitrary
T e€7T. We have T € X for every X € S. Thus S is nonempty.

For every A, B € 3 we have:

ABe()SeVPeS:ABEP&VYPEeS:ANBeP«w ANBe()S.

So S is a filter.
2°. By duality.
U

THEOREM 516.

1°. If 3 is a meet-semilattice with greatest element, then |_|‘~§(3) S exists and
LF®) 8 =N S for every S € 2F(3)\ {0}.

2°. If 3 is a join-semilattice with least element, then |_|j(3)S exists and
M4 8 =N S for every 5 € 23(3)\ {0}.

3°. If 3 is a join-semilattice with least element, then |_|6(‘7’) S exists and
ISP 8 = JS for every S € 2&(3).

4°. If 3 is a meet-semilattice with greatest element, then |—|9n(3) S exists and
M7 s =JS for every S € 2M(3).

PROOF.
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1°. From the previous theorem.

2°. By duality.

3°. Taking into account the lemma, it is enough to prove that [JS is a free
star. |JS is not the complement of empty set because L ¢ (JS. For every A, B € 3
we have:

Ae|JSvBe|JSeTPeS:(Ac PYBEP) &

JPeS:AUBePs AUBe|( S
4°. By duality.

COROLLARY 517. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (A,3) is a primary filtrator over a meet-semilattice with greatest ele-

ment T.
3°. | J* S exists and up | |* S = N(up)*S for every S € 2\ {0}.

PrOOF.
1°=-2°. Obvious.
2°=3°. By the theorem.

COROLLARY 518. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (A, 3) is a primary filtrator over a meet-semilattice with greatest ele-
ment T.
3°. 2 is a complete lattice.

We will denote meets and joins on the lattice of filters just as M and L.

ProprosITION 519. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (U, 3) is a primary filtrator over an ideal base.
3°. 2 is a join-semilattice and for any A, B € 2

up(A LU B) = up ANupB.

PRrROOF.

1°=2°. Obvious.

2°=3°. Taking in account the lemma it is enough to prove that R = up ANup B
is a filter.

R is nonempty because we can take X € upAandY € upBand Z J XAZJY
and then R > Z.

Let A,B € R. Then A, B € up A; so exists C' € up A such that C C AANC C B.
Analogously exists D € up BB such that D E AAD C B. Take E JCAFE 3 D.
Then E€upAand F cupB; E€ Rand EC AN EC B. So R is a filter base.

That R is an upper set is obvious.

O
THEOREM 520. Let 3 be a distributive lattice. Then
o F(3) o _ Kond--m3K, .
1°. H §= {KIGU S wk(l)ere 1=0,..., n for nGN} for 5 € @8"(3) \ {(Z)}’

3.3
po, L) g {MUS LT - neN} for S € 23(3)\ {0}.



5.8. MORE ADVANCED PROPERTIES OF FILTERS 87

PRrROOF. We will prove only the first, as the second is dual.

Let’s denote the right part of the equality to be proven as R. First we will
prove that R is a filter. R is nonempty because S is nonempty.

Let A, B € R. Then A = Xo[3-- -3 Xy, B = Yyr13---M3Y; where X;,Y; € JS.
So

AMPB=X,m - M X, MY, ---MY, €R.
Let element C' J A € R. Consequently (distributivity used)
C=CLPA=(CLP X)) 3.3 (C U3 Xy).

X, e P forsome P,€S;CLB X, e P;CLBX,; € U S; consequently C € R.
We have proved that that R is a filter base and an upper set. So R is a filter.
Let A€ S. Then AC (JS;

o (P
K, € Awhere:=0,...,nforneN

Consequently A J R.

Let now Be A andVA € S: AJB. ThenVAe S: AC B; BDJS. Thus
B D T for every finite set T C |JS. Consequently up B |_|3 T. Thus B D R;
BC R.

Comparing we get |_|S(3) S=R.

O
COROLLARY 521. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a distributive lattice.
o Ao Kon3--m3K,
3°. Upﬂ S = {KiEU(qu‘S'OWhere i=0,...,n for nEN} for e 72 \ {0}
PROOF.
1°=-2°. Obvious.
2°=3°. By the theorem.
]

THEOREM 522. Let 3 be a distributive lattice. Then:

1°. Foris®)...m8G) F,, = {Kegogvler'::fg” m} for any Fo,. .., Fm € F(3);

2°. FoL?@) . PO F, = {Keg"fv;ergfgl m} for any Fo, ..., Fm € J(3).

PRrROOF. We will prove only the first as the second is dual.

Let’s denote the right part of the equality to be proven as R. First we will
prove that R is a filter. Obviously R is nonempty.

Let ABe€ R. Then A = Xom -3 X,,, B=Y,™ ---m3Y,, where
X, Y, € F;.

AMB=(XoMYy) M -..m3 (X, M Y,,),
consequently A3 B € R.
Let filter C J A€ R

C=APC=(X,PC)m---Mm3(X,, 3 C) €R.

So R is a filter.

Let P; € ;. Then P; € R because P; = (P U3 Py) 3 --- 13 (P, U3 Pp,). So
Fi C R Fi JR.

Let now Be 2 and Vi € {0,...,m} : F; 3 B. Then Vi € {0,...,m} : F; C B.

Let L; € B for every L; € F;. Lom3---13 L, € B. So B2 R; BC R.

So Fo ri83) ...83) F, = R. 0
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COROLLARY 523. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a distributive lattice.

K33 K,
3°. up(Fo - A Fp) = {K,iEup%TWhemre i:O,..A,m} for any Fo,...,F, € 2.

PROOF.

1°=2°. Obvious.
2°=-3°. By the theorem.

More general case of semilattices follows:
THEOREM 524.
1°. [—]3(3) S = U{ 1H(Kon3 M3 K,) } for S € 323,(3) \ {@} if 3is a

KiGUS where 1=0,...,n for n€N
meet-semilattice;
o |73 ¢ _ T(KoU? - U3 K) ~ T
2. l—l S = U{ K,iEUS where i=0,...,n for neN} for 5 € gJ(B) \ {Q]} if 3 15 a
join-semilattice.

PRrROOF. We will prove only the first as the second is dual.
It follows from the fact that

gﬁ)s_glg’l) K0|—|3...r|3Kn
N K; eSS where i =0,...,nforn e N
Kor3 MK, - 3
and that {KieUS w}olere =0 Tor neN} is a filter base. [l

COROLLARY 525. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (A, 3) is a primary filtrator over a meet-semilattice.

3°. up[]S= U{ up(Kon®--N°K.) } for every S € 2\ {0}.

KiEU(up)*S where ¢=0,...,n for neN

THEOREM 526.

3.3 .
1°. ‘FO |—|3(3) |—|3(3) ]:m = U{ KiTe(.go‘:heremi:IgT.).,m} for 5 € ‘@5(3) \ {@} if

3 is a meet-semilattice;

2. Ry 70 F = U e lemisiel | for S € 23(3)\ {0} i 3

is a join-semilattice.

PrOOF. We will prove only the first as the second is dual.
It follows from the fact that

3(3)
Ko -3 K

MG ... 33 F = | 0 m
7o 7 K; € F; where i =0,...,m

Kor3 M3 K, :
and that {Ki,e]-‘i where i=0m ( 15 a filter base. g

COROLLARY 527. up(Fo 83 ...803) F, ) = U{ K”e";K‘;&;eTl?’")m} if 3 is

a meet-semilattice.

LEMMA 528. If (2, 3) is a primary filtrator and 3 is a meet-semilattice and an
ideal base, then 2 is a lattice.

PRroOF. It is a join-semilattice by proposition 519. It is a meet-semilattice by
theorem 524. O
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COROLLARY 529. If (2, 3) is a primary filtrator and 3 is a lattice, then 2 is a
lattice.

5.8.2. Distributivity of the Lattice of Filters.

THEOREM 530. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a distributive lattice.
30, AUATTNS =T (AU)"S for S € 29 and A € 2.
PROOF.

1°=2°. Obvious.
2°=-3°. Taking into account the previous section, we have:

up(.ALIQlﬁS>=

2
upAOupﬂS:
K, M3 ...m3 K,
K; € Y{up)"S where i =0,...,n forneN}
K, M3 ...Mm3 K,
{KOI_I3 < MB K, €eup A, K; € J(up)"S where i =0,...,n forn € N
K, M3 ...m3 K,
{Ki cup A, K; € J(up)"S where i =0,...,n forn € N
K, M3 ...m3 K,
{Ki cup ANYup)*S where i =0,...,n forn € N

upAﬂ{

K, M3 ...Mm93 K,
K; € Ylup AN)*(up)*S where i = 0,...,n forn € N

|
|
|
|
Ko M3 K, }
}
|

K1€U{“p“;‘(%px} where ¢ =0,...,n forn € N

K0|—|3...|—|3Kn
KiEU{%} where i1 =0,...,nforn e N

AU X
11p|_|{ XeS

COROLLARY 531. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.

2°. (2, 3) is a primary filtrator over a distributive lattice which is an ideal
base.

3°. 2 is a distributive and co-brouwerian lattice.

COROLLARY 532. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.

2°. (2,3) is a primary filtrator over a distributive lattice with greatest ele-
ment.
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3°. 2 is a co-frame.
The below theorem uses the notation and results from section 3.9.

THEOREM 533. If 2l is a co-frame and L is a bounded distributive lattice which,

then Join(L, ) is also a co-frame.
PROOF. Let F =1 o[]: Up(2A) — Up(RA); F is a co-nucleus by above.
Since Up(2A) = Pos(2, 2) by proposition 340, we may regard F' as a co-nucleus
on Pos(2, 2).
Join(L,A) = Join(L, Fix(F')) by corollary 343.
Join(L, Fix(F)) = Fix(Join(L, F')) by lemma 351.
By corollary 350 the function Join(L, F') is a co-nucleus on Join(L, Pos(%, 2)).
Join(L,Pos(2(,2)) = (by lemma 353)
Pos(2, Join(L,2)) =
Pos(2, §(X)).

F(X) is a co-frame by corollary 532. Thus Pos(2,F(X)) is a co-frame by

lemma 353.
Thus Join(L,2l) is isomorphic to a poset of fixed points of a co-nucleus on the
O

co-frame Pos(2, §(X)). By lemma 335 Join(L, ) is also a co-frame.

5.9. Misc filtrator properties

THEOREM 534. The following is an implications tuple:

1°. (2,3
20 (2,3
3°. (2,3
4. (2,3

PROOF.

1°=2°. Obvious.
2°=3°. The formula Va,b € 2 : (upa D upb = a C b) is obvious for primary

is a powerset filtrator.

is a primary filtrator.

is a filtered filtrator.

is a filtrator with join-closed core.

— — — —

filtrators.
3°=4°. Let (2, 3) be a filtered filtrator. Let S € £3 and |_|3 S be defined. We

need to prove | [*S = [ |*S. That | S is an upper bound for S is
obvious. Let a € 2 be an upper bound for S. It’s enough to prove that

|_|3 S C a. Really,
3

cGupaécQaiVmGS:chicgu

so upa C up |_|3 S and thus a 3 |_|3 S because it is filtered.

3
S:>c€up|_|S;

5.10. Characterization of Binarily Meet-Closed Filtrators

THEOREM 535. The following are equivalent for a filtrator (2, 3) whose core is
a meet semilattice such that Va € 2 : upa # 0:
1°. The filtrator is with binarily meet-closed core.
2°. upa is a filter for every a € 2.

PROOF.
1°=2°. Let X,Y €upa. Then X M3 Y = X M*Y J a. That upa is an upper set

is obvious. So taking into account that upa # (), up a is a filter.
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2°=1°. Tt is enough to prove that a T A,B = a T A3 B for every A,B € .
Really:

aEA,B:>A,B€upa:>AI_I3BGupa:>aEAI_ISB.

COROLLARY 536. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (A, 3) is a primary filtrator over a meet semilattice.
3°. (2, 3) is with binarily meet-closed core.

PRrROOF.

1°=-2°. Obvious.
2°=3°. From the theorem.

5.10.1. Separability of Core for Primary Filtrators.

THEOREM 537. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a meet semilattice with least element.
3°. (2, 3) is with separable core.

PROOF.

1°=2°. Obvious.
2°=3°. Let A <% B where A, B € 2.

A gy up(AFI3 B)
up(A M B) = U{A cu A, BeupBJ’

So
Lecup(AN?B) &
JAcupA,BeupB: L cup(An’ B) <
JAcup A, BeupB:AMP B=1 <
JAcup A, BeupB:AM* B=1%
(used proposition 536).

5.11. Core Part
Let (2, 3) be a filtrator.

DEFINITION 538. The core part of an element a € 2 is Cora = |_|3 up a.

DEFINITION 539. The dual core part of an element a € 2 is Cor’ a = |_|3 down a.
OBvIous 540. Cor’ is dual of Cor.
OBVIOUS 541. Cora = Cor’ a = a for every element a of the core of a filtrator.

THEOREM 542. The following is an implications tuple:
1°. a is a filter on a set.
2°. a is a filter on a complete lattice.
3°. a is an element of a filtered filtrator and Cor a exists.
4°. Cora C a and Cora € downa.

PROOF.
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1°=2°. Obvious.
2°=3°. Theorem 534.
3°=4°. Cora = |_|3 upa C |—|2l upa = a. Then obviously Cora € down a.

THEOREM 543. The following is an implications tuple:

1°. a is a filter on a set.

2°. a is a filter on a complete lattice.

3°. a is an element a of a filtrator with join-closed core and Cor’ a exists.
4°. Cor’' a C a and Cor’ a € down a and Cor’ @ = max down a.

PROOF.
1°=2°. Obvious.
2°=3°. It is join closed by 534. Cor’ a exists because our filtrator is join-closed.
3°=4°. Cor'a = | |> downa = | [*downa C a. Now Cor’a € downa is obvious.
Thus Cor’ a = max down a.
U

PROPOSITION 544. Cor’ a T Cora whenever both Cora and Cor’ a exist for
any element a of a filtrator with join-closed core.

PrOOF. Cora = |_|3 upa J Cor’ a because VA € upa : Cor’ a C A. O

THEOREM 545. The following is an implications tuple:
1°. a is a filter on a set.
2°. a is a filter on a complete lattice.
3°. @ is an element of a filtered filtrator and both Cora and Cor’ a exist.
4°. Cor’ a = Cora.

PROOF.

1°=2°. Obvious.
2°=-3°. By theorem 534.
3°=4°. It is with join-closed core because it is filtered. So Cor’a T Cora. Cora €
downa. So Cora C |_|3 down a = Cor’ a.
O

COROLLARY 546. Cor’ a = Cora = (a for every filter a on a set.

5.12. Intersection and Joining with an Element of the Core

DEFINITION 547. A filtrator (2;3) is with correct intersection iff Va,b € 3 :
(a#3bea#£%0).

DEFINITION 548. A filtrator (2; 3) is with correct joining iff Va,b € 3 : (a =3
b a="b).

PROPOSITION 549. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a meet-semilattice.
3°. (A, 3) is with binarily meet-closed core, weakly down-aligned filtrator,
and 3 is a meet-semilattice.
4°. (2, 3) is with correct intersection.

PROOF.

1°=2°. Obvious.
2°=3°. Corollary 536.
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3°=4°. a #£3 b= a #% b is obvious. Let a =<3 b. Then a M3 b exists; so L3 exists
and a3 b = 13 (as otherwise aM3 b is non-least). So 13 = 1 *. We have
amn®b= 1% Thus a <> b.

O

ProprosITION 550. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.

2°. (2,3) is a primary filtrator over a join-semilattice.

3°. (2, 3) is with binarily join-closed core, weakly up-aligned filtrator, and 3
is a join-semilattice.

4°. (2, 3) is with correct joining.

PROOF.

1°=2°. Obvious.
2°=3°. Corollary 534.
3°=4°. Dual of the previous proposition.

O

LEMMA 551. For a filtrator (2, 3) where 3 is a boolean lattice, for every B € 3,
AeA

1°. Bx* A& E 3 Aif it is with separable core and with correct intersection;
2°. B=* A« BL Aifit is with co-separable core and with correct joining.

PRrROOF. We will prove only the first as the second is dual.
B=*As&
JAceuwpA:B=*As
JAcupA:B=3 A&
JAcuwpA:BOI A&
BeupAe
BJA.

5.13. Stars of Elements of Filtrators

DEFINITION 552. Let (2, 3) be a filtrator. Core star of an element a of the

filtrator is
Oa = ZES 3
e Fal’

PROPOSITION 553. upa C da for any non-least element a of a filtrator.
PrOOF. For any element X € 3
Xcuwae=>aCXANala= X #%(%a= X € da.

O

THEOREM 554. Let (2, 3) be a distributive lattice filtrator with least element
and binarily join-closed core which is a join-semilattice. Then Oa is a free star for
each a € .
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PRrROOF. For every A,B € 3
AP B € da s
AUP B € da <
(A B)Ma# 1 =
(AP a)u* (Bt a) £ 1% <
AMta#1*vBMta# 1Y o
A€ daV B € da.
That da doesn’t contain L% is obvious. O

DEFINITION 555. I call a filtrator star-separable when its core is a separation
subset of its base.

5.14. Atomic Elements of a Filtrator
See [4, 9] for more detailed treatment of ultrafilters and prime filters.

PrOPOSITION 556. The following is an implications tuple:
1°. (U, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a meet-semilattice with greatest element.
3°. 2 is a complete lattice.
4°. atoms[].S = (atoms)™S for every S € 2.
5°. atoms(a Mb) = atomsa Natomsb for a,b € 2.

ProOOF.
1°=2°. Obvious.
2°=3°. Corollary 518.
3°=4°. Theorem 108.
4°=5°. Obvious.

PROPOSITION 557. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a distributive lattice which is and ideal
base.
3°. 2 is a starrish join-semilattice.
4°. atoms(a Ll b) = atomsa U atomsb for a,b € 2.

PROOF.
1°=2°. Obvious.
2°=3°. Corollary 531.
3°=4°. Corollary 496.

THEOREM 558. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (A, 3) is a primary filtrator over a meet-semilattice.
3°. (2, 3) is a filtered weakly down-aligned filtrator with binarily meet-closed
core 3 which is a meet-semilattice.
4°. a is an atom of 3 iff a € 3 and a is an atom of 2.

PROOF.

1°=2°. Obvious.
2°=3°. It is filtered by the theorem 534, binarily meet-closed by corollary 536.



5.14. ATOMIC ELEMENTS OF A FILTRATOR 95

3°=4°.

<. Let a be an atom of 2 and a € 3. Then either ¢ is an atom of 3 or
a is the least element of 3. But if a is the least element of 3 then a
is also least element of 2l and thus is not an atom of 2(. So the only
possible outcome is that a is an atom of 3.

=. We need to prove that if a is an atom of 3 then a is an atom of 2.
Suppose the contrary that a is not an atom of 2. Then there exists
x € A such that x C a and z is not least element of 2. Because “up”
is a straight monotone map to the dual of the poset £3 (obvious
454), upa C upz. So there exists K € upx such that K ¢ upa.
Also a € upz. We have K M3 a = K M¥ a € upa; K M3 a is not least
of 3 (Suppose for the contrary that K M3 a = 13, then K M3 a =
1¥% ¢upz.) and K M3 a C a. So a is not an atom of 3.

d

THEOREM 559. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator.
3°. (2, 3) is a filtered filtrator.

4°. a € A is an atom of 2 iff upa = da.

PRrROOF.

1°=2°. Obvious.
2°=3°. By the theorem 534.
3°=4°,

=. For any K € 2

KEupa@Kga(:)KXmaﬁKE@a.

<. Let upa = da. Then a is not least element of 2A. Consequently for
every x € 2 if x is not the least element of 2 we have

rCa=

¥ a=

VK cupz: K € da =
VK eupz: K €upa =
upz Cupa =

xr Ja.

So a is an atom of 2.

ProprosIiTION 560. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator.
3°. Coatoms of 2 are exactly coatoms of 3.

PROOF.
1°=2°. Obvious.
2°=3°. Suppose a is a coatom of 3. Then a is the only non-greatest element in
upa. Suppose b 7 a for some b € 2. Then a cannot be in upb and thus
the only possible element of up b is the greatest element of 3 (if it exists)
from what follows b = T*. So a is a coatom of 2.
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Suppose now that a is a coatom of 2[. To finish the proof it is enough
to show that a is principal. (Then a is non-greatest and thus is a coatom
of 3.)

Suppose a is non-principal. Then obviously exist two distinct elements
z and y of the core such that z,y € upa. Thus a is not an atom of 2L.

O

COROLLARY 561. Coatoms of the set of filters on a set U are exactly sets U\ {z}
where z € U.

PrOPOSITION 562. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a coatomic poset.
3°. 2 is coatomic.

PRrROOF.

1°=2°. Obvious.

2°=2°. Suppose A € A and A # T2, Then there exists A € up A such that
A is not greatest element of 3. Consequently there exists a coatom a € 3 such that
a J A. Thus a € up A and a is not greatest.

d

5.15. Prime Filtrator Elements

DEFINITION 563. Let (2, 3) be a filtrator. Prime filtrator elements are such
a € 2 that upa is a free star (in lattice 3).
PROPOSITION 564. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (U, 3) is a primary filtrator over a distributive lattice which is an ideal
base.
3°. (2, 3) is a filtrator with binarily join-closed core, where 2 is a starrish
join-semilattice and 3 is a join-semilattice.
4°. Atomic elements of this filtrator are prime.
PROOF.
1°=2°. Obvious.
2°=3°. (2, 3) is with binarily join-closed core by the theorem 534, 2 is a distribu-
tive lattice by theorem 531.
3°=4°. Let a be an atom of the lattice 2. We have for every X,Y € 3

X|_I3Y€upa<i>
XY cupa &
XY Jdas
XY £Pae
X#avYy as
XJaVY Jdas

X euwaVyY €upa.

The following theorem is essentially borrowed from [19]:

THEOREM 565. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
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2°. (A, 3) is a primary filtrator over a boolean lattice.
3°. Let a € 2. Then the following are equivalent:
(a) a is prime.
(b) For every A € 3 exactly one of {4, A} is in upa.
(¢) a is an atom of 2.

PRrROOF.
1°=2°. Obvious.
2°=3°.

3°a=3°b. Let a be prime. Then A3 A = T% € upa. Therefore A €
upaVA € upa. But since AM3A = 13 it is impossible A € upaAA €
up a.

3°b=3°c. Obviously a # L*.
Let a filter b C a. Take X € upb such that X ¢ upa. Then X € upa
because a is prime and thus X € upb. So 13 = X M3 X € upb and
thus b = L*. So a is atomic.

3°c=3%a. By the previous proposition.

5.16. Stars for filters

THEOREM 566. The following is an implications tuple:

1°. (U, 3) is a powerset filtrator.

2°. (2, 3) is a primary filtrator over a distributive lattice which is an ideal
base and has least element.

3°. Oa is a free star for each a € 2.

PROOF.

1°=2°. Obvious.
2°=3°. 2 is a distributive lattice by the corollary 531. The filtrator (2,3) is
binarily join-closed by corollary 534. So we can apply the theorem 554.

O

5.16.1. Stars of Filters on Boolean Lattices. In this section we will con-
sider the set of filters 2 on a boolean lattice 3.
THEOREM 567. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (A, 3) is a primary filtrator over a boolean lattice.
3°. 0A=—(=)"up A= (=)"—upA and up A = ~(=)"0A = (=) =IA.
PROOF.
1°=2°. Obvious.
2°=3°. Because of properties of diagram (1), it is enough to prove just A =
=(=)" up A. Really,
XcwpAe XJAeX =Y AcX¢0A
for any X € 3 (taking into account theorems 535, 537, and lemma 551).
O

COROLLARY 568. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a boolean lattice.
3°. 0 is an order isomorphism from 2 to &(3).

PROOF. By properties of the diagram (1). O
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COROLLARY 569. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a boolean lattice.
3°. A1 S = J(d)*S for every S € 2.

PROOF.

1°=2°. Obvious.
20=3°. 91" S = | |°P9)* S = ()" S.

5.17. Generalized Filter Base

DEFINITION 570. Generalized filter base is a filter base on the set 2 where
(2, 3) is a primary filtrator.

DEFINITION 571. If S is a generalized filter base and A = |_|Ql S for some A € 2,
then we call S a generalized filter base of A.

THEOREM 572. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a meet-semilattice.
3°. For a generalized filter base S of F € 2 and K € 3 we have

KeuwF<3aLeS:. Keupl.

PROOF.
1°=2°. Obvious.
2°=3°.
<. Because F =[] 5.
=. Let K € upF. Then (taken into account corollary 525 and that
S is nonempty) there exist Xi,...,X,, € J(up)"S such that K €
up(X; M3 - M3 X,,) that is K € up(t X; 13 ---M3 1 X,,). Conse-
quently (by theorem 535) K € up(t X; M* ---M* 1 X,,). Replacing
every 1 X; with such X; € S that X; € up X; (this is obviously possi-
ble to do), we get a finite set Ty C S such that K € up |_|Q[ To. From
this there exists C € S such that C C |_|QL Ty and so K € upC.

O

COROLLARY 573. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a meet-semilattice with least element.
3°. For a generalized filter base S of a F € 2 we have

1% eSe F=1%
PROOF. Substitute L% as K. O

THEOREM 574. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.

2°. (2, 3) is a primary filtrator over a meet-semilattice with least element.

3°. Let Fori®. ..M F,, # L% for every Fo, ..., Fn € S, where S is a nonempty
set of elements of 2A. Then [1% 5 # L2,

Proor. Consider the set

o For2...m F,
"\ Fo,...  FneS [
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Obviously S’ is nonempty and binarily meet-closed. So S’ is a generalized filter
base. Obviously 1* ¢ S. So by properties of generalized filter bases |_|Ql S 1%
But obviously [T*S =[1*5". So [T* S # L% O

COROLLARY 575. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.

2°. (2, 3) is a primary filtrator over a meet-semilattice with least element.

3°. Let S € &3 such that S # () and Ay M3 --- M3 A, # 13 for every
Ag,..., A, €S. Then [1* 8 # L%

PROOF.

1°=2°. Obvious.
2°=-3°. Because (2, 3) is binarily meet-closed (by the theorem 535).

THEOREM 576. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a bounded meet-semilattice.
3°. 2 is an atomic lattice.

PROOF.

1°=2°. Obvious.

2°=3° Let F € . Let choose (by Kuratowski’s lemma) a maximal chain S
from 1% to F. Let ' = S\ {L%}. a = [1*S # L™ by propertics of
generalized filter bases (the corollary 573 which uses the fact that 3 is a
meet-semilattice with least element). If a ¢ S then the chain S can be
extended adding there element a because 1L C a C X for any X € S
what contradicts to maximality of the chain. So a € S and consequently
a € S’. Obviously a is the minimal element of S’. Consequently (taking
into account maximality of the chain) there is no ) € 2 such that 1% -
Y C a. So a is an atomic filter. Obviously a C F.

O

DEFINITION 577. A complete lattice is co-compact iff [1S = L for a set S
of elements of this lattice implies that there is its finite subset 7" C S such that
[T = L.

THEOREM 578. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (A, 3) is a primary filtrator over a bounded meet-semilattice.
3°. 2 is co-compact.

PRrOOF.
1°=2°. Obvious.
2°=3°. Poset 2 is complete by corollary 518.
If L eup[]"S then there are K; € up{JS such that L € up(Ko 3
...M3 K,) that is Ko M3 ... M3 K,, = L from which easily follows Fy Mm%
.M F, = L for some F; € S.
O

5.18. Separability of filters

ProprosITION 579. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (A, 3) is a primary filtrator over a boolean lattice.
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3°. 2 is strongly separable.

PROOF.

1°=2°. Obvious.
2°=3°. By properties of stars of filters.

O

REMARK 580. [14] seems to show that the above theorem cannot be generalized
for a wider class of lattices.

THEOREM 581. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a boolean lattice.
3°. 2 is an atomistic poset.

PROOF.

1°=2°. Obvious.
2°=3°. Because (used theorem 232) 2l is atomic (theorem 576) and separable.

O

COROLLARY 582. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a boolean lattice.
3°. 2 is atomically separable.

ProoFr. By theorem 230. U

5.19. Some Criteria
THEOREM 583. The following is an implications tuple:

1°. (U, 3) is a powerset filtrator.
2°. (U, 3) is a primary filtrator over a complete boolean lattice.
3°. (2, 3) is a down-aligned, with join-closed, binarily meet-closed and sepa-
rable core which is a complete boolean lattice.
4°. The following conditions are equivalent for any F € 2l:
(a) Fe3;
(b) VS € 2 : (.FITQ‘UQ[S;&L:>HICES:}"I‘IQ‘IC;&L);

(©) VSEWE):(FHQ‘UQ‘S#L:HKES:}'HQ‘K;&L).

PRrROOF.

1°=2°. Obvious.
2°=-3°. The filtrator (2, 3) is with with join-closed core by theorem 534, binarily
meet-closed core by corollary 536, with separable core by theorem 537.
3°=4°.
4°a=>4°b. Let F € 3. Then (taking into account the lemma 551)

A A
Frt| |S#LeF2||S=3KeS:F2KeIKeS: Fn* K+ L.

4°b=-4°c. Obvious.



5.19. SOME CRITERIA 101
4°c=4"a.

A
VS e 23 (]-'HQ‘US;AJ_:>EIKES:}"HQ‘K7£J_><:>
3
VS e 23 (]—'#\Q[US:>EIK€S F £ ><:> (lemma 551)

3
vSe3: || |S2F=3KeS: Kzf) &

i

VSe 23 |VKeS: Kj]-‘:>|_| aF

¢

VSegza:(w{es K:I}'=>|_| S3F

VS’E@B:(VKES Kj}":>|—|,5’j]-">:>

I_lup}" JF &
3
|—| up F € up F =
Fe3
(]
REMARK 584. The above theorem strengthens theorem 53 in [32]. Both the

formulation of the theorem and the proof are considerably simplified.

DEFINITION 585. Let S be a subset of a meet-semilattice. The filter base
generated by S is the set

. agl---May
[S]m_{aies,nzo,l,...}'

LEMMA 586. The set of all finite subsets of an infinite set A has the same
cardinality as A.

PROOF. Let denote the number of n-element subsets of A as s,. Obviously
sn < card A™ = card A. Then the number S of all finite subsets of A is equal to

so+s1+---<cardA+cardA+---=card A.
That S > card A is obvious. So S = card A. O

LEMMA 587. A filter base generated by an infinite set has the same cardinality
as that set.

PROOF. From the previous lemma. U

DEFINITION 588. Let 2 be a complete lattice. A set S € P is filter-closed
when for every filter base T € &S we have [ |T € S.

THEOREM 589. A subset S of a complete lattice is filter-closed iff for every
nonempty chain 7' € £S we have [ |T € S.

PROOF. (proof sketch by JOEL DAVID HAMKINS)
=-. Because every nonempty chain is a filter base.
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«. We will assume that cardinality of a set is an ordinal defined by von Neumann

cardinal assignment (what is a standard practice in ZFC). Recall that
a < B < «a € pfor ordinals «, 5.

We will take it as given that for every nonempty chain T' € £S we
have [T € S.

We will prove the following statement: If card S = n then S is filter
closed, for any cardinal n.

Instead we will prove it not only for cardinals but for wider class of
ordinals: If card S = n then S is filter-closed, for any ordinal n.

We will prove it using transfinite induction by n.

For finite n we have [ |T € S because T C S has minimal element.

Let card T = n be an infinite ordinal.

Let the assumption hold for every m € card T

We can assign T = {aefﬁ} for some a, because cardcardl =
cardT'.

Consider § € cardT.

Let Py = {aagﬁ } Let bs = []Ps. Obviously by = [[Ps]n. We have

card[Pg)n = card Pg = card § < card T

(used the lemma and von Neumann cardinal assignment). By the assump-
tion of induction bg € S.
VB € cardT : Pg C T and thus bg J[]T.

It is easy to see that the set {ﬁei#} is a chain. Consequently
{7ﬂer;idT} is a chain.

By the theorem conditions b = []sc ..q7 bs € S (taken into account
that bg € S by the assumption of induction).

Obviously b [T

b C bgand so V3 € cardT, o« € : b C a,. Let o € cardT. Then
(because card T is a limit ordinal, see [47]) there exists 8 € card T such
that o € 8 € cardT. So b C a,, for every « € cardT. Thus bC []T.

Finally [T =b€ S.

5.20. Co-Separability of Core

THEOREM 590. The following is an implications tuple.

1°.
2°.

3°.

4°.

(2, 3) is a powerset filtrator.

(A,3) is a primary filtrator over a meet infinite distributive complete
lattice.

(2, 3) is an up-aligned filtered filtrator whose core is a meet infinite dis-
tributive complete lattice.

This filtrator is with co-separable core.

PROOF.

1°=2°. Obvious.
2°=3°. It is obviously up-aligned, and filtered by theorem 534.
3°=4°. Our filtrator is with join-closed core (theorem 534).

Let a,b € 2. Cora and Cor b exist since 3 is a complete lattice.
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Cora € downa and Corb € downb by the theorem 542 since our
filtrator is filtered. So we have

dx € downa,y € downb : acl_lmy =T«
Cora U™ Corb = T < (by finite join-closedness of the core)

CoralPB Corb=T <

3 3
|_| up a L3 |_| upb =T < (by infinite distributivity)

3 3
|_|‘
ey dre
T Eupa,y €upb

Vz € upa,y € upb: 2% y =T < (by binary join-closedness of the core)

Ve cupa,y cupb:axlPy=T <
all*b=T.

5.21. Complements and Core Parts

LEMMA 591. If (2, 3) is a filtered, up-aligned filtrator with co-separable core
which is a complete lattice, then for any a,c €

c=2a s c¢=2 Cora.

PROOF.
=. If ¢ =* a then by co-separability of the core exists K € downa such that
¢ =% K. To finish the proof we will show that K T Cora. To show this
is enough to show that VX € upa : K C X what is obvious.
<. Cora C a (by theorem 542 using that our filtrator is filtered).

O

THEOREM 592. If (2, 3) is a filtered up-aligned complete lattice filtrator with
co-separable core which is a complete boolean lattice, then a™ = Cora for every
a €.

PRrROOF. Our filtrator is with join-closed core (theorem 534).

at

|2| ce
clPag=TH

}
H{cumccoijz TQ‘} -
}

(used the lemma above and lemma 551). O

COROLLARY 593. If (2, 3) is a filtered up-aligned complete lattice filtrator with
co-separable core which is a complete boolean lattice, then a™ € 3 for every a € 2.
THEOREM 594.

1°. (2, 3) is a powerset filtrator.
2°. (A, 3) is a primary filtrator over a complete boolean lattice.
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3°. (2, 3) is a filtered complete lattice filtrator with down-aligned, binarily
meet-closed, separable core which is a complete boolean lattice.

4°. a* = Cora = Cor’ a for every a € 2.

PROOF.
1°=2° Obvious.
2°=3° It is filtered by theorem 534. It is complete lattice filtrator by 518. It is
with binarily meet-closed core (proposition 536), with separable core (theorem 537).
3°=4° Our filtrator is with join-closed core (theorem 534).
2A

N cel
“ :U{cﬂg‘a—Lm}.

cMa=1*"=3Cecupc:CM*ta= L%

But

So

|j CcCe3
Crng=_1%

Cora

(used lemma 551).
Cor a = Cor’ a by theorem 545. O

THEOREM 595. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a complete boolean lattice.
3°. (A, 3) is a filtered down-aligned and up-aligned complete lattice filtra-
tor with binarily meet-closed, separable and co-separable core which is a
complete boolean lattice.
4°. a* =aT = Cora = Cor’' a € 3 for every a € .

PROOF.
1°=-2°. Obvious.
2°=3°. The filtrator (2, 3) is filtered by the theorem 534. 2 is a complete lat-
tice by corollary 518. (2, 3) is with co-separable core by theorem 590.
(2, 3) is binarily meet-closed by proposition 536, with separable core by
theorem 537.
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3°=4°. Comparing two last theorems.

THEOREM 596. The following is an implications tuple:
1°. (2, 3) is a primary filtrator over a complete lattice.
2°. (U, 3) is a complete lattice filtrator with join-closed separable core which
is a complete lattice.
3°. a* € 3 for every a € 2.

PROOF.
1°=2°. A is a complete lattice by corollary 518. (2, 3) is a filtrator with join-
closed core by theorem 534. (2,3) is a filtrator with separable core by
theorem 537.
2, {8} 5 {AS e b consequently a” 3 M {5AS
But if ¢ € {ﬁ} then there exists A € 3 such that A J ¢

%

and AM¥ g = 1% that is A € {m} Consequently a* C
A€l
U {Aﬂma R 3
We have a* = |—| {AHAEZ_Q‘} |—| {AHAEEJ_Q‘} € 3

O

THEOREM 597. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (A, 3) is a primary filtrator over a complete boolean lattice.
3°. (2, 3) is an up-aligned filtered complete lattice filtrator with co-separable
core which is a complete boolean lattice.
4°. a* is dual pseudocomplement of a, that is

at = min _ceA
o cl®qg=T4%

for every a € .

PRroOF.

1°=2°. Obvious.

2°=3°. (2, 3) is filtered by the theorem 534. It is with co-separable core by theo-
rem 590. 2 is a complete lattice by corollary 518.

3°=4°. Our filtrator is with join-closed core (theorem 534). It’s enough to prove
that at L% @ = T%. But at U¥a = Cora U¥ ¢ O Cora U Cora =
Coral® Cora = T (used the theorem 542 and the fact that our filtrator
is filtered).

d

DEFINITION 598. The edge part of an element a € 2 is Edga = a \ Cora, the
dual edge part is Edg’ a = a \ Cor’ a.

Knowing core part and edge part or dual core part and dual edge part of an
element of a filtrator, the filter can be restored by the formulas:

a=CoraUEdga and a= Cor a U Edg a.

5.22. Core Part and Atomic Elements

PROPOSITION 599. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over an atomistic lattice.
3°. (A, 3) is a filtrator with join-closed core and 3 be an atomistic lattice.
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4°. Cor'a = |_|7’{ . £ } for every a € A such that Cor’ a exists.

x is an atom of 3,zCa

PROOF.

1°=2°. Obvious.
2°=3°. (2, 3) is with join-closed core by corollary 534.
3°=4°.

Cor' a =
PfAe3 B
I—'{AEa}_
|_|3atoms3A B
U{AEBAECL}
3 atoms” A
HU{AESM}
3

|—|{x is an atom 0f3 :cEa,}

d

COROLLARY 600. Cora =1 {T{p}Ea} and Na = {%} for every filter a
on a set 4.

ProoOF. By proposition 546. O

5.23. Distributivity of Core Part over Lattice Operations

THEOREM 601. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (U, 3) is a primary filtrator over a complete lattice.
3°. (A,3) is a join-closed filtrator and 2 is a meet-semilattice and 3 is a

meet-semilattice.
4°. Cor'(am® b) = Cor’ a3 Cor’ b for every a,b € 2. whenever Cor’(a M% b),
Cor’ a, and Cor’ b exist

PRrROOF.
1°=2°. Obvious.
2°=3°. (2, 3) is with join-closed core by corollary 534. 2 is a meet-semilattice by
corollary 518.
3°=4°. We have Cor’p C p for every p € 2 whenever Cor’ p exists, because our
filtrator is with join-closed core (theorem 543).
Obviously Cor’(aM* b) C Cor’ a and Cor’(a M b) C Cor’ b.
If £ C Cor’'a and & T Cor’ b for some € 3 then z T a and 2 C b,
thus z CaM?band z C Cor'(a N2 b).
O

THEOREM 602. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.

2°. (2, 3) is a primary filtrator over a complete lattice.

3°. (2, 3) is a join-closed filtrator.

4. Co' 'S = |_|3<Cor’>*S for every S € 22 whenever both sides of the
equality are defined. Also Cor’ |_|9l T= |_|3 T for every T € &3 whenever
both sides of the equality are defined.
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PROOF.

1°=2°. Obvious.
2°=3°. It is with join-closed core by theorem 534. 2l is a complete lattice by
corollary 518.
3°=4°. We have Cor’ p C p for every p € 2 because our filtrator is with join-closed
core (theorem 543).
Obviously Cor’ |_|m S C Cor’ a for every a € S.
If x T Cor'a for every a € S for some © € 3 then & T a, thus
z C [_]mS and z C Cor’ﬂmS.
So Cor'[T*S = |—|3<Cor'>*5’. Cor' [T*T = [PPT trivially follows
from this.
O

THEOREM 603. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.

2°. (2, 3) is a primary filtrator over a complete atomistic distributive lattice.

3°. (2, 3) is a filtered down-aligned filtrator with binarily meet-closed core 3
which is a complete atomistic lattice and 2 is a complete starrish lattice.

4°. Cor'(a U™ b) = Cor’ a U3 Cor’ b for every a,b € 2.

PROOF.
1°=2°. Obvious.
2°=3°. (2, 3) is filtered by theorem 534. It is with binarily meet-close core by
corollary 536. 2l is starrish by corollary 531. 2 is complete by corol-
lary 518.
3°=>4°. From theorem conditions it follows that Cor’(a U b) exists.

/ A 113 T
Cor (CL U b) - |—| {’E is an atom of 3,xCal¥b
By theorem 558 we have

} (used proposition 599).

Cor’(a U™ b) =

3
U((atomsm(a L% b)) N3) =
3
|_|((atomsQl aUatoms™ b) N 3) =
3
U((atomsm an3)u (atoms™ b N 3) =
3 3

|_|(atomsQl an3)u’d U(atomsm bN3)
(used the theorem 496). Again using theorem 558, we get

Cor’(a U™ b) =

3 T 3 T
| 3 — P = =
x is an atom of 3,2 C a x is an atom of 3,2 C b
Cor’ a U3 Cor’ b

(again used proposition 599).

See also theorem 167 above.
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5.24. Separability criteria

THEOREM 604. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (A, 3) is a primary filtrator over a boolean lattice.
3°. (U, 3) is a filtrator with correct intersection, with binarily meet-closed and

separable core.
4°. B=x* A< B3 A for every B€ 3, Ac2l.

PRrROOF.
1°=2°. Obvious.
2°=-3°. Using proposition 549, corollary 536, theorem 537.
3°=4°. By the lemma 551.

THEOREM 605. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a complete boolean lattice.
3°. (2, 3) is a filtrator over a boolean lattice with correct joining and co-

separable core.
4°. B=* A< BLC Aforevery B€ 3, Ac2l.

PROOF.
1°=2°. Obvious.
2°=-3°. Using obvious 550, theorem 590.
3°=4°. By the lemma 551.

5.25. Filtrators over Boolean Lattices

ProprosiTION 606. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (A, 3) is a primary filtrator over a boolean lattice.
3°. (2, 3) is a down-aligned and up-aligned binarily meet-closed and binarily
join-closed distributive lattice filtrator and 3 is a boolean lattice.
4°. a\*B=alM® B for every a € 2, B € 3.
PROOF.
1°=-2°. Obvious.
2°=3°. 2 is a distributive lattice by corollary 531. Our filtrator is binarily meet-
closed by the corollary 536 and with join-closed core by the theorem 534.
It is also up and down aligned.
3°=4°.
(aMB)U*B=(aU*B)M* (BU* B) =
(aU*B)YM* (B B)=(a* B)M* T =all® B.
(aM*B)YM* B=am®(BmM*B)=ar® (BPB)=an® L= 1.

So a M% B is the difference of a and B.
O

ProprosITION 607. For a primary filtrator over a complete boolean lattice both
edge part and dual edge part are always defined.

PRrROOF. Core part and dual core part are defined because the core is a complete
lattice. Using the theorem 606. U
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THEOREM 608. The following is an implications tuple:

1°. (2, 3) is a primary filtrator over a boolean lattice.

2°. (2, 3) is a complete co-brouwerian atomistic down-aligned lattice filtrator
with binarily meet-closed and separable boolean core.

3°. The three expressions of pseudodifference of a and b in theorem 247 are

also equal to U{%Eb}'

PROOF.

1°=-2°. The filtrator of filters on a boolean lattice is:
complete by corollary 518;

atomistic by theorem 581;

co-brouwerian by corollary 531;

with separable core by theorem 537;

with binarily meet-closed core by corollary 536.

0_y 90 2EF anB
2°=3°. U{zEaAan:L} cC [_]{Beupb} because

€ F
zCaNzlb=_1
2CaA3Bcupb: 2N B= 1 < (theorem 604) & 2 CaAIBcupb: 2C B &

ElBGupb:(zEa/\zEE)@HBGupb:zEal‘lEé

anB
C —_— /.
Z_U{Beupb}

} < zLCaAzMNb= 1 & (separability)

But alB € {zgzﬁ%} because

(anB)Nb=an(Bnb)Can(BM*B)=an (BM*B)=anl=1

— 2 e F
nBLC
“ _U{zga/\zl_lb:L}

2EF anB
S0 I—l{ zCaAnzMb=_1 } = I—l{ Beupb }

and thus

5.26. Distributivity for an Element of Boolean Core

LEMMA 609. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.

2°. (21, 3) is a primary filtrator over a boolean lattice.

3°. (2, 3) is an up-aligned binarily join-closed and binarily meet-closed dis-
tributive lattice filtrator over a boolean lattice.

4°. An* is a lower adjoint of AL for every A € 3.

PROOF.
1°=2°. Obvious.
2°=3°. It is binarily join closed by theorem 534. It is binarily meet-closed by
corollary 536. It is distributive by corollary 531.
3°=4°. We will use the theorem 126.
That Ar® and AL are monotone is obvious.
We need to prove (for every z,y € 2) that

cCALY (AN z) and AT (AUMy) Cy.



5.27. MORE ABOUT THE LATTICE OF FILTERS 110

Really,
AP (AN z) = (A A (At g) =
AP AN A 2)=TM ALY 2) =AUz 3z
and

AP (AR ) =AM A LX (AT y) = (AP AU (AN y) =
LU A y) =AMty Cy.
O

THEOREM 610. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.

2°. (2, 3) is a primary filtrator over a boolean lattice.

3°. (2, 3) is an up-aligned binarily join-closed and binarily meet-closed dis-
tributive lattice filtrator over a boolean lattice.

4, AT S = |_|gl<Al_Im>*S for every A € 3 and every set S € 2.

PRrROOF.

1°=2°. Obvious.

2°=3°. It is binarily join-closed by theorem 534. It is binarily meet-closed by
corollary 536. It is distributive by corollary 531.

3°=4°. Direct consequence of the lemma.

5.27. More about the Lattice of Filters
DEFINITION 611. Atoms of § are called ultrafilters.
DEFINITION 612. Principal ultrafilters are also called trivial ultrafilters.

THEOREM 613. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (A, 3) is a primary filtrator over a boolean lattice.
3°. The filtrator (2, 3) is central.

PROOF.

1°=2°. Obvious.
2°=3°. We can conclude that 2 is atomically separable (the corollary 582), with
separable core (the theorem 537), and with join-closed core (theorem 534),
binarily meet-closed by corollary 536.
We need to prove Z(2() = 3.
Let X € Z(A). Then there exists J € Z(A) such that X M* Y =
1% and X U* Y = T®. Consequently there is X € up X such that
Xn*Y = 1% we also have X U* Y = T%. Suppose X T X. Then
there exists a € atoms® X such that a ¢ atoms® X. We can conclude also
a ¢ atoms® Y (otherwise X M* Y # 1¥). Thus a ¢ atoms(X LU* Y) and
consequently X U* Y # T2 what is a contradiction. We have X = X € 3.
Let now X € 3. Let Y = X. We have X13Y = 1% and XY = T,
Thus X MY =[THX B3 Y}=1% XY = X3 Y = T% We have
shown that X € Z ().
O
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5.28. More Criteria

THEOREM 614. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.

2°. (A, 3) is a primary filtrator over a boolean lattice.

3°. For every S € 2 the condition 3F € 2 : S = xF is equivalent to
conjunction of the following items:
(a) S is a free star on 2;
(b) S is filter-closed.

PROOF.

1°=2°. Obvious.
2°=-3°.
=.
3°a. That 1L¥ ¢ «F is obvious. For every a,b € 2

alPbexF o

(P )M F+ 1%

(amM*F)L* M F) # 1% o

aM FA£13 VM F£1% <
a € xFV e *xF

(taken into account corollary 531). So xF is a free star on 2.
3°b.  We have a filter base T' C S and need to prove that
|—|Q[T NF # 1% Because <]-'I_IQ[>*T is a generalized filter base,
L2 e (FIY' T o [THFIY' T = 12 S [T T F # 1% Soit is
left to prove 1% ¢ <]—TIQL>*T what follows from 7' C S.
<. Let S be a free star on 2. Then for every A, B € 3

A BeSNn3s
A BeS&
AU*BeS e
AP BeSe
AP BeSN3

(taken into account the theorem 534). So SN 3 is a free star on 3.
Thus there exists F € 2 such that 0F = SN 3. We have upX C
S & X € S (because S is filter-closed) for every X € 2; then (taking
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into account properties of generalized filter bases)
XeSe
upX CS <
up X CIOF &
VXeuwpX: XM F+£1% s
1% ¢ <]—"I‘IQ‘>*upX &
2A
|_|<.7:I_IQ[>* wpX #£ 1% e

2A
fﬂmﬂupé’(;él_m@
FMrx#1%s
X e xF.

5.29. Filters and a Special Sublattice

Remind that Z(X) is the center of lattice X and Da is the lattice {aze‘?l }

zCa

THEOREM 615. The following is an implications tuple:

1°. (U, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a boolean lattice.
3°. Let A € A. Then for each X € 2

XcZ(DA) <3IXc3: x=XMA

PRrooFr.
1°=-2°. Obvious.
2°=3°. o
<. Let X = X NM* A where X € 3. Let also Y = X M* A. Then
XY =XmMXmMA=XM3X)m*A=1*m*A=1"
(used corollary 536) and
XY =XPX)MA=XPX)MA=T* M A=A

(used theorem 534 and corollary 531). So X € Z(D.A).

=. Let X € Z(D.A). Then there exists Y € Z(D.A) such that X NM* ) =
1% and X1UU*Y = A. Then (used theorem 537) there exists X € up X
such that X ¥ Y = 1% We have

X=XUXMY)=xm*@xury =xm*A

THEOREM 616. The following is an implication tuple:

1°. (; 3) is a powerset filtrator.

2°. (; 3) is a primary filtrator over a boolean lattice.

3°. F(Z(D.A)) is order-isomorphic to DA by the formulas
e YV =[]X for every X € §(Z(DA));

e X = {%@A)} for every Y € DA.

PRrROOF.
1°=2°. Obvious.
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2°=3°. We need to prove that the above formulas define a bijection, then it
becomes evident that it’s an order isomorphism (take into account that the order
of filters is reverse to set inclusion).

First prove that these formulas describe correspondences between F(Z(D.A))
and DA.

Let X € §(Z(DA)). Consider Y = []X. Every element of X is below A,
consequently V) € DA.

Let now Y € DA. Then {%@A)} is a filter.

It remains to prove that these correspondences are mutually inverse.
Let X = {%(ﬁ;“)} and Y; =[] X for some Yy € DA.
Y1 3 ) is obvious. By theorem 615 and the condition 2° we have Yy =[] X C

T 204 b = T reayg | 1A = Yo 1A = Db So ¥y = V.
Let now Y =[]4, and X} = {L(DA)} for some X, € F(Z(DA)).

Fy
Xy = {%I%} = (by generalized filter bases) = {%} =
{%&?*‘)} — X, because F € Xy < 3X € Xo: F I X if F € Z(DA).

O

5.30. Distributivity of quasicomplements

THEOREM 617. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a complete boolean lattice.
3°. (A,3) is a filtered down-aligned and up-aligned complete lattice filtra-
tor with binarily meet-closed, separable and co-separable core which is a
complete boolean lattice.
4°, (@™ b)* = (am®* b)t = a* U b* = a™ ¥ b for every a,b € 2.
PROOF.
1°=2°. Obvious.
2°=-3°. The filtrator (2, 3) is filtered by the theorem 534. 2 is a complete lat-
tice by corollary 518. (2, 3) is with co-separable core by theorem 590.
(2, 3) is binarily meet-closed by proposition 536, with separable core by
theorem 537.
3°=4°. Theorem 595 apply. Also theorem 601 apply because every filtered filtrator
is join-closed. So

(am®b)* = (a1 b)* = Cor(a M b) =
Corand Corb = Corall® Corb=at U™ bt = a* U b*.
O

THEOREM 618. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (A, 3) is a filtered starrish down-aligned and up-aligned complete lattice
filtrator with binarily meet-closed, separable and co-separable core which
is a complete atomistic boolean lattice.
3°. (e b)* = (aU? b)Y =a* M b* = at ™ b for every a,b € 2.
PROOF.
1°=2°. (2, 3) is a filtered (theorem 534), distributive (corollary 531) complete lat-
tice filtrator (corollary 518), with binarily meet-closed core (corollary 536),
with separable core (theorem 537), with co-separable core (theorem 590).
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2°=3°. (aU®b)* = (aU™b)* = Cor’(a U2 b) = Cor’ a U3 Cor’ b = Cor’ al3Cor’ b =
a* M3 b* = a* M b* = ot M b+ (used theorems 594, 603, 595).
(]

THEOREM 619. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.

2°. (2, 3) is a primary filtrator over a complete boolean lattice.

3°. (AU, 3) is a filtered complete lattice filtrator with down-aligned, binarily
meet-closed, separable core which is a complete boolean lattice.

4°. (am®b)* = a* U™ b* for every a,b € L.

PROOF.
1°=2°. Obvious.
2°=3°. It is filtered by theorem 534. It is complete lattice filtrator by 518. It is
with binarily meet-closed core (corollary 536), with separable core (theo-
rem 537).
3°=4°. Tt is join closed because it is filtered.

(am® b)* = Cor’(a M b) = Cor’ a3 Cor’ b =
Cor’ a3 Cor’' b =a* P b* = a* L* b*

(theorems 601, 594).

THEOREM 620. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.

2°. (2A,3) is a filtered starrish down-aligned complete lattice filtrator with
binarily meet-closed, separable core which is a complete atomistic boolean
lattice.

3°. (aLU™b)* = a* 11* b* for every a,b € 2.

PROOF.

1°=2°. (2, 3) is a filtered (theorem 534), distributive (corollary 531) complete lat-
tice filtrator (corollary 518), with binarily meet-closed core (corollary 536),
with separable core (theorem 537).

2°=3°.

(a L b)* = Cor’(a U2 b) = Cor’ a U3 Cor’ b =
Cor' am?® Cor’'b=a* 3 b* = a* MM b*

(used theorems 594, 603).

THEOREM 621. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a complete boolean lattice.
3°. (A, 3) is a filtered up-aligned complete lattice filtrator with co-separable
core which is a complete boolean lattice.
4°. (am®b)t =at U bt for every a,b € 2.

PROOF.

1°=2°. Obvious.
2°=-3°. It is filtered by theorem 534, is a complete lattice by corollary 518, is with
co-separable core by theorem 590.
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3°=4°.

(am® b)T = Cor(a M b) = Cor’(a M b) = Cor’ a M3 Cor’ b =
Cor’ a U3 Cor’ b = Cor’ a U™ Cor’ b = at U™ b

using theorems 592, 545, 601 and the fact that filtered filtrator is join-
closed.
O

THEOREM 622. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.

2°. (A, 3) is a filtered down-aligned and up-aligned filtrator with binarily
meet-closed core, with co-separable core 3 which is a complete atomistic
boolean lattice and 2 is a complete starrish lattice.

3°. (aU™b)T =at ™ bt for every a,b € 2.

PRrROOF.

1°=2°. Obvious.
2°=3°.

(a U* b)* = Cor(a U¥ b) = Cor’(a L% b) = Cor’ a U3 Cor’' b =
Cor' a3 Cor' b= Cora® Corb=at Mm% pt

using theorems 592, 545, 603.

5.31. Complementive Filters and Factoring by a Filter

DEFINITION 623. Let 21 be a meet-semilattice and A € 2. The relation ~ on 2
is defined by the formula

VXY eA:(X ~Y & XM A=Y * A).
ProOPOSITION 624. The relation ~ is an equivalence relation.

PROOF.

Reflexivity. Obvious.
Symmetry. Obvious.
Transitivity. Obvious.
O

DEFINITION 625. When X, Y € 3 and A € A we define X ~Y <1 X ~1Y.

THEOREM 626. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a distributive lattice.
3°. For every A € 2 and X,Y € 3 we have

X~Yo3dAcupA: XM A=Y M3 A

PROOF.
1°=2°. Obvious.
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2°=3°.
JAcupA: XP A=Y M3 A< (corollary 536)
JAcup AP XM TA=AYT* 1A=
JAcup AT XM 1AM A=Y 1AM A s
JAcup AP XM A=Y Ads
TXMP A=Y Ae
XY &
X ~Y.
On the other hand,
T XM A=t Y M As
{XIT3AO}:{Y|‘I3A1}:>
Age A Are A
JAg, A1 cup A: XMP A4y =Y P 4; =
A, Ay cup A: X AgMP A =Y B A, 13 4, =
JAcupA:YP A=X1P A

O

PROPOSITION 627. The relation ~ is a congruence® for each of the following:
1°. a meet-semilattice 2A;
2°. a distributive lattice 2.
PROOF. Let ao,al,bo,bl € A and ag ~ a1 and by ~ by.
1°. agMbg ~ a1 MNbybecause (ao |_|b0) NA=agMN (bo H.A) =aqll (bl |_|.A) =
b1|_|(a0|_|A) :bll_l(all_IA) = (a1 Hbl)I_I.A.
2°. Taking the above into account, we need to prove only ag LI by ~ a1 U by.
We have
(apUbp) MA=(apNA)UBMNA) =(aNAUDB NA) = (a1 LUby) MNA
O

DEFINITION 628. We will denote A/(~) = A/((~) N A x A) for a set A and
an equivalence relation ~ on a set B O A. I will call ~ a congruence on A when
(~)N (A x A) is a congruence on A.

THEOREM 629. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.

2°. (A, 3) is a primary filtrator over a boolean lattice.

3°. Let A € 2. Consider the function v : Z(DA) — 3/~ defined by the
formula (for every p € Z(DA))

B Xe3
I\ A=
Then:

(a) « is a lattice isomorphism.
(b) VQ € q¢: v g = Q™ A for every q € 3/~.
PRrROOF.
1°=2°. Obvious.

lgee Wikipedia for a definition of congruence.
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2°=3°. Vp € Z(D.A) : vp # 0 because of theorem 615. Thus it is easy to see that
vp € 3/~ and that v is an injection.
Let’s prove that + is a lattice homomorphism:

X .
Y(po T p1) = {Wﬁin%}

Ypo M3/~ Apy =

{ Xo€3 } 3/N{ X1€3 }_

= N i =d
Xo M A =pg X M A=p

Xo M X, c
X0, X1 €3, XoMA=poAX1 M A=p | ~

X'e3 _
X A=pop

¥(Po m P1)-

Because ypo M3/~ yp; and ~v(py M* p1) are equivalence classes, thus
follows ypo 113/~ vp1 = v(po 1% p1).

To finish the proof it is enough to show that VQ € q: ¢ = y(Q M* A)
for every q € 3/~. (From this it follows that v is surjective because ¢ is
not empty and thus 3Q € ¢ : ¢ = v(Q M* A).) Really,

WQ ) = { fra g o = @ = e

O

This isomorphism is useful in both directions to reveal properties of both lattices
Z(DA) and g € 3/~.

COROLLARY 630. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a boolean lattice.
3°. 3/~ is a boolean lattice

PROOF. Because Z(D.A) is a boolean lattice (theorem 98). O

5.32. Pseudodifference of filters

PROPOSITION 631. The following is an implications tuple:

1°. 2 is a lattice of filters on a set.

2°. 2 is a lattice of filters over a boolean lattice.

3°. 2 is an atomistic co-brouwerian lattice.

4°. For every a, b € 2 the following expressions are always equal:

(a) a\*b= |_|{ azEGb‘Q—IlZ} (quasidifference of a and b);

(b) a#b= U{A} (second quasidifference of a and b);

zCaAzMb=_1
(¢) | |(atomsa \ atomsb).

PROOF.

1°=2°. Obvious.
2°=3°. By corollary 531 and theorem 581.
3°=4°. Theorem 247.

CONJECTURE 632. a \* b = a#b for arbitrary filters a, b on powersets is not
provable in ZF (without axiom of choice).

O
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5.33. Function spaces of posets

DEFINITION 633. Let 2; be a family of posets indexed by some set dom 2. We
will define order of indexed families of elements of posets by the formula

aCbsViedom®A: a; Cb;.
I will call this new poset [[2 the function space of posets and the above order
product order.

PRroOPOSITION 634. The function space for posets is also a poset.

PROOF.
Reflexivity. Obvious.
Antisymmetry. Obvious.
Transitivity. Obvious.

O
OBVIOUS 635. 2 has least element iff each 2A; has a least element. In this case
INILEN | A
i€dom A

PROPOSITION 636. a % b < Ji € dom® : a; # b; for every a,b € [[2 if every
2, has least element.

PRrROOF. If dom®2 = (), then a = b= L, a < b and thus the theorem statement
holds. Assume dom 2l # 0.

a¥ktbs

dec e HQ[\{LHQ‘} (cCaAcC)) &

Jc e HQ[\ {LHQ{}W c€domA: (¢; Ca; A T ;) <
(for the reverse implication take ¢; = 1% for i # §)
)

Ji € dom®,c e\ {L%*}: (cCa;AcCh
Ji € dom %A : a; £ b;.

=

PROPOSITION 637.

1°. If ; are join-semilattices then 2l is a join-semilattice and
AUB = Xic€dom®: Ail Bi. (2)
2°. If 2A; are meet-semilattices then 2l is a meet-semilattice and

AMB =X\ € dom?: Ain Bi.

PRrROOF. It is enough to prove the formula (2).

It’s obvious that A\ € dom®: Ai LU Bi J A, B.

Let C J A,B. Then (for every ¢ € dom®) Ci J Ai and Ci J Bi. Thus
Ci 3 AilJ Bi that is C J M € dom® : Ai Ll Bi. O

COROLLARY 638. If 2; are lattices then [[2 is a lattice.
OBvIOUS 639. If 2; are distributive lattices then [ is a distributive lattice.
PROPOSITION 640. If 2; are boolean lattices then [J2 is a boolean lattice.

PROOF. We need to prove only that every element a € [ 2 has a complement.
But this complement is evidently A\i € doma : @;. O
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PROPOSITION 641. If every 2; is a poset then for every S € Z[[2

1°. S =X edom®: || gz whenever every | | g, exists;
2°. [1S = Xi € dom® : [],.gx; whenever every [ ], g x; exists.

PROOF. It’s enough to prove the first formula.

()\z' €dom®A: || g xi)i = | eg®i 2 w; for every x € S and i € dom 2.

Let y 3J x for every x € S. Then y; O x; for every i € dom%2l and thus
Yi 3 peg i = ()\i € dom 2 : Uxesxi)i that is y 3 Ni € dom A : | |, g 2.

Thus [ ]S = Xi € dom®2 : | | g ; by the definition of join. O

COROLLARY 642. If ; are posets then for every S € Z2[[2

1°. S = Xiedom®: | ], gx; whenever | |S exists;
2°. [1S = Xi € dom®A : [, gx; whenever [ ]S exists.

PROOF. It is enough to prove that (for every i) | |, .g2; exists whenever | | S
exists.

Fix 7 € dom 2.

Take y; = (|| S),; and let prove that y; is the least upper bound of {x”é"s .

y; is it’s upper bound because | |.S J z and thus (| |S), 2 z; for every z € S.

Let x € S and for some t € 2;

t ifi=j
z; ifi# g

Let ¢t 3 x;. Then T(t) 3 z for every x € S. So T(¢t) 3 | |S and consequently

So y; is the least upper bound of { /&5 }. O

T(t)=XAj € dom: {

COROLLARY 643. If 2; are complete lattices then 2l is a complete lattice.

OBvIOUS 644. If 2; are complete (co-)brouwerian lattices then 2 is a (co-
)brouwerian lattice.

PROPOSITION 645. If each 2l; is a separable poset with least element (for some
index set n) then [[2l is a separable poset.

PROOF. Let a # b. Then i € dom® : a; #b;. So Iz € Ay : (v % a; Ax < by)

(or vice versa).

P
v " Z7Theny%aamdyxb. O

Take y = A\j € dom ¥ :
pre A = dom {L% if j # i.

OBVIOUS 646. If every 2; is a poset with least element, then the set of atoms

of [ is
Ai € dom % : @ 1fz.:k:;
1% ifi Ak

k € dom®, a € atoms™*

PROPOSITION 647. If every 2; is an atomistic poset with least element, then
[120 is an atomistic poset.
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PROOF. z; =| |atomsx; for every x; € ;. Thus

r=X€domzx:x; =X € domx : Llatomszi =

)\ Gd . =
L e doms {B‘f if

i€dom x

t R
L] A€ doma: {U;,Omt ity =i _
i€dom x L5 lf] #Z
ifi—
|_| |_| )\jedomx:{q% 1 ‘] Z
i€dom x g€Eatoms x; L lf] 752

Thus z is a join of atoms of []2l. g

COROLLARY 648. If 2; are atomistic posets with least elements, then [J2 is
atomically separable.

PrROOF. Proposition 230. U

PROPOSITION 649. Let (A;cp, 3icn) be a family of filtrators. Then ([T2(,[] 3)
is a filtrator.

PRrROOF. We need to prove that [[ 3 is a sub-poset of [[. First [[3 C []«A
because 3; C 2A; for each i € n.

Let A,B € [[3 and A EH3 B. Then Vi € n : A; T3 B;; consequently
Vien: A C% B; that is Al B. O

PROPOSITION 650. Let (;en, 3icn) be a family of filtrators.
1°. The filtrator ([, []3) is (binarily) join-closed if every (2;, 3;) is (bina-
rily) join-closed.
2°. The filtrator ([T2,]]3) is (binarily) meet-closed if every (2;,3;) is (bi-
narily) meet-closed.

PROOF. Let every (2;, 3;) be binarily join-closed. Let A, B € [ 3 and Aulls
B exist. Then (by corollary 642)

Aull3 B=Nien: 4,03 Bi=Xien: 4, 1% B, = Aull® B,

Let now every (2;, 3;) be join-closed. Let S € Z[] 3 and |_|H3 S exist. Then
(by corollary 642)

[I3 - an o [[=
|_|S:)\iedomQ{:U{xes}:/\iedomQ[:U{mes}: || 5.

The rest follows from symmetry. O

PROPOSITION 651. If each (2;,3;) where ¢ € n (for some index set n) is a
down-aligned filtrator with separable core then (J]2(, []3) is with separable core.

PROOF. Let a #b. Then 3i € n:a; #b;. SoJx € 3; : (x £ a; ANz < b;) (or
vice versa).

_ x ifj=i

Tak =)Aj €n: .

ey =ArEmn {B‘j if j #

Yy € 3. O

PROPOSITION 652. Let every 2A; be a bounded lattice. Every (2;,3;) is a
central filtrator iff (T2, [[3) is a central filtrator.

Then we have y % a and y < b and



5.33. FUNCTION SPACES OF POSETS 121

PROOF.
x € Z(H Ql) &
EIyEHQJ.:(xHy:J_HQ[/\xuy:THm) =
Jy € HQIW €dom®A: (x; My; = 1% Az Uy = Tmi) &
VicdomQIy € Ay : (z; My =LY AUy =T%) o
Vi e dom®A : z; € Z(2A;).
So
Z(HQL) =[I3¢ I zaw=][3«
i€dom 2
(because every 3; is nonempty) < Vi € dom 2 : Z(2;) = 3;.
U
PROPOSITION 653. For every element a of a product filtrator ([]2, ] 3):
1°. upa = [[;cqomq UP @i;
2°. downa = [[;cqom o dOWn a;.
PRrROOF. We will prove only the first as the second is dual.
_Jee]l3\ _ cell3 B
upa—{ cda }_{Viedoma:cijai B
cell3
{Vi € doma:c; € upai} o iegmaul)al'
(|

PROPOSITION 654. If every (ien,3icn) is a prefiltered filtrator, then
(TTA,T13) is a prefiltered filtrator.

PROOF. Let a,b € [[2 and a # b. Then there exists ¢ € n such that a; # b;

and so upa; # upb;. Consequently [[;cqome WP @i 7# [Licdom e UP bi that is upa #
up b. 0

PROPOSITION 655. Let every (Uien, 3ien) be a filtered filtrator with upz # 0
for every x € A; (for every i € n). Then (J[2, ] 3) is a filtered filtrator.

PROOF. Let every (;,3;) be a filtered filtrator. Let upa 2 upbd for some
a,b € [T Then J];caomae 1P @i 2 [licdome 1P i and consequently (taking into
account that upxz # () for every z € 2;) upa; 2 upb; for every i € n. Then
Vi €n:a; Cb; that is a C b. O

PROPOSITION 656. Let (2;, 3;) be filtrators and each 3; be a complete lattice
with upz # () for every z € 2; (for every i € n). For a € [[2:

1°. Cora = Ai € doma : Cor a;;
2°. Cor'a = \i € doma : Cor’ a;.
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PROOF. We will prove only the first, because the second is dual.

Cora =

113
|_| upa =

3i
Ai € doma : H{e%} = (upz # () taken into account)
rE€upa

3
T
AXied : —_— =
! oma H{xEupai}
3i
Ai € doma : |_|upa,- =

Ai € doma : Cora;.

O

PROPOSITION 657. If each (2;, 3;) is a filtrator with (co)separable core and each
2; has a least (greatest) element, then (J]2, ] 3) is a filtrator with (co)separable
core.

PRrROOF. We will prove only for separable core, as co-separable core is dual.

x XH A Yy =
(used the fact that 2; has a least element)

Vi € dom®? : w; <% y; =

Vi e dom3X e upw; : X =iy, &

3X cupaVi € domA: X; =% y; &
HXeupx:Xmey

for every z,y € [ 2L O

OBVIOUS 658.

1°. If each (%, 3;) is a down-aligned filtrator, then ([[2,]]3) is a down-
aligned filtrator.

2°. If each (2L;, 3;) is an up-aligned filtrator, then (J[ 2, ] 3) is an up-aligned
filtrator.

OBVIOUS 659.

1°. If each (2;,3;) is a weakly down-aligned filtrator, then ([[2,[]3) is a
weakly down-aligned filtrator.

2°. If each (21;, 3;) is a weakly up-aligned filtrator, then ([T, ][] 3) is a weakly
up-aligned filtrator.

PROPOSITION 660. If every b; is substractive from a; where a and b are n-
indexed families of elements of distributive lattices with least elements (where n is
an index set), then a\b=X € n:a; \ b;.

PROOF. We need to prove (Ai € n: a;\b; )b = L and allb = bU(Xi € n : a;\b;).
Really

()\zenal\bl)ﬂb:)\zen(al\bl)ﬂblzJ_,
bUMN en:a;\b)=Xien:bU(a;\b)=XX€eEn:bUa; =allb.
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PROPOSITION 661. If every 2; is a distributive lattice, then a \* b = \i €
dom A : a; \* b; for every a,b € [[2 whenever every a; \* b; is defined.

PROOF. We need to prove that A\i € dom 2 : a; \*b; = l_l{ze]_[m}

albUz

To prove it is enough to show a; \* b; = H{W} that is a; \* b; =

z€%; ! __Em ! ZEN;
H{aigbiu,z} because 2z’ € {zeHm,aEbuz} & 2 e {aigbiuz} (for the reverse

implication take z; = a; for j # i), but a; \* b; = |_|{ aféiluz} is true by definition.
O

PROPOSITION 662. If every 2; is a distributive lattice with least element, then
af# b=\ € dom®: a; #b; for every a,b € [[2A whenever every a; # b; is defined.
zCanzxb

PROOF. We need to prove that \i € dom % : a; # b; = U{ZEHQl}

To prove it is enough to show a; # b; = U{zenmzw} that is a; # b; =

i is a. R €A Y
I—l{ ZEH Ql,zigai/\ZVjedomQ[:zijj} that is @i # bZ - I_l{zg;/\szi} (take %= L
for j # i) what is true by definition. O

PROPOSITION 663. Let every 2; be a poset with least element and a is defined.
Then a* = i € dom®2 : a].

PROOF. We need to prove that \i € dom 2 : af = | ce]1 . To prove this it

cxa

o . * __ c; ia gk — Ci
is enough to show that a} = [_]{ e[ o=e } that is a} |_|{ e[ [ e dom 2, =a, }

that is a;k = U{CEI_[;;CV(L} (take Cj = J_Qlj for j ?é ’I,) that is a;( = Ll{zigall}

what is true by definition. O

COROLLARY 664. Let every 2; be a poset with greatest element and a; is
defined. Then a* = X\i € dom 2 : a].

Proor. By duality. O

5.34. Filters on a Set

In this section we will fix a powerset filtrator (2, 3) = (A, 24) for some set 1.

The consideration below is about filters on a set i, but this can be general-
ized for filters on complete atomic boolean algebras due complete atomic boolean
algebras are isomorphic to algebras of sets on some set i1.

5.34.1. Fréchet Filter.
DEFINITION 665. Q = { X } is called either Fréchet filter or

X is a finite subset of
cofinite filter.

It is trivial that Fréchet filter is a filter.
PROPOSITION 666. CorQ = 13; N Q = 0.
PRrROOF. This can be deduced from the formula Vo € 43X € Q: o ¢ X. O

THEOREM 667. max{ 2525} = max{ Le } =Q.

(x=0



5.34. FILTERS ON A SET 124

PROOF. Due the last proposition, it is enough to show that Cor X = 13 =
X C Q for every filter X.

Let Cor X = 13 for some filter X. Let X € Q. We need to prove that X € X.

X = U\ {ao,...,an}. U\ {a;} € X because otherwise a; €171 Cor X. So
XeXx. O

THEOREM 668. Q = | [*{ z }.

x is a non-trivial ultrafilter

PROOF. It follows from the facts that Corz = L3 for every non-trivial ultra-
filter x, that 2 is an atomistic lattice, and the previous theorem. O

THEOREM 669. Cor is the lower adjoint of Q L% —.

PROOF. Because both Cor and QL — are monotone, it is enough (theorem 126)
to prove (for every filters X and )

XCQU*CorX and Cor(Q U V)C Y.

Cor(QUAY) =CorQ 13 CorY = 13113 CorY = CorY C ).
QU CorX JEdg X L* Cor X = X. O

COROLLARY 670. Cor X = X \* 2 for every filter on a set.

ProOOF. By theorem 154. O

COROLLARY 671. Cor| |* S =| [*(Cor)*S for any set S of filters on a powerset.
This corollary can be rewritten in elementary terms and proved elementarily:
PROPOSITION 672. (1S = Upecg [ F for aset S of filters on some set.

PRrROOF. (by ANDREAS BLASS) The D direction is rather formal. Consider any
one of the sets being intersected on the left side, i.e., any set X that is in all the
filters in S, and consider any of the sets being unioned (that’s not a word, but you
know what I mean) on the right, i.e., (| F for some F € S. Then, since X € F,
we have (1 F C X. Taking the union over all F' € S (while keeping X fixed), we
get that the right side of your equation is C X. Since that’s true for all X € (S,
we infer that the right side is a subset of the left side. (This argument seems to
work in much greater generality; you just need that the relevant infima (in place of
intersections) exist in your poset.)

For the C direction, consider any element x € ()5, and suppose, toward
a contradiction, that it is not an element of the union on the right side of your
equation. So, for each F' € S, we have x ¢ (| F, and therefore we can find a set
Ap € F with z ¢ Ap. Let B = Jp.g Ar and notice that B € F' for every F' € S
(because B O Ap). So B € (|S. But, by choice of the Ap’s, we have x ¢ B,
contrary to the assumption that = € ([ S. O

PROPOSITION 673. 02(U) is the set of infinite subsets of U.

PrOOF. OQ(U) = —~(=)"Q(U).

(=)"Q) is the set of finite subsets of U. Thus —(=)"Q(U) is the set of infinite
subsets of U. O

5.34.2. Number of Filters on a Set.

DEFINITION 674. A collection Y of sets has finite intersection property iff in-
tersection of any finite subcollection of Y is non-empty.

The following was borrowed from [7]. Thanks to ANDREAS BLASS for email
support about his proof.
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LEMMA 675. (by HAUSDORFF) For an infinite set X there is a family F of
2¢ard X many subsets of X such that given any disjoint finite subfamilies A, B, the
intersection of sets in A and complements of sets in B is nonempty.

PROOF. Let

X/ — (P’ Q)
P e 2X is finite, Q € PP |’
It’s easy to show that card X’ = card X. So it is enough to show this for X’

instead of X. Let
{(P,Q)GX' }
YNPeEQ

F=\ veox
To finish the proof we show that for every disjoint finite Y, € % X and finite
Y. € ZPX there exist (P,Q) € X' such that

(P,Q) e X'

} and VY €Y_:(P,Q)¢ {W}

YNPeQ
what is equivalent to existence (P, Q) € X’ such that
VY eY,:YNPeQ and VY eY_ :YNP¢Q.

For existence of this (P, Q), it is enough existence of P such that intersections
Y N P are different for different Y € Y, UY_.

Really, for each pair of distinct Yy, Y7 € Y UY_ choose a point which lies in
one of the sets Yy, Y7 and not in an other, and call the set of such points P. Then
Y N P are different for different ¥ € Y, UY_. O

COROLLARY 676. For an infinite set X there is a family F of 21X many

subsets of X such that for arbitrary disjoint subfamilies A and B the set AU { f—ég}

has finite intersection property.

THEOREM 677. Let X be a set. The number of ultrafilters on X is 22 if

X is infinite and card X if X is finite.

PROOF. The finite case follows from the fact that every ultrafilter on a finite set
is trivial. Let X be infinite. From the lemma, there exists a family F of 224X many
subsets of X such that for every G € 2F we have ®(F,G) = [T" gl’lﬂm{ %}_f\‘g} #
13X,

This filter contains all sets from G and does not contain any sets from F \ G.
So for every suitable pairs (Fo,Go) and (Fi,G1) there is A € ®(Fy, Gp) such that
A € ®(F;,G1). Consequently all filters ®(F,G) are disjoint. So for every pair
(F,G) where G € PF there exist a distinct ultrafilter under ®(F,G), but the
number of such pairs (F,G) is 22°"* " Obviously the number of all filters is not
above 227 O

card X
22

COROLLARY 678. The number of filters on 4 is if Y us infinite and

gcardt if ([ ig finite.

Proor. The finite case is obvious. The infinite case follows from the theqr%r{ll
and the fact that filters are collections of sets and there cannot be more than 227
collections of sets on [. O
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5.35. Bases on filtrators

DEFINITION 679. A set S of binary relations is a base on a filtrator (2, 3)
of f € A when all elements of S are above f and VX e up fAT' € S: T C X.

OBVIOUS 680. Every base on an up-aligned filtrator is nonempty.

ProproSITION 681. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator.
3°. (2, 3) is a filtered filtrator.
4°. A set S € &3 is a base of a filtrator element iff |_|Ql S exists and S is a
base of [T S.

PROOF.
1°=2°, 2°=-3°. Obvious.
3°=4°.
<. Obvious.
=-. Let S be a base of an f € . f is obviously a lower bound of S. Let g
be a lower bound of S. Then for every X € up f we have ¢ C X
that is X € upg. Thus up f C upg and thus f J g that is f is the
greatest upper bound of S.

d

PROPOSITION 682. There exists an f € 2 such that up f = S iff S is a base
and is an upper set (for every set S € £23).

PROOF.
=. If up f = S then S is an upper set and S is a base of f because VX € up f 3T €
S:T=X.

<. Let S be a base of some filtrator element f and is an upper set. Then for
every X € up f there is T € S such that T'C X. Thus X € S. We have
up f € S. But S Cup f is obvious. We have up f = S.

O
PROPOSITION 683. up f is a base of f for every f € .
PrROOF. Denote S = up f. That f is a lower bound of S is obvious.
If X €eupfthen 37T € S: T = X. Thus S is a base of f. 0

PROPOSITION 684. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator.
3°. (2, 3) is a filtered filtrator.
4°. f = |—]Ql S for every base S of an f € 2.

PROOF.
1°=2°, 2°=3°. Obvious.
3°=4°. f is a lower bound of S by definition.
Let g be a lower bound of S. Then for every X € up f there we have
g C X that is X € upg. Thus up f C upg and thus f J g that is f is the
greatest lower bound of S.
O

ProproOSITION 685. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
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2°. (2, 3) is a primary filtrator.
3°. (A, 3) is a filtered filtrator.
4°. If S is a base on a filtrator, then []* S exists and up[]" § = Ukegup K.

PROOF.
1°=2°, 2°=3°. Obvious.
3°=4°. |_|Ql S exists because our filtrator is filtered. Above we proved that S is a
base of [T*S. That Ugesup K C up[1* S is obvious. If X € up[]* S
then by properties of bases we have K € S such that K T X. Thus
X cupK and so X € Jgcgup K. So up|_|QLS CUgesup K.
O

PROPOSITION 686. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a meet-semilattice.
3°. (A, 3) is a filtrator with binarily meet-closed core such that Va € 2 :

upa # 0.
4°. A base on the filtrator (2; 3) is the same as base of a filter (on 3).

PROOF.
1°=2°. Obvious.
2°=3°. Corollary 536.
3°=4°,
=. Let S be a base of f on the filtrator (2(; 3). Then for every a,b € S we
have a,b € up f and thus a M3 b=aM*becupf. Thus Iz € S:z C
a3 b that is £ C a Az C b. Tt remains to show that S is nonempty,
but this follows from up a being nonempty.
<. Let S be a base of filter f (on 3). Let X € up f. Then thereis T € S
such that T C X.

O

5.36. Some Counter-Examples

EXAMPLE 687. There exist a bounded distributive lattice which is not lattice
with separable center.

PRrROOF. The lattice with the Hasse diagram? on figure 5 is bounded and dis-
tributive because it does not contain “diamond lattice” nor “pentagon lattice” as a
sublattice [46].

It’s center is {0,1}. My = 0 despite upx = {x,a, 1} but yM1 # 0 consequently
the lattice is not with separable center. Il

In this section 2 denotes the set of filters on a set.

EXAMPLE 688. There is a separable poset (that is a set with x being an injec-
tion) which is not strongly separable (that is x isn’t order reflective).

PROOF. (with help of sci.math partakers) Consider a poset with the Hasse
diagram 6.
Then *p = {p,a,b}, x¢ = {q,a,b}, »r = {r,b}, xa = {p,q,a,b}, xb =

{p.q,a,b,7}.
Thus xx = xy = = = y for any z, y in our poset.
*a C xb but not a C b. O

EXAMPLE 689. There is a prefiltered filtrator which is not filtered.

23ee Wikipedia for a definition of Hasse diagrams.
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0
FIGURE 5
a b
p q r
FIGURE 6

ProoF. (MatrTHIAS KLUPSCH) Take 2 = {a, b} with the order being equality
and 3 = {b}. Then upa = 0 C {b} = upb, so up is injective, hence the filtrator is
prefiltered, but because of a IZ b the filtrator is not filtered. O

For further examples we will use the filter A defined by the formula

5 -
A = 4 -t
|_|{ ecRe> 0}
and more general
2
la—€a+ €
A = — 3.
T |_|{ eeRe>0

EXAMPLE 690. There exists A € 2U such that [1* A # [ A.

PROOF. |_|3{6g{f>[0} =1 {0} £ A. 0

ExAMPLE 691. There exists a set U and a filter a and a set S of filters on the
set U such that a M2 | [* S # |_|m<al_lm>*5.

PrROOF. Let a = A and S = {%} Then a M | [* S = AM?)0; 400]) #

12 while | [*(an®)"S = | [*{L2} = 1% 0

EXAMPLE 692. There are tornings which are not weak partitions.

PRrOOF. {ﬁgﬂg} is a torning but not weak partition of the real line. O

LEMMA 693. Let 2 be the set of filters on a set U. Then X M2 Q C Y M2 Q iff
X \Y is a finite set, having fixed sets X, Y € ZU.
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PROOF. Let M be the set of finite subsets of U.
Xmocymaos
XNKx S Y NKy N
KxeQ) = | KyeQ
VKy e Q(dKx € Q: YNKy =XNKx &
VLy€ME|LXeMZY\Ly:X\Lx<:>

Vy e M: X\ (Y \Ly)e M &
X\YeM.

O

EXAMPLE 694. There exists a filter A on a set U such that (£U)/~ and
Z(DA) are not complete lattices.

PROOF. Due to the isomorphism it is enough to prove for (2U)/~.

Let take U = N and A = 2 be the Fréchet filter on N.

Partition N into infinitely many infinite sets Ag, A1,.... To withhold our ex-
ample we will prove that the set {[Ag],[A41],...} has no supremum in (LU)/~.

Let [X] be an upper bound of [Ag], [A1],... that is Vi e N: X 1 Q 3 A4, 1™ Q
that is A; \ X is finite. Consequently X is infinite. So X N A; # 0.

Choose for every i € N some z; € X N A;. The {z0, 21, ...} is an infinite subset
of X (take into account that z; # z; for i # j). Let Y = X \ {20, 21,...}. Then
Y0 3 A;N*Q because A;\Y = A;\ (X \{2z:}) = (4; \ X)U{z} which is finite
because A; \ X is finite. Thus [Y] is an upper bound for {[Ao], [41],... }

Suppose Y 1* Q = XM Q. Then Y\ X is finite what is not true. So Y *Q
X M Q that is [Y] is below [X]. d

5.36.1. Weak and Strong Partition.

DEFINITION 695. A family S of subsets of a countable set is independent iff the
intersection of any finitely many members of S and the complements of any other
finitely many members of S is infinite.

LEMMA 696. The “infinite” at the end of the definition could be equivalently
replaced with “nonempty” if we assume that S is infinite.

PROOF. Suppose that some sets from the above definition has a finite inter-
section J of cardinality n. Then (thanks S is infinite) get one more set X € S and
we have JNX # 0 and JN (N\ X) # 0. So card(J N X) < n. Repeating this,
we prove that for some finite family of sets we have empty intersection what is a
contradiction. O

LEMMA 697. There exists an independent family on N of cardinality c.

PROOF. Let C be the set of finite subsets of Q. Since card C' = cardN, it
suffices to find ¢ independent subsets of C'. For each r € R let
B FeC
" | card(FN] — oo;7) is even
All E,, and E,, are distinct for distinct 71,72 € R since we may consider
F = {1’} € C where a rational number 7’ is between r; and r9 and thus F is a
member of exactly one of the sets E,, and E,,. Thus card{ B, }=rc

reR

We will show that {T%R} is independent. Let 71,...,7%,S1,..., Sk be distinct

reals. It is enough to show that these have a nonempty intersection, that is existence
of some F such that F belongs to all the E, and none of F.
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But this can be easily accomplished taking F' having zero or one element in
each of intervals to which rq,..., 7k, s1,..., Sk split the real line. O

EXAMPLE 698. There exists a weak partition of a filter on a set which is not a
strong partition.

PROOF. (suggested by ANDREAS BLASS) Let {TE’R} be an independent family

of subsets of N. We can assume a # b = X, # X, due the above lemma.

Let F, be a filter generated by X, and the complements N\ X, for all b € R,
b # a. Independence implies that F, # 1® (by properties of filter bases).

Let S = {T];?R}. We will prove that S is a weak partition but not a strong
partition.

Let @ € R. Then X, € F, while Vb € R\ {a} : N\ X, € F, and therefore

N\ X, € UQ‘{RBJZ;Q}. Therefore F, Mm% UQI{R;’;M} = 1% Thus S is a weak

partition.
Suppose S is a strong partition. Then for each set Z € ZR
2 2
LK5ez ) ™ ez ) =
beZ beR\Z
what is equivalent to existence of M(Z) € £N such that
2 2A

M(Z) Ll{b]e:bZ} and N\ M(Z) € U{Z;Rb\z}

VoeZ:M(Z)eF, and VbeR\Z:N\M(Z) € Fp.

Suppose Z # 7' € 22N. Without loss of generality we may assume that some
beZbutbé¢ Z'. Then M(Z) € F, and N\ M(Z') € Fp. It M(Z) = M(Z') then
Fp = L% what contradicts to the above.

So M is an injective function from ZR to N what is impossible due cardi-
nality issues. U

that is

LEMMA 699. (by NIELS DIEPEVEEN, with help of KARL KRONENFELD) Let K
be a collection of nontrivial ultrafilters. We have | |[K = Q iff 3G € K : A € upg
for every infinite set A.

PROOF.

=. Suppose | | K = Q and let A be a set such that G € K : A € upG. Let’s prove
A is finite.
Really, VG € K : U\ A€ upG; U\ A € upQ; A is finite.
<. Let 3G € K : A € upG. Suppose A is a set in up| | K.
To finish the proof it’s enough to show that £l \ A is finite.
Suppose 4\ A is infinite. Then 3G € K : U\ A€ upG; IGe K: A ¢
upG; A ¢ up| | K, contradiction.
O

LEMMA 700. (by NIELS DIEPEVEEN) If K is a non-empty set of ultrafilters
such that | | K = Q, then for every G € K we have | (K \ {G}) = Q.

PrOOF. 3F € K : A € up F for every infinite set A.

The set A can be partitioned into two infinite sets Ay, As.

Take F1, F» € K such that Ay € Fq, As € Fo.

F1 # Fo because otherwise A; and As are not disjoint.

Obviously A € F; and A € Fs.

So there exist two different F € K such that A € up F. Consequently 3F €
K\{G}: AcupF that is | |(K \ {G}) = Q. O
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EXAMPLE 701. There exists a filter on a set which cannot be weakly partitioned
into ultrafilters.

PrOOF. Consider cofinite filter 2 on any infinite set.

Suppose K is its weak partition into ultrafilters. Then z =< | (K \ {z}) for
some ultrafilter z € K.

We have | |(K \ {z}) C || K (otherwise « C | |(K \ {z})) what is impossible
due the last lemma. g

COROLLARY 702. There exists a filter on a set which cannot be strongly par-
titioned into ultrafilters.

5.37. Open problems about filters

Under which conditions a \* b and a # b are complementive to a?
Generalize straight maps for arbitrary posets.

5.38. Further notation

Below to define funcoids and reloids we need a fixed powerset filtrator.

Let (F A, 7 A) be an arbitrary but fixed powerset filtrator. This filtrator exists
by the theorem 462.

I will call elements of .F filter objects.

For brevity we will denote lattice operations on .# A without indexes (for ex-
ample, take [ ]S = HgA S for S € PFA).

Note that above we also took operations on .7 A without indexes (for example,
take [1S =174 S for S € 2T A).

Because we identify .7 A with principal elements of .% A, the notation like [ ].S
for S € 2.7 A would be inconsistent (it can mean both [174 S or [1745). We
explicitly state that [ ]S in this case does not mean |_|yA S.

For X € . we will denote GR X the corresponding filter on ZA. 1t is a con-
venient notation to describe relations between filters and sets, consider for example
the formula: {z} CGR X.

We will denote lattice operations without pointing a specific set like |_|ﬁ S =

ﬂﬂ(A) S for a set S € ZF(A).

5.39. Equivalent filters and rebase of filters

Throughout this section we will assume that 3 is a lattice.

An important example: 3 is the lattice of all small (regarding some
Grothendieck universe) sets. (This 3 is not a powerset, and even not a complete
lattice.)

Throughout this section I will use the word filter to denote a filter on a sub-
lattice DA where A € 3 (if not told explicitly to be a filter on some other set).

The following is an embedding from filters A on a lattice DA into the lattice

of filters on 3: ./ A = {3)(6{(4%}

PROPOSITION 703. Values of this embedding are filters on the lattice 3.

ProoOF. That . A is an upper set is obvious.

Let P,Q € SA. Then P,QQ € 3 and there is an X € A such that X C P
and Y € Asuch that Y C Q. So XMNY € Aand PNQ 3 XNY € A, so
PNQ e 7A. O
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5.39.1. Rebase of filters.
DEFINITION 704. Rebase for every filter A and every A € 3 is A+ A =
[W{r%XHA>}
XecA :
OBVIOUS 705. (Ar)*.7 A is a filter on A.
PROPOSITION 706. The rebase conforms to the formula
A+ A= (AN)" 7 A.

PRrROOF. We know that (AM)*.7 A is a filter.
If P e (AN YA then P € A and YA LC P for some Y € A Thus

PgYﬂAeﬂ{m}.

YeA
14 (XNA) . . :
If Pel] A ( then by properties of generalized filter bases, there exists
X € Asuch that P J XM A. Also P € ZA. Thus P € (AN)".7 A. O

PROPOSITION 707. X + Base(X) = X.
PROOF. Because X M Base(X) = X for X € X. O
PROPOSITION 708. (¥ + A)+~B=X+Bif BC A.

PROOF.

1A (XNA) Xex
€ |—| Xex

L

PRoOPOSITION 709. If Ac Athen A+~ A=ANZA.

PROOF. A+ A = (AN)*.7A = (A { 5588 b = {eediiza} = AN

FA. O

(x=A) =B =[] YTB(Y”B) } =|_|{TB(X|_|A)}I_ITBB:

d

PROPOSITION 710. Let filters X and ) be such that Base(X') = Base(Y) = B.
Then X +C=Y+C s X =) forevery 35C I B.

PROOF.X%C:y+C@XU{%}:yU{%}@X:y. O

5.39.2. Equivalence of filters.

DEFINITION 711. Two filters A and B (with possibly different base sets) are
equivalent (A ~ B) iff there exists an X € 3 such that X € A and X € B and
ZXNA=ZXNB.

PROPOSITION 712. X and )Y are equivalent iff (X ~ ) iff Y = X + Base(Y)
and X = ) + Base(X).
ProoF.
=. Suppose X ~ )Y that is there exists a set P such that ZPNX = ZPN)Y
and P € X, P € Y. Then X + Base()) = (ZP N X)U {%w} =

(ﬂpmy)u{%‘ﬁe(”} =Y. So X +Base(Y) = ¥, Y+ Base(X) = X

is similar.
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<. We have Y = (Y + Base(X)) + Base()).
Thus as easy to show Base(X)MBase()) € Y and similarly Base(X')M
Base(Y) € X.
It’s enough to show X =+ (Base(X) M Base(Y)) = Y + (Base(X) N
Base())) because for every P € X,Y we have ¥ N P = X + P =
(X + (Base(X)MBase(Y))) + P and similarly YN ZP = (Y + (Base(X) N
Base()))) +~ P. But it follows from the conditions and proposition 708.
(]

ProrosiTiON 713. If two filters with the same base are equivalent they are
equal.

Proor. Let A and B be two filters and X N A = £X N B for some set X
such that X € A and X € B, and Base(A) = Base(B). Then

A:(@XﬂA)U{YGDBaSQ(A)}

YJIx

(ZXNB)U {Y Ef;is(e(lg)} _B
U
ProposiTION 714. If A € S A then A+ A~ A
PROOF.
(A= A)N P(ANBase(A)) =
FSANPAN P(ANBase(A)) =
S AN P(ANBase(A)) = AN F (AN Base(A)).
Thus A+ A ~ A because A M Base(A) J X € A for some X € A and
AN Base(A) J X MBase(A) € A+ A.
(]

PROPOSITION 715. ~ is an equivalence relation.

PROOF.

Reflexivity. Obvious.

Symmetry. Obvious.

Transitivity. Let A ~ B and B ~ C for some filters A, B, and C. Then there exist
a set X such that X € Aand X € Band X NA=XXNB and a set

Y suchthat Y e BandY € Cand Y NB=22Y NC. So XNY € A
because

PYNPXNA=2YNZXNB=Z(XNY)NB2{XNY}NB>XnNY.
Similarly we have X MY € C. Finally
XNY)NA=22YNZXNA=L22YNZXXNB=
PXNLPYNB=2XN2ZYNC=2(XNY)NC.
O
DEFINITION 716. I will call equivalence classes as unfized filters.

REMARK 717. The word “unfixed” is meant to negate “fixed” (having a par-
ticular base) filters.
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PROPOSITION 718. A ~ B iff ¥ A = .7B for every filters A, B on sets.?

PRrROOF. Let A ~ B. Then there is a set P such that P € A, P € B and
ANDPP =BANPP. So A= (AN 9])P)u{K63 } Similarly .78 = (BN 2P)U

KJP
{ Kes } Combining, we have /A = ¥B.

KJP
Let now YA = .¥B. Take K € YA = .B. Then A+ K =B + K and thus
(proposition 714) A ~ A+ K = B+ K ~ B, so having A ~ B. O

ProrosiTiON 719. A ~ B = A+ B = B+ B for every filters A and B and
set B.

PROOF. A=+ B = (BMN)"YA= (BB =B~ B. O
5.39.3. Poset of unfixed filters.

LEMMA 720. Let filters X and Y be such that Base(X') = Base(}) = B. Then
X+-CLCY+-C& XL for every set C O B.

PROOF.

X+-CCY+-(C&sX+-CD2)Y+-Cs

KeZzC KeZ2C

— 5 D B — X D C ).

XU{ KB }_yu{ KB }@ DI VR= 2 Y

O

PropPOSITION 721. X T Y = X +~ B LC Y + B for every filters X, ) with the
same base and set B.

Proor. YXC Y& XD)Y=>X+-B2Y+BsX+-BLY-+B. U

Define order of unfixed filters using already defined order of filters of a fixed
base:

DEFINITION 722. X C Y & Jz € X,y € YV : (Base(x) = Base(y) Az C y) for
unfixed filters X', ).

Proposition 718 allows to define:
DEFINITION 723. A = Za for every a € A for every unfixed filter A.

THEOREM 724. .¢ is an order-isomorphism from the poset of unfixed filters to
the poset of filters on 3.

PrOOF. We already know that .# is an order embedding. It remains to prove
that it is a surjection.
Let Y be a filter on 3. Take 3 > X € ). Then (XM)"Y is a filter on X and

LX) Y] = L(XM)*Y =Y. We have proved that it is a surjection. O
LEMMA 725. X C Y & X C .Y for every unfixed filters X', V.
PROOF.

=. Suppose X C Y. Then there exist © € X, y € Y such that Base(z) = Base(y)
and z C y. Then X = Y2 C Sy =.L).

<. Suppose X C Y. Then there are x € X, y € Y such that .Yz T Zy.
Consequently .z’ C .y’ for 2’ = z + (Base(x) U Base(y)), v = y +
(Base(x) LUBase(y)). So we have 2’ € X, y' € ), Base(z') = Base(y’) and
' Cy, thus X C ).

3Use this proposition to shorten proofs of other theorem about equivalence of filters? (Our
proof uses transitivity of equivalence of filters. So we can’t use it to prove that it is an equivalence
relation, to avoid circular proof.)
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THEOREM 726. C on the set of unfixed filters is a poset.

PROOF.

Reflexivity. From the previous theorem.

Transitivity. From the previous theorem.

Antisymmetry. Suppose X C Y and Y C X. Then X C Y and Y C S X.
Thus X = .Y and so Sz = Sy for some x € X, y € ). Consequently
S (x+ B) =S (y+ B) for B=Base(x)UBase(y). Thus x + B=y+ B
and so z ~ y, thus X = ).

O

THEOREM 727. [z] C [y] & = C y for filters « and y with the same base set.

Proor.
<«. Obvious.
=. Let Base(z) = Base(y) = B. Suppose [z] C [y]. Then there exist 2’ ~ z and
y ~ y such that C' = Base(z') = Base(y’) (for some set C') and =’ C y/.
We have by the lemma 2z’ + (BUC)Cy' + (BUC).
But 2/ = (BUC)=z2+(BUC)and y + (BUC)=y=(BUC). So
z+(BUC)Cy-=(BUC) and thus again applying the lemma x C y.
O

5.39.4. Rebase of unfixed filters. Proposition 719 allows to define:
DEFINITION 728. A+ B = a + B for an unfixed filter A and arbitrary a € A.

PROPOSITION 729. X C Y = X + C C Y + C for every unfixed filters X', )
and set C.

PROOF. Let X C Y. Then there are x € X', y € ) such that Base(x) = Base(y)
and z C y. Then by proved above x —~ C' C y + C what is equivalent to X +~ C C
y=C. O

ProrosiTioN 730. If C € X and C € .Y for unfixed filters X and ) then
X+-CLCYy=C&s XL

PROOF.

<. Previous proposition.
=. Let Y+ C C Y= C. We have some z € X, y € ), such that Base(z) = Base(y)
andz+~CCy+C. So S(x+C)C L(y+C). But S(zv+C) ~zx and
L (y+C) ~y. Thus Ya C .Sy that is z C y and so X C ).
([

OBvious 731. (X + A) + B =X + B if B C A for every unfixed filter X and
sets A, B.

OBVIOUS 732. A= B = (BMN)".7 A for every unfixed filter A.

OBvious 733. If A € /A then A+ A € A for every unfixed filter A.

PROPOSITION 734. If C € X and C € %) for unfixed filters X and ) then
X+-C=Y+-CeXx=).

PrOOF. The backward implication is obvious. Let now & ~+ C = Y =+ C.
Takex € X,y €Y. Wehave ¥ +C =2+ C = (z+ B) + C for B = C U Base(z) U
Base(y). Similary Y+ C = (y+ B) <+ C. Thus (z+ B) +C = (y+ B) + C and thus
r+B=y~+ B,sox~ythatis X = ). O
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PROPOSITION 735. A=+ A= ﬂ{%} for every unfixed filter A.

PROOF. Take a € A.
) - st
|_|{ X e ;AA(f;g)ase(a) } - |_|{ X e ;j‘a(f ,; /Blz)ise(a) } B

H{W}a:AA:A.

O

5.39.5. The diagram for unfixed filters. Fix a set B.

LEMMA 736. X — X+ B and z — [z] are mutually inverse order isomorphisms

between {7‘1“&]‘3‘32;1;” X} and §(DB).

Proor. First, X + B € F(DB) for X e {wfixedfitr X 5nq 2] €

BesXx
{%} for x € F(DB).

Suppose Xy € {“nﬁ’]‘;g#}, x =Xy + B, and X; = [z]. We will prove
Xo=AX;. Really, x € X1, x =k + B for k € Xy, x ~ k, thus x € Xy. So Ay = A].
Suppose zg € F(DB), X = [x9], z1 = X + B. We will prove £y = x;. Really,
x1 = xo + B. So x1 = x( because Base(xg) = Base(z1) = B.
So we proved that they are mutually inverse bijections. That they are order
preserving is obvious. O

LEMMA 737. . and X — (BM)*X = X N #B are mutually inverse order

isomorphisms between F(DB) and {%ﬁ?)}

Proor. First, L2 € {%ﬁ?)} for x € F(DB) because of theorem 724 and

(BM)"X € §(DB) obviously.
Let’s prove (BM)*X = XNZB. If X € (Br)*X then X € X (because B € X)
and X € ZB. So X e XNZB. f X e XN PBthen X =BNX € (B X.
Let 7p € §(DB), X = S, and 21 = (Br)*X. Then obviously z¢ = 7.

Let now X € {ngg\;)}, r = (BrM)*X, and X; = x. Then X; = Xy U
{KES } = X,.

KJB
So we proved that they are mutually inverse bijections. That they are order
preserving is obvious. O

THEOREM 738. The diagram at the figure 7 (with the horizontal “unnamed”
arrow defined as the inverse isomorphism of its opposite arrow) is a commutative
diagram (in category Set), every arrow in this diagram is an isomorphism. Ev-
ery cycle in this diagram is an identity (therefore “parallel” arrows are mutually
inverse). The arrows preserve order.

PROOF. It’s proved above, that all morphisms (except the “unnamed” arrow,
which is the inverse morphism by definition) depicted on the diagram are bijections
and the depicted “opposite” morphisms are mutually inverse.

That arrows preserve order is obvious.

It remains to apply lemma 196 (taking into account the proof of theorem 724).

O
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3(DB)

X (BNy*X=XNPB
S

Xeg@3@ | —— {unﬁxed filter X
BeXx BesX

FIGURE 7

5.39.6. The lattice of unfixed filters.

THEOREM 739. Every nonempty set of unfixed filters has an infimum, provided
that the lattice 3 is distributive.

ProoF. Theorem 520. U
THEOREM T740. Every bounded above set of unfixed filters has a supremum.

PRrROOF. Theorem 515 for nonempty sets of unfixed filters. The join | | = [1]
for the least filter L € 3(DA) for arbitrary A € 3. O

COROLLARY T741. If 3 is the set of small sets, then every small set of unfixed
filters has a supremum.

PRrROOF. Let S be a set of filters on 3. Then Ty € X is a small set for every X €
S. Thus XT—gS} is small set and thus T" = U{XT—gS} is small set. Take the filter
T =1 T. Then T is an upper bound of S and we can apply the theorem. (]

OBVIOUS 742. The poset of unfixed filters for the lattice of small sets is bounded
below (but not above).

PROPOSITION 743. The set of unfixed filters forms a co-brouwerian (and thus
distributive) lattice, provided that 3 is distributive lattice which is an ideal base.

Proor. Corollary 531. O
5.39.7. Principal unfixed filters and filtrator of unfixed filters.

DEFINITION 744. Principal unfixed filter is an unfixed filter corresponding to
a principal filter on the poset 3.

DEFINITION 745. The filtrator of unfized filters is the filtrator whose base are
unfixed filters and whose core are principal unfixed filters.

We will equate principal unfixed filters with corresponding sets.

THEOREM 746. If we add principal filters on DB, principal filters on 3 con-
taining B, and above defined principal unfixed filters corresponding to them to
appropriate nodes of the diagram 7, then the diagram turns into a commutative
diagram of isomorphisms between filtrators. (I will not draw the modified diagram
for brevity.)

Every arrow of this diagram is an isomorphism between filtrators, every cycle
in the diagram is identity.

PrOOF. We need to prove only that principal filters on B and principal filters
on 3 containing B correspond to each other by the isomorphisms of the diagram.
But that’s obvious. U
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OBvIious 747. The filtrator of unfixed filters is a primary filtrator.
OBvIious 748. The filtrator of unfixed filters is down-aligned.

PROPOSITION 749. The filtrator of unfixed filters is

1°. filtered;
2°. with join-closed core.

ProoOF. Theorem 534. O

ProprosSITION 750. The filtrator of unfixed filters is with binarily meet-closed
core.

ProoFr. Corollary 536. O
ProrosiTiON 751. The filtrator of unfixed filters is with separable core.
PrROOF. Theorem 537. O

PROPOSITION 752. Cor X and Cor’ X are defined for every unfixed filter X and
Cor X = Cor’ X, provided that every DA is a complete lattice.

ProOF. Cor X and Cor’ X exists because of the above isomorphism.
Cor’ X = Cor X by theorem 545. (]

OBvious 753. Cor X = Cor’ X = X for every filter X € F(small sets).
PROPOSITION 754. atoms[]S = ((atoms)"S whenever []S is defined.
PRroOF. Theorem 108. g

PROPOSITION 755. atoms(ALB) = atoms.4AUatoms B for unfixed filters A, 5,
whenever 3 is a distributive lattice which is an ideal base.

PROOF. Proposition 557. O

PROPOSITION 756. 90X is a free star for every unfixed filter X', whenever 3 is
a distributive lattice which is an ideal base which has a least element.

PRrROOF. Theorem 566. O

ProPOSITION 757. The poset of unfixed filters is an atomistic lattice if ev-
ery DA (for A € 2) is an atomistic lattice.

PRrROOF. Easily follows from 738 by isomorphism. O

ProrosITION 758. The poset of unfixed filters is a strongly separable lattice
it every DA (for A € ) is an atomistic lattice.

PROOF. Theorem 234. O

PROPOSITION 759. Cor X = | |(3Natomsfixed filters) for every unfixed filter &
if every DA (for A € ) is an atomistic lattice.

Proor. Theorem 599. U

PRrROPOSITION 760. Cor(AfMB) = Cor AM Cor B for every unfixed filters A, B,
provided every DA (for A € 2) is a complete lattice.

PrRooF. Theorem 601. O

PROPOSITION 761. Cor[]*§ = |—|3<C0r>*5 for the filtrator of unfixed filters
for every nonempty set S of unfixed filters, provided every DA (for A € 2) is a
complete lattice.

PRrRoOF. Theorem 602. O
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PROPOSITION 762. Cor(A U B) = Cor.A U3 Cor B for the filtrator of unfixed
filters for every unfixed filters A, and B, provided every DA (for A € ) is a
complete atomistic distributive lattice.

PrOOF. Can be easily deduced from theorem 603 and the triangular diagram
(above) of isomorphic filtrators. O

CONJECTURE 763. The theorem 614 holds for unfixed filters, too.

It is expected to be easily provable using isomorphisms from the triangular
diagram.



CHAPTER 6

Common knowledge, part 2 (topology)

In this chapter I describe basics of the theory known as general topology. Start-
ing with the next chapter after this one I will describe generalizations of customary
objects of general topology described in this chapter.

The reason why I've written this chapter is to show to the reader kinds of objects
which I generalize below in this book. For example, funcoids and a generalization of
proximity spaces, and funcoids are a generalization of pretopologies. To understand
the intuitive meaning of funcoids one needs first know what are proximities and
what are pretopologies.

Having said that, customary topology is not used in my definitions and proofs
below. It is just to feed your intuition.

6.1. Metric spaces

The theory of topological spaces started immediately with the definition would
be completely non-intuitive for the reader. It is the reason why I first describe
metric spaces and show that metric spaces give rise for a topology (see below).
Topological spaces are understandable as a generalization of topologies induced by
metric spaces.

Metric spaces is a formal way to express the notion of distance. For example,
there are distance |z — y| between real numbers = and y, distance between points
of a plane, etc.

DEFINITION 764. A metric space is a set U together with a function d : UxU —
R (distance or metric) such that for every z,y,z € U:

1°. d(z,y) = 0;

2°. d(z,y) =0 x=y;

3°. d(z,y) = d(y,z) (symmetry);

4°. d(z,z) < d(z,y) + d(y, z) (triangle inequality).

EXERCISE 765. Show that the Euclid space R™ (with the standard distance) is
a metric space for every n € N.

DEFINITION 766. Open ball of radius r > 0 centered at point a € U is the set

DEFINITION 767. Closed ball of radius r > 0 centered at point a € U is the set

5=\ £7)

One example of use of metric spaces: Limit of a sequence x in a metric space
can be defined as a point y in this space such that

Ve > 03dN € NVn > N : d(z,,y) <e.

140
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6.1.1. Open and closed sets.

DEFINITION 768. A set A in a metric space is called open when Va € A3r >
0:B,(a) C A

DEFINITION 769. A set A in a metric space is closed when its complement U\ A
is open.

EXERCISE 770. Show that: closed intervals on real line are closed sets, open
intervals are open sets.

EXERCISE 771. Show that open balls are open and closed balls are closed.

DEFINITION 772. Closure cl(A) of a set A in a metric space is the set of points
y such that

Ve >0da € A:d(y,a) <e.
PROPOSITION 773. cl(A) D A.
Proor. It follows from d(a,a) =0 < e. O

EXERCISE 774. Prove cl(AU B) = cl(A) U cl(B) for every subsets A and B of
a metric space.

6.2. Pretopological spaces

Pretopological space can be defined in two equivalent ways: a neighborhood
system or a preclosure operator. To be more clear I will call pretopological space
only the first (neighborhood system) and the second call a preclosure space.

DEFINITION 775. Pretopological space is a set U together with a filter A(x)
on U for every x € U, such that 1V {2} C A(z). A is called a pretopology on U.
Elements of up A(x) are called neighborhoods of point x.

DEFINITION 776. Preclosure on a set U is a unary operation cl on £U such
that for every A, B € LU:
1°. cl(0) = 0;
2°. cl(4) 2 4;
3°. cl(AUB) =cl(A)Ucl(B).

I call a preclosure together with a set U as preclosure space.

THEOREM 777. Small pretopological spaces and small preclosure spaces bijec-
tively correspond to each other by the formulas:

A(A) = {Azgf()} 3)

Ae 22U
o) = () .

PROOF. First let’s prove that cl defined by formula (3) is really a preclosure.
cl(0) = 0 is obvious. If z € A then A € dA(x) and so cl(4) D A. cl(AUB) =

{#}M} = {AeaA(;)%%eaA(x)} = cl(A) Ucl(B). So, it is really a preclosure.
Next let’s prove that A defined by formula (4) is a pretopology. That up A(x)
is an upper set is obvious. Let A, B € up A(z). Then z ¢ cl(U\ A) Az ¢ cl(U \ B);
x ¢ J(U\A)U(U\B) =cl((U\NA)U(U\B)) =c(U\(ANB)); ANB € up A(z).
We have proved that A(z) is a filter object.
Let’s prove 1V {z} C A(z). If A € up A(z) then z ¢ cl(U\ A) and consequently
r¢U\A;x€ A; AcuptV {z}. So 1V {z} C A(x) and thus A is a pretopology.
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It is left to prove that the functions defined by the above formulas are mutually
inverse.
Let cly be a preclosure, let A be the pretopology induced by cly by the formula
(4), let cl; be the preclosure induced by A by the formula (3). Let’s prove cl; = cly.
Really,
rech(4) &
Alz) #V A &
VX eupAz): XNA#D&
VX e PU: (x¢chp(U\NX)=XNA#£D) &
VX'e PU: (z ¢ clo(X') = A\ X' #0
VX' '€ 2U: (A\X' =0 =z €clp(X')
VX' '€ P2U: (AC X' =z €clg(X')
x € clg(A).

) &
) &
) &

So cly(A) = clp(4).
Let now A be a pretopology, let cl be the closure induced by Ag by the formula
(3), let Ay be the pretopology induced by cl by the formula (4). Really

AcupAi(z) &

x¢c(U\A) <
Ao(z) =tV (U \ A) & (proposition 551)
VAT A (z) &
A € up Ag(x).
So Aj(x) = Ap(x).
That these functions are mutually inverse, is now proved. O

6.2.1. Pretopology induced by a metric. Every metric space induces a
pretopology by the formula:

FU
B,(z)
Ax) = — 5.
(z) H{TER,T>O}
EXERCISE 778. Show that it is a pretopology.

ProprosiTION 779. The preclosure corresponding to this pretopology is the
same as the preclosure of the metric space.

PROOF. I denote the preclosure of the metric space as cly; and the preclosure
corresponding to our pretopology as clp. We need to show clp = cly;. Really:

Clp (A) =

|
{ve>ogf;f{x)¢A} B
|

yeU
Ve >03a € A:d(y,a) <e

for every set A € 2U. O
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6.3. Topological spaces

PROPOSITION 780. For the set of open sets of a metric space (U, d) it holds:
1°. Union of any (possibly infinite) number of open sets is an open set.

2°. Intersection of a finite number of open sets is an open set.
3°. U is an open set.

PROOF. Let S be a set of open sets. Let a € | S. Then there exists A € S such
that a € A. Because A is open we have B,.(a) C A for some r > 0. Consequently
B,(a) C|JS that is |J S is open.

Let Ag,..., A, be open sets. Let a € AgN---N A, for some n € N. Then there
exist r; such that B,,(a) C A;. So B.(a) C AgN---N A, for r = min{rg,...,r,}
that is AgN---N A, is open.

That U is an open set is obvious. ([l

The above proposition suggests the following definition:
DEFINITION 781. A topology on a set U is a collection O (called the set of open
sets) of subsets of U such that:

1°. Union of any (possibly infinite) number of open sets is an open set.
2°. Intersection of a finite number of open sets is an open set.
3°. U is an open set.

The pair (U, Q) is called a topological space.
REMARK 782. From the above it is clear that every metric induces a topology.
PROPOSITION 783. Empty set is always open.
PROOF. Empty set is union of an empty set. U
DEFINITION 784. A closed set is a complement of an open set.

Topology can be equivalently expresses in terms of closed sets:
A topology on a set U is a collection (called the set of closed sets) of subsets of
U such that:

1°. Intersection of any (possibly infinite) number of closed sets is a closed set.
2°. Union of a finite number of closed sets is a closed set.
3°. (0 is a closed set.

EXERCISE 785. Show that the definitions using open and closed sets are equiv-
alent.

6.3.1. Relationships between pretopologies and topologies.
6.3.1.1. Topological space induced by preclosure space. Having a preclosure

space (U, cl) we define a topological space whose closed sets are such sets A € 22U
that cl(A) = A.

PRrROPOSITION 786. This really defines a topology.

PROOF. Let S be a set of closed sets. First, we need to prove that (.S is
a closed set. We have cl((S) C A for every A € S. Thus cl(()S) € S and
consequently cl((S) =(1S. So (S is a closed set.

Let now Ag,..., A, be closed sets, then

CI(A()UUAn):Cl(A())UUCI(An):A()UUAn

that is Ag U---U A4,, is a closed set.
That () is a closed set is obvious. O
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Having a pretopological space (U, A) we define a topological space whose open

sets are
X e 20
VeeX: X eupAx) |

ProOPOSITION 787. This really defines a topology.

PROOF. Let set S C {\mex):()%—ggA(z)}' Then VX € SVz € X : X € up A(x).
Thus

VxEUSEIXGS:XEupA(a:)
and soVz € JS:US € upA(zx). So |JS is an open set.
z .
Let now Ao, ..., A, € {We;{;—egw} form € N. Then Vz € A4; : A; €
up A(z) and so
Ve € AgN---NA,: A; €up Az);

thus Vo € AgN---NA, : AgN---NA, € upA(z). So AgnN---NA, €

Xe2U
VeeX:Xeup A(z) [°

That U is an open set is obvious. O

PRrOPOSITION 788. Topology T defined by a pretopology and topology p defined
by the corresponding preclosure, are the same.

PrOOF. Let A € 2U.
Ais pclosed & cl(A) =A& cl(A) CAs Ve eU: (A€ dA(x) =z e A);

A is T-open &
Ve A:AcupAx) &
VeeU:(zre A= AcupAx)) &
VeeU: (¢ U\A=U\A¢ IA(zx)).
So p-closed and T-open sets are complements of each other. It follows p = 7. O

6.3.1.2. Preclosure space induced by topological space. We define a preclosure
and a pretopology induced by a topology and then show these two are equivalent.
Having a topological space we define a preclosure space by the formula

X e 22U
1(A) = .
cl(4) r]{Xisauclosedset,XDA}

ProrosiTioN 789. It is really a preclosure.

PROOF. cl(()) = () because 0 is a closed set. cl(A) D A is obvious.

ﬂ XePU
X is a closed set, X D AUB

ﬂ X1UXo B
X1, X5 € 2U are closed sets, X1 D A, Xo DB

ﬂ X, € LU Uﬂ X € P2U
X is a closed set, X1 DO A X5 is a closed set, Xo O B

cl(A) Ucl(B).

Thus cl is a preclosure. O
F
Or: Ax) =[1" {22}

It is trivially a pretopology (used the fact that U € O).
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PRrROPOSITION 790. The preclosure and the pretopology defined in this section
above correspond to each other (by the formulas from theorem 777).

PROOF. We need to prove cl(4) = {ﬁ%}, that is

ﬂ X e 20U B xelU
X isaclosed set, X D AJ [—lgU{XEO}%TUA :

reX

Equivalently transforming it, we get:

m X e2U _ zeU .
Xisaclosedset, X DAJ |VXcO:(zeX =tV XU A) [’

ﬂ X e2U B relU
Xisaclosedset, X DAJ VX cO:(zeX=>X%A) /[

We have

xeﬂ Xe2U
X is a closed set, X D A

VX e U : (X isaclosedset A X D A=z € X)
X' €eO0:(U\X'2A=2z2€eU\X')

VX'eO: (X'=xA=2¢ X')
VXeO:(zeX=>X%£A).

=
-
=
=

So our equivalence holds. O

ProrosiTiON 791. If 7 is the topology induced by pretopology m, in turn
induced by topology p, then 7 = p.

PrROOF. The set of closed sets of 7 is
Ae 22U | _
c(A)=A[
Ae PU

Xe2U _
m{ X is a C]OSC(? set in p,XQA} =A
Aec 22U
A is a closed set in p

(taken into account that intersecting closed sets is a closed set). O

DEFINITION 792. Idempotent closures are called Kuratowski closures.

THEOREM 793. The above defined correspondences between topologies and
pretopologies, restricted to Kuratowski closures, is a bijection.

Proor. Taking into account the above proposition, it’s enough to prove that:
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If 7 is the pretopology induced by topology 7, in turn induced by a Kuratowski
closure p, then 7 = p.

ﬂ X ePU
X is a closed set in m, X D A

|
ﬂ{d,,(x))(e)?g( > A} -

|

}

clp(X)
ﬂ{X € PU,cl,(X)=X,X Dcl,(A)

6.3.1.3. Topology induced by a metric.

DEFINITION 794. Every metric space induces a topology in this way: A set X
is open iff
Ve € XJe>0: B.(z) C X.

EXERCISE 795. Prove it is really a topology and this topology is the same as
the topology, induced by the pretopology, in turn induced by our metric space.

6.4. Proximity spaces

Let (U, d) be metric space. We will define distance between sets A, B € 22U

by the formula
d(a,b)
A =inf{ ————2—— 5.
d(4,B8) m{aEA,bEB}

(Here “inf” denotes infimum on the real line.)
DEFINITION 796. Sets A, B € £U are near (denoted A ¢ B) iff d(A, B) = 0.

0 defined in this way (for a metric space) is an example of proximity as defined
below.

DEFINITION 797. A prozimity space is a set (U, d) conforming to the following
axioms (for every A, B,C € L2U):
1°. ANB#(0= Ad B;
2°. if A§ B then A # () and B # 0);
3°. Aé B= B A (symmetry);
4°. (AUB)§C &< ASCVBC;
5°. C6 (AUB) < C§ AV C o B;
6°. A ¢ B implies existence of P,Q € U with A§ P, Bé Q and PUQ =U.

EXERCISE 798. Show that proximity generated by a metric space is really a
proximity (conforms to the above axioms).

DEFINITION 799. Quasi-prozimity is defined as the above but without the sym-
metry axiom.

DEFINITION 800. Closure is generated by a proximity by the following formula:

cl(A) = {{Zf;;}
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ProrosiTioN 801. Every closure generated by a proximity is a Kuratowski
closure.

PRrROOF. First prove it is a preclosure. cl(}) = () is obvious. cl(A) D A is
obvious.
cl(AUB)

{{a}aéeAUu B}
{{a} 5jxev{Ua} 53}
{{Z}e 5UA} {{Z}EéUB} N
cl(A)ucl(B

It is remained to prove that cl is idempotent, that is cl(cl(A)) = cl(A). Tt is
enough to show cl(cl(A4)) C cl(A) that is if x ¢ cl(A) then x ¢ cl(cl(A)).

If ¢ cl(A) then {z} § A. So there are P,Q € 2U such that {z} § P, A§ Q,
PUQ =U. ThenU\Q C P, so {z} 6 U\Q and hence € Q. Hence U \cl(A) C Q,
and so cl(A) C U\ Q C P. Consequently {2} 6 cl(A) and hence = ¢ cl(cl(4)). O

6.5. Definition of uniform spaces

Here I will present the traditional definition of uniform spaces. Below in the
chapter about reloids I will present a shortened and more algebraic (however a little
less elementary) definition of uniform spaces.

DEFINITION 802. Uniform space is a pair (U, D) of a set U and filter D €
F(U x U) (called uniformity or the set of entourages) such that:
1°. If F € D then idy C F.
2°. If F' € D then there exists G € D such that Go G C F.
3°. If F € D then F~! € D.
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CHAPTER 7

Funcoids

In this chapter (and several following chapters) the word filter will refer to a
filter (or equivalently any filter object) on a set (rather than a filter on an arbitrary
poset).

7.1. Informal introduction into funcoids

Funcoids are a generalization of proximity spaces and a generalization of pre-
topological spaces. Also funcoids are a generalization of binary relations.

That funcoids are a common generalization of “spaces” (proximity spaces,
(pre)topological spaces) and binary relations (including monovalued functions)
makes them smart for describing properties of functions in regard of spaces. For
example the statement “f is a continuous function from a space p to a space v”
can be described in terms of funcoids as the formula fou C vo f (see below for
details).

Most naturally funcoids appear as a generalization of proximity spaces.!

Let 0 be a proximity. We will extend the relation ¢ from sets to filters by the
formula:

Ad BeVAeu A, BeupB: Ad B.

Then (as it will be proved below) there exist two functions a, 8 € %
that

Z such

AdBeBrnad+ 17 o ANB# 17,

The pair (a, ) is called funcoid when BN aA # 17 < ANpB # L7. So
funcoids are a generalization of proximity spaces.

Funcoids consist of two components the first a and the second 3. The first
component of a funcoid f is denoted as (f) and the second component is denoted
as < f’1>. (The similarity of this notation with the notation for the image of a
set under a function is not a coincidence, we will see that in the case of principal
funcoids (see below) these coincide.)

One of the most important properties of a funcoid is that it is uniquely deter-
mined by just one of its components. That is a funcoid f is uniquely determined
by the function (f). Moreover a funcoid f is uniquely determined by values of (f)
on principal filters.

Next we will consider some examples of funcoids determined by specified values
of the first component on sets.

Funcoids as a generalization of pretopological spaces: Let a be a pretopological
space that is a map o € .ZC for some set . Then we define o/ X = ||, x ax for
every set X € Z0U. We will prove that there exists a unique funcoid f such
that o = (f)|po 1 where P is the set of principal filters on U. So funcoids are
a generalization of pretopological spaces. Funcoids are also a generalization of
preclosure operators: For every preclosure operator p on a set U it exists a unique
funcoid f such that (f)|po T=1 op.

n fact I discovered funcoids pondering on topological spaces, not on proximity spaces, but
this is only of a historic interest.

149
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For every binary relation p on a set O there exists unique funcoid f such that
VX € PU: ()1 X =1 ()X

(where (p)” is defined in the introduction), recall that a funcoid is uniquely deter-
mined by the values of its first component on sets. I will call such funcoids principal.
So funcoids are a generalization of binary relations.

Composition of binary relations (i.e. of principal funcoids) complies with the
formulas:

(go ) =(g) o ()" and ((gof)™) =(f") ol¢")"
By similar formulas we can define composition of every two funcoids. Funcoids with
this composition form a category (the category of funcoids).
Also funcoids can be reversed (like reversal of X and Y in a binary relation)

by the formula (o, 3)~! = (3, ). In the particular case if u is a proximity we have

11 = 11 because proximities are symmetric.

Funcoids behave similarly to (multivalued) functions but acting on filters in-
stead of acting on sets. Below there will be defined domain and image of a funcoid
(the domain and the image of a funcoid are filters).

7.2. Basic definitions

DEFINITION 803. Let us call a funcoid from a set A to a set B a quadruple
(A, B,a, B) where a € #(B)7W a € Z(A)7P) such that

VX € F(A),Y € F(B): (V£ aX & X £ BY).

DEFINITION 804. Source and destination of every funcoid (A, B, «, 3) are de-
fined as:
Src(4,B,a,8)=A and Dst(A4,B,a,p) = B.

I will denote FCD(A, B) the set of funcoids from A to B.
I will denote FCD the set of all funcoids (for small sets).

DEFINITION 805. I will call an endofuncoid a funcoid whose source is the same
as it’s destination.

DEFINITION 806. ((A, B, «, 3)) 4 oy for a funcoid (A, B, a, ().

DEFINITION 807. The reverse funcoid (A, B,«a, 3)~! = (B, A, B,a) for a fun-
coid (A, B, a, B).

NoOTE 808. The reverse funcoid is not an inverse in the sense of group theory
or category theory.

PROPOSITION 809. If f is a funcoid then f~! is also a funcoid.
PROOF. It follows from symmetry in the definition of funcoid. O
OBvious 810. (f~1)~! = f for a funcoid f.

DEFINITION 811. The relation [f] € Z(% (Src f) x .#(Dst f)) is defined (for
every funcoid f and X € .Z(Src f), Y € Z(Dst f) by the formula X [f] Y & Y #
(.

OBVIOUS 812. X [f] Y & YV # (f)X < X # (f~1)Y for every funcoid f and
X e Z(Sref), Y e F(Dstf).

OBvIOUS 813. [f_l]:[f]fl for a funcoid f.
THEOREM 814. Let A, B be sets.
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1°. For given value of (f) € .#(B)7(A) there exists no more than one funcoid
f € FCD(A, B).

2°. For given value of [f] € Z(F(A) x .F(B)) there exists no more than one
funcoid f € FCD(A, B

)-
ProoF. Let f,g € FCD(A, B).
Obviously, (f) = (g9) =[f]=[g] and (f~') = (¢g~') =[f]=[g]. So it’s enough to

}
prove that [f]=[g]= (f) = (g)-
Provided that [ ]=[g] we have

FHXS X[ Ve X[gYe V(X

and consequently <f>X = (g)X for every X € F(A), Y € F(B) because a set of
filters is separable, thus (f) = (g). O

PROPOSITION 815. (f)L = 1 for every funcoid f.

PROOF. YV #4 (fil & L # (ffH)Y & 0« Y % L. Thus (f)L = L by
separability of filters. O

PROPOSITION 816. (fY(ZU J) = (fYZU(f)T for every funcoid f and Z,J €
F (Src f).

PROOF.
HIZUT) =
\yE0EaT) =
\rozs 7 ) -
{Zx(f §$§¢ y}:
{ YeZF }_
VAOHIVY A(NHT
yEJ
{ (<> )}
Thus (f)(ZU J) = {f)T U (f)J because J(Dst f) is separable. 0

PROPOSITION 817. For every f € FCD(A, B) for every sets A and B we have:

1°. K[fIZTuT < K[f]ZVK|[f] T for every I, J € #(B), K € Z(A).
2. TUTJ[fIKSIT[fIKVT[f]K for every Z,J € F(A), K € #(B).

PRrROOF.
1°.
KIflZTuJ <
(ZuT)N(HK #L7E
n{HK#LZB v gn(fHK+ 175
KIf1ZvKE([flT

2°. Similar.
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7.2.1. Composition of funcoids.

DEFINITION 818. Funcoids f and g are composable when Dst f = Srcg.

DEFINITION 819. Composition of composable funcoids is defined by the formula
(B,C, a9, 82) 0 (A, B,ay, 1) = (A,C,az 0 ay, B1 0 f2).

ProrosiTION 820. If f, g are composable funcoids then g o f is a funcoid.

ProOOF. Let f = (A,B,a1,061), g = (B,C,as,82). For every X € F(A),
Y € Z(C) we have

V#(woa)X & Y4 amarX & X £ Y & X &£ L1 & X % (B0 B2)).
So (A, C,as 0 aq, By 0 B2) is a funcoid. O
OBvIOUS 821. {(go f) = (g) o (f) for every composable funcoids f and g.

PROPOSITION 822. (hog)o f =ho(go f) for every composable funcoids f, g,

PROOF.

O

THEOREM 823. (go f)~' = f~1og~! for every composable funcoids f and g.
PROOF. ((go f) ™) =(f"1)olg )= (f"tog™"). O

7.3. Funcoid as continuation
Let f be a funcoid.

DEFINITION 824. (f)" is the function .7 (Src f) — .#(Dst f) defined by the
formula

()X = ()1 X.

DEFINITION 825. [f]" is the relation between .7 (Src f) and .7 (Dst f) defined
by the formula
XY o1 X [T Y.

OBVIOUS 826.

1o (f)" = (flot;
2 [f]* =+ o[flo 1.

OBvIOUS 827. (g)(f)"X = (go f)" X for every X € 7 (Src f).

THEOREM 828. For every funcoid f and X € Z(Src f), Y € Z(Dst f)

1o ()X =TIHT) wp &;
2. X[f]YevVXcuX,Ycup: X [f]*Y.

PROOF.
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2°.
X[f1Ye
yr{fix # L <
VY euwpY Y N{fiX # 1L <
VY eup ) : X [fTY-

Analogously X [f] Y & VX € upX 1 X [f] Y. Combining these two equiva-
lences we get

X[flYyevVXcupX,Ycuwp Yt X[fY VX cuwpX,Y cup): X [f]"Y.
1°.
yr{fix # L&
X[flye
VX cupX 2 X [f]Y &
VX cupX: YN{f)*X # L.

Let’s denote W = {J;Féi ;;( } We will prove that W is a generalized filter
("X

base. To prove this it is enough to show that V = { Xewp X} is a generalized filter

base.

Let P,Q € V. Then P = (f)"A, Q= (f)"B where A,B€upX; AlIB€up X
and RCPMNQfor R=(fY" (AN B) € V. So V is a generalized filter base and
thus W is a generalized filter base.

1L ¢ W & [|W # L by properties of generalized filter bases. That is

VX eupX : YN (f)'X £ L7O) o yn[(f)) up X # L.

Comparing with the above, Y M (f)X # L7 (Pst) o yn |_|<<f>*>* up X # L.
So (f)X = |_|<<f>*>* up X' because the lattice of filters is separable.
O

COROLLARY 829. Let f be a funcoid.
1°. The value of f can be restored from the value of (f)".
2°. The value of f can be restored from the value of [f]*.
PROPOSITION 830. For every f € FCD(A, B) we have (for every I,J € T A)
L= 1, (ATUT) = (HTU T
and
ST L TUT [fT K< TfI" KV [f]" K
(for every I, J € TA, K € IB),

(LT DK TuJ s K [T IVEK[f]"J
(for every I, J € B, K € TA).

PROOF. (f)"L = (f)L = (f)L = L;
YIUT) = (F) 1 TUT) = (AT TU) 1T = (T TU(f .
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I[fI'Le LA(HTI=0;

ILJ[f]'K &
TIUd) [T K=
TE#(NH1TIuJ)e
TEA()IUT) =
TR A () TU) T =
TE A () IVTK#(f)"T &

I[fI"KVJI[f]" K.

The rest follows from symmetry. O

THEOREM 831. (fundamental theorem of theory of funcoids) Fix sets A and
B. Let Lr = \f € FCD(A, B) : (f)" and Lg = A\f € FCD(A4, B) : [f]".
1°. Lp is a bijection from the set FCD(A, B) to the set of functions a €
Z(B)74 that obey the conditions (for every I,J € T A)

al=1, aoUuJ)=alUal (5)
For such « it holds (for every X € . (A))
(Lp'a)X = ()" up X. (6)

2°. Lg is a bijection from the set FCD(A, B) to the set of binary relations
0 € P(T A x T B) that obey the conditions

~(IoL), TUWJOK&SISKVJIK (foreveryI,Je TA K e TB),

—~(LdI), KéSIUJeKSIVKSJ (foreveryI,Je IB, Ke TA).
For such ¢ it holds (for every X € #(A), Y € Z(B))

X [Lp'6] Y VX eupX,Y eupy: X Y. (8)

PROOF. Injectivity of Ly and Lg, formulas (6) (for « € im Lr) and (8) (for

d € im Lp), formulas (5) and (7) follow from two previous theorems. The only

thing remaining to prove is that for every a and ¢ that obey the above conditions

a corresponding funcoid f exists.

2°. Let define o € Z(B)74 by the formula 9(aX) = {XeZE} for every
X € JA. (It is obvious that {Y)%g/B} is a free star.) Analogously it can be
defined B € .Z(A)7 B by the formula d(BY) = {ngA }. Let’s continue v and 3

to o’ € Z(B)7W and B’ € Z#(A)7(B) by the formulas
/X =[]l upXx and BV =[] upY
and § to ¢’ by the formula
XodYevXcuplk,Ycup): XJY.

YNadxX # 1L Yn[a) upX # L < [V (a)"upX # L. Let’s prove
that

W= (V) {a)" up X
is a generalized filter base: To prove it is enough to show that (a)*up X is a
generalized filter base. If A, B € (a)"up X then exist Xi, Xo € up X such that
A = OéXl, B= OéXQ.
Then a(X; M Xz2) € (a)"upX. So {a)" up X is a generalized filter base and
thus W is a generalized filter base.
By properties of generalized filter bases, [ (Y1) (a)* X # L is equivalent to

VX eupd :YNaX # 1,
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what is equivalent to
VX cupX, Y ceupY tYNaX # 1 &
VX eupX,Y eupl:Y €0(aX) &
VX eupX,Yeuply: XJdY.

Combining the equivalencies we get Y Ma’X # 1L & X ¢ Y. Analogously
XNBY£Le XY SoYNa'X # 1 e XNBY# L, that is (A, B, o/, B) is
a funcoid. From the formula Y Mao/X # 17 B) o X §' Y it follows that

X [(A,B,a',ﬂ’)]* Y&t YNd 1 X4 L1 XMMY & XY,

1°. Let define the relation § € P2 (T A x I B) by the formula X § YV <1
YNaX # L.

That —(I 6 L) and —(L § I) is obvious. We have

IUJdK &

tKNa(IUd)# L

TKN(alUal)# 1L <

TKNal #1VtKNad #1 <
I6KVJOK

and

KélIuJ<s
t(IuJ)NaK # 1 <
tIUutHnaK # 1 &

tINaK #1vtJNaK # 1 <
KoIvVKSSJ

That is the formulas (7) are true.
Accordingly to the above there exists a funcoid f such that

X[f]YeVvVXecupX,Yeup): XY
For every X € JA,Y € B we have:
AYN{H 1 X ALt XY o X0V &Y NaX # L,
consequently VX € ZA:aX = (f) 1 X = (/)" X.
(I

Note that by the last theorem to every (quasi-)proximity ¢ corresponds a unique
funcoid. So funcoids are a generalization of (quasi-)proximity structures. Reverse
funcoids can be considered as a generalization of conjugate quasi-proximity.

COROLLARY 832. If a € F(B)74, 3 € F(A)7E are functions such that
Y 4 aX & X %£ BY forevery X € TA, Y € 7B, then there exists exactly one
funcoid f such that (f)* = a, (f~1)* = 3.

PROOF. Prove a(I U J) = al UaJ. Really,
Y#aIUJ) s TUJ£BY o T£BYVI#FY o
Y#4alVY #(aJ &Y %allUal

So a(I UJ) = al UaJ by star-separability. Similarly S(I U J) = pgIUBJ.
Thus by the theorem there exists a funcoid f such that (f)* =, (f~1)* = B.
That this funcoid is unique, follows from the above. O
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DEFINITION 833. Any Rel-morphism F' : A — B corresponds to a funcoid
1FCC I € FCD(A, B), where by definition <TFCD F>X = |_|‘g<<F>*>* up X for every
X e Z(A).

Using the last theorem it is easy to show that this definition is monovalued and
does not contradict to former stuff. (Take o =1 o(F)".)

PROPOSITION 834. (1FP f)"X = (f)*X for a Rel-morphism f and X €
T Sre f.

ProOF. (1% )" X = min(1)"((f)")" up X =1 (f)"X = (/)" X. 0
COROLLARY 835. [tF¢P ﬂ* = [f]" for every Rel-morphism f.

ProOF. X [fFP f]"Y & Y £ (1FP V' X & YV £ (/)’X & X [f]" Y for
XeISref,Y e TDstf. O

DEFINITION 836. $FCP(A.B) £ —4FCD (A B f) for every binary relation f be-
tween sets A and B.

DEFINITION 837. Funcoids corresponding to a binary relation (= multivalued
function) are called principal funcoids.

PROPOSITION 838. 1FCP go $FCD f —4FCD (4o ) for composable morphisms f, g
of category Rel.

PROOF. For every X € .7 Src f
<TFCD go TFCD f>*X — <TFCD g>*<TFCD f>*X —
(@) ()X = (g0 /)"X = (1P (go ))"X.
O

We may equate principal funcoids with corresponding binary relations by the
method of appendix A. This is useful for describing relationships of funcoids and
binary relations, such as for the formulas of continuous functions and continuous
funcoids (see below).

Thus (FCD(A, B),Rel(A, B)) is a filtrator. I call it filtrator of funcoids.

THEOREM 839. If S is a generalized filter base on Src f then (f)[]S =
[(f))"S for every funcoid f.

PROOF. (f)[]S C (f)X for every X € S and thus (f)[]S C[{{(f))*S.
By properties of generalized filter bases:

(NH[s=
1) [ ]85 =

|_|<<f>*>*{379 €S :)if = upP} -

(f)"X
H{EIPES:XGupP}:I
[1HP=

PeS

[1ns.
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PROPOSITION 840. X [f][]1S < 3V e S: X [f]Vif fis a funcoid and S is a
generalized filter base on Dst f.

PROOF.

X[f[]Se[]snHx#Le J(Ham s+ Le
(by properties of generalized filter bases) <
We((fHAMS: YA LeIeS: (NHXNY#LeIYesS: X[f]lY.
d
DEFINITION 841. A function f between two posets is said to preserve filtered

meets, when f[S = [(f)"S whenever []S is defined for a filter base S on the
first of the two posets.

THEOREM 842. (discovered by ToDD TRIMBLE) A function ¢ : % (A4) — % (B)
preserves finite joins (including nullary joins) and filtered meets iff there exists a
funcoid f such that (f) = ¢.

ProOOF. Backward implication follows from above.

Let v = ¢|7 4. Then v preserves bottom element and binary joins. Thus there
exists a funcoid f such that (f)" = .

It remains to prove that (f) = ¢.

Really, (f)X =T1((f)") up X =[1(¥))" up X =) " up X = p[Jup X = pX
for every X € Z(A). O

COROLLARY 843. Funcoids f from A to B bijectively correspond by the formula
(f) = ¢ to functions ¢ : F(A) — .F(B) preserving finite joins and filtered meets.

7.4. Another way to represent funcoids as binary relations

This is based on a ToDD TRIMBLE’s idea.

DEFINITION 844. The binary relation £¥ € (% (Src&) x F(Dst&)) for a
funcoid £ is defined by the formula A £® B < B J (£)A.

DEFINITION 845. The binary relation £* € 2 (7 Srcé x J Dst€) for a funcoid
¢ is defined by the formula

At*Be BJ (A s BeuplE)A.

PROPOSITION 846. Funcoid £ can be restored from

1°. the value of £®;
2°. the value of £*.

PRrROOF.

1°. The value of (£) can be restored from £®.
2°. The value of (€)" can be restored from &*.

THEOREM 847. Let v and £ be composable funcoids. Then:
1°. (80 1® = (Eov)¥;
2°. EFov* = (Lov)*.
PROOF.
1°.
A(E®or®)C e 3B (AV®B/\B§® C) &
ABe FDstv): (B W) AANC T {E)B) <
COEWASCT oA A(Eov)®C.



7.5. LATTICES OF FUNCOIDS 158

2°.

A ov)C&3IB: (Av"BABE (O) &
IB: (Beup(v)ANC € up({)B) < IB c up(v)A : C € up(§)B.

A(ov)* C e Cecupllov)B < C eup()(v)B.
It remains to prove

B e up()A: C € up(§)B & C € up(€) (V) A.

IB € up(v)A: C € up(§)B = C € up(&)(v) A is obvious.
Let C € up{¢)(v)A. Then C € up[{(£))" up(v)A; so by properties of general-
ized filter bases, IP € ((£)) " up(v)A: C € up P; 3B € up(v)A: C € up(¢)B. O

REMARK 848. The above theorem is interesting by the fact that composition
of funcoids is represented as relational composition of binary relations.

7.5. Lattices of funcoids

DEFINITION 849. fC g def [f] C |g] for f,g € FCD(A, B) for every sets A, B.

Thus every FCD(A, B) is a poset. (It’s taken into account that [f] # [g] when

f#9)
We will consider filtrators (filtrators of funcoids) whose base is FCD(A, B) and
whose core are principal funcoids from A to B.

LEMMA 850. (f)"X = H‘?Eupf<F)*X for every funcoid f and typed set X €
T (Src f).

PROOF. Obviously (f)*X C[T7e,, ;(F)"X.

Let Beup(f)"X. Let F =X xBUX x T.
(Fp)*X = B.
Let P € 7 (Src f). We have

L#PCX = (Fg)"P=BJ(f)*P

and
PZX = (Fg)"P=TJ(f)"P.

Thus <FB>
Thus VB € up(

J(f)"P for every P and so Fg O f that is Fg € up f.
)"
So |_|F€upf<F> X

)
X:B GupﬂFeupf<F) X because B € up(Fp)*X.
C(f)X. O

THEOREM 851. (/)X = ﬂfEupf<F>X for every funcoid f and X € % (Src f).
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ProOF.
F
[] )=
Feup f
F F
|_| |_|<<F>*>* up X =
Feup f
F F
[ ] &x=
Feup f X€up X
F F
[l ] #®x=
X€eup X Feup f
F
[1 nx=
Xeup X
(Hx
(the lemma used). O

Below it is shown that FCD(A, B) are complete lattices for every sets A and B.
We will apply lattice operations to subsets of such sets without explicitly mentioning
FCD(A, B).

THEOREM 852. FCD(A, B) is a complete lattice (for every sets A and B). For
every R € ZFCD(A,B) and X € TA,Y € IB
. X[UR'Y & 3feR:X[f]"Y;
2 (UR)X = Ljeplf) X,

PROOF. Accordingly [27] to prove that it is a complete lattice it’s enough to
prove existence of all joins.

2. aX ¥ |_|f€R<f>*X. We have al = 1;

| «nTun ) =

ferR

L ru (T =
fER
ol Uad.

So (h)* = a for some funcoid h. Obviously
VfeR:h3F. 9)

And h is the least funcoid for which holds the condition (9). So h =| | R.
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1°.

x[Ua]'y

*

TYFI< R> X441
YN X#£Le

fER
3f€R:TY|‘I(f>*X7éL<:>
erR:X[f]*Y

(used proposition 610).
(]

In the next theorem, compared to the previous one, the class of infinite joins is
replaced with lesser class of binary joins and simultaneously class of sets is changed
to more wide class of filters.

THEOREM 853. For every f,g € FCD(4,B) and X € #(A) (for every sets
A, B)

1. (fug)X = (/)X L (g)X;
2°. [fugl=1[flUlgl

PROOF.

1°. Let aX ¥ (Hau(gx; gy &

Y € #(B). Then

<f71>y L <g*1>y for every X € 7 (A),

YNaX # 1 &

YI(HX#LVIT(g)X # L&

XO(fHY#£LvXn(gHY#1Le
XNBY # L.

So h = (A, B,«,p) is a funcoid. Obviously h 3 fand h Jg. f pJ fandp d g
for some funcoid p then (p)X J (f)X U (¢)X = (h)X that isp I h. So fUg=h.
2°. For every X € .#(A), Y € #(B) we have

X[fuglye
Yni{fugX # L
YN{(HHlXU(gX) # L e
VYI(HX A LVYN{X # L&
X[flYVXI[g V.

6. More on composition of funcoids

PROPOSITION 854. [go f] = [g] o (f) = <9_1>_1

funcoids f and g.

o [f] for every composable
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PROOF. For every X € .Z(Src f), Y € % (Dstg) we have
XgoflY e
YN{goflX # L &
Yig{f)ix # L <
(NX )Y <
X ([glo (/)Y

and

O

The following theorem is a variant for funcoids of the statement (which defines
compositions of relations) that  (go f) z< Jy: (z f y Ay g 2) for every z and z
and every binary relations f and g.

THEOREM 855. For every sets A, B, C and f € FCD(A, B), g € FCD(B,C)
and X € #(A), Z2e€ Z(C)

Xgof] 2 Iyecatoms” B (X [flyrylg 2).

PRrOOF.
Jy € atoms” B (X [fly Ay [g] 2) &
Jy € atoms” B (ZM{(gly # LAyN{(fHlX # 1) &
dy e atoms” (B) . ZN{gy#LAyE(HX)=>
Z(g(NHHX # L&
Xlgof] 2
Reversely, if X [go f] Z then (f)X [g] Z, consequently there exists y €
atoms(f)X such that y [g] Z; we have X [f] y. 0

THEOREM 856. For every sets A, B, C
1°. fo(gUh)=fogU foh for g,h € FCD(A, B), f € FCD(B, C);
2°. (gUh)of=gofUho ffor g h € FCD(B,C), f € FCD(A, B).

PRrROOF. I will prove only the first equality because the other is analogous.
For every X € .Z(A), Z € F(C)

X[fo(guh) Z&
Elyeatomsg(B):( guhlynylf] 2) &

Jy € atoms” B 1 (X [gly v X (W] y) Ay [f] 2) &
Jy € atoms” B (X [gly Ay [f] 2)V (X W] yAy[f] 2) <
EIyEatoms"ﬂj(B) (X gy Ay [f] Z)\/EIyEatomsy(B) (X hyAy[f] 2) &
X[foglZVX|[foh]| Z&

X[fogUfoh] Z
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Another proof of the above theorem (without atomic filters):

PROOF.
(f o (gUR)X =
(g URYE =
X U (h)X) =
(X U(f)(h)X =
(o)X U (f o)X =
(fogU foh)X.
O
7.7. Domain and range of a funcoid
DEFINITION 857. Let A be a set. The iddentity funcoid 15P =
(A, A,idz(a),idz(a))-
OBvIOUS 858. The identity funcoid is a funcoid.
PROPOSITION 859. [f] = [Lpgt ] © (f) for every funcoid f.
PRrOOF. From proposition 854. O

DEFINITION 860. Let A be a set, A € .7 (A). The restricted identity funcoid
id} P = (4, A, AN, AN).
PRrROPOSITION 861. The restricted identity funcoid is a funcoid.

PROOF. We need to prove that (AMX)MNY # L < (ANY)NAX # L what is
obvious. g

OBvIous 862.
1°. 1FCD -1 _ 1FCD;
° (- AFCD> L1 _ FcD
OBvIOUS 863. For every X,V € .#(A)
1. X 1FPl Yy e xny+£ L
2. X [iafP] y e Anaxny £ L.

DEFINITION 864. I will define restricting of a funcoid f to a filter A € .% (Src f)
by the formula

fla=foidi®.
DEFINITION 865. Image of a funcoid f will be defined by the formula im f =
<f>—|—9(Src .
Domain of a funcoid f is defined by the formula dom f = im f~!.
OBvIOUS 866. For every morphism f € Rel(A4, B) for sets A and B
1°. im 1FP f =t im f;
2°. dom 1FCP f =1 dom f.

PROPOSITION 867. (f)X = (f)(X M dom f) for every funcoid f, X € .Z(Src f).
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PrOOF. For every Y € #(Dst f) we have
yn{fi(XxXnNdomf) # 1 &
Xl‘ldomfl_l<f_1>y7éL<:>
Ximf'n(fHY+£1le
XN{(fMHYV+41le
yHx # L.
Thus (f)(X Ndom f) = (f)X because the lattice of filters is separable. O
PROPOSITION 868. (f)X = im(f|x) for every funcoid f, X € #(Src f).
PROOF.
im(f|x) =
(Foidi®)T =

(1) (d°)T =
(f)@nT) =
().
O

PROPOSITION 869. X Mdom f # L < (f)X # L for every funcoid f and
X e Z(Srcf).

PRrooF.
XMNdom f # 1 &
XN(fHTIOD £ ) &
TRNHX# 1L e
()X # L.

— acatoms? (8¢ /)
COROLLARY 870. dom f = U{W}

PRrROOF. This follows from the fact that .#(Src f) is an atomistic lattice. O

PropPOSITION 871. dom(f|4) = A Mdom f for every funcoid f and A €
F(Src f).

PROOF.

dom(f|4) =
im(id P of )
() ()T =
AN(fHT =
AMdom f.

O

THEOREM 872. im f = |_|g<im>* up f and dom f = |_|y<dom>* up f for every
funcoid f.



7.8. CATEGORIES OF FUNCOIDS 164

PRrROOF.
im f =

(HT =

|_| imF =
Feup f
F
[ ]im)" up £
The second formula follows from symmetry. O
PROPOSITION 873. For every composable funcoids f, g:
1°. If im f J dom g then im(go f) =img.
2°. If im f C dom g then dom(g o f) = dom f.

PROOF.
1°.
im(go f) =
(go /)T =
(@ {NT =
(g)im f =
(g)(im f M dom g) =
(g9) dom g =
(9)T =
img.
2°. dom(go f) = im(f ! og~!) what by proved above is equal to im f~* that
is dom f.
O

7.8. Categories of funcoids

I will define two categories, the category of funcoids and the category of funcoid
triples.
The category of funcoids is defined as follows:

Objects are small sets.
e The set of morphisms from a set A to a set B is FCD(A, B).
e The composition is the composition of funcoids.
e Identity morphism for a set is the identity funcoid for that set.
To show it is really a category is trivial.
The category of funcoid triples is defined as follows:
e Objects are filters on small sets.
e The morphisms from a filter A to a filter B are triples (A, B, f) where
f € FCD(Base(A), Base(B)) and dom f T AAim f C B.
e The composition is defined by the formula (B,C, g) o (A, B, f) = (A,C,go
f)
e Identity morphism for a filter A is idi‘CD.

To prove that it is really a category is trivial.
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PROPOSITION 874. 1FCP is a functor from Rel to FCD.

ProOOF. 1FCP (go f) =1FP go 4FCD f was proved above. 7P 1Rel = 1FCD g
obvious. (]

7.9. Specifying funcoids by functions or relations on atomic filters

THEOREM 875. For every funcoid f and X € % (Src f), Y € % (Dst f)

1°. (f)X = LI{(f))" atoms X;
2°. X [f]Y & Jz € atoms X,y € atoms Y : x [f] y.

PROOF.
1°.
NN £ L
v
dz € atoms X : xl‘l< WL

dx € atoms X : Y1 {flax # L.

ANX = L0V atomsX = AL atomsX.  So (HX =
LI{(f))" atoms X by corollary 568.

200 If X [f] Y, then YN {f)X # L, consequently there exists y € atoms ) such
that y M (f)X # L, X [f] y. Repeating this second time we get that there exists
x € atoms X such that = [f] y. From this it follows

Jx € atoms X,y € atoms Y : z [f] y.

The reverse is obvious.

COROLLARY 876. Let f be a funcoid.

o The value of f can be restored from the value of (f)|toms® srern -
e The wvalue of f «can be restored from the value of

[f] |atomsy(Src ) x atomsZ (Dst f) -
THEOREM 877. Let A and B be sets.

1°. A function a € ﬁ(B)atomsg( " such that (for every a € atoms” (1)

aa & |—|<|_|O<a>* oatomso’r> upa (10)
can be continued to the function (f) for a unique f € FCD(A, B);
(f)Xle(a)*atomsX (11)

for every X € .Z(A).
2°. A relation § € Z(atoms” ) x atoms” (B)) such that (for every a €
atoms” (1) b € atoms” (P))
VX €upa,Y € upbdxr € atoms T X,y € atomsTY :zdy=adbd (12)
can be continued to the relation [f] for a unique f € FCD(A, B);
X[fl]Y <& dz €catoms X,y € atomsY :x dy (13)
for every X € #(A), Y € Z(B).

PrOOF. Existence of no more than one such funcoids and formulas (11) and
(13) follow from the previous theorem.
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1°.  Consider the function o/ € .#(B)74 defined by the formula (for every
X e TJA)

o' X =| [(a)" atoms 1 X.
Obviously o/ L 74 = 1 7(B) For every I,J € TA
d(ITUJ)=
| J(a)" atoms 1 (Tu.J) =
U(a)*(atoms TUatoms T J) =
|_|(<a>* atoms 1 I U (a)" atoms 1 J) =
|_|<a>* atoms 1 I U |_|<a>* atoms 1 J =
aTuaJ.

Let continue o’ till a funcoid f (by the theorem 831): (f)X =[](a/)" up X.
Let’s prove the reverse of (10):

|_|<|_| o{a)” o atoms o T>* upa =
|_|<|—|O<O‘>*>*<at0ms>*<ﬂ* upa C

*

[ et@)) {{a}} =
M (Lete)"){at} =
ML fad} =
|_|{|_|{aa}} _

[ {aa} =

aa.

Finally,

aa = |_|<|_| o{a)” o atoms o T>* upa = I_l(a’>* upa = (f)a,

so (f) is a continuation of a.
2°. Consider the relation 6’ € P(7 Ax 7 B) defined by the formula (for every
XeTJA Y € IB)

X0Y e Ircatomst X,y CatomsTY :x6y.
Obviously ~(X ¢ L7B)) and (L7 §' V).
For suitable I and J we have:
IuJjoé'y <
Jz € atoms T (IUJ),y €atoms 1Y 120y <
Jx € atoms 1 I Uatoms T J,y € atoms 1Y :zd y <
Jr € atoms 1 I,y € atoms 7Y 1z dyV dx € atoms 1 J,y €atoms 1Y : 20 y <
18YVISY;
similarly X &' ITUJ & X 6’ IV X ¢ J for suitable I and J. Let’s continue ¢’ till a
funcoid f (by the theorem 831):

X[f]YeVXcupX,Y eupy: XY,
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The reverse of (12) implication is trivial, so
VX €upa,Y € upbdzr € atoms T X,y € atoms Y :zdy < adb.
Also
VX €upa,Y € upbdxr € atoms T X,y € atomsTY :zdy &
VX cupa,Y cupb: XY &
a lf)b.

So a d b< af]b, that is [f] is a continuation of ¢.

One of uses of the previous theorem is the proof of the following theorem:

THEOREM 878. If A and B are sets, R € ZFCD(A,B), z € atoms” () y
atoms” (%) then

1°. (M R)x =[Nseplf)e;
2. z[[IRlyeVfeR:x|[fly.
PRrOOF.

2°. Let denote z 6 y < Vf € R : x [f] y. For every a € atoms” ) b ¢

atoms? (B)

VX €upa,Y € upbdr € atoms T X,y € atoms 1Y :xJy =
Vfe R, X €upa,Y € upbdx € atoms 1 X,y € atoms 1Y : z [f]y =
Vf€R,X cupa,Y cupb: X [f]"Y =
VieER:a[f]bs
adb.

So by theorem 877, ¢ can be continued till [p] for some funcoid p € FCD(A, B).
For every funcoid ¢ € FCD(A, B) such that Vf € R: ¢ C f we have

rlgy=VfeR:z[flycrdysxply,

so ¢ C p. Consequently p =[] R.
From this z [ |R]y < Vf e R:z [f] y.
1°. From the former

y e atoms<|_| R>x &

y|_|<|_|R>:v7éJ_<:>

VieR:yN{flra# L <

y € ﬂ(atoms)*{}f@%} &
y € atoms [ | (f)z

feR

for every y € atoms” (1), From this it follows ([ R)x = [Nier(fz.
U

THEOREM 879. go f = HFCD{%} for every composable funcoids f

and g.
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PROOF. Let 2 € atoms? 5f) Then

(go flz =
(9)(f)x = (theorem 851)

_]
g
=
S
I

(theorem 851)

rl (G) |_| (F)x = (theorem 839)

Geupyg Feup f

7z oz
[1 [ @ Faz=

Geupg Feup f

reunr o 2o -
,

|—|{ (Go Flz } — (theorem 878)

Feuf,Geupyg

FCD GoF
<|—|{F€upf,Geupg}>x'

FCD o
Thus go f =] {%}’ .

ProOPOSITION 880. For f € FCD(A, B), a finite set X € A and a function
t € Z(B)X there exists (obviously unique) g € FCD(A, B) such that (g)p = (f)p
for p € atoms” () \ atoms X and (g)@{z} = t(z) for z € X.

This funcoid ¢ is determined by the formula

9= (f\(@X PP T) U [ | (@fz} xFP t(a)).

zeX

ProoF. Take g = (f\ (@X xFP 1)) Uyex (@{q} xFCD ¢(z)) that is

g= (fﬂX X T) U Ll(@{q} XFCDt(x)) =

qgeX

(fn(XxT))u |_| (@{q} x P t(2)).

qeX

(9)p = (theorem 853) =
(FNE xT)wu | ] (@{g) x"P @)y =

geX

(theorem 878) = ((f)p M (X x T)p) U |_| (@{q} xFPt(z))p.
geX
So (gy@{z} = ((f) " @{z} 1 L) Ut(z) = t(x) for z € X.
If p € atoms” (1) \ atoms X then we have (¢)p = ((f)p1T) U L = (f)p. O

COROLLARY 881. If f € FCD(A, B), x € A, and Y € Z(B), then there exists
an (obviously unique) g € FCD(A, B) such that (g)p = (f)p for all ultrafilters p
except of p = @{z} and {g)@{z} = ).

This funcoid g is determined by the formula

g=(f\(@fz} x"PT)u{a} x"PY).
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THEOREM 882. Let A, B, C be sets, f € FCD(A, B), g € FCD(B,C), h €
FCD(4,C). Then
gof#he gthof .
PROOF.
gof4th&
ceatoms” @) 1af(go f)Nh]ce
¢) &
)

da € atoms‘g(‘q)

Ja € atoms” ) ¢ € atoms” () : (a [go f] ¢ Aa [h]

s7(B) ¢ e atoms” (@ : (a [f]bAD[g] ¢ Aah]

3b € atoms” B ¢ € atoms” () : (b [g] cA b [hof '] ¢
Jb € atoms” P ¢ € atoms” () : b [gn(hofH] e

g#£hof~ 1.

Ja € atoms” (4D ,b € atoms

7.10. Funcoidal product of filters

A generalization of Cartesian product of two sets is funcoidal product of two
filters:

DEFINITION 883. Funcoidal product of filters A and B is such a funcoid A x P

B € FCD(Base(.A), Base(B)) that for every X € Base(A), Y € Base(B)
X [AXFPB Y« X £ ANY #£B.
PROPOSITION 884. A xFCP B is really a funcoid and

B if X # A
FCD =
<_A X B>X = {Lﬁ(Base(B)) if X < A.

Proor. Obvious. (]

OBVIOUS 885.

o tFCOWY) (A x B) =tV Ax 1V B for sets AC U and BC V.
o 1FCD (A x B) =1 Ax 1 B for typed sets A and B.

PROPOSITION 886. f C A X" P B <« domf C AAimf C B for every f €
FCD(A, B) and A € Z(A), B € F(B).

Proor. If f C AxFPB then dom f C dom(Ax"PB) C A, im f C im(AxFP
B)C B. If dom f C AAim f C B then

VX € F(A),YeF(B): (X[fIY=XNA#LAYNB# L)
consequently f C A xFP B, O

The following theorem gives a formula for calculating an important particular
case of a meet on the lattice of funcoids:

THEOREM 887 f(AxFPRB) = FCD of o 1dFCD for every funcoid f and
A e Z(Srcf), Be F(Dstf).

Proor. h & idiPofo idffD. For every X € % (Src f)

(M = (id5° ) () (1) X = BT (f)(ANX),
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From this, as easy to show, hC fand hC AxFPB. IfgC fAgC Ax P B
for a g € FCD(Src f,Dst f) then domg C A, img C B,
(9)X = BN {(g)(ANX) C BN (£)(ANX) = (5 ) (1) (15 x = (),
gC h. So h=fr(AxFPR). O

COROLLARY 888. f|a4 = f M (A x"C TFDstN)) for every funcoid f and A €
F(Src f).

PROOF. f 1 (AXFEL TFMstN)) —idf L., of 0id P = foid P = fla. O

COROLLARY 889. f # A xFP B < A [f] B for every funcoid f and A €
F(Srcf), Be F(Dst f).

PrOOF.
FAAXFPB o
(FIAXFPBYT £ 1 &
<id§CD of o idifD>*T PN

<idgCD><f><idffD>*T 41
BOHANT) £ L <
BA(f)A+ L <

A[f] B.

COROLLARY 890. Every filtrator of funcoids is star-separable.

PROOF. The set of funcoidal products of principal filters is a separation subset
of the lattice of funcoids. O

THEOREM 891. Let A, B be sets. If S € Z(F(A) x F#(B)) then
[1 (AxFPB)=[|dom S x"P[]ims.
(A,B)eS

PROOF. If 2 € atoms” (4) then by theorem 878

< |—| (AXFCDB)>x: |_| (A xFP B)a.

(A.B)es (A.B)esS
If x #[]dom S then
V(A B) e S: (zMA# LA{AXP Bz =B);
A xFCD By
{<(A,B)eg }‘ims?
if x <[ |dom S then
IAB) €S (zNA=LA(AXFP Bz = 1),

{<,4 B>m} L

(A,B)e S

< I—l (AXFCDB)>I—{[—|imS if z % []dom S

(AB)ES 17(B)if £ < []dom S.
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From this the statement of the theorem follows. O

COROLLARY 892. For every Ag, A1 € F(A), By,B1 € F(B) (for every sets
A, B)
(AO ><FCD BO) M (Al ><FCD Bl) _ (AO |_|A1) ><FCD (BO ﬂBl)'

PROOF. (Ao x FCD BO) M (.Al x FCD Bl) = H{A x FCD Bo,.A1 x FCD Bl} what is by
the last theorem equal to (A M.41) xFP (By 1M By). O

THEOREM 893. If A, B are sets and A € Z(A) then Ax"P is a complete
homomorphism from the lattice .7 (B) to the lattice FCD(A, B), if also A # 1 ¥ ()
then it is an order embedding.

PROOF. Let S € #.%(B), X € T A, x € atoms” ().

(LJeaxoy"s) x =

[ ] (A<F® B x =

BeS
]S it X €0A
17B) if X ¢ 0A

(ax7] Js) x:
(MYax )’ s)e =

|—| (A x FCD B)z =

BeS
[1S ifextA
17B) if =< A.

Thus | J(AxFP)"S = A xFP| | S and [(AxFDP)"S = A xFP]s.
If A+# L then obviously A xFP X C AXxFPY o X C Y. O

The following proposition states that cutting a rectangle of atomic width from
a funcoid always produces a rectangular (representable as a funcoidal product of
filters) funcoid (of atomic width).

PRrROPOSITION 894. If f is a funcoid and a is an atomic filter on Src f then
fla=ax"P(f)a.
PROOF. Let X € .Z#(Src f).
X #a= (fl)X =(fla, X=<a=(flox =171,
O

LEMMA 895. A\B € .Z(B) : TZ xFP B is an upper adjoint of A\f € FCD(A, B) :
im f (for every sets A, B).

PROOF. We need to prove im f C B < f C T xFP B what is obvious. O
COROLLARY 896. Image and domain of funcoids preserve joins.
PrOOF. By properties of Galois connections and duality. (]

PROPOSITION 897. f C A xFP B & dom f C A Aim f C B for every funcoid
f and filters A € §(Src f), B € F(Dst f).
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ProOF. fC A xFP B = dom f C A because dom(A x P B) C A.
Let now domf C AAimf C B. Then (/)X # L = X % A that is f C
A xFC T Similarly f C T xFP B. Thus f C A xFP B. O

7.11. Atomic funcoids

THEOREM 898. An f € FCD(A, B) is an atom of the lattice FCD(A, B) (for
some sets A, B) iff it is a funcoidal product of two atomic filter objects.

PROOF.

=. Let f € FCD(A, B) be an atom of the lattice FCD(A, B). Let’s get elements
a € atomsdom f and b € atoms(f)a. Then for every X € .Z(A)

X=<a= (ax"Po)X=1LC (X, X#a= (ax"Phx=0bC (f)x.

So a xFP b T f; because f is atomic we have f = a x P b.
<. Let a € atoms” ) b € atoms”(B)| f € FCD(A, B). If b < (f)a then —=(a [f] b),
f = ax"Pb if b C (f)a then VX € F(A) : (X % a = (f)X 2 b),
f 3axFPb. Consequently f =< a x P bV f Jax"Pb; that is a xFP b
is an atom.

t
THEOREM 899. The lattice FCD(A, B) is atomic (for every fixed sets A, B).

PROOF. Let f be a non-empty funcoid from A to B. Then dom f # L, thus
by theorem 576 there exists a € atomsdom f. So (f)a # L thus it exists b €
atoms(f)a. Finally the atomic funcoid a xFP b C f. O

THEOREM 900. The lattice FCD(A, B) is separable (for every fixed sets A, B).

PROOF. Let f,g € FCD(A, B), f C g. Then there exists a € atoms” (1) such
that (f)a C (g)a. So because the lattice .7 (B) is atomically separable, there exists
b € atoms such that (f)amb= L and b C (g)a. For every z € atoms” (4)

(flar(a x Feb bya= (flanb= 1,
r#a= <f>x|_|<a><FCDb>x: (flram L = L.
Thus (f)z N <a x FCb b>x = 1 and consequently f = a x P p.
(a x Fep bya=0bC (g)a,
r#a=(a x FCD byx =L C (g)x.
Thus <a x FCP b>x C (g)x and consequently a x"P b C g.
So the lattice FCD(A, B) is separable by theorem 225. O
COROLLARY 901. The lattice FCD(A, B) is:
1°. separable;
2°. strongly separable;
3°. atomically separable;
4°. conforming to Wallman’s disjunction property.
PROOF. By theorem 233. U

REMARK 902. For more ways to characterize (atomic) separability of the lattice
of funcoids see subsections “Separation subsets and full stars” and “Atomically
separable lattices”.

COROLLARY 903. The lattice FCD(A, B) is an atomistic lattice.
ProoF. By theorem 231. O
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PROPOSITION 904. atoms(f Ll g) = atoms f Uatoms g for every funcoids f, g €
FCD(A, B) (for every sets A, B).

PrOOF. a xFPb # fUg e a[fUglbsalflbValg be axFPh#
fVaxFPp £ g for every atomic filters a and b. O

THEOREM 905. The set of funcoids between sets A and B is a co-frame.

PRrooOF. Theorems 831 and 533. O

REMARK 906. The above proof does not use axiom of choice (unlike the below
proof).

See also an older proof of the set of funcoids being co-brouwerian:

THEOREM 907. For every f,g,h € FCD(A4,B), R € ZFCD(A, B) (for every
sets A and B)

1% fR(gUh) = (frg)U(fTTh);
2°. fUMR=TUfU)"R.

ProOOF. We will take into account that the lattice of funcoids is an atomistic
lattice.

1°.

atoms(f M (gL h)

atoms f N atoms(g U

)=
h) =
atoms f N (atoms g U atoms h) =
(atoms f N atoms g) U (atoms f Natoms h) =

)=

atoms(f Mg) Uatoms(f Mh
atoms((f Mg) U (f M h)).
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2°.
atoms(f U |—|R> =
atoms f U atoms |_| R =
atoms f U ﬂ(atoms>*R =
ﬂ((atoms fHU)*(atoms)"R = (use the following equality)
ﬂ(atoms>*<fu>*R =

atoms |_|<f|_|>*R
{(atoms f)U)" (atoms) R =
{ (atoms f)U A

A € (atoms)"R

(atoms f)U A
dC € R: A= atomsC

CGR

)
}
)
{atomb fuQ) }
|
}-

{ (atoms f) U (atoms C)

CeRr
atoms B
{EIC’GR B=fucC
atoms B
{Be (fuy"c

*

{atoms)" (fU)"R
]

CONJECTURE 908. f M| |S = | |J{(fr)*S for principal funcoid f and a set S of
funcoids of appropriate sources and destinations.

REMARK 909. See also example 1336 below.

The next proposition is one more (among the theorem 855) generalization for
funcoids of composition of relations.

ProprosiTION 910. For every composable funcoids f, g

atoms(go f) =

T ><FCD

Z (Dst g)

x € atoms? (5rcf) , 2 € atoms

Jy € atoms” (Pst f) sz xFPy € atoms f Ay xFP 2 € atoms g)

Proor. Using the theorem 855,

xFP 2 £ gof o xlgo f] 2z & Fy € atoms” P+ (2 xFPy £ FAyxFPL 2 £ g).
O
COROLLARY 911. gof = |_|{ Fe%omﬁ"g@wmsg } for every composable funcoids

I g

THEOREM 912. Let f be a funcoid.
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1°. X [f] Y & JF € atoms f : X [F] Y for every X € F(Srcf), Y €
Z (Dst f);
2°. ()X = Ureatoms  (F)X for every X € F(Src f).
PROOF.
1°.
JF catoms f: X [F] Y <
Ja € atoms” 5 b € atoms” P« (o xFPh £ fFAX [a x Fe b V) <
Ja € atoms” ) b € atoms” (Pt /) . (axFPh# fAaxFPbstxxFPY) o
JF catomsf: (F# fAF # X xFPYy) o
fAXXFPY &
X [f1Y.

2°. Let Y € Z(Dstf). Suppose Y # (f)X. Then X [f] V; IF €
atoms f : X [F] V; IF € atomsf : YV # (F)X; YV % Upecatoms f(F)X. So
(F)X T Upcatoms r (F)X. The contrary ()X I | |pg,poms (F)X is obvious.

O

7.12. Complete funcoids

DEFINITION 913. 1 will call co-complete such a funcoid f that (f)*X is a
principal filter for every X € 7 (Src f).

OBviOoUs 914. Funcoid f is co-complete iff (f)X € P(Dst f) for every X €
B(Sre f).

DEFINITION 915. T will call generalized closure such a function a € (7 B)74
(for some sets A, B) that
1° ol = 1;
2.V, Je TA:a(IUJ)=al Ual.

OBvIOUS 916. A funcoid f is co-complete iff (f)* = 1 o a for a generalized
closure a.

REMARK 917. Thus funcoids can be considered as a generalization of general-
ized closures. A topological space in Kuratowski sense is the same as reflexive and
transitive generalized closure. So topological spaces can be considered as a special
case of funcoids.

DEFINITION 918. I will call a complete funcoid a funcoid whose reverse is co-
complete.

THEOREM 919. The following conditions are equivalent for every funcoid f:
1°. funcoid f is complete;

2°.VS e PF(Srcf),Je T(Dstf): (|IS[f]J&TFTLeS:T|[f] J)

3°. VS e 2T (Srcf),J e T(Dst f): (|_|S (" Je3lesS: T[] J),

4°. V8 € PF(Srcf): (fY1LS = L IfH)*S;

5°. VS € 2T (Srcf): (f)" ]S = |_|< >*> S

6°. VAe T(Srcf): (/)" A=l catoms alf) @

7. VK € ZFCD(X,dom f) : fol |K = || cx(fog) for every set X (in other

words, f is metacomplete).
8°. VK € ZRel(X,dom f) : fol| |[K =] cx(foyg) for every set X.

PROOF.
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3°=1°. For every S € 7 (Srcf), J € T (Dst f)
L |sn{"YJ#Ledres: In{(f)J# 1,

consequently by theorem 583 we have that < f ’1>*J is a principal filter.

1°=2°. For every S € Z2F(Srcf), J € T (Dstf) we have that (f~1)"J is a
principal filter, consequently

| |sn{f)YJ#Le3TesS:INn(f ) J#L
From this follows 2°.
6°=5°.
NHLs=
L] (Na=

acatoms| | S
('a | _
UALEJS{ a€ atomsA}
L] | (he=

A€S acatoms A

L] A=
AesS

| (7).

2°=-4°. Using theorem 583,

I ERS

L]sn7e
TesS:I[f]Je
FTZeS: J£{f)iT<

T s
=T <f0|_|K>*I = <f><|_|K>*I :* <f> |_|g€K<g>*I = |_|g€K<f><g>*I =
|—|g€K<f 0g)'I = <|_|g€K(fog)> I for any suitable set I.

8°=5% ()" ]S = im((fo(T xFCD|_|S)) = im(fo|_|G€S(T ><FCD|_|G)) =
UGesim(f o(T xFCb G)) = |_|GeS<f>*G = |_|<<f>*>*5~

2°0=53°, 4°=5°, 5°=53°, 5°=6°, 7°=8°. Obvious.
O

The following proposition shows that complete funcoids are a direct general-
ization of pretopological spaces.

PROPOSITION 920. To specify a complete funcoid f it is enough to specify (f)*
on one-element sets, values of (f)* on one element sets can be specified arbitrarily.

PROOF. From the above theorem is clear that knowing (f)" on one-element
sets (f)* can be found on every set and then the value of (f) can be inferred for
every filter.

Choosing arbitrarily the values of (f)* on one-element sets we can define a
complete funcoid the following way: (f)"X = |, catomsx (f) @ for every X €
T (Src f). Obviously it is really a complete funcoid. O

THEOREM 921. A funcoid is principal iff it is both complete and co-complete.
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PROOF.

=. Obvious.
<. Let f be both a complete and co-complete funcoid. Consider the relation g
defined by that 1 (9)"a = (f)"« for one-element sets a (g is correctly
defined because f corresponds to a generalized closure). Because f is a
complete funcoid f is the funcoid corresponding to g.
O

THEOREM 922. If R € ZFCD(A, B) is a set of (co-)complete funcoids then
| | R is a (co-)complete funcoid (for every sets A and B).

PROOF. It is enough to prove for co-complete funcoids. Let R € ZFCD(A, B)
be a set of co-complete funcoids. Then for every X € .7 (Src f)

<|_| R>*X - f|Z|R<f>*X

is a principal filter (used theorem 852). O

COROLLARY 923. If R is a set of binary relations between sets A and B then
|_|<TFCD(A,B)>*R —{FCD(4.B) | JR.

PRrROOF. From two last theorems. O

LEMMA 924. Every funcoid is representable as meet (on the lattice of funcoids)
of binary relations of the form X x Y LU X x TZ(5) (where X, Y are typed sets).

PROOF. Let f € FCD(A,B), X € 7A,Y € up(f)X, g(X,V) ¥ X x Y UX x

T7(B), Then g(X,Y) = X x"PY UX xFP T#(B) For every K € T A
= X "KUu({X xFPT K =
<g(X7Y)>*K <X FCD Y> K <X FCD ﬂ(B)> K

J_?(B) if K =174
Y if I7A4£KCEX | 3(f)'K;
TZB) fKEZX

so g(X,Y) 3 f. For every X € 7 A

F
[1 wxy)y'x= T[] yY=("X
Yeup(f)*X Yeup(f)"X
consequently
9(X,Y) . *

<|_|{X e TAY € up<f>*X}> XLX

that is
|_|{ g(X, Y) } O f
XeTJAY ecuplf)'X |~

and finally

B 9(X,Y)
/= I_l{X € TAY € up<f>*X}'

COROLLARY 925. Filtrators of funcoids are filtered.

THEOREM 926.

1°. g is metacomplete if g is a complete funcoid.
2°. g is co-metacomplete if g is a co-complete funcoid.
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PROOF.

1°. Let R be a set of funcoids from a set A to a set B and g be a funcoid from

B to some C. Then
(ao L) x -

)| |7) X =
(o) || x =

fER

L[ ("X =

feER

| [(gof)" X =

feR

<|_|(90f)>*X

fER

(Lltwey r) x

for every typed set X € 7 A. So go| |R=|[(g0)"R.
2°. By duality.

CONJECTURE 927. g is complete if g is a metacomplete funcoid.

I will denote ComplFCD and CoComplFCD the sets of small complete and co-
complete funcoids correspondingly. ComplFCD(A, B) are complete funcoids from A
to B and likewise with CoComplFCD(A, B).

OBvious 928. ComplFCD and CoComplFCD are closed regarding composition
of funcoids.

PRrOPOSITION 929. ComplFCD and CoComplFCD (with induced order) are com-
plete lattices.

PRrROOF. It follows from theorem 922. O

THEOREM 930. Atoms of the lattice ComplFCD(A, B) are exactly funcoidal
products of the form 14 {a} x P b where o € A and b is an ultrafilter on B.

PrOOF. First, it's easy to see that 14 {a} xFP b are elements of
ComplFCD(A, B). Also LFP(A:B) i5 an element of ComplFCD(A, B).

14 {a} xFP b are atoms of ComplFCD(A, B) because they are atoms of
FCD(A, B).

It remains to prove that if f is an atom of ComplFCD(A, B) then f =14
{a} xFP b for some o € A and an ultrafilter b on B.

Suppose f € FCD(A, B) is a non-empty complete funcoid. Then there exists
« € A such that (f)*@{a} # L7B). Thus 1t {a} x P b C f for some ultrafilter
bon B. If f is an atom then f =14 {a} x P p. d

THEOREM 931. G+ ||, (1* {a} xFP G(«)) is an order isomorphism from
the set of functions G' € .Z(B)* to the set ComplFCD(A4, B).

The inverse isomorphism is described by the formula G(a) = (f)"@{a} where
f is a complete funcoid.
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PROOF. | ,c4(1* {a} xFP G(a)) is complete because G(a) = | |atoms G(a)
and thus

A C
|_| (TA {a} ><FCD G(a)) :|_|{ T {a} xFCeD p }

ash a € A, b€ atoms G(«a)
is complete. So G — | ],c4(1* {a} xFP G(a)) is a function from G € .Z(B)* to

ComplFCD(A, B).
Let f be complete. Then take

b € atoms? (Pstf)
Gl = I—'{TA fa] xFOHE f}

and we have f = | |, ,(1* {a} xFP G(a)) obviously. So G + | ],c (1" {a} xFP
G(a)) is surjection onto ComplFCD(A, B).

Let now prove that it is an injection:

Let

f= 1" a} x"P Fa)) = [ | (1" {a} xFP G(a)

a€cA acA

for some F,G € .#(Dst £)5*f. We need to prove F' = G. Let 3 € Src f.

(N7afpy = || (1" {a} xFP F(a)) Q{p} = F(5).

acA

Similarly (f)*@{8} = G(B). So F(8) = G(B).

We have proved that it is a bijection. To show that it is monotone is trivial.
Denote f =[], c4(1* {a} x"P G(a)). Then

(fY*@{a'} = (because 1 {'} is principal) =
|_| (+* {a} xFP G(a))@{a'} = (1" {o/} xFP G(a)))a{a'} = G(a).

acA

O

COROLLARY 932. G + | |, c 4(G(a)xFP 14 {a}) is an order isomorphism from
the set of functions G' € .7 (B)* to the set CoComplFCD(A, B).

The inverse isomorphism is described by the formula G(«) = <f_1>*@{a}
where f is a co-complete funcoid.

COROLLARY 933. ComplFCD(A, B) and CoComplFCD(A, B) are co-frames.

7.13. Funcoids corresponding to pretopologies

Let A be a pretopology on a set U and cl the preclosure corresponding to it
(see theorem 777).

Both induce a funcoid, I will show that these two funcoids are reverse of each
other:

THEOREM 934. Let f be a complete funcoid defined by the formula (f)*@{z} =
A(x) for every © € U, let g be a co-complete funcoid defined by the formula
(9)" X =tV cI(GR X)) for every X € ZU. Then g = f~1.

REMARK 935. It is obvious that funcoids f and g exist.
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ProOOF. For X,Y € JU we have
X[g"Y &
Y £t X &
Y #c(GRX) &
IeY : Ay # X &
yeY: (N1 {y# X e
(proposition 610 and properties of complete funcoids)
(Y A4 X &
Y [f]" X.
Sog=f"1. O
7.14. Completion of funcoids
THEOREM 936. Cor f = Cor’ f for an element f of a filtrator of funcoids.
ProOF. By theorem 545 and corollary 925. O

DEFINITION 937. Completion of a funcoid f € FCD(A, B) is the complete
funcoid Compl f € FCD(A, B) defined by the formula (Compl f)*@{a} = (f)*@{a}
for a € Src f.

DEFINITION 938. Co-completion of a funcoid f is defined by the formula
CoCompl f = (Compl f~1)~1.

OBvious 939. Compl f C f and CoCompl f C f.

PROPOSITION 940. The filtrator (FCD(A, B), ComplFCD(A, B)) is filtered.

PROOF. Because the filtrator of funcoids is filtered. O

THEOREM 941. Compl f = Cor®mPIFCDIAB) £ — (op/CompIFCD(AB) ¢ 1 every
funcoid f € FCD(A, B).

PROOF. Cor®mPIFCDAB) ¢ — (1op/ComPIFCD(A.B) ¢ yiing theorem 545 since the
filtrator (FCD(A, B), ComplFCD(A, B)) is filtered.

Let g € up®mPFCD(AB) £ Then g € ComplFCD(A,B) and ¢ 3 f. Thus
g = Compl g 3 Compl f.

Thus Vg € up©mPFERAB) £ g T Compl f.

Let Vg € up®mPIFCD(A.B) £ b C ¢ for some h € ComplFCD(A, B).

Then h C [Jup®mPIFCP(A.B) £ — f and consequently h = Compl h C Compl f.

Thus

ComplFCD(A,B)
Complf — |_| upCompIFCD(.A,B) f _ CorCompIFCD(A,B) f

O

THEOREM 942. (CoCompl f)*X = Cor(f)*X for every funcoid f and typed
set X € 7 (Src f).

ProoOF. CoCompl f C f thus (CoCompl f)*X C (f)*X but (CoCompl f)" X
is a principal filter thus (CoCompl f)* X C Cor{(f)"X.
Let aX = Cor(f)*X. Then al7ref) = | FOstf) and
a(XUY)=Cor(f)"(XUY)=Cor({f) XU (f)Y)=
Cor(f)"X U Cor(f)'Y =aX UaY



7.14. COMPLETION OF FUNCOIDS 181

(used theorem 603). Thus « can be continued till (g) for some funcoid g. This
funcoid is co-complete.
Evidently g is the greatest co-complete element of FCD(Src f, Dst f) which is

lower than f.
Thus g = CoCompl f and Cor(f)*X = aX = (g)" X = (CoCompl f)*X. O

THEOREM 943. ComplFCD(A, B) is an atomistic lattice.
PrOOF. Let f € ComplFCD(A, B), X € J(Src f).

nx= 1] We= ] U= ] X

r€atoms X r€atoms X r€atoms X

thus f = ||, caroms x (flz). It is trivial that every f|, is a join of atoms of
ComplFCD(A, B). O

THEOREM 944. A funcoid is complete iff it is a join (on the lattice FCD(A, B))
of atomic complete funcoids.

PROOF. It follows from the theorem 922 and the previous theorem. O
COROLLARY 945. ComplFCD(A, B) is join-closed.

THEOREM 946. Compl| |R = | [(Compl)"R for every R € ZFCD(A, B) (for
every sets A, B).

PROOF. For every typed set X
<C0mp1|_|R>*X =
Ll (UR)=

xrcatoms X

L] ==

r€atoms X fER

L [ ==

fER zcatoms X

|_| (Compl f)*X =

fER

<|_|<Compl)*R>*X.

COROLLARY 947. Compl is a lower adjoint.
CONJECTURE 948. Compl is not an upper adjoint (in general).
PROPOSITION 949. Compl f = | |, cq,c f(fl1{a}) for every funcoid f.

PRrROOF. Let denote R the right part of the equality to prove.
(RY*@{B} = |_|a€SrCf<f\T{a}> @{B} = (f)"@{B} for every 3 € Src f and R is

complete as a join of complete funcoids.
Thus R is the completion of f. O

CONJECTURE 950. Compl f = f\* (2 xFP ).

This conjecture may be proved by considerations similar to these in the section
“Fréchet filter”.

LEMMA 951. Co-completion of a complete funcoid is complete.
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PROOF. Let f be a complete funcoid.

(CoCompl f)* X = Cor(f)* X = Cor |_| (f)'z =
rcatoms X

|_| Cor(f)'x = |_| (CoCompl f)*x

reatoms X reatoms X

for every set typed X € 7 (Src f). Thus CoCompl f is complete. O

THEOREM 952. Compl CoCompl f = CoCompl Compl f = Cor f for every fun-
coid f.

ProOF. Compl CoCompl f is co-complete since (used the lemma) CoCompl f
is co-complete. Thus Compl CoCompl f is a principal funcoid. CoCompl f is the
greatest co-complete funcoid under f and Compl CoCompl f is the greatest com-
plete funcoid under CoCompl f. So Compl CoCompl f is greater than any prin-
cipal funcoid under CoCompl f which is greater than any principal funcoid un-

der f. Thus Compl CoCompl f is the greatest principal funcoid under f. Thus
Compl CoCompl f = Cor f. Similarly CoCompl Compl f = Cor f. O

7.14.1. More on completion of funcoids.

PROPOSITION 953. For every composable funcoids f and g
1°. Compl(g o f) J Compl g o Compl f;
2°. CoCompl(g o f) 3 CoCompl g o CoCompl f.
PROOF.
1°. Compl g o Compl f = Compl(Compl g o Compl f) E Compl(g o f).
2°. CoComplg o CoCompl f = CoCompl(CoComplg o CoCompl f) C
CoCompl(g o f).
O

PROPOSITION 954. For every composable funcoids f and g
1°. CoCompl(g o f) = (CoCompl g) o f if f is a co-complete funcoid.
2°. Compl(f og) = foComply if f is a complete funcoid.

PROOF.

1°. For every X € 7 (Src f)

{(CoComplg) o f)*X.
2°. (CoCompl(g o f))~! = f~! o (CoComplg)~; Compl(go f)~" = f'o
Complg—!; Compl(f~tog™!) = f~1oComplg~!. After variable replacement we
get Compl(f og) = f o Complyg (after the replacement f is a complete funcoid).
U

COROLLARY 955. For every composable funcoids f and g
1°. Compl f o Compl g = Compl(Compl f o g).
2°. CoCompl g o CoCompl f = CoCompl(g o CoCompl f).
PROPOSITION 956. For every composable funcoids f and g
1°. Compl(g o f) = Compl(g o (Compl f));
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2°. CoCompl(g o f) = CoCompl((CoCompl g) o f).
PROOF.
1°.
(g0 (Compl f))"@{z} = (g)(Compl f) " @{z} =
(9)(f) afz} = (go f) a{x}.
Thus Compl(g o (Compl f)) = Compl(g o f).
2°. (Compl(go(Compl £))~ = (Compl(go f))~*; CoCompl(go(Compl f))~! =
CoCompl(g o f)~!; CoCompl((Compl f)~! o g71) = CoCompl(f~t o g71);
CoCompl((CoCompl f~1) 0 g71) = CoCompl(f~! o g~1). After variable replace-
ment CoCompl((CoComplg) o f) = CoCompl(g o f).
O

THEOREM 957. The filtrator of funcoids (from a given set A to a given set B)
is with co-separable core.

PrOOF. Let f,g € FCD(A,B) and flU g = T. Then for every X € T A we

have
("X U{(g)"X =T & Cor(f)" XUCor{g)"X =T &
{CoCompl £)* X U (CoCompl g)* X = T.
Thus (CoCompl f LI CoCompl g)* X = T;
fug=T = CoCompl f UCoComplg =T. (14)
Applying the dual of the formulas (14) to the formula (14) we get:
fUg=T = Compl CoCompl f LI Compl CoComplg =T

that is flUg =T = Cor fUCorg = T. So FCD(A, B) is with co-separable core.

COROLLARY 958. The filtrator of complete funcoids is also with co-separable
core.

7.15. Monovalued and injective funcoids

Following the idea of definition of monovalued morphism let’s call monovalued
such a funcoid f that fo f~! Cid{S5.
Similarly, T will call a funcoid injective when f~' o f C idSP Iz

OBvIOUS 959. A funcoid f is:
1°. monovalued iff fo f~! C 152%;
2°. injective iff =1 o f E 15D,

In other words, a funcoid is monovalued (injective) when it is a monovalued
(injective) morphism of the category of funcoids. Monovaluedness is dual of injec-
tivity.

OBvIous 960.

1°. A morphism (A, B, f) of the category of funcoid triples is monovalued iff
the funcoid f is monovalued.

2°. A morphism (A, B, f) of the category of funcoid triples is injective iff the
funcoid f is injective.

THEOREM 961. The following statements are equivalent for a funcoid f:

1°. f is monovalued.
2°. It is metamonovalued.
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3°. It is weakly metamonovalued.
4°. Ya € atoms” 5r¢f) . (f)a € atoms” (Pst /) LJ{LQ(DSt Y.
5°. VI, J € Z(Dst f) : (fNINT) = (fHIN{f1)J.

*

6°. ¥I,J € Z(Dst f): (f ) (INJ) = ()T {F1)T.

PRrROOF.

4°=5° Let a € atoms”SH  (fla = b Then because b €
atomsy(DSt f) U{Lﬂ(Dst f)}

ZNJ)Nb# LeINb#LAJTNb# L
alf]INT < alflTNalf]T;
INng [faeZ[fanT [f]a
all(fNYINT)#Lean(fTOIT#LAan{(f71)T # L;
(FhHaEng) = HIn{fJ.

5°=1° (f a1 (f7b = () (amb) = (f71)L = L for every two distinct
atomic filter objects a and b on Dst f. This is equivalent to —|(<f’1>a [f]
b): b= (F)(f )z b= (fof Vi ~(a [fo57] b). Soa [fof]

b = a = b for every ultrafilters a and b. This is possible only when
fof~ ' 1Ry
6°=5°.
(fhHaEng) =
|—|<< 1> > up(ZnJg) =
—1\* * I|_|J _
|—|<<f ) > {IEupI JEupj}_
II_IJ
|—| I 6 upI JeupJ
|—|{I€upI JGupj}:
B <f>*I Y _
Ie upI J cupJ

(FhHznha.

5°=6°. Obvious.

—4°=-1°. Suppose (f)a ¢ atoms? (Pst ) U{J_"@:(DSt f)} for some a € atoms? (57 f)
Then there exist two atomic filters p and ¢ on Dst f such that p # ¢ and
(fa 3 pA(f)a 3 q. Consequently p # (fa; a % (f~')p; a E (f")p;
(fofMp=U "3 fHadg (fof)pZpand (fof )p#
17 Dstf) So it cannot be fo f~1 C 15%?1-.

2°=-3°. Obvious.

1°=2°.

((Me)er)e= (M) hHa= TN =

geG

|_|<g°f>x<|_|(90f)>x

geG geG
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for every atomic filter object 2 € atoms” (5*¢f). Thus ([]G)of = [Nyec(go
f)-

3°=1°. Take g = a x Py and h = b x Py for arbitrary atomic filter objects a # b
and y. We have gMh = L; thus (go f)M(ho f) =(gMh)o f =L and
thus impossible = [f] a A  [f] b as otherwise x [go f] y and = [ho f] y so
z[(go f)M(ho f)]y. Thus f is monovalued.

]

COROLLARY 962. A binary relation corresponds to a monovalued funcoid iff it
is a function.

PRrOOF. Because VI,J € Z(im f) : <f*1>*(II_IJ) = <f*1>*II_I <f*1>*J is true
for a funcoid f corresponding to a binary relation if and only if it is a function (see
proposition 388). O

REMARK 963. This corollary can be reformulated as follows: For binary rela-
tions (principal funcoids) the classic concept of monovaluedness and monovalued-
ness in the above defined sense of monovaluedness of a funcoid are the same.

THEOREM 964. If f, g are funcoids, f C g and g is monovalued then glgom 5 =
I
PROOF. Obviously gldaom f = f. Suppose for contrary that ¢glqom y T f. Then
there exists an atom a € atomsdom f such that (g|qom r)a # (f)a that is (g)a T
(f)a what is impossible. O
7.16. Ty-, T1-, T5-, T5-, and Ty-separable funcoids

For funcoids it can be generalized Tgy-, T1-, T5-, and T5- separability. Worthwhile
note that Ty and 75 separability is defined through T3 separability.

DEFINITION 965. Let call 11 -separable such endofuncoid f that for every o, 8 €
Ob f is true

a# B = ~(@{a} [f]" @{B}).
PRrOPOSITION 966. An endofuncoid f is Tj-separable iff Cor f C lg%'?f.
PROOF.
Va,y € Obf: (@{z} [f] @y} =z =y) &
Va,y € Ob f : (@{z} [Cor f]" @{y} = = = y) & Cor f C 15y
O

PROPOSITION 967. An endofuncoid f is Ti-separable iff Cor(f)"{z} C {z} for
every € Ob f.

PRrROOF.
Cor{f)*{z} C {2} & (CoCompl f)*{z} C {z} &
Compl CoCompl f T 15y < Cor f T 155
O

DEFINITION 968. Let call Ty-separable such funcoid f € FCD(A, A) that frf—1
is Ti-separable.

DEFINITION 969. Let call Th-separable such funcoid f that f=' o f is Ti-
separable.
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For symmetric transitive funcoids Tp-, T1- and Ts-separability are the same (see
theorem 255).

OBVIOUS 970. A funcoid f is Te-separable iff a # 8 = (f)*Q{a} =< (f) " @{B}
for every «, 8 € Src f.

DEFINITION 971. Funcoid f is regular iff for every C € .7 Dst f and p € Src f
({10 = (Haf{p} <157 {p} =< (f71)C.
ProrosiTION 972. The following are pairwise equivalent:
1°. A funcoid f is regular.
2°. Compl(fo f~to f) C Compl f.
3°. Compl(fo f~tof)C f.

PROOF. Equivalently transform the defining formula for regular funcoids:
(HHC = (fla{p} «15e) {p} =< (f~)C;

(NHC £ (Na{py =15 {p} £ (F71)C;

(by definition of funcoids)

C#(NH{fN(NHafpt = C % (flafp}

(HihHinaipt € (Hafp};

(fof'of)aip} C (f)a{pk

Compl(fo f~'o f) C Compl f;

Compl(fof~tof)C f. O

ProrosiTIiON 973. If f is complete, regularity of funcoid f is equivalent to
foCompl(f~tof)C f.
ProoOF. By proposition 954. U

REMARK 974. After seeing how it collapses into algebraic formulas about fun-
coids, the definition for a funcoid being regular seems quite arbitrary and sucked
out of the finger (not an example of algebraic elegance). So I present these formu-
las only because they coincide with the traditional definition of regular topological
spaces. However this is only my personal opinion and it may be wrong.

DEFINITION 975. An endofuncoid is T3- iff it is both T5- and regular.

A topological space S is called Ty-separable when for any two disjoint closed
sets A, B C S there exist disjoint open sets U, V containing A and B respectively.

Let f be the complete funcoid corresponding to the topological space.

Since the closed sets are exactly sets of the form <f*1>*X and sets X and Y
having non-intersecting open neighborhood is equivalent to (f)*X =< (f)*Y, the
above is equivalent to:

(YA B= () () A< (O () B

O AA N B= () A4 () By

OO () A% B = () A% B;

YD) AT (Y
foftofoftCfof ™t
Take the last formula as the definition of Ty-funcoid f.

A

)

7.17. Filters closed regarding a funcoid

DEFINITION 976. Let’s call closed regarding a funcoid f € FCD(A, A) such
filter A € Z(Src f) that (f)A C A.

This is a generalization of closedness of a set regarding an unary operation.
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PRrROPOSITION 977. If T and J are closed (regarding some funcoid f), S is a set
of closed filters on Src f, then

1°. ZTU J is a closed filter;
2°. []S is a closed filter.

PROOF. Let denote the given funcoid as f. (f)(ZUJ) = (f)ZU(/) T CTUJT,
(AHTISCTIUA) S ET]S. Consequently the filters Z1I 7 and []S are closed. [

ProrosiTION 978. If S is a set of filters closed regarding a complete funcoid,
then the filter | | .S is also closed regarding our funcoid.

PROOF. (f)Y||S = |[{{f))*S T ]S where f is the given funcoid. O

7.18. Proximity spaces

Fix a set U. Let equate typed subsets of U with subsets of U.

We will prove that proximity spaces are essentially the same as reflexive, sym-
metric, transitive funcoids.

Our primary interest here is the last axiom (6°) in the definition 797 of prox-
imity spaces.

ProrosITION 979. If f is a transitive, symmetric funcoid, then the last axiom
of proximity holds.

PROOF.
S(AU B e (Al e B) e () B= () As
IMeU: M= (f)*"ANM = (f)"B.
O

ProprosITION 980. For a reflexive funcoid, the last axiom of proximity implies
that it is transitive and symmetric.

PrROOF. Let —(A[f]" B) implies IM : M =< (f)’AAM = (f)'B.
Then (A [f]" B) implies M = (f)"AA(f)"B T M, thus (f)"4A =< (f)"B;
ﬂ<A (1o f]" B) that is f 3 f~'o f and thus f = f~'o f. By theorem 255 f is
transitive and symmetric. O

THEOREM 981. Reflexive, symmetric, transitive funcoids endofuncoids on a
set U are essentially the same as proximity spaces on U.

Proor. Above and theorem 831. O



CHAPTER 8

Reloids

8.1. Basic definitions

DEFINITION 982. Let A, B be sets. RLD{(A, B) is the base of an arbitrary but
fixed primary filtrator over Rel(A4, B).

OBvIOUs 983. (RLD#(A4, B),Rel(A, B)) is a powerset filtrator.

DEFINITION 984. I call a reloid from a set A to a set B a triple (A, B, F') where
F € RLD4(A, B).

DEFINITION 985. Source and destination of every reloid (A, B, F') are defined
as
Src(A,B,F)=A and Dst(4,B,F)=B.

I will denote RLD(A, B) the set of reloids from A to B.
I will denote RLD the set of all reloids (for small sets).

DEFINITION 986. I will call endoreloids reloids with the same source and des-
tination.

DEFINITION 987.
o tRLDE £ is the principal filter object corresponding to a Rel-morphism f.
o RIDHAB) ¢ 4RLDE (A B, f) for every binary relation f € 2(A x B).
o RO £ — (Src f, Dst f, tRLDE f) for every Rel-morphism f.
o RLD(AB) ¢ 4RLD (A B f) for every binary relation f € 2(A x B).

DEFINITION 988. I call members of a set <TRLD>*Rel(A, B) as principal reloids.
Reloids are a generalization of uniform spaces. Also reloids are generalization

of binary relations.

DEFINITION 989. up f~! = {%;pf} for every f € RLD§(A, B).

PROPOSITION 990. f~! exists and f~! € RLD#(B, A).
PROOF. We need to prove that {%} is a filter, but that’s obvious. O

DEFINITION 991. The reverse reloid of a reloid is defined by the formula
(A,B,F)™' = (B, A F7).
NOTE 992. The reverse reloid is not an inverse in the sense of group theory or
category theory.

Reverse reloid is a generalization of conjugate quasi-uniformity.

DEFINITION 993. Every set RLD(A, B) is a poset by the formula f C g <
GR f C GRg. We will apply lattice operations to subsets of RLD(A, B) without
explicitly mentioning RLD(A, B).

Filtrators of reloids are (RLD(A, B),Rel(A, B)) (for all sets A, B). Here I
equate principal reloids with corresponding Rel-morphisms.

188
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OBvIOUs 994. (RLD(A, B),Rel(A4, B)) is a powerset filtrator isomorphic to the
filtrator (RLD#(A, B),Rel(A4, B)). Thus RLD(A, B) is a special case of RLD§(A, B).
8.2. Composition of reloids

DEFINITION 995. Reloids f and g are composable when Dst f = Srcg.

DEFINITION 996. Composition of (composable) reloids is defined by the formula
RLD

GoF
sor=T1 .
Feuf,Geupyg
OBvIOUS 997. Composition of reloids is a reloid.

OBvVIOUS 998. tRLD go 4RLD ¢ —4RLD (46 #) for composable morphisms f, g of
category Rel.

THEOREM 999. (hog)o f =ho(go f) for every composable reloids f, g, h.

PROOF. For two nonempty collections A and B of sets I will denote
A~BoVKecAJLe B: LCKAVK e B3ILe A: LCK.

It is easy to see that ~ is a transitive relation.

I will denote Bo A = {%}.

Let first prove that for every nonempty collections of relations A, B, C
A~B=AoC~BoC(C.

Suppose A ~ Band P € Ao (C thatis K € A and M € C such that P = K o M.
JK' € B: K' C K because A ~ B. We have P = K' o M € B o C. Obviously
P’ C P. So for every P € Ao C there exists P’ € Bo C such that P’ C P; the vice
versa is analogous. So AoC ~ BoC.

up((hog)o f) ~up(hog)oupf,up(hog)~ (uph)o (upg). By proven above
up((hog)o f) ~ (uph)o (upg)o (upf).

Analogously up(h o (g o f)) ~ (uph) o (upg) o (up f).

So up(h o (go f)) ~ up((hog) o f) what is possible only if up(h o (go f)) =

up((hog)o f). Thus (hog)o f=ho(gof) O
EXERCISE 1000. Prove f, 0---0 fy = HRLD{%} for every composable
reloids fy, ..., fn where n is an integer, independently of the inserted parentheses.

(Hint: Use generalized filter bases.)
THEOREM 1001. For every reloid f:
1° fof= HRLD{Fgggf} if Src f = Dst f;
2. f o f =P Eaet
3°. fofl= |—|RLD{ 525:;;}
Proor. I will prove only 1° and 2° because 3° is analogous to 2°.

1°. It’s enough to show that VF,G € up fdH ¢ upf: HoHC Go F. To
prove it take H = F M G.

2°. It’s enough to show that VF,G € up f3H c upf: H o HCZ G 'oF.
To prove it take H = FG. Then H 1o H = (FMNG) 1o (FNG)C G toF.

d

EXERCISE 1002. Prove f™ = |—|RLD{ Fgul f} for every endofuncoid f and pos-

itive integer n.
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THEOREM 1003. For every sets A, B, C'if g,h € RLD(A4, B) then

1°. fo(gUh)= foglU foh forevery f € RLD(B,C);
2°. (gUh)o f=go fUho f for every f € RLD(C, A).

PrOOF. We'll prove only the first as the second is dual.

By the infinite distributivity law for filters we have

fogufoh=
RLD

|—| FoQG UTﬂlD FoH _
Feu f,Geupyg Fcupf,Hecuph/ ]
TET (Fy o G) LRD (Fy 0 H) B
F,Fheuf,Geupg, Hecuph|

TLT (FyoG)U (Fy 0 H)
F,Focupf,Geupg,H cuph |’

Obviously

TL_T (FyoG)U (Fy 0 H)
F,Fbeu f,Geupg, H€uph

]

R

J
ﬁ{(((Fll‘ng)oG) ((Fy N Fy) o H)) }
J

F,Foeu f,Geupg,H€uph
RLD

|_|{ (FoG)U (FoH)

Feu f,Geupg,Hecuph

TLID Fo(GUH)
Fcupf,Gcupg,Hcuph/’

Because G € upg AN H € uph = G U H € up(g U h) we have

FﬁD Fo(GUH) -
Feuf,Geupg,Hecuph| —

RLD

FoK
H{Feupf,KGUp(gUh)}

folgUh).

Thus we have proved fogllfoh 3 fo(gUh). But obviously fo(glh) 3 fog
and fo(gUh) J fohandso fo(gUh) 3 fogl foh. Thus fo(guh) = fogUfoh. O

THEOREM 1004. Let A, B, C be sets, f € RLD(A,B), g € RLD(B,C), h €
RLD(A, C). Then

gof#h&g#thof
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PROOF.

gof# h<s
RLD RLD

GoF
M h# 1
I_I{Fellpf,GEupg} |_|up #le

RLD

I—l{ (Go F)rRD [

1l &
FGupf,GEupg7H€uph} 7
RLD

|—|{ (GoF)MH };AL@

Feu f,Geupg, Heuph
VEcupf,Geupg, Hecuph P (GoF)NH)# L&
VFeupf,Geupg,H cuph:GoF £ H

(used properties of generalized filter bases).

Similarly g #ho f' < VF cupf,G cupg,H cuph:G # Ho F~1.

Thus gof #h < g # ho f~! because GoF ¥ H & G % Ho F~! by
proposition 283. U

THEOREM 1005. For every composable reloids f and g
oF
gof U{Fegtomsf}
Go
gof |—|{G€at0{an}

PRrROOF. We will prove only the first as the second is dual. (]

Obviously U{m} C go f. We need to prove U{F,ngi;mf} Jdgof.

Really,
goF
_— >
u{FEatomsf}_gof(:)

Vx € RLD(Src f,Dst g) : (x £gof=ua# U{F’éﬁjnsf}) =
Va € RLD(Src f,Dstg) : (z A go f=3JF catomsf:zx % goF) &
Va € RLD(Src f,Dstg) : (g 'oax % f = IF catoms f: g Loz % F)
what is obviously true.

COROLLARY 1006. If f and g are composable reloids, then

f I—I G oF
o = .
9 F € atoms f,G € atoms g
PROOF. g o f = I_lFeatomsf(g o F) = LlFEatomsf UGEatomsg(G ° F) =
GoF
I—l{ Featoms f,Gcatoms g } O

8.3. Reloidal product of filters

DEFINITION 1007. Reloidal product of filters A and B is defined by the formula
RLD

RLD pp def AxB
Ax B_H{AEUpA,BEupB}'
OBvIOUS 1008.

o tU AXRD 4V B 4RDWY) (A x B) for every sets AC U, BC V.
o T AxRD 4+ B —4RD (A x B) for every typed sets A, B.
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RLD
ax""b
“Catome A,beatomsg} for every filters A and B.

THEOREM 1009. A xRD B = |_|{

PROOF. Obviously A xR0 B 3 |_|{ axFp }

acatoms A,b€atoms B

Reversely, let K € up |_|{ aeatom(;)j:;[)ebatomss } Then K € up(a xR-Pb) for every

a € atoms A, b € atomsB. K J X, x Y}, for some X, € upa, Y, € upb;

XaXYb
K3 =
- |—|{a € atoms A, b € atomsB}

Xa Y,
-
I—l{aeatomsA} Xu{beatomsB} Ax B

where A € up A, B € up B; K € up(A xRP B). O

THEOREM 1010. If Ay, A; € F(A), By, By € Z#(B) for some sets A, B then
(AO ><RLD BO) M (Al ><RLD Bl) — (AO ﬂAl) ><RLD (BO HB1)-
PRroOOF.

(AO ><RLD BO) (-Al ><RLD Bl
RLD

|—| POQ
Pe up(.Ao x RLD Bo) Qe up .Al x RLD Bl

|—| (AO X BQ) (Al X B1
Ag € up Ag, By € up By, A1 € up A1, By € up B,

j-
|
|—|{ (Ao Ay) x (By M By) }
j-
)

Ap € up Ag, By € up By, A1 € up Ay, By € up B,
RLD

|—|{ KxL
KEup(AOI‘IAl) LEup BoﬂBl
(Ao M Ay) xRP (By N By

THEOREM 1011. If S € Z(F(A) x #(B)) for some sets A, B then
AxRP B RLD [];
H{W}:HdomSX |_|1mS

PROOF. Let P =[]dom S, Q:ﬂimg;lzﬂ{%}_
P xRLD QO C [ is obvious.

Let I € up(P xRP Q). Then there exist P € upP and Q € up Q such that
FIPxQ.

P=PnN---MP, where P, €dom S and Q = Q1 M- --MQy, where Q; €im 5.

PxQ= |_|U( X Qj).

P; x Q; € up(A xRP B) for some (A, B) € S. P x Q =], ;(P; x Q;) € upl.
So F € upl. O

COROLLARY 1012. [J(AxRPY T = A xRO T if A is a filter and T is a set
of filters with common base.

PRrROOF. Take S = {A} x T where T is a set of filters.
Then [1{ 45578 } = AxFP [T that is [(AXRL)'T = AxRO[IT. O

DEFINITION 1013. T will call a reloid convex iff it is a join of direct products.
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8.4. Restricting reloid to a filter. Domain and image

DEFINITION 1014. Identity reloid for a set A is defined by the formula
1RLD —RLD(A,4) 4,

OBvious 1015. (1RP)~1 = 1RLP,

DEFINITION 1016. I define restricting a reloid f to a filter A as f|l4a = f 1N
(A « RLD Tkg(Dstf))'

DEFINITION 1017. Domain and image of a reloid f are defined as follows:

F F
dom f = |_|<d0m>* up f; im f = |_|<im>* up f.

PrOPOSITION 1018. f C A xR'P B < dom f T A Aim f C B for every reloid
f and filters A € Z (Src f), B € Z(Dst f).

PROOF.

. It follows from dom(A xRP B) C A A im(A xRP B) C B.
.domfC A& VAcup AIF € up f : dom F C A. Analogously
imfCB<sVBeupB3G eupf:imGLC B.
Let domf C AAimf C B, A€ upA, B € upB. Then there exist
F,G € up f such that dom FF C AAim G C B. Consequently FING € up f,
dom(FMG)C A, im(FMNG) C Bthat is FMNG C A x B. So there exists
H € upf such that H C A x B for every A € up A, B € upB. So
fC AxRDR,

=
=

O

DEFINITION 1019. T call restricted identity reloid for a filter A the reloid

i3 = (1)) la-

RLD RLD(Base(.A),Base(A
=T ( (A), (A))

Acup A id 4 for every filter A.

THEOREM 1020.

PrOOF. Let K € up Hil'e?l(fj‘se(A)’Base(A)) id 4, then there exists A € up A such
that GR K D id4. Then

1dRLD C

TRLD(Base(.A),Base(.A)) idBase(A) |_|(A ><RLD T) C

TRLD(Base(A),Base(A)) idBase(.A) |_|(A ><RLD —|—) —

TRLD(Base(A),Base(A)) idBabe A M TRLD (A % —|—) _

TRLD(Base(.A) ,Base(A)) (1dBasc A N GR(A % T)) _

TRLD(B&SC(.A) ,Base(A)) ids C K.

Thus K € up 1dRLD.
Reversely let K € upi
A € up A such that

K € up tRLD(Base(A),Base(A)) (idBase(a) NGR(A x T)) =
up TRLD(Base(.A),BaSe(A)) idyg O

S — UP(lB;Ec(A (A xR T))| then there exists

RLD(Base(.A),Base(.A))
up |_| idga .
A€up A
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CoroLLARY 1021. (id¥-P)~1 = id}P.
THEOREM 1022. f|4 = f 0id%P for every reloid f and A € .7 (Src f).

PROOF. We need to prove that
RLD(Src f,Src f)

FAARPT) =fo ] {idA}_

We have
RLD(Src f,Src f)

id4
fe |_| {AeupA

RLD(Src f,Sre f){ GR(F) oida

RLD

|
|
H{Feup?fxeupft} -
|
|

THT{FFI (A x TZDst)

Feuf,AcupA

RLD P RLD 4 —7(Dst f)
Byl Sy
Feupf Aceup A

U

THEOREM 1023. (go f)|a = go(f|a) for every composable reloids f and g and
A € F(Sre f).

PROOF. (go f)la=(gof)oidi® =go(foidi®) =ygo (fla). O
THEOREM 1024. f M (A xRP B) = id3Pof o idRP for every reloid f and
Ae F(Srcf), Be F(Dstf).

PRrROOF.

f(A x RLD B)

f mn (.A ><RLD Tﬁ(Dstf)) n (Tﬁ'(Srcf) ><RLD B)

f|A M (—rgz(Srcf) ><RLD B)

(fo idiLD) N (—l—y(srcf) «RLD gy _

((f ° idE‘LD)71 M (Tﬂ(Srcf) ><RLD B)fl)fl _

((idiLD Of—l) n (B ><RLD T?(Srcf)))—l _

(idiLD ofﬁ1 o idKR;LD)fl =

idfPof 0idRP.

PROPOSITION 1025. idgoid 4 = idgnp for all filters A, B (on some set U).
PROOF. idgoidy = (idB)‘A = (IIR]LD|B)‘A = er}LD|AmB =idanp- O

THEOREM 1026. fly(ay =157 {a} xRP im(f|1(s}) for every reloid f and
a € Src f.
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PrOOF. First,

m(flt{a}) =
RLD
[ im)” up (£l ag) =
RLD
[Jtim)" up(f 1 (157 {a} x TZ®10)) —
RLD
m(F N ({a} x T7®0))\
|_|{ Fe upf } B
RLD

|—| im(Flt{a})
Feuf |
Taking this into account we have:

157 {a} xR im(flrfay) =
RLD
1Sref fa} x K
”{ }

K € im(fly{a})
THID TSrCf {a} X im F|T{a}
Feupf
RLD

Flrey

Feupf
Rlﬂ|3 e (TSrCf {a} x Ty(Dstf) B
Feupf -

RLD

|_|{F ellpf} TRLD (TSrcf {a} % Ty Dst f) )
f|_| TRLD (TSrcf {a} % —|—=7(Dstf)) —
flrtay-
O

LEMMA 1027. AB € .Z(B) : T7 xRPBis an upper adjoint of \f € RLD(A, B) :
im f (for every sets A, B).

PROOF. We need to prove im f C B < f C TZ xRP B what is obvious. [0
COROLLARY 1028. Image and domain of reloids preserve joins.

PROOF. By properties of Galois connections and duality. O

8.5. Categories of reloids

I will define two categories, the category of reloids and the category of reloid
triples.

The category of reloids is defined as follows:
e Objects are small sets.
e The set of morphisms from a set A to a set B is RLD(A, B).
e The composition is the composition of reloids.
e Identity morphism for a set is the identity reloid for that set.
To show it is really a category is trivial.
The category of reloid triples is defined as follows:
e Objects are small sets.
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e The morphisms from a filter A to a filter B are triples (A, B, f) where
f € RLD(Base(A), Base(B)) and dom f C A, im f C B.

e The composition is defined by the formula (B,C, g) o (A, B, f) = (A,C,go
.

e Identity morphism for a filter A is idiLD.

To prove that it is really a category is trivial.
PROPOSITION 1029. 1RLP ig a functor from Rel to RLD.

PrOOF. tRLD (go f) =tRLD go ARLD f was proved above. tRLD 1Rel — 1RLD jg
by definition. O

8.6. Monovalued and injective reloids

Following the idea of definition of monovalued morphism let’s call monovalued
such a reloid f that fo f~' C idfﬂ;?.
Similarly, I will call a reloid injective when f~' o f C id5-D £

OBvIious 1030. A reloid f is
e monovalued iff fo f~' C 18P
o injective iff f o f E 1§D,

In other words, a reloid is monovalued (injective) when it is a monovalued
(injective) morphism of the category of reloids.
Monovaluedness is dual of injectivity.

OBviIous 1031.

1°. A morphism (A, B, f) of the category of reloid triples is monovalued iff
the reloid f is monovalued.

2°. A morphism (A, B, f) of the category of reloid triples is injective iff the
reloid f is injective.

THEOREM 1032.

1°. A reloid f is a monovalued iff there exists a Set-morphism (monovalued
Rel-morphism) F' € up f.

2°. A reloid f is a injective iff there exists an injective Rel-morphism F' €
up f.

3°. A reloid f is a both monovalued and injective iff there exists an injection
(a monovalued and injective Rel-morphism = injective Set-morphism)
Feupf.

PROOF. The reverse implications are obvious. Let’s prove the direct implica-
tions:

1°. Let f be a monovalued reloid. Then fo f~' C 1%';th, that is

' FoF! RLD
M{EE2 ) e,
Feupf

It’s simple to show that {gg; p_;} is a filter base. Consequently there exists F' €

up f such that Fo F~! C l%g?f that is F' is monovalued.

2°. Similar.

3°. Let f be a both monovalued and injective reloid. Then by proved above
there exist F,G € up f such that F' is monovalued and G is injective. Thus F MG €
up f is both monovalued and injective.

O
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CONJECTURE 1033. A reloid f is monovalued iff

Vg € RLD(Src f,Dst f) : (¢ C f = 3A € F(Srcf): 9= fla).

8.7. Complete reloids and completion of reloids

DEFINITION 1034. A complete reloid is a reloid representable as a join of reloidal
products 14 {a} xRP b where o € A and b is an ultrafilter on B for some sets A
and B.

DEFINITION 1035. A co-complete reloid is a reloid representable as a join of
reloidal products axR-P +4 {8} where 8 € B and a is an ultrafilter on A for some
sets A and B.

I will denote the sets of complete and co-complete reloids from a set A to a
set B as ComplRLD(A, B) and CoComplRLD(A, B) correspondingly and set of all
(co-)complete reloids (for small sets) as ComplRLD and CoComplRLD.

OBvIOUS 1036. Complete and co-complete are dual.

acA
of functions G € .Z (B)* to the set CompIRLD(A, B).
The inverse isomorphism is described by the formula G(a) = im(f|;{4}) where
f is a complete reloid.

1 {a}x*PG() | ; ;
THEOREM 1037. G — | |{ ——=5—" } is an order isomorphism from the set

PROOF. U{%} is complete because G(a) = | |atoms G(a) and
thus

P G ) <0
a€eA N a € Ab € atoms G(a)
is complete. So G +— U{M} is a function from G € .#(B)* to

acA
ComplRLD(A4, B).
Let f be complete. Then take

b € atoms? (Pst f)
Gla) = |_|{TA {a} xR0 b C f}

and we have f = U{%} obviously. So G — U{%} is
surjection onto ComplRLD(A, B).
Let now prove that it is an injection:

Let . U{TA {a} xRLD F(a)} _ U{TA {a} xR G(a)}

ac A aec A

for some F,G € .#(B)“. We need to prove F' = G. Let 3 € Src f.
FEA {8} xR TZ(EB)) = (theorem 610)
J{ b0 P 14450 T,

ac A

14 {B} xRL F(B).

Similarly f|—|(TA {ﬁ}XRLDT?(B)) :TA {ﬁ}XRLDG(ﬂ). Thus TA {ﬂ}XRLDF(ﬂ) :TA
{8} xR G(B) and so F(8) = G(B).

We have proved that it is a bijection. To show that it is monotone is trivial.



8.7. COMPLETE RELOIDS AND COMPLETION OF RELOIDS 198
A RLD
Denote f = U{%} Then

m(flrary) = m(f N (14 {a'} x T7)) =
(because 14 {o/} x T7B) is principal) =

0 {ad xR Gla) 1 (14 e x TTB)Y
U f-

o € Sre f
im(t4 {a/} xRP G(o))) = G(o).
(]

COROLLARY 1038. G +— | | = e v is an order isomorphism from the

set of functions G € .Z(B)4 to the set CoComplRLD(4, B).
The inverse isomorphism is described by the formula G(a) = im(f™!|4(a})
where f is a co-complete reloid.

COROLLARY 1039. ComplRLD(A, B) and ComplFCD(A4, B) are a co-frames.
OBvIOoUs 1040. Complete and co-complete reloids are convex.

OBVIOUS 1041. Principal reloids are complete and co-complete.

OBvIOUS 1042. Join (on the lattice of reloids) of complete reloids is complete.
THEOREM 1043. A reloid which is both complete and co-complete is principal.

PROOF. Let f be a complete and co-complete reloid. We have

- TSrcf {Oé} ><RLD G(a) B H(ﬁ)XRLD TDStf {5}
f_|—|{ o € Sre f } and f_l—l{ B € Dst f }
for some functions G : Src f — F(Dst f) and H : Dst f — %#(Src f). For every
«a € Src f we have

G(a) =
lmf|T{a} =
im(f 1 (1577 {a} xRP TZO)) = (3)

- (H(B)xRLAPs T {53) 11 (157 {a} xRD TF(Dst 1))
1m|_|{ B € Dst f

ol [ BT a})x0 407 {5)
1m|—|{ 3¢ Dstf

19551 {a} L0 4D (5} if H(B) 15 {a}
. LRLD(Src f,Dst f) if H(B VTSrcf {Ot}
1m|_| B € Dst f

1m|_|{ TSrcf {Oé}XRLD TDStf {/8}
B € Dst f, H(p) TS‘"Cf {a}

TRLD Src f,Dst f) {

im|_|{5 € Dst f, H(D) ’rSrcf {a}

TDstf {5}
U{ﬂ € Dst f, H(B) #1%/ {a}

* theorem 610 was used.
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Thus G(a) is a principal filter that is G(a) =1P%*/ g(a) for some g : Src f —
Dst f; 15/ {a} xRP G(a) =1RLD(Src £,Dst f) ({a} x g(a)); f is principal as a join
of principal reloids. O

DEFINITION 1044. Completion and co-completion of a reloid f € RLD(A, B)
are defined by the formulas:

Complf _ CorComleLD(A,B) f7 COCOHlplf — CorCoCompIRLD(A,B) f

THEOREM 1045. Atoms of the lattice ComplRLD(A, B) are exactly reloidal
products of the form 14 {a} xR0 b where o € A and b is an ultrafilter on B.

PRrOOF. First, it's easy to see that 14 {a} xR® b are elements of
ComplRLD(A, B). Also LRP(AB) i an element of ComplRLD(A, B).

14 {a} xRP b are atoms of ComplRLD(A, B) because they are atoms of
RLD(A, B).

It remains to prove that if f is an atom of ComplRLD(A, B) then f =14
{a} xRP b for some a € A and an ultrafilter b on B.

Suppose f is a non-empty complete reloid. Then 14 {a} xRP b C f for some
a € A and an ultrafilter b on B. If f is an atom then f =14 {a} xR b, O

OBvIOUS 1046. ComplRLD(A4, B) is an atomistic lattice.

ProprosITION 1047. Compl f = u{%{rﬂc}f} for every reloid f.

PROOF. Let’s denote R the right part of the equality to be proven.
That R is a complete reloid follows from the equality

Flitay =157 {a} xR im(flrqay)-

Obviously, R C f.
The only thing left to prove is that g C R for every complete reloid g such that

gE [
Really let g be a complete reloid such that g C f. Then

. I_l{TSrcf {a} xRD G(a)}

a € Src f

for some function G : Src f — % (Dst f).
We have 157¢/ {a} xR0 G(a) = glisre s {a} E flt{a)- Thus g C R. O

CONJECTURE 1048. Compl f M Complg = Compl(f M g) for every f,g €
RLD(A4, B).

PrOPOSITION 1049. Conjecture 1048 is equivalent to the statement that meet
of every two complete reloids is a complete reloid.

PROOF. Let conjecture 1048 holds. Then for complete funcoids f and g we
have f Mg = Compl(fMg) and thus f Mg is complete.

Let meet of every two complete reloid is complete. Then Compl f M Compl g
is complete and thus it is greatest complete reloid which is less Compl f and less
Compl g what is the same as greatest complete reloid which is less than f and g
that is Compl(f M g). O

THEOREM 1050. Compl| |R = | |(Compl)*R for every set R € ZRLD(A, B)
for every sets A, B.
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ProoFr.
Compl |_| R =

U{('—lm”“m} = (theorem 610)

ac A

1 { fup )

feER

U(Compl)*R.

LEMMA 1051. Completion of a co-complete reloid is principal.

PROOF. Let f be a co-complete reloid. Then there is a function F' : Dst f —

Z (Src f) such that
B F(a)XRLD TDStf {a}
/= I—l{ a € Dst f }

So
Compl f =
F (o) xRPPs f ()

] ('—l{XaeD—stf}> ey |
B € Srcf -

o) xRLDADst F £, e .

I_l (l—l{F( ozEDstf { }}) TS f {B} XRLD Tﬂ(D tf B (*)
B € Srcf -
Ll{ (F(OI)XRLDTDbtf{a})m(TSrC f{ﬁ}XRLDTf}""(Dst f))

|_| a€eDst f _
B € Src f } -

TSTCf{ﬁ} RLDDst f{a}

|_| |—|{ oz;Dstf
B € Src f, 18 S {3} C F

* theorem 610.
Thus Compl f is principal. O

THEOREM 1052. Compl CoCompl f = CoCompl Compl f = Cor f for every
reloid f.

ProOF. We will prove only Compl CoCompl f = Cor f. The rest follows from
Symietry.

From the lemma ComplCoComplf is principal. It is obvious
Compl CoCompl f £ f. So to finish the proof we need to show only that
for every principal reloid F' C f we have F' C Compl CoCompl f.

Really, obviously F' C CoCompl f and thus F' = Compl F' C Compl CoCompl f.

O

CONJECTURE 1053. If f is a metacomplete reloid, then it is complete.
CONJECTURE 1054. Compl f = f\* (Q57/ xRLD TFDst ) for every reloid f.
By analogy with similar properties of funcoids described above:

PRrROPOSITION 1055. For composable reloids f and g it holds
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1°. Compl(g o f) J (Compl g) o (Compl f)
2°. CoCompl(g o f) 3 (CoCompl g) o (CoCompl f).

Proor.
1°. (Compl g) o (Compl f) E Compl((Compl g) o (Compl f)) C Compl(g o f).
2°. By duality.
O

CONJECTURE 1056. For composable reloids f and g it holds
1°. Compl(go f) = (Complg) o f if f is a co-complete reloid;
2°. CoCompl(f og) = f o CoComplyg if f is a complete reloid;
3°. CoCompl((Complyg) o f) = Compl(g o (CoCompl f)) = (Complyg) o
(CoCompl f);
4°. Compl(g o (Compl f)) = Compl(g o f);
5°. CoCompl((CoCompl g) o f) = CoCompl(g o f).

8.8. What uniform spaces are

PROPOSITION 1057. Uniform spaces are exactly reflexive, symmetric, transitive
endoreloids.

PrOOF. Easy to prove using theorem 1001. O



CHAPTER 9

Relationships between funcoids and reloids

9.1. Funcoid induced by a reloid

Every reloid f induces a funcoid (FCD)f € FCD(Src f, Dst f) by the following
formulas (for every X € #(Src f), Y € .Z#(Dst f)):
X [(FCD)f] Y < VF eup f: X [1FP F] y;
F

(FCD)fHx = [ ] (1FP F)x.

Feup f

We should prove that (FCD)f is really a funcoid.

PrOOF. We need to prove that
X [(FCD)f] Y < YN ((FCD)f)X # L < X M {(FCD)f~ ")y # L.
The above formula is equivalent to:
VEeuwf: X [tFPF| Y&
yo [l ¢F°Pa+le
Feup f

xn [ @FPrhy L.

Feup f
We have Y M |_]F€upf<TFCD F>X = |‘|F€upf(y M <TFCD F>X)

FCD
Let’s denote W = {W}

VEeupf: X [FPFlYevVFewf YN(IFP X £ 1o L¢W.

We need to prove only that L ¢ W < [|W # L. (The rest follows from
symmetry.) To prove it is enough to show that W is a generalized filter base.
Let’s prove that W is a generalized filter base. For this it’s enough to prove that

@reryx ] . ; : FCD
V=4 "Fep7 (152 generalized filter base. Let A, B € V that is A = <T P>X,

B = (1FP Q)X where P,Q € up f. Then for C = (1FP (P Q))X is true both
CeVand CLC A,B. SoV is a generalized filter base and thus W is a generalized
filter base. O

PROPOSITION 1058. (FCD) RP f =4FCD ¢ for every Rel-morphism f.

Proor. X [(FCD)MRP f] ¥ < VF € up tRP f . X [tFPF] ¥V &
X [1FP f] Y (for every X € F(Src f), YV € F(Dst f)). O

THEOREM 1059. X [(FCD)f] ¥ < X xRP Y £ f for every reloid f and
X e F(Srcf), Y e F(Dstf).

202
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PROOF.
& xRLD Yy * fe

VFcupf,Pecup(X x"PY): P#£F &
VFeup f,XeupX,Yeuwp)y : X xY £ F <

VEeupf, X ewpX,Yeuwy: X IFPFYy e
VEeuf: X [FPF| Y&
X [(FCD) f] V.

THEOREM 1060. (FCD)f = |_|FCD up f for every reloid f.

PRrROOF. Let a be an ultrafilter on Src f.

((FCD)f)a = |‘|{ s ;} by the definition of (FCD).

FCD
<|—|FCD up f>a = |_|{ <;eunga} by theorem 878.

So ((FCD) fYa = <|_|FCD up f>a for every ultrafilter a. O

LEMMA 1061. For every two filter bases S and T of morphisms Rel(U, V') and
every typed set A € TU

RLD RLD F F
[Ns=[|r=[]E)ra=[]©G) A
Fes GeT

PROOF. Let [T°° 5 =[RP T
First let prove that {<§>€SA} is a filter base. Let X,Y € {gé;} Then
X = (Fx)"Aand Y = (Fy)"A for some Fx,Fy € S. Because S is a filter base,

we have S 3 Fz C Fx M Fy. So (Fz)"AC XNY and (Fz)"A € {<F>*A}' So

Fes
{ gé;} is a filter base.

Suppose X € up H?€S<F)*A. Then there exists X’ € { <§>65A} where X J X'’

because {ggg‘} is a filter base. That is X’ = (F)"A for some F € S. There

exists G € T such that G C F because T is a filter base. Let Y/ = (G)"A. We
have Y/ C X' C X; Y/ € {<G>*A}; Y € up[1Zep(G) A X € up[1Zp(G)*A.

GeT
The reverse is symmetric. O

LEMMA 1062. {%} is a filter base for every reloids f and g.

PROOF. Let denote D = { peGol b Let A € DAB € D. Then A =
GpoFosNB = Gpgo Fpg for some Fp,Fg € upf, G4,Gg € upg. So A B 1

(GAMGE)o(FaM Fp) € D because Fy M Fp € up f and G4 MGp € upg. O

THEOREM 1063. (FCD)(g o f) = ((FCD)g) o ((FCD)f) for every composable
reloids f and g.

ProOF.
F F
(FCD)(go )X =[] (H)'X = ['] (HY*X.

Heup(gof) Heup HRLD{iF@ﬁ?geupg}
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Obviously

THT GoF TLT TLT GoF
= u M
Feupf,Geupyg P Feuf,Geupg]’

from this by lemma 1061 (taking into account that

GoF
Feupf,Geupyg

and
RLD

. |—| GoF
P Feuf,Geupyg

are filter bases)
TLT (Y x _ﬁ (GoF)X
N Fecupf,Geupyg]J’

RLD GoF
Heup[] {FG\)pf?GEupg}

On the other side

(((FCD)g) o ((FCD)f))" X = ((FCD)g)((FCD) f)" X =

F RLD
(FCD)g) [ (myx= [ (1P Gy ] (7)) x.
Fecup f Geupyg Feup f

Let’s prove that {;@fpﬁ} is a filter base. If A,B € {é?up);} then A =

(F)*X, B = (Fy)*X where F1,F, eupf. ANB I (A NE)X e { (F)° X } So

Feup f
{ (F)" X
Feup f
By theorem 839 we have

} is really a filter base.

F F
(Fea) [ (rx=[] @ (FX
Feup f Feup f

So continuing the above equalities,

(((FCD)g) o ((FCD)f))" X =

F F

[1 [] @)X =
Geupg Feup f
F

(G)(F)" X _
H{F cupf,G e upg} -
F *
(GoFY'X
H{F cupf,Ge upg}'
Combining these equalities we get ((FCD)(go f))*X = (((FCD)g) o ((FCD)f))"X
for every typed set X € 7 (Src f). O

PROPOSITION 1064. (FCD)idX° = id{P for every filter A.
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PROOF. Recall that id3™° = H{%}. For every X,) € % (Base(A))
we have
X [(FCD) idiLD] Ve
X xR0y £idf{P «
VA e upA X ><RLD y %TRLD(Base(.A),Base(A)) idy &
VA € upA X |:TFCD(Base(.A),Base(A)) 1dA:| RS
VAcupA: XNY 4 A<
XNY#tAs
x [id5) v
(used properties of generalized filter bases). O

COROLLARY 1065. (FCD)1RP = 1FCP for every set A.
PROPOSITION 1066. (FCD) is a functor from RLD to FCD.

PROOF. Preservation of composition and of identity is proved above. O

PROPOSITION 1067.
1°. (FCD)f is a monovalued funcoid if f is a monovalued reloid.
2°. (FCD)f is an injective funcoid if f is an injective reloid.
ProOF. We will prove only the first as the second is dual. Let f be a monoval-
ued reloid. Then fo f~1 T 182; (FCD)(fo f~1) C 15D (FCD)fo ((FCD)f)~' E
lgcsth that is (FCD)f is a monovalued funcoid. O

THEOREM 1068. go (X xRP V) = x xRLD ((FCD)g)Y for every reloid g and
suitable filters X', ).

PROOF.

go (X xRPyy = [ (Go(X xY)) =
Geup g,X€up X, Y€eupy
(X x (G)Y) =
G€eupg,X€up X, Y€EuUp Yy

X xR [ (@)Y = x xRPP (FCD)g) Y.
G€up g, Y€Eupy
0

COROLLARY 1069. go (X xRP Y)o f = ((FCD)f~1)x xRP ((FCD)g) ).
PRrOPOSITION 1070. (FCD)(A xRLP B) = A xFCP B for every filters A, B.

PROOF. X [(FCD)(A xRP B)] Y & VF € up(A xRP B) : X [tFP F| Y (for
every X € .7 (Base(A)), Y € .7 (Base(B)).
Evidently

VE € up(AxRPB) : X [fFP Fl Yy =VAecup A, BeupB: X [Ax B] ).

Let VA€ up A, B €upB: X [Ax B] Y. Then if F € up(A xRP B), there are
Acup A, Be€upBsuchthat FJAXx B. So X [TFCD F] Y. We have proved

VE € up(AxRPB) : x [fFP Fl Yy VAeup A, BeupB: X [Ax B] ).
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Further

VAeup A, BeupB: X [AxB]Y <
VAcecup A, BeuB: (XY #ANY # B) &
XAANY #£Be X [AxFPB] Y.

Thus X [(FCD)(AxRP B)] ¥ « X [AxFP 5] Y. O

ProrosiTiON 1071. dom(FCD)f = dom f and im(FCD)f = im f for every
reloid f.

PROOF.
F
im(FCD)f = (FCD) /)T = [ ] (F)'T =
Feup f
F F
|_| imF = |_|<im>* up f =im f.
Feup f

dom(FCD) f = dom f is similar. O

PROPOSITION 1072. (FCD)(f 1 (A xRP B)) = (FCD)f 1 (A x <P B) for every
reloid f and A € % (Src f) and B € #(Dst f).

PROOF.
(FCD)(f M (A xRP B)) =
(FCD)(idRP o f 0 idRP) =
(FCD) idP o(FCD) f o (FCD) id¥P =
id5P o(FCD) f 0 id P =
(FCD)f 1 (A xFP B).
O

COROLLARY 1073. (FCD)(f|a) = ((FCD)f)|a for every reloid f and a filter
A e F(Src f).

PRrROPOSITION 1074. ((FCD)f)X = im(f|x) for every reloid f and a filter X €
F(Sre f).

PROOF. im(f|x) = im(FCD)(f|x) = im(((FCD)f)|x) = ((FCD)f)X. O
FCD
PROPOSITION 1075. (FCD)f = |_|{mtomgg(mf%yg:tomgg,(mtﬂ’MLDy . f} for

every reloid f.

PrOOF. (FCD)f = |_|{ zx" Dy } but

x€atomsZ (51 ) ycatoms? (Dst )z xFCDy £ (FCD) f

z x Py £ (FCD)f & z [(FCD)f]y & o x" Py £ f,

thus follows the theorem. O
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9.2. Reloids induced by a funcoid

Every funcoid f € FCD(A, B) induces a reloid from A to B in two ways,
intersection of outward relations and union of inward reloidal products of filters:
RLD

(RLD)outf = [ | up f;
.A ><RLD B
(RLD)inf = I—l{A € F(A).Be F(B),Ax"PBC | }

THEOREM 1076. (RLD)i,f = |_|{ axRLDp }

a€atoms? (4) becatoms? (B) axFCDHLC f

PRrROOF. It follows from theorem 1009. O
PROPOSITION 1077. up tRP f = up 1FP f for every Rel-morphism f.
ProOF. X cuptRP fo X I f < X cup 7P f. O
PROPOSITION 1078. (RLD)oyus 17P f =tRLD f for every Rel-morphism f.

PROOF. (RLD)yys 7P f = |_|RLD up f =tRP minup f =tRP f taking into
account the previous proposition. O

Surprisingly, a funcoid is greater inward than outward:
THEOREM 1079. (RLD)outf C (RLD)iy f for every funcoid f.

PROOF. We need to prove

A xR B
C )
(RLD)outf & |—|{A € Z(A),Bec Z(B),AxFPBLC f}
Let eLb
A x B
Ke up'—l{Ae F(A),Be 7(B),Ax"PBC f}'
Then
RLD XaAXYp
Keuwt U{Ae F(A).Be 9(3),AxFCDBgf}
_ FCD X4 xYp
= (RLDJous 1 I—'{A € Z(A),Be F(B),AxFDBC f
_ (RLD) 'ﬁ TFCD (XA X YB)
- out Ac Z(A),Be Z(B),AxFPBLC f
3 (RLD)out |_|atomsf
= (RLD)out f
where X4 € up A, Xg € upB. K € up(RLD) oyt f- O

PROPOSITION 1080. (RLD)outfU(RLD)outg = (RLD)out (fLg) for funcoids f, g.

ProoFr.
RLD RLD
(RLD)outh—I (RLD)outg = |_| Fu |_| G =
Feup f Geupyg
RLD RLD
[1 Fue = [] H=RLD)ou(fUy).
Feup f,GEupyg Heup(fug)

O
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THEOREM 1081. (FCD)(RLD);,f = f for every funcoid f.
ProoF. For every typed sets X € (Src f), Y € J(Dst f)

X [(FCD)(RLD)uf]" ¥

X xRPY % (RLD)in f

RLD
12 (0xy) # |—|{a € atoms” ) g:tomsl;(B),a xFCD p C f} )
Ja € atoms” ) b € atoms” (B) : (a xFPyLC fAGC X ADLT YV)s
X ()" Y.

* theorem 583.
Thus (FCD)(RLD);, f = f. O

REMARK 1082. The above theorem allows to represent funcoids as reloids
((RLD)in f is the reloid representing funcoid f). Refer to the section “Funcoidal
reloids” below for more details.

OBVIOUS 1083. (RLD);n(A xFP B) = A xRLP B for every filters A, B.
CONJECTURE 1084. (RLD)oyt idZCD = idElLD for every filter A.

EXERCISE 1085. Prove that generally (RLD);,id%° # id3P°. 1 call
(RLD);, id"P thick identity or thick diagonal, because it is greater (“thicker”) than
identity idiLD.

PROPOSITION 1086. dom(RLD);, f = dom f and im(RLD);, f = im f for every
funcoid f.

ProOF. We will prove only dom(RLD);,, f = dom f as the other formula follows
from symmetry. Really:

dom(RLD)sn f = dom|_|{ ax"0% }

aCatoms?Z (5r¢ f) pcatoms? (Dst ) qxFCDHL f

By corollary 1028 we have

dom(RLD);, f =
I_l{ dom(a xRt ) } B
a € atoms” 5 f) b € atoms? Pst/) g xFO T f

|_|{ dom(a xFCP b) }
a € atoms” ¢ ) b € atomsZ (Pt g xFDpC 7 [
By corollary 896 we have

dom(RLD);, f =

><FCD b
d0m|_| a =
a € atoms” ) b € atoms” (PstF) ¢ xFDp C f
dom f.
[l

ProposITION 1087. dom(f|4) = AMdom f for every reloid f and filter A €
F(Src f).

Proor. dom(f|4) = dom(FCD)(f|4) = dom((FCD)f)|4 = AMdom(FCD)f =
AnMNdom f. O

THEOREM 1088. For every composable reloids f, g:
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1°. If im f J dom g then im(g o f) = im g;
2°. If im f € dom g then dom(g o f) = dom f.
PRroOOF.

1°. ism(glo f) =im(FCD)(g o f) = im((FCD)g o (FCD)f) = im(FCD)g = im g.
2°.  Similar.

O

LEMMA 1089. If a, b, ¢ are filters on powersets and b # L, then

RLD

|_| G ol — XRLD c
F € atoms(a xR b), G € atoms(b xRLD ¢) '

PROOF.

a xR0 ¢ = (b xR ¢) o (a xR0 b) = (corollary 1006) =

RLD

|_| GoF
F € atoms(a xRD b), G € atoms(b xRLD ¢) |~

O

THEOREM 1090. a xRPb C (RLD)inf < a xFP b C f for every funcoid f and
a € atoms” ¢ f) b € atoms? (Pst ),

PROOF. a xFP b C f=axRPpLC (RLD);n f is obvious.

a xR b C (RLD)i, f = a xRP b % (RLD)i, f =
a [(FCD)(RLD)inf] b= a [f] b= a x"PbLC f.

O

CONJECTURE 1091. If A xR0 B C (RLD);,f then A x"°P B C f for every
funcoid f and A € Z(Src f), B € #(Dst f).

THEOREM 1092. up(FCD)g 2 up g for every reloid g.

PRrROOF. Let K € upg. Then for every typed sets X € . Srcg, Y € 7 Dstg
X[KI'Y & X TP K]"Y & X [(FCD) tRP K]" ¥ « X [(FCD)g]" Y-

Thus $FP K J (FCD)g that is K € up(FCD)g. O

THEOREM 1093. go (A xRP B)o f = ((FCD)f~1).A xRP ((FCD)g)B for every
reloids f, g and filters A € % (Dst f), B € % (Srcyg).
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PROOF.

g0 (AxRP B)o

L Go(AxB)oF
FEupf,GEupg,AEupA BeuphB

RLD 1> A xR ()
|_| FGupf,GEupg,AGupABGupB
(theorem 1011)

2 (F)A (G)
|_|{F€upf7A€upA} |_|{G€upg7B€upB}
Ifl{ TFCDF > A } RLD|_|{ TFCD G>* }_
Feuf,AecupAd Geupg,BeuphB
<TFCD F‘1>.A RLD TFCD G>B
|_|{ Feupf |—| Geupyg
(by definition of (FCD))
((FCD)f~1) A <P ((FCD)g)B.

f=
TﬂT F1Y"Ax (G)'B
Feupf,Geupg,AGup.ABeupB

COROLLARY 1094.

L (A0 ) o f = ((FCD)f A X0 B
2 go(A XRLD B) A xR <(FCD) V8.

9.3. Galois connections between funcoids and reloids

THEOREM 1095. (FCD) : RLD(A,B) — FCD(A, B) is the lower adjoint of
(RLD);, : FCD(A, B) — RLD(A, B) for every sets A, B.

PROOF. Because (FCD) and (RLD);, are trivially monotone, it’s enough to
prove (for every f € RLD(A4, B), g € FCD(4, B))

f E(RLD)iy(FCD)f and (FCD)(RLD)ing C g.
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The second formula follows from the fact that (FCD)(RLD)ing = g.
(RLD)in(FCD) f =

o xRLD p,
|—|{ a € atoms” ) b € atoms” (B) ¢ xFCD p C (FCD)f
o xRLD gy
Ll{a € atoms” W b € atoms” (B) q [(FCD)f] b
|_|{ o xRLD
a € atoms” ) | b € atoms” (B) g xRLD p £ f
|—|{ p € atoms(a xRtD p)
a € atoms” ) | b € atoms” (B) p £ f
RLD(A,B)

p € atoms
|—|{ p#f

b _
u{peatomsf} N

Th N Y Y~ —~— ——
I

COROLLARY 1096.
1°. (FCD)||S = | [{(FCD))"S if S € ZRLD(A, B).
2°. (RLD)in [1S =[{(RLD);,)"S if S € ZFCD(A, B).
THEOREM 1097. (RLD)iy(f U g) = (RLD)inf U (RLD)ing for every funcoids
f,g € FCD(A, B).

ProoFr.
a xR b
RLD)in(f L g) = =
( Jn(FU9) I—l{ a € atoms” ) b € atoms? (B) ¢ xFCD h C f 1 g}
o xRLD py
|—|{a € atoms” ) b € atoms” (B) q xFEPHh C f v a xFD b C g} B

a xRP b
(]
I—I{a € atoms” b € atoms” (B) a xFCD p C f}

o xRLD p,
|—|{a € atoms” b € atoms”? (B, q xFCD p C g} N
(RLD)iy f U (RLD)ing.

O

PROPOSITION 1098. (RLD);y,(f M (A x7P B)) = ((RLD)inf) M (A xRLP B) for
every funcoid f and A € % (Src f), B € .Z#(Dst f).

Proor.
(RLD)in (fMI(AXFPB)) = ((RLD)in f)M(RLD)in (AxTPB) = ((RLD);, f)r1(AxRPB).
O
COROLLARY 1099. (RLD)in(f|a) = ((RLD)inf)].A-
CONJECTURE 1100. (RLD);y, is not a lower adjoint (in general).

CONJECTURE 1101. (RLD)y¢ is neither a lower adjoint nor an upper adjoint
(in general).
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22max{A,B} .

EXERCISE 1102. Prove that card FCD(4, B) = if A or B is an infinite

set (provided that A and B are nonempty).

LEMMA 1103. TFCD(Srcg,Dstg) {(Jf,y)} C (FCD)g @TRLD(Srcg,Dstg) {(x,y)} Cyg
for every reloid g.

PROOF.
4FCD(Sreg.Dstg) [(1 )} C (FCD)g <
FFEPEea D) {(x,y)} # (FCD)g & @{z} [(FCD)g)" @fy} &
ARUD(Sreg.Dst9) £ 4y} £ g gRLDBreg.Dstg) (5 )V C g,
O
THEOREM 1104. Cor(FCD)g = (FCD) Cor g for every reloid g.
PROOF.
Cor(FCD)g =

AFCD(Sreg,Dst g)
|_|{TFCD (@) : FCD }
FCD(Sre g, Dst g) { x y
|_|{ +RLD(Srcg,Dst g) } -
(FCD) TRLD Srcg, Dstg
I_l{ ARLD(Sreg.Dstg) {(z y)} } -

(FCD)U{ TRLD(Srcg ,Dst g) { x y } _

RLD(Sreg,Dst9) {(z.4)} C g
(FCD) Cor g.

CONJECTURE 1105.

1°. Cor(RLD);,g = (RLD);, Cor g;

2°. Cor(RLD)outg = (RLD)oyt Cor g.
THEOREM 1106. For every reloid f:

1°. Compl(FCD)f = (FCD) Compl f;

2°. CoCompl(FCD)f = (FCD) CoCompl f.

PRrROOF. We will prove only the first, because the second is dual.

Compl(FCD)f = | | ((FCD)f)|+{ay = (proposition 1072) =
a€ESre f
|| (FCD)(flray) = (FCD) || flpay = (FCD) Compl f.
a€Src f a€Src f
0

CONJECTURE 1107.
1°. Compl(RLD);,g = (RLD);, Compl g;
2°. Compl(RLD)outg = (RLD)oys Compl g.
Note that the above Galois connection between funcoids and reloids is a Galois
surjection.

PROPOSITION 1108. (RLD);,g = max{ (chfj?;'ég} = max{ JERLD. }

ProoFr. By theorem 131 and proposition 323. O
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9.4. Funcoidal reloids

DEFINITION 1109. I call funcoidal such a reloid v that

X xRy 2~y =
JX" € F(Base(X))\ {L}, V' € F(Base(Y)) \ {L}:
(XIEX/\ylEy/\X/XRLDy/EV)
for every X € % (Srcv), Y € Z(Dstv).

REMARK 1110. See theorem 1115 below for how they are bijectively related
with funcoids (and thus named funcoidal).

PROPOSITION 1111. A reloid v is funcoidal iff 2 xRP gy £ v = 2 xRPy C v
for every atomic filter objects x and y on respective sets.

PROOF.
=. zxRPy £ v = 3X c atomsz,) € atomsy : X' xRPY C v = o xRPy Cv.
<.
X xRPy £y =
Jz € atoms X,y € atoms Y : z xFP gy £ v =
HsceatomsX,yEatomsy:xxRLDyEl/:>
X' € Z(Base(X))\ {L},V € ZF(Base(Y))\ {L}:
(XM CTXAY CYAX XRPY Cu).

O
ProrosiTION 1112.
a xRLD p,
RLD);n(FCD)f = )
( ) ( )-f |_|{a c atoms,?(Src D),b c atomsﬁ’(Dstu)’a «RLD \%; f}
ProoFr.
(RLD);n (FCD) f =
RLD p,
|—|{ a € atoms” 57¢¥) b € atoms” (Pst¥) ¢ xFCD p C (FCD f} B
RLD p,
Ll{ a € atoms” 7)€ atoms” (Pt¥)| a [(FCD)f b} B
«RLD },
I—l{ a € atoms” 5r¢v) p e atomsgz(DSt v) a xRLD p £ f}
O

DEFINITION 1113. T call (RLD);,(FCD)f funcoidization of a reloid f.
LEmMMA 1114. (RLD);,(FCD)f is funcoidal for every reloid f.

PrOOF. x xRLP y £ (RLD);,(FCD)f = = xRP y C (RLD);,(FCD) f for atomic
filters x and y. O

THEOREM 1115. (RLD);, is a bijection from FCD(A, B) to the set of funcoidal
reloids from A to B. The reverse bijection is given by (FCD).
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PROOF. Let f € FCD(A, B). Prove that (RLD);, f is funcoidal.

Really (RLD)inf = (RLD)iy(FCD)(RLD)inf and thus we can use the lemma
stating that it is funcoidal.

It remains to prove (RLD);,(FCD)f f for a funcoidal reloid f.
((FCD)(RLD)ing = g for every funcoid g is already proved above.)

(RLD);,(FCD)

RLD

|_|{ 2 xRD

z € atoms” 8¢ f) 4 € atoms? (Pst /) 1 «RLD
RLD

f

77)

|—|{ p € atoms(z x"-° y) }
z € atoms” ¢ )y € atoms? PstF) g xRLD 4 £ §

A

|—|{ p € atoms(x xRP y) _
z € atoms” 57 1) 4 € atoms” (PstF) g xRLD ¢ C f
|_|atomsf =f.
]
COROLLARY 1116. Funcoidal reloids are convex.
PRrROOF. Every (RLD);, f is obviously convex. O

THEOREM 1117. (RLD)in(g © f) = (RLD)ing © (RLD)iy f for every composable
funcoids f and g.

PROOF.

(RLD)ing © (RLD);n f = (corollary 1006) =
RLD

|—| GoF
F € atoms(RLD);y, f, G € atoms(RLD);,g

Let F be an atom of the poset RLD(Src f, Dst f).

F € atoms(RLD);, f = dom F' xRPim F # (RLD);, f =
(because (RLD);, f is a funcoidal reloid) =
dom F xR im F C (RLD);, f

but dom F' xR® im F C (RLD);, f = F C (RLD);, f is obvious.
So

F € atoms(RLD);, f < dom F xR*™Pim F C (RLD);, f =
(FCD)(dom F xR-Pim F') € (FCD)(RLD);,, f < dom F x P im F C f.

But
dom F x P im F C f = (RLD)iy(dom F x P im F) C (RLD);, f <
dom F xRP im F' C (RLD);, f.

So F € atoms(RLD);, f < dom F xFPim F C f.
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Let F € atoms(RLD);, f, G € atoms(RLD);,g. Then dom F xFPim F C f and
dom G xFP im G C g. Provided that im F' % dom G, we have:

dom F xRP im G = (dom G x®P im G) o (dom F xRP im F) =

RLD

L oo =N
F’ € atoms(dom F' xR0 im F'), G’ € atoms(dom G xRLP im G) | —

RLD

G/ o F/ B
|_| [l]F/ c atOHlSRLD(SrCF’DSt F)7G/ c atOHlSRLD(SrCG’DSt G)’ -
F' C (RLD), f,G' C (RLD)ing
RLD

G/ o F/
= (RLD)in RLD);, f.
|—| { F’" € atoms(RLD), f, G’ € atoms(RLD)ing} (RLD)ing © (RLD)in f

(*) F’ € atoms(dom F xRP im F') and dom F x" P im F C f implies dom F’ x"P
im F' C f; thus dom F’ xR0 im I’ C (RLD);, f and thus F’ C (RLD);, f. Likewise
for G and G’.

. RLD dom Fx®Pim G
Thus (RLD)ingo (RLD)lnf . |_| { FEatoms(RLD)mf,OGmEatims(llgll_D)mg,im F#dom G }

But
RLD , .
(dom G xRP im @) o (dom F xRP im F)

RLD);, g o (RLD);y f C =

( Jing o ( Jinf |—| { F € atoms(RLD);,, f, G € atoms(RLD);,g
T:T dom F xR0 im G
F € atoms(RLD);, f, G € atoms(RLD);ng,im F % dom G |
Thus

(RLD)ing o (RLD)in f =
RLD

|—| dom F xR0 im @ B
F € atoms(RLD);, f, G € atoms(RLD),g,im F % dom G |

RLD

L

dom F xR im G

RLD(Src f,Dst f)7 G e atOHlSRLD(DSt f,Dst g)7

dom F xFPim F C f,dom G x P im G C ¢g,im F # dom G

F € atoms

But
RLD

(RLD)in(go f) = |_|{ ax ¢ } = (proposition 910) =

a xFCD ¢ € atoms(g o f)

a xRD ¢

|—| a€ F(Srcf),ce Z(Dstg),
b€ F(Dst f): (ax"Pbcatoms f Abx"P ¢ € atoms g)

a w RLD c

|—| a € F(Srcf),ce F(Dstg),
Jbg, by € F(Dst f) : (a xTP b € atoms f A b x"P ¢ € atoms g A by % b1)
Now it becomes obvious that (RLD)i,g o (RLD)inf = (RLD)in(g © f). O
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9.5. Complete funcoids and reloids

For the proof below assume

0=1{ || a¥ {ap <M fah) = || (7 {a} <P () s}

z€Sre f z€Sre f
(where f ranges the set of complete funcoids).
LEMMA 1118. 6 is a bijection from complete reloids into complete funcoids.
PRrROOF. Theorems 931 and 1037. O
LEMMA 1119. (FCD)g = fg for every complete reloid g.

PROOF. Really, g = I-la;ESrcf(Tsrcf {x} xRP (fy*@{x}) for a complete reloid g
and thus

(FCD)g = || (FCD)(15f {a} xFP (f)*@{a}) =

x€Src f
L] (157 {a} P (f) @fa}) = bg.
xz€Src f
U

LEMMA 1120. (RLD)oyuf = 671 f for every complete funcoid f.

PROOF. We have f = Uzesrcf(Tsrcf {x} xFP (fy*@{x}). We need to prove
(RUD)ousf = Lycsre s (157 {1} xR0 (f)"@{a}).

Really, (RLD)outf 3 Uyese (1577 {ar} <" (£)"@fa}).

It remains to prove that UzeSrcf(Tsrcf {z} xRPP (fy*@{z}) 3T (RLD)ous f.

Let L € upll,eqe ;057 {z} xRP (f)*@{z}). We will prove L €

up(RLD)ous f-
We have
Le () wp(t™ {a} x™P (f)"afa}).
zESrc f
(L) {x} = G(z) for some G(z) € up(f)*@{z} (because L € up(15/ {x} xRLP
(f) afz}).

Thus L = G € up f (because f is complete). Thus L € up f and so L €

up(RLD)out f-
O

ProprosITION 1121. (FCD) and (RLD)eyt form mutually inverse bijections be-
tween complete reloids and complete funcoids.

PRrROOF. From two last lemmas. O

THEOREM 1122. The diagram at the figure 8 (with the “unnamed” arrow from
ComplRLD(A, B) to .7 (B)4 defined as the inverse isomorphism of its opposite ar-
row) is a commutative diagram (in category Set), every arrow in this diagram is
an isomorphism. Every cycle in this diagram is an identity (therefore “parallel”
arrows are mutually inverse). The arrows preserve order.

PRrOOF. It’s proved above, that all morphisms (except the “unnamed” arrow,
which is the inverse morphism by definition) depicted on the diagram are bijections
and the depicted “opposite” morphisms are mutually inverse.

That arrows preserve order is obvious.
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G (a}xRLDGm)}
(e ()" {a}) HU{ oA

FCD
G>—>[_|{ {u}xaeAGw)}

(RLD)out
ComplFCD(A4, B) — ComplRLD(A4, B)
FCD

FIGURE 8

It remains to apply lemma 196 (taking into account that 6 can be decomposed
-1
into (GHU{%}) andGHU{%CDAG@}). O

THEOREM 1123. Composition of complete reloids is complete.

PROOF. Let f, g be complete reloids. Then (FCD)(go f) = (FCD)g o (FCD)f.
Thus (because (FCD)(go f) is a complete funcoid) we have go f = (RLD)out((FCD)go
(FCD)f), but (FCD)g o (FCD)f is a complete funcoid, thus g o f is a complete
reloid. ]

THEOREM 1124.
1°. (RLD)outgo(RLD)out f = (RLD)out(go f) for composable complete funcoids
f and g.
2°. (RLD)outg o (RLD)out f = (RLD)out(go f) for composable co-complete fun-
coids f and g.

PRrROOF. Let f, g be composable complete funcoids.
(FCD)((RLD)outg © (RLD)out f) = (FCD)(RLD)outg o (FCD)(RLD)out f = g o f.
Thus (taking into account that (RLD)outg © (RLD)outf is complete) we have

(RLD)outg o (RLD)outf = (RLD)out(g o f)
For co-complete funcoids it’s dual. ]

PROPOSITION 1125. If f is a (co-)complete funcoid then up f is a filter.

PROOF. It is enough to consider the case if f is complete.
We need to prove that VF,G cup f: FNG €up f.

For every F € Rel(Src f, Dst f) we have

Feupfe FIfe (F){z3(f){z}

Thus

F,Geupf= (F){z} 2 (/) {a} A (G) {2} 3 () {a} =
(FG){a} = (F){z} 1(G){z} I (f){a} = FNG cupf.
That up f is nonempty and up-directed is obvious. O
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COROLLARY 1126.
1°. If f is a (co-)complete funcoid then up f = up(RLD)oyt f-
2°. If f is a (co-)complete reloid then up f = up(FCD)f.

PROOF. By order isomorphism, it is enough to prove the first.
Because up f is a filter, by properties of generalized filter bases we have F' €
up(RLD)outf < Jgcupf: Fdg< Feupf. O

9.6. Properties preserved by relationships
PROPOSITION 1127. (FCD) f is reflexive iff f is reflexive (for every endoreloid f).

PRrROOF.

[ is reflexive & 165 C f & VF eup f: 155, E F &

FCD
18§lf C |—| up f < 18§1f C (FCD)f < (FCD)f is reflexive.

O

PROPOSITION 1128. (RLD)oyt f is reflexive iff f is reflexive (for every endofun-
coid f).
PRroOF.

f is reflexive & 1g§1f C f < (corollary 925) <

RLD
VFGupf:lggleF(:lggle |_|upf<:)
185" C (RLD)out f < (RLD)gue f is reflexive.
O
PROPOSITION 1129. (RLD)iy f is reflexive iff f is reflexive (for every endofun-
coid f).
PROOF. (RLD);y, f is reflexive iff (FCD)(RLD)yy f if reflexive iff f is reflexive. O
OBvious 1130. (FCD), (RLD);,, and (RLD)eyt preserve symmetry of the argu-
ment funcoid or reloid.

RLD

PROPOSITION 1131. a X~ a = L for every nontrivial ultrafilter a.

PROOF.
a x®P 4 = (RLD) gy (a xFP a) =

RLD
|_| llp((l ><FCD a) C 1FCD M (—|—FCD \ 1FCD) _ J_FCD.

ExAMPLE 1132. There exist filters A and B such that (FCD)(A xR-P B) C
A xFP B

PROOF. Take A = B = a for a nontrivial ultrafilter a. a xIR:LD a = 1. Thus
(FCD)(a xIR,LD a):J_EaxFCD a. O

CONJECTURE 1133. There exist filters A and B such that (FCD)(A x B) C
A xFCP B,

EXAMPLE 1134. There is such a non-symmetric reloid f that (FCD)f is sym-
metric.
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ProoF. Take f = ((RLD)in(=)|r) M (>)g. f is non-symmetric because f %*
(>)g but f =< (<)g. (FCD)f = (=)|r because (=)|g C f C (RLD)in(=)|r. O

PROPOSITION 1135. If (RLD);, f is symmetric then endofuncoid f is symmetric.

PROOF. Suppose (RLD);, f is symmetric then f = (FCD)(RLD);, f is symmet-
ric. ]

CONJECTURE 1136. If (RLD)oys f is symmetric then endofuncoid f is symmet-
ric.

PROPOSITION 1137. If f is a transitive endoreloid, then (FCD)f is a transitive
funcoid.

ProOOF. f = fo f; (FCD)f = (FCD)(fo f); (FCD)f = (FCD)f o (FCD)f. O

CONJECTURE 1138. There exists a non-transitive endoreloid f such that
(FCD)f is a transitive funcoid.

PROPOSITION 1139. (RLD);, f is transitive iff f is transitive (for every endo-
funcoid f).

PROOF.

f=7fof= (RLD)inf = (RLD)iy(f o f) < (theorem 1117) <
(RLD)inf = (RLD)inf o (RLD)inf =
(FCD)(RLD)iy f = (FCD)(RLD)inf o (FCD)(RLD)in f & f = fo f.
Thus f = f o f & (RLD)nf © (RLD)jn - O

CONJECTURE 1140.

1°. There exists such a transitive endofuncoid f, that (RLD)oyf is not a
transitive reloid.

2°. There exists such a non-transitive endofuncoid f, that (RLD)yut f is tran-
sitive reloid.

9.7. Some sub-posets of funcoids and reloids

PROPOSITION 1141. The following are complete sub-meet-semilattices (that is
subsets closed for arbitrary meets) of RLD(A, A) (for every set A):

1°. symmetric reloids on A;

2°. reflexive reloids on A;

3°. symmetric reflexive reloids on A;

4°. transitive reloids on A;

5°. symmetric reflexive transitive reloids (= reloids of equivalence = uniform
spaces) on A.

PrOOF. The first three items are obvious.

Fourth: Let S be a set of transitive reloids on A. That is fo f T f for
every f € S. Then ([S)o([]S)C fo fC f. Consequently ([1S)o([]S)C[]S.

The last item follows from the previous. O

PROPOSITION 1142. The following are complete sub-meet-semilattices (that is
subsets closed for arbitrary meets) of FCD(A, A) (for every set A):

1°. symmetric funcoids on A;

2°. reflexive funcoids on A;

3°. symmetric reflexive funcoids on A;
4°. transitive funcoids on A;



9.8. DOUBLE FILTRATORS 220

5°. symmetric reflexive transitive funcoids (= funcoids of equivalence = prox-
imity spaces) on A.

PROOF. Analogous. O

Obvious corollaries:

COROLLARY 1143. The following are complete lattices (for every set A):

1°. symmetric reloids on A;

2°. reflexive reloids on A;

3°. symmetric reflexive reloids on A;

4°. transitive reloids on A;

5°. symmetric reflexive transitive reloids (= reloids of equivalence = uniform
spaces) on A.

COROLLARY 1144. The following are complete lattices (for every set A):

1°. symmetric funcoids on A;

2°. reflexive funcoids on A;

3°. symmetric reflexive funcoids on A;

4°. transitive funcoids on A;

5°. symmetric reflexive transitive funcoids (= funcoids of equivalence = prox-
imity spaces) on A.

The following conjecture was inspired by theorem 2.2 in [44]:

CONJECTURE 1145. Join of a set S on the lattice of transitive reloids is the
join (on the lattice of reloids) of all compositions of finite sequences of elements
of S.

The similar question can be asked about uniform spaces.
Does the same hold for funcoids?

9.8. Double filtrators

Below I show that it’s possible to describe (FCD), (RLD)out, and (RLD);, en-
tirely in terms of filtrators (order). This seems not to lead to really interesting
results but it’s curious.

DEFINITION 1146. Double filtrator is a triple (2, B, 3) of posets such that 3 is
a sub-poset of both 2 and 8.

In other words, a double filtrator (2(,*B,3) is a triple such that both (2, 3)
and (B, 3) are filtrators.

DEFINITION 1147. Double filtrator of funcoids and reloids is (FCD, RLD, Rel).
DEFINITION 1148. (FCD)f =" up? f for f € B.
DEFINITION 1149. (RLD)oyut f = |_|‘B up? f for f € A

DEFINITION 1150. If (FCD) is a lower adjoint, define (RLD);, as the upper
adjoint of (FCD).

9.8.1. Embedding of 2l into 8. In this section we will suppose that (FCD)
and (RLD);, form a Galois surjection, that is (FCD)(RLD);, f = f for every f € 2.
Then (RLD);, is an order embedding from 2 to B.
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9.8.2. One more core part. I this section we will assume that (FCD)
and (RLD);j, form a Galois surjection and equate 2 with its image by (RLD);,
in B. We will also assume (2, 3) being a filtered filtrator.

PROPOSITION 1151. (FCD)f = Cor® f for every f € B.

Proor. Cor® f = |_|Q[ up® f C |_|Q[ up? f = (FCD)f. But for every g € up® f
we have g = [1% up3 g 3 [T up? £, thus [1* up® f I [T" up? /. O

EXAMPLE 1152. (FCD)f # Cor’™ f for the double filtrator of funcoids and
reloids.

PROOF. Consider a nontrivial ultrafiler a and the reloid f = idR-°.

FCD
Cor’™ f= Cor’eP idsLD = |_| down"eP idsLD =
FCD
| |0=1FP #ax"Pa = (FCD)id}P.

O

I leave to a reader’s exercise to apply the above theory to complete funcoids
and reloids.



CHAPTER 10

On distributivity of composition with a principal
reloid

10.1. Decomposition of composition of binary relations

REMARK 1153. Sorry for an unfortunate choice of terminology: “composition”
and “decomposition” are unrelated.

The idea of the proof below is that composition of binary relations can be
decomposed into two operations: ® and dom:

o)

Composition of binary relations can be decomposed: go f = dom(g ® f).
It can be decomposed even further: ¢ ® f = ©Oqf N O1g where

(Here U is the Grothendieck universe.)
Now we will do a similar trick with reloids.

10.2. Decomposition of composition of reloids

A similar thing for reloids:
In this chapter we will equate reloids with filters on cartesian products of sets.
For composable reloids f and g we have

gof=
RLD(Src f,Dst g)

|—| GOF -
FcGRf GeGRygJ

RLD(Src f,Dst g) dom(G @ F)
{F €EGRf,Ge GRg}'

GRF Ta o
LEMMA 1154. {m} is a filter base.

PROOF. Let P,Q € {%} Then P = Go & Fo, Q = G, @ F, for
some Fy, Fy € f, Go,G1 € g. Then FyNFy € up f, Go NGy € upg and thus
GeF
FeGRf,GeGRg /[’

PﬂQ;(F@ﬂF])@(GOﬂGl)E{

Z (Src fxDst g) F . .
i FEGRT Geé%ébg )} is a generalized filter base.

COROLLARY 1155. {

PROPOSITION 1156 go f = dOm |—|9(Srcf><Dst g) { % }

222
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re s F (Src s
PROOF. T?(S fxDst g) dom(G ® F) - dom[_] (Src fxD tg){%}.
Thus

Z (Src fxDst g)
GoF
3d .
gofJdom [ {FeGRLGeGRg}

Let X € up dom[]7 (Sref»Dst g){%}. Then there exist Y such that

Feup f,GEupyg
ZF(Src fxDst g) GoF
X xYe .
w |_| {FeupﬁGEupg}

So because it is a generalized filter base X XY O G®F for some F € up f, G € upg.
Thus X € updom(G ® F'). X € up(go f). O

We can define g ® f for reloids f, g

. GoF
99 = FeGR,GeCRy [

Then

Z (Src fxDst g) %
gof= " [1 (dom) (9@ f) = dom(1RPE/XDt0)) (g 5 )

10.3. Lemmas for the main result

LEMMA 1157. (¢® f)N(h® f) =(¢gNh)® f for binary relations f, g, h
PRrROOF.
(gNh)®@ f=00fNO1(gNh)=0OfN(O1gNO1h) =
(BofNO1g) N (OofNOLh) =(g@ f)N(h® f).
O

LEMMA 1158. Let FF =tRLD f be a principal reloid (for a Rel-morphism f),
T be a set of reloids from Dst F' to a set V.

RLD(Src fxV,0) RLD(Src fxV,0)
[l @en=1] [1 @GePp).
Geup T GeT

PROOF. ﬂgl‘e?lfrlj §X VO(G f) D Uger [PR-PEXV-0) (G @ F) is obvious.

Let K € up| Jqer MRS *V0) (G @ F). Then for each G € T

RLD(Src fxV,0)
K eup |—| (G®F);

K € up HRLD(SrCfXVU){ G} Then K € {M} by properties of generalized

Ted
filter bases.
K e { @on-nry, )®f} (Do®f)N---N( n®f)}
neEN,I,eG neEN,T,eG

VGeT: KD (Tgo® f)N (FGn®f)forsomen€N I'c,eG.

KD {(F"@T{ém Fmec"@’f where I'; = J, e I'g,i € up [T
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K e {(me)ﬂ-g(&@f)}. So

ne
To@fH)n---n(Iy, @ f)
K e

neNTI, eup||T

(Con-nr)ef|
neN,I,euwl|T )

RLD(Src £x V,0) Gof

w [ {Geupl_lT}'

O

10.4. Proof of the main result

LEMMA 1159. (|T)oF = | |{ gzl;} for every principal reloid F' =fRLP f (for a

Rel-morphism f) and a set T of reloids from Dst F' to some set V. (In other words
principal reloids are co-metacomplete and thus also metacomplete by duality.)

PROOF.

(|_| T) oF =
RLD(Src f,V)

|_| (dom) ((Ll T) ® F)
RLD(Src fx V,0)
dom |_| ((Ll T) ® F) =

RLD(Src fxV,0)

dom |_| (G® f);

Geup T

|| (Gor) =
GeT
RLD(Src f,V)

][] (@m)(Ger) =

GeT

RLD(Src f xV,U)
|_| dom |—| (GRF)=

GeT
RLD(Src fxV,0)

dom |_| |_| (GF).

GeT
It’s enough to prove
RLD(Src fxV,0) RLD(Src fxV,0)
['] Gef=|] ['] (G®F)
Geup T GeT
but this is the statement of the lemma. [l

THEOREM 1160. The following are pair-wise equivalent:

1°. f is a complete reloid.

2°. fol |K = |_|g€K(f o g) for every complete reloid f and a set K of reloids
with suitable image (in other words, f is a metacomplete reloid).

3°. fol|]K = |_|g€K(f o g) for every complete reloid f and a set K of Rel-
morphisms with suitable image.

PROOF.
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2°=3°. Obvious.
1°=2°. Obviously fo|JK J[|,cx(fog).

fo |_|K = (because f is complete) =
|_| I_lzedomf({x} XRLD pr ) |_|K
¢ € (T im f)domf (o) {x} 2 (f
(x—zo |_| K preserves filtered meets by theorem 842) =

Urcaom s ({2} xF2 pz) o | | K
|—|{ = (yeim ff)domf’ EREEIND } = (by the lemma) =
s { U £ ({2} xR ) o | ) } )

p € (Fim f)lomS, (o) {x} 3 (f) {=}

(apply theorem 1068 two times) =
Uscaon (w0 ((LE) ™) {o} <™ {a}))

[ p € (Fim f)lom] () {x} I (f){x}

(by the lemma) =

? 0 Ureaom s (((UK) ) {o} xR0 {2})
N eTmy™ @@z e

¢ o Compl| | K
|—|{s0 € (Fim f)domf, (o) {a} 3 <f>*{$}} -

pol JK o
|_|{<pe (F im f)dom f (o >*{$}j<f>*{x}}_f |_|K.

3°=1°. f = ol = f I_lazedomf{x 33} I_lzedomf(f © {.I‘,.’E})
Ll;cEdomf({'r} XRLD <(FCD) > {I}) COHlplf

10.5. Embedding reloids into funcoids
DEFINITION 1161. Let f be a reloid. The funcoid
pf = FCD(Z(Src f x Src f), Z(Dst f x Dst f))
is defined by the formulas:
(pf)z=fox and (pfy=f""oy
where x are endoreloids on Src f and y are endoreloids on Dst f.

PROPOSITION 1162. It is really a funcoid (if we equate reloids x and y with
corresponding filters on Cartesian products of sets).

PROOF. y # (pflz ey # fox s floytas (pf 1y # d
COROLLARY 1163. (pf)~! = pf~L.

DEFINITION 1164. It can be continued to arbitrary funcoids z having destina-
tion Src f by the formula (p* f)z = (pf) idsyc fox = f o .

PROPOSITION 1165. p is an injection.
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Proor. Consider = idg;c - O
PROPOSITION 1166. p(go f) = (pg) o (pf).
PROOF. (p(go f))x =gofox = (pg){pf)x = ({pg)o(pf))x. Thus (p(go f)) =
{pg) o (pf) = ((pg) o (pf)) and so p(g o f) = (pg) o (pf). 0
THEOREM 1167. p| |F = | [{(p)"F for a set F of reloids.
PROOF. It’s enough to prove (p| |F)"X = <|_|<p>*F>*X for a set X.
Really,
L5
MENE
| |FotX =
fo? X
rer )
(pf) T X\ _
{7 )
pf _
(L)) -
<|_|<p>*F>*X.
O
CONJECTURE 1168. p[|F =[1(p)*F for a set F of reloids.
ProposITION 1169. p1§° =150, .
Proor. (p1fP)z =18Pox =2 = <1?§?Axm>x. O

We can try to develop further theory by applying embedding of reloids into
funcoids for researching of properties of reloids.

THEOREM 1170. Reloid f is monovalued iff funcoid pf is monovalued.

PROOF.

pf is monovalued <

(pf) o (pf) ™ E lpsipr &
p(fof™') Elpstpr &
p(fof™HC 159(1:I(DDstfxDstf) At
p(fof™)EpIETy &

Fof N EIRR &

f is monovalued.



CHAPTER 11

Continuous morphisms

This chapter uses the apparatus from the section “Partially ordered dagger
categories”.

11.1. Traditional definitions of continuity

In this section we will show that having a funcoid or reloid 1 f corresponding
to a function f we can express continuity of it by the formula 1 fou C vo 1 f (or
similar formulas) where p and v are some spaces.

11.1.1. Pretopology. Let (A,cls) and (B,clg) be preclosure spaces. Then
by definition a function f: A — B is continuous iff fcla(X) C clp(fX) for every
X € ZA. Let now p and v be endofuncoids corresponding correspondingly to cly
and clg. Then the condition for continuity can be rewritten as

TFCD(Obp,,Ob v) f TFCD(Ob n,0Obv) f

ou L wvo

11.1.2. Proximity spaces. Let p and v be proximity spaces (which I consider
a special case of endofuncoids). By definition a Set-morphism f is a proximity-
continuous map from p to v iff

VXY € 7(0bp): (X [u]" Y = ()" X [U]" (f)°Y).

Equivalently transforming this formula we get

VX,Y € Z(0bp): (X (1" Y = ()1 X W] () 1 V);

VX,Y € 7(Obp): (X [u]" Y =1 X [f ' ovo f]1Y);

VX,Y € Z(Obp): (X [0 Y = X [fovof] Y)

pE fltovolf.

So a function f is proximity continuous iff u C f~ovo f.
11.1.3. Uniform spaces. Uniform spaces are a special case of endoreloids.

Let i and v be uniform spaces. By definition a Set-morphism f is a uniformly
continuous map from p to v iff

Ve € upv3dd € upvV(x,y) € §: (fz, fy) € e.
Equivalently transforming this formula we get:
Ve € up 36 € up (e, y) € 6 {(f, fy)} C &
Ve cupvds € uppvV(z,y) €6: fo{(z,y)yof ' Ce
VecuprId cupp: fodof L Ce
RLD(Obu,0bv) £ ¢ ) 6 (4RLD(Ob1,0bY) f)=1 C4RLD(Obu,0bY) .
4RLD(Obu,0bY) £y 6 (4

Ve € upv T
RLD(Obj1,0bv) £y=1 [,

So a function f is uniformly continuous iff f oo f~! C v.

227
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11.2. Owur three definitions of continuity

I have expressed different kinds of continuity with simple algebraic formulas
hiding the complexity of traditional epsilon-delta notation behind a smart algebra.
Let’s summarize these three algebraic formulas:

Let © and v be endomorphisms of some partially ordered semicategory. Con-
tinuous functions can be defined as these morphisms f of this semicategory which
conform to the following formula:

feC(u,v)s f €Hom(Obu,Obv) A fouCwvo f.
If the semicategory is a partially ordered dagger semicategory then continuity also
can be defined in two other ways:
fel (uv)e feHom(Obu,Obv) AuC flovo f;
f e (u,v) < f€Hom(Obu,Obv)A fouo flCw.
REMARK 1171. In the examples (above) about funcoids and reloids the “dagger

functor” is the reverse of a funcoid or reloid, that is ff = f=1.

PRrROPOSITION 1172. Every of these three definitions of continuity forms a wide
sub-semicategory (wide subcategory if the original semicategory is a category).
PRrooF.
C. Let f € C(u,v), g € C(v,m). Then fouCvof, govEmog, gofoul
govofLmogof. SogofeCu,m). lopu € Cu, 1) is obvious.
C'. Let f € C'(u,v), g€ C'(v,n). Then uC flovof,vCglomogy;
UE]”LOQTOWOQOJC; wE (gof)TOﬂo(gof),
SogofeC(um). lob, € C'(u, 1) is obvious.
C”. Let f € C"(u,v), g€ C"(v,m). Then fopuo fiCv, govogh Cm;
gofopoflog Cm (gof)opo(gof)iCm
SogofeC(u,m). lob, € C"(, i) is obvious.
O

PROPOSITION 1173. For a monovalued morphism f of a partially ordered dag-
ger category and its endomorphisms p and v

feC (uv)= feCuv)=feC(uv).
PROOF. Let f € C'(p,v). Then uC flovo f;
fouC fofiovofClpwsovof=vof feC(uu).
Let f € C(u,v). Then fouTrvo f;
fouof‘LEuofongyoletf:V; el (u,v).
U

ProproOSITION 1174. For an entirely defined morphism f of a partially ordered
dagger category and its endomorphisms p and v

feC’(uv)=feCuv)=feC(uv).
PrOOF. Let f € C”(u,v). Then fopuo ff Cv; fouofiof Cwvolf;
fopolgey Cvof; fouCwof; feCu,v).
Let f € C(u,v). Then fouCwof; flofouC flovo fi lseonC flovof;
WE flovof; feC (). 0
For entirely defined monovalued morphisms our three definitions of continuity
coincide:
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THEOREM 1175. If f is a monovalued and entirely defined morphism of a
partially ordered dagger semicategory then

feC(uv)e feCluv) e fel (uv).
PrOOF. From two previous propositions. O

The classical general topology theorem that uniformly continuous function from
a uniform space to an other uniform space is proximity-continuous regarding the
proximities generated by the uniformities, generalized for reloids and funcoids takes
the following form:

THEOREM 1176. If an entirely defined morphism of the category of reloids

f € C"(u,v) for some endomorphisms p and v of the category of reloids, then
(FCD)f € C'((FCD)u, (FCD)v).

EXERCISE 1177. I leave a simple exercise for the reader to prove the last the-
orem.

THEOREM 1178. Let p and v be endomorphisms of some partially ordered
dagger semicategory and f € Hom(Ob u, Obv) be a monovalued, entirely defined
morphism. Then

feCluv) & feCvh).
PRrROOF.

fouEVof@uEfTouofﬁ
o fIC flovofoft=pofiCffore
foul Cvtof=flofoutCftoviof=
W Cfloviofeul flovof.

Thus fouCvofeus foul Culof. ]

11.3. Continuity for topological spaces

PRrROPOSITION 1179. The following are pairwise equivalent for funcoids u, v and
a monovalued, entirely defined morphism f € Hom(Ob p, Obv):
1°. VA€ 7 Obpu,B e up(v)(f)"A: <f_1>*B € up(u)*A.
2°. f e C(u,v).
3°. feC(p v
PROOF.
2°3°. By general fouCvo f < fou' Cuvto f formula above.
1°<2°. 1° is equivalent to <<f*1>*> up()(f)*A C up(u)*A equivalent to
(WYY*A D (f)(u)* A (used “Orderings of filters” chapter).
d

COROLLARY 1180. The following are pairwise equivalent for topological spaces
1, v and a monovalued, entirely defined morphism f € Hom(Ob u, Obv):
1°. Vo € Obpu, B € up(v)(f)"{z} : <f’1>*B € up(u)*{x}.
2°. Preimages (by f) of open sets are open.
3°. f € C(p,v) that is (f){(u)" {z} C (v)(f)*{z} for every = € Ob p.
4°. fe C(p~t,v=1) that is <f><,u_1>*A C <y_1>(f)*A for every A € 7 Ob p.
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PROOF. 2° from the previous proposition is equivalent to (f)(u)*{z} C
(W) {f)"{z} equivalent to <<f*1>*>* up(v) ()" {x} C up(u)*{x} for every x € Ob p,
equivalent to 1° (used “Orderings of filters” chapter).
It remains to prove 3°<2°.
3°=2°. Let B be an open set in v. For every x € <f_1>*B we have f(z) € B that
is B is a neighborhood of f(x), thus <f’1>*B is a neighborhood of x. We
have proved that <f*1>*B is open.
2°=3°. Let B be a neighborhood of f(x). Then there is an open neighborhood
B’ C B of f(z). <f*1>*B’ is open and thus is a neighborhood of z (z €
(f~1)"B’ because f(z) € B'). Consequently <f*1>*B is a neighborhood
of x.

Alternative proof of 2°<4°: http://math.stackexchange.com/a/1855782 /4876
U

11.4. C(popu Y vorv™)

PROPOSITION 1181. f € C(u,v) = f € C"(popu~t,vov~1) for endofuncoids
i, v and monovalued funcoid f € FCD(Ob p, Obv).

PRrROOF. Let f € C(u,v).

X[fopop™of " Z&

Elpeatomsg'( W ltof N pApifou Z) &
Jp € atoms” : (p [fou* X Ap[foul* Z)=
Jp catoms” : (pvofl* XAplvo f]* Z) &
Ip catoms” : (Y p W] XA(f)'p]" Z)= X [vorv " Z
(taken into account monovaluedness of f and thus that (f)*p is atomic or least).
Thus fouou tof ' Crvov~tthatis fe C'(mopt,vor™). O

PROPOSITION 1182. f € C"(popu~tvov™t) = f € C"(u,v) for complete
endofuncoids p, v and principal funcoid f € FCD(Ob u, Obv), provided that u is
reflexive, and v is Tj-separable.

PROOF.
feC (popivov )&
fopoputoftCrov ! = (reflexivity of u) =
fouof *Crov'te fouloftCvorv =
(foutof ) X C W) )X =
Cor(foutof Y X CCor(w)" (v 1)*X &
(fop tof /1V*X C Cor(v)" (v 1)*X =
(Ty-separability) =
(fop™tof~1V*X C (v 1)*X for any typed set X on Obv.
Thus
feC wou o) foutof T Er e
fopof'Crve fel (u).
O
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THEOREM 1183. f € C(poputvov™l) & f € C(u,v) for complete
endofuncoids p, v and principal monovalued and entirely defined funcoid f €
FCD(Ob i, Obv), provided that p is reflexive, and v is T-separable.

PRrOOF. Two above propositions and theorem 1175. O

11.5. Continuity of a restricted morphism

Consider some partially ordered semigroup. (For example it can be the semi-
group of funcoids or semigroup of reloids on some set regarding the composition.)
Consider also some lattice (lattice of objects). (For example take the lattice of set
theoretic filters.)

We will map every object A to so called restricted identity element I4 of the
semigroup (for example restricted identity funcoid or restricted identity reloid). For
identity elements we will require

1°. Iy olp = Iang;
2°. folaC fiIao fEf.

In the case when our semigroup is “dagger” (that is is a dagger semicategory) we
will require also (14)" = I4.

We can define restricting an element f of our semigroup to an object A by the
formula f|A = f o IA.

We can define rectangular restricting an element f of our semigroup to objects
A and B as Ig o f o I4. Optionally we can define direct product A x B of two
objects by the formula (true for funcoids and for reloids):

fM(AxB)=1Igofolys.

Square restricting of an element f to an object A is a special case of rectangular
restricting and is defined by the formula I4 0 fol4 (or by the formula fM(A x A)).

THEOREM 1184. For every elements f, u, v of our semigroup and an object A

1°. feC(u,v) = flaeClaopola,v);
2°. feCl(p,v)= flacCTaopols,v);
3°. feC(pv)= flaeC'(Iaopola,v).

(Two last items are true for the case when our semigroup is dagger.)

PROOF.

1°.

flaeCIpopola,v) s
flaoTaopolsCvo fla &
folpolpopolsCvo flae
folpopolgyCvofoly <«
folpopuCrvof <«
fouErofe

f € Cu,v).



11.6. ANTICONTINUOUS MORPHISMS 232
2°,
flaeC'(Iaopols,v) &
LnopolaC (fla)fovo fla<
LyopoIaC(fols)lovofols e
TnopolpCIsoflovofoly <
pC flovofe
feC(uv).
3°.
flaeC'(Taopols,v) e
flacTaopolso(fla) Cve
folgolpopolsolsofiCre
foljopolsofilCy <
fouoflCrve
fed(uv).

11.6. Anticontinuous morphisms

Let p and v be endomorphisms of some partially ordered semicategory. An-
ticontinuous functions can be defined as these morphisms f of this semicategory
which conform to the following formula:

feCulu,v) < f € Hom(Obu,Obv) A fou dvo f.

If the semicategory is a partially ordered dagger semicategory then anticontinuity
also can be defined in two other ways:

feC.(uv)e feHom(Obu,Obv)Ap 3 flovo f;
feC”(u,v) < feHom(Obu,Obv)A fopuo fl Ju.
Anticontinuity is the order dual of continuity.

THEOREM 1185. For partially ordered dagger categories:
1° f € Cu(p,v) & f1 e Clwt, uh);
2. feCliny) e fl e u);
3°. feCl(pv) e fTedw, ).

PROOF.

1°. feCufig) & fopIdvofeuloff D flovt & fleCll ul).
2°. felC(uv)eudflovofe floviof Cul & fT el ul).
3°. By duality.

O

DEFINITION 1186. An open map from a topological space to a topological space
is a function which maps open sets into open sets.

THEOREM 1187. For topological spaces considered as complete funcoids, a prin-
cipal anticontinuous morphism is the same as open map.
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PROOF. Because f, u, v are complete funcoids, we have
feCup,v)e fouIdvo f< Compl(fou)dCompl(ro f).
Equivalently transforming further, we get
Vo € Obu: (f)(u)"@fa} 2 () () @fa);

Vo € Obp, V € (u)™{a}: (f)"V I w)(f)"@{z},
what is the criterion of f being an open map.



CHAPTER 12

Connectedness regarding funcoids and reloids

12.1. Some lemmas

LEMMA 1188. Let U be a set, A, B € JU be typed sets, f be an endo-funcoid
on U. If =(A[f]" B)A AU B € up(dom f Uim f) then f is closed on A.

PROOF. Let AU B € up(dom f Uim f).

AL B) e

Br(f)A=1=

(dom f Uim )M BN{f)"A=1 =
((dom fUim £\ A)M{f)"A=1L &

(f)fAE A
O

COROLLARY 1189. If (A [f]" B)A AU B € up(dom f Uim f) then f is closed
on A\ B for a funcoid f € FCD(U,U) for every sets U and typed sets A, B € JU.

PROOF. Let =(A [f]" B)A AU B € up(dom f U im f). Then
-((A\ B) [f]" B) A(A\ B) U B € up(dom f Ll im f).
O

LEMMA 1190. If =(A [f]" B) A AU B € up(dom f Uim f) then —(A [f"]" B)
for every whole positive n.

PROOF. Let =(A [f]" B) A AU B € up(dom f Uim f). From the above lemma
(fY"AC A. BN {(f)A = 1, consequently (f)*A C A\ B. Because (by the above
corollary) f is closed on A\ B, then (f)(f)AC A\ B, (f)(f){(f)AC A\ B, etc. So
(f"YACT A\ B, B =< (f")A, ~(A[f"]" B). O

12.2. Endomorphism series

DEFINITION 1191. Sy (1) = pUp? U p3 U .. for an endomorphism p of a semi-
category with countable join of morphisms (that is join defined for every countable
set of morphisms).

DEFINITION 1192, S(p) = p® U Sy (p) = pPUpUp? Upd U, . where 4 = 1op,
(identity morphism for the object Ob p) where Ob p is the object of endomorphism
u for an endomorphism g of a category with countable join of morphisms.

I call Sy and S endomorphism series.

PROPOSITION 1193. The relation S(u) is transitive for the category Rel.

234
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PROOF.

S(u)oS(p) = p’ US(p)UpoS(p)Up?oS(p)U--- =
Pupgtupu. yu@EuZou ) u@ruduptu..)) =
o Upt U= S(p).
O

12.3. Connectedness regarding binary relations

Before going to research connectedness for funcoids and reloids we will excurse
into the basic special case of connectedness regarding binary relations on a set U.

This is commonly studied in “graph theory” courses. Digraph as commonly
defined is essentially the same as an endomorphism of the category Rel.

DEFINITION 1194. A set A is called (strongly) connected regarding a binary
relation 4 on U when

VXY € 2U\ {0} : (XUY = A= X []* V).

DEFINITION 1195. A typed set A of type U is called (strongly) connected re-
garding a Rel-endomorphism g on U when

VX,Y € Z(Obu) \ {L7CPW} (X UY =A= X [y V).

OBVIOUS 1196. A typed set A is connected regarding Rel-endomorphism y on
its type iff GR A is connected regarding GR p.

Let U be a set.

DEFINITION 1197. Path between two elements a,b € U in a set A C U through
binary relation p is the finite sequence zg ...z, where zg = a, z, = b forn € N
and z; (uNAx A) x;yq for every i =0,...,n — 1. n is called path length.

PROPOSITION 1198. There exists path between every element a € U and that
element itself.

PROOF. It is the path consisting of one vertex (of length 0). O

ProOPOSITION 1199. There is a path from element a to element b in a set A
through a binary relation p iff a (S(uN A x A)) b (that is (a,b) € S(pN A x A)).

PROOF.
=. If a path from a to b exists, then {b} C ((uN A x A)")"{a} where n is the path
length. Consequently {b} C (S(uNA x A))*{a}; a (S(uNA x A)) b.
<. Ifa (S(uNAxA)) b then there exists n € N such that a (uNAx A)™ b.
By definition of composition of binary relations this means that there
exist finite sequence xg...x, where zg = a, z, = b for n € N and
z; (WNAXA) xiyq for every i = 0,...,n — 1. That is there is a path
from a to b.
U

ProPOSITION 1200. There is a path from element a to element b in a set A
through a binary relation p iff a (S1(u N A x A)) b (that is (a,b) € S1(pNA x A)).

PROOF. Similar to the previous proof. O

THEOREM 1201. The following statements are equivalent for a binary relation
1 and a set A:
1°. For every a,b € A there is a nonzero-length path between a and b in A
through pu.
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2°. Si(pnN(AxA)DAxA.
3°. Si(pn(Ax A)=Ax A
4°. A is connected regarding u.

PROOF.

1°=2°. Let for every a,b € A there is a nonzero-length path between a and b in
A through p. Then a (S1(pN A x A)) b for every a,b € A. It is possible
only when S1(pN(Ax A)) D Ax A

3°=1°. For every two vertices a and b we have a (S;(uNA x A)) b. So (by the
previous) for every two vertices a and b there exists a nonzero-length path
from a to b.

3°=4°. Suppose ~(X [N (A x A)]" Y) for some X,Y € 20\ {0} such that
XUY = A. Then by alemma —(X [(zN (A x A))"]*Y) for everyn € Z..
Consequently —(X [Sy(uN (A x A)]"Y). So S1(un(Ax A)) # A x A.

4°=3°. If (S1(p N (A x A))) {v} = A for every vertex v then S; (uN(Ax A)) = Ax
A. Consider the remaining case when V & (S1(pN(Ax ) {v} c A
for some vertex v. Let W = A\ V. If card A =1 then S1(uN (A x A)) D
idg = A x A; otherwise W # (). Then VUW = A and so V [u]* W what
is equivalent to V [uN (A x A)]" W that is (unN (A x A)Y'V W # 0.
This is impossible because

(0 (A x AV = (0 (A x A (S (1N (A x AV =
(1N (A x A)2U (N (A x AP U--U)V C (S3(uN (A x A))V = V.
2°=3°. Because S1(uN(Ax A)) CAx A
(]

COROLLARY 1202. A set A is connected regarding a binary relation g iff it is
connected regarding p N (A x A).

DEFINITION 1203. A connected component of a set A regarding a binary relation
F' is a maximal connected subset of A.

THEOREM 1204. The set A is partitioned into connected components (regarding
every binary relation F).

PRrROOF. Consider the binary relation a ~ b < a (S(F)) bA b (S(F)) a. ~ is
a symmetric, reflexive, and transitive relation. So all points of A are partitioned
into a collection of sets Q. Obviously each component is (strongly) connected. If
a set R C A is greater than one of that connected components A then it contains
a point b € B where B is some other connected component. Consequently R is
disconnected. O

PROPOSITION 1205. A set is connected (regarding a binary relation) iff it has
one connected component.

PRrOOF. Direct implication is obvious. Reverse is proved by contradiction. [l

12.4. Connectedness regarding funcoids and reloids

DEFINITION 1206. Connectivity reloid Sy(u) = H]RV;EDUPMSl(M) for an en-
doreloid p.
DEFINITION 1207. S*(y) for an endoreloid p is defined as follows:
RLD

sw= [] s

Meup p
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Do not mess the word connectivity with the word connectedness which means
being connected.’

PROPOSITION 1208. S*(u) = 1%'5'3“ LI ST () for every endoreloid p.
Proor. By the proposition 610. O
PROPOSITION 1209. S*(u) = S(p) and S5 (p) = S1(p) if p is a principal reloid.

Proor. 5%(u) =[S (w)} = S(w); ST (k) = THS1 ()} = Si(w)- U

DEFINITION 1210. A filter A € % (Obp) is called connected regarding an en-
doreloid p when Sj(p (A XRP A)) T A xRLD 4.

OBvious 1211. A filter A € .Z#(Ob ) is connected regarding an endoreloid p
iff S3(pur (A xRD A)) = A xRLD 4.

DEFINITION 1212. A filter A € % (Ob p) is called connected regarding an end-
ofuncoid p when

VX, Y e F(Obp) \ {L7OPM (xUY =A= X [y V).

PROPOSITION 1213. Let A be a typed set of type U. The filter T A is connected
regarding an endofuncoid p on U iff

VX,Y € Z(Obu) \ {L7CPW} (X UY =A= X [y V).

PROOF.
=-. Obvious.
<. It follows from co-separability of filters.
O

THEOREM 1214. The following are equivalent for every typed set A of type U
and Rel-endomorphism p on a set U:
1°. A is connected regarding pu.
2°. 1 A is connected regarding TR-C p.
3°. 1 A is connected regarding 1F¢P p.

PRrROOF.
1°2°.
STARP 1 (A4 xFP 4)) =
ST (um (A x A))) =
R 5 (1M (A x A)).
So

SE(ARD 4 (A xRP A) D AR 4 &
RLD G (1M1 (A x A)) I1RP (A x A) = A xRP 4.

1°<3°. It follows from the previous proposition.

Next is conjectured a statement more strong than the above theorem:

CONJECTURE 1215. Let A be a filter on a set U and F' be a Rel-endomorphism
on U.
A is connected regarding 1FP F iff A is connected regarding tR-P F.

In some math literature these two words are used interchangeably.
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OBvIOUS 1216. A filter A is connected regarding a reloid p iff it is connected
regarding the reloid u M (A xRLD A).

OBvIOUS 1217. A filter A is connected regarding a funcoid p iff it is connected
regarding the funcoid p M (A xFP A).

THEOREM 1218. A filter A is connected regarding a reloid f iff A is connected
regarding every F € <TRLD>* up f.

PROOF.

=-. Obvious.
<. A is connected regarding 1RP F iff Sy (F) = F1UF?U--- € up(A xRP A).

Sf(f)zﬂ?wlglpfSl(F)QHFEHPf(A xRLD A) = A xRLD 4.
O

CONJECTURE 1219. A filter A is connected regarding a funcoid f iff A is
connected regarding every F € <TFCD>* up f.

The above conjecture is open even for the case when A is a principal filter.

CONJECTURE 1220. A filter A is connected regarding a reloid f iff it is con-
nected regarding the funcoid (FCD)f.

The above conjecture is true in the special case of principal filters:

PROPOSITION 1221. A filter T A (for a typed set A) is connected regarding an
endoreloid f on the suitable object iff it is connected regarding the endofuncoid
(FCD)f.

PROOF. 1 A is connected regarding a reloid f iff A is connected regarding every
F € up f that is when (taken into account that connectedness for tR'C F is the
same as connectedness of 170 F)

VE €up fYX,Y € F(Ob )\ {LT Oy (xuy =t A= X 17 F]
VX, Y € F(0b )\ {L7OPIWF cup f: (X UY =t A= & [1FP F]
VX,V € F(Ob )\ {LZOPNY X LY =t A=VF cupf: X | ]

that is when the set T A is connected regarding the funcoid (FCD)f. O

CONJECTURE 1222. A set A is connected regarding an endofuncoid p iff for
every a,b € A there exists a totally ordered set P C A such that min P = a,

max P = b and
wer\ o) {250 by {2501,

x<q z>q
Weaker condition:

wer\ o) {20 {2 8 v e py {250 {250,

x<gq z>q z<q x2>q

12.5. Algebraic properties of S and S*
THEOREM 1223. S*(S*(f)) = S*(f) for every endoreloid f.
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PROOF
RLD
s (=[] sSmEE
Reup S*(f)
RLD RLD RLD
[T sm= [] ss@)= [] s(B)=s()
RE{FSE(‘ﬂJ)f Reup f Reup f
So S*(S*(f)) E S*(f). That S*(S*(f)) 3 S*(f) is obvious. O
COROLLARY 1224. S*(S(f)) = S(S*(f)) = S*(f) for every endoreloid f.
PRrROOF. Obviously S*(S(f)) 2 S*(f) and S(S*(f)) :l S*(f).
But 5*(S(f)) E §7(5"(f)) = §7(f) and S(5*(f)) E §*(5*(f)) = 5*(f). O
(

CONJECTURE 1225. S(S(f))

1°. every endoreloid f;
2°. every endofuncoid f.

S(f) for

CONJECTURE 1226. S(f) o S(f) = S(f) for every endoreloid f.
THEOREM 1227. S*(f) o S*(f) = S(f) o S*(f) = S*(f) o S(f) = S*(f) for

every endoreloid f.

PROOF. 2

It is enough to prove S*(f) o S*(f) = S*(f) because S*(f) T S(f) o S*(f) C
S*(f) o S*(f) and likewise for S*(f) o S(f).

RLD
S (oS (n) =[] (FoF)=(see below)=
Feup S* ()
RLD RLD
[ (SxX)esx) = [] SX)=5(n).
Xeupp Xeupp
F
FeupS*(u) < F €up |_| S(F) =
Feup p

(by properties of filter bases) = 3X cupp: F J S(X) =
AX eupp: FoF J5(X)oS(X)

thus
RLD RLD
[1 FoFZ [] (S(X)oS(X));
Feup S*(pn) Xeupp
Xeuwp=SX)euS*(u) = 3IF c¢upS*(p) : S(X)o S(X)J FoF thus
RLD RLD
[1 FoFC [] (S(X)oS(xX)).
Feup S*(p) X€uppu

CONJECTURE 1228. S(f) o S(f) = S(f) for every endofuncoid f.

2Can be more succintly proved considering p — S*(p) as a pointfree funcoid?
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12.6. Irreflexive reloids
DEFINITION 1229. Endoreloid f is irreflexive iff f < 19P7,
ProprosITION 1230. Endoreloid f is irreflexive iff f T T \ 1.
Proor. By theorem 604. O
OBvious 1231. f\ 1 is an irreflexive endoreloid if f is an endoreloid.

ProposITION 1232. S(f) = S(f U 1) if f is an endoreloid, endofuncoid, or
endorelation.

PRrROOF. First prove (fU1)" =1UfU...Uf" for n € N. For n = 0 it’s obvious.
By induction we have

(fun™t =
(fuD™o(ful)
AUfU---UfYo(ful)=
(fuffu---ufhHuufu--uf)=
1UfU--- Ut
So S(ful)=1U(QUAHLAUfUAU...=1UfUfPU...=5(f). O

COROLLARY 1233. S(f)=S(fU1l)=S(f\1)if f is an endoreloid (or just an
endorelation).

Proor. S(f\1)=S((f\1)ul) 3 S(f). But S(f\ 1) C S(f) is obvious. So
SN = S(f). O

12.7. Micronization

“Micronization” was a thoroughly wrong idea with several errors in the proofs.
This section is removed from the book.



CHAPTER 13

Total boundness of reloids

13.1. Thick binary relations

DEFINITION 1234. T will call a-thick and denote thick,(E) a Rel-
endomorphism F when there exists a finite cover S of Ob E such that VA € S :
Ax ACGRE.

DEFINITION 1235. CS(S) = [J{ f}ég} for a collection S of sets.

REMARK 1236. CS means “Cartesian squares”.

OBvious 1237. A Rel-endomorphism is a-thick iff there exists a finite cover
S of Ob E such that CS(S) C GR E.

DErFINITION 1238. I will call (-thick and denote thickg(E) a Rel-
endomorphism E when there exists a finite set B such that (GR E)"B = Ob E.

PROPOSITION 1239. thick, (F) = thickg(E).

PRrROOF. Let thick,(FE). Then there exists a finite cover S of the set Ob E such
that VA € S: Ax A C GRE. Without loss of generality assume A # ) for every
A€S. So AC (GRE) {xa} for some x4 for every A € S. So

<GRE>*{ACU€AS} _ U{W} —ObE

and thus F is B-thick. O

OBvIOUs 1240. Let X be a set, A and B be Rel-endomorphisms on X and
B J A. Then:

e thick,(A) = thick,(B);
. thiCkB(A) = thiCkB(B).

ExXAMPLE 1241. There is a S-thick Rel-morphism which is not a-thick.

PRrROOF. Consider the Rel-morphism on [0; 1] with the graph on figure 9:

b {:c (ex’[g;)l] } N {x (e%[g;)l] } N {x (607[3;)1] }

F1GURE 9. Thickness counterexample graph

T is B-thick because (I')*{0} = [0;1].
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To prove that I' is not a-thick it’s enough to prove that every set A such that
A x A CT is finite.

Suppose for the contrary that A is infinite. Then A contains more than one
non-zero points y, z (y # z). Without loss of generality y < z. So we have that
(y, z) is not of the form (y,y) nor (0,y) nor (y,0). Therefore A x A isn’t a subset
of T. O

13.2. Totally bounded endoreloids

The below is a straightforward generalization of the customary definition of
totally bounded sets on uniform spaces (it’s proved below that for uniform spaces
the below definitions are equivalent).

DEFINITION 1242. An endoreloid f is a-totally bounded (totBound,(f)) if ev-
ery E € up f is a-thick.

DEFINITION 1243. An endoreloid f is 8-totally bounded (totBoundg(f)) if ev-
ery E € up f is S-thick.

REMARK 1244. We could rewrite the above definitions in a more algebraic way
like up f C thick, (with thick, would be defined as a set rather than as a predicate),
but we don’t really need this simplification.

PRrROPOSITION 1245. If an endoreloid is a-totally bounded then it is S-totally
bounded.

PROOF. Because thick,(E) = thickg(E). O

PROPOSITION 1246. If an endoreloid f is reflexive and Ob f is finite then f is
both a-totally bounded and (-totally bounded.

PRrROOF. It enough to prove that f is a-totally bounded. Really, every E € up f
is reflexive. Thus {z} x {} C GRE for € Ob f and thus {xe{%}{ﬁ} is a sought
for finite cover of Ob f.

OBVIOUS 1247.

e A principal endoreloid induced by a Rel-morphism F is a-totally bounded
iff E' is a-thick.

e A principal endoreloid induced by a Rel-morphism FE is S-totally bounded
iff F is S-thick.

ExXAMPLE 1248. There is a S-totally bounded endoreloid which is not a-totally
bounded.

PRrROOF. It follows from the example above and properties of principal en-
doreloids. O

13.3. Special case of uniform spaces

Remember that uniform space is essentially the same as symmetric, reflexive
and transitive endoreloid.

THEOREM 1249. Let f be such an endoreloid that fo f~' T f. Then f is
a-totally bounded iff it is S-totally bounded.

PRrROOF.

=. Proved above.
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<. For every € € up f we have that (GRe€)"{co},...,(GRe€)"{c,} covers the space.
(GRe€)"{ci} x (GRe)"{c;} € GR(eoe 1) because for z € (GR€)"{c;} (the
same as ¢; € (GRe)"{z}) we have

((GR€&)*{c;} x (GRe) {c;}) {2} = (GRe)"{c;} € (GRe)*(GRe ') {a} = (GR(eo 6_1)>*{.’E}.

For every € € up f exists € € up f such that eoe™! C ¢ because fof~1 C
f. Thus for every ¢ we have (GRe)*{c;} x (GRe)"{c;} € GR¢ and so
(GRe)"{co},-..,(GRe€)*{c,} is a sought for finite cover.

]

COROLLARY 1250. A uniform space is a-totally bounded iff it is S-totally
bounded.

PROOF. From the theorem and the definition of uniform spaces. O

Thus we can say about just totally bounded uniform spaces (without specifying
whether it is « or 3).

13.4. Relationships with other properties

THEOREM 1251. Let u and v be endoreloids. Let f be a principal C'(u,v)
continuous, monovalued, surjective reloid. Then if p is S-totally bounded then v is
also 8-totally bounded.

PROOF. Let ¢ be the monovalued, surjective function, which induces the
reloid f.

We have p C f~lowvo f.

Let F € upv. Then there exists E € up u such that E C ¢! o Fo .

Since u is S-totally bounded, there exists a finite typed subset A of Ob p such
that (GRE)"A = Ob p.

We claim (GR F)*{(¢)*A = Obuw.

Indeed let y € Obwv be an arbitrary point. Since ¢ is surjective, there exists
x € Oby such that pz = y. Since (GR E)*A = Ob yu there exists a € A such that
a (GRE) z and thus a (=t o Fog) x. So (pa,y) = (pa, pxr) € GRF. Therefore
y € (GRF)"(p)" A. O

THEOREM 1252. Let p and v be endoreloids. Let f be a principal C”(u, V)
continuous, surjective reloid. Then if i is a-totally bounded then v is also a-totally
bounded.

PROOF. Let ¢ be the surjective binary relation which induces the reloid f.
We have fopo f~1Cu.
Let F € upv. Then there exists E € up u such that oo Eo o™t C F.

There exists a finite cover S of Ob p such that U{ ’:ég‘} CGRE.

Thus o (J{424}) 097! C GRF that is U{ £42 ("4} C GRP.
()"

It remains to prove that { Ae;} is a cover of Obv. It is true because ¢ is a

surjection and S is a cover of Ob p. ]
A stronger statement (principality requirement removed):

CONJECTURE 1253. The image of a uniformly continuous entirely defined
monovalued surjective reloid from a (a-, 5-)totally bounded endoreloid is also (a-,
B-)totally bounded.

Can we remove the requirement to be entirely defined from the above conjec-
ture?
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QUESTION 1254. Under which conditions it’s true that join of (a-, 8-) totally
bounded reloids is also totally bounded?

13.5. Additional predicates

We may consider also the following predicates expressing different kinds of what
is intuitively is understood as boundness. Their usefulness is unclear, but I present
them for completeness.
totBound, (f)
totBoundg(f)
dn € NVE € up f : thick, (E™)
dneNVE cup f: thickB(E")
dn € NVE € up f : thick, (E
Jn € NVE € up f : thickg(E°
dn € N : totBound, (")
dn € N : totBoundg(f™)

In € N : totBound, (fOU... U f7)
In € N : totBoundg(fOL... U ™)
totBound, (S(f))
e totBoundg(S(f))

Some of the above defined predicates are equivalent:

...LE™)
..LE™)

PROPOSITION 1255.

e dn € NVE € up f : thick,(E™) < In € N : totBound, (™).
e dn € NVE € up f : thickg(E™) < 3n € N : totBoundg(f").

PROOF. Because for every E € up f some F' € up f" is a subset of E™, we have
VE € up f : thick,(E™) & VF € up f™ : thick, (F)
and likewise for thickg. O

PROPOSITION 1256.
e dn € NVE € up f : thick,(E°U...U E") & 3n € N : totBound, (f° U

. HnuefNéE € up f : thickg(E°U...U E") < 3n € N : totBoundg(f° U
U™
PRrROOF. It’s enough to prove
VE cup fAF cup(fPU---Uf"): FCE°U...UE" and (15)
VE cup(f°u---ufm3Ecupf:E'U...UE"CF. (16)

For the formula (15) take F = E°LJ--- U E™.

Let’s prove (16). Let F € up(f°U--- U f™). Using the fact that F € up f*
take E; € up f for i = 0,...,n such that E! C F (exercise 1002 and properties of
generalized filter bases) and then E = Eyrl---ME, € up f. We have E°LI.. .UE" C
F. O

ProrosiTiON 1257. All predicates in the above list are pairwise equivalent in
the case if f is a uniform space.

PROOF. Because fo f = f and thus f* = fOU.---U f* = S(f) = f. U



CHAPTER 14

Orderings of filters in terms of reloids

Whilst the other chapters of this book use filters to research funcoids and
reloids, here the opposite thing is discussed, the theory of reloids is used to describe
properties of filters.

In this chapter the word filter is used to denote a filter on a set (not on an
arbitrary poset) only.

14.1. Ordering of filters

Below I will define some categories having filters (with possibly different bases)
as their objects and some relations having two filters (with possibly different bases)
as arguments induced by these categories (defined as existence of a morphism be-
tween these two filters).

THEOREM 1258. carda = card U for every ultrafilter a on U if U is infinite.

PrROOF. Let f(X)=Xif X €aand f(X)=U\ X if X ¢ a. Obviously f isa
surjection from U to a.

Every X € a appears as a value of f exactly twice, as f(X) and f(U \ X). So
carda = (cardU)/2 = card U. O

COROLLARY 1259. Cardinality of every two ultrafilters on a set U is the same.

ProOF. For infinite U it follows from the theorem. For finite case it is obvious.
O

ProPoOSITION 1260. <TFCD f>A = {%} for every Set-morphism

f : Base(A) — Base(B). (Here a funcoid is considered as a pair of functions
§(Base(A)) — §(Base(B)), §(Base(B)) — §(Base(A)) rather than as a pair of
functions % (Base(A)) — % (Base(B)), Z (Base(B)) — % (Base(A)).)

PRrROOF. For every set C' € & Base(B) we have
(Y Cced=
K eA: (f)Y'C=K=
K e A ()Y (fNYC=(f)'K =
IKeA:C2(f)'K &
K eA:Ce(tFP YK =
Ce(1FP fHA
So C e {ERRL } = C e (1P f)A
Let now C' € (1F f)A. Then 1 (f~1)"C 2 (1FL f=1)(1FP )4 3 A and
thus (f~1)"C € A. 0

Below I'll define some directed multigraphs. By an abuse of notation, I will
denote these multigraphs the same as (below defined) categories based on some
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of these directed multigraphs with added composition of morphisms (of directed
multigraphs edges). As such I will call vertices of these multigraphs objects and
edges morphisms.

DEFINITION 1261. T will denote GreFunc; the multigraph whose objects are
filters and whose morphisms between objects A and B are Set-morphisms from
Base(A) to Base(B) such that B C (1FP f)A.

DEFINITION 1262. T will denote GreFuncy the multigraph whose objects are
filters and whose morphisms between objects A and B are Set-morphisms from
Base(A) to Base(B) such that B = (1FP f)A.

DEFINITION 1263. Let A be a filter on a set X and B be a filter on a set Y.
A >1 B iff HomgreFunc, (A, B) is not empty.

DEFINITION 1264. Let A be a filter on a set X and B be a filter on a set Y.
A >9 B iff HomgreFunc, (A, B) is not empty.

PROPOSITION 1265.
1°. f € HomgreFunc, (A, B) iff f is a Set-morphism from Base(A) to Base(B)
such that
CeB<=(f1)'CeA
for every C' € &7 Base(B).
2°. f € HomgreFunc, (A, B) iff f is a Set-morphism from Base(.A) to Base(B)
such that
CeBs(f)'CeA
for every C' € &7 Base(B).
PROOF.
1°.
f € HomgreFunc, (A, B) < BC (1FP flA
VC € (1FP fA: C € B VC € ZBase(B): ((f7!)'C e A= C € B).
2°.
f € HomgreFune, (A, B) & B=(1FP \A e VC: (CeBe Ce (1FP fHA) &
VC € ZBase(B): (C € B& Ce (1FP fHA) &
VC € PBase(B): ((f1)'C e As CeB).
O

DEFINITION 1266. The directed multigraph FuncBij is the directed multigraph
got from GreFunc, by restricting to only bijective morphisms.

DEFINITION 1267. A filter A is directly isomorphic to a filter B iff there is a
morphism f € Hompyncrij (A, B).

OBvious 1268. f € HomgreFunc, (4,8) < B C <TFCD f>,4 for every Set-
morphism from Base(A) to Base(B).

OBvious 1269. f € HomgreFunc,(A,B) < B = <TFCD f>A for every Set-
morphism from Base(A) to Base(B).

COROLLARY 1270. A >; B iff it exists a Set-morphism f : Base(A) — Base(B)
such that B C <TFCD f>A.

COROLLARY 1271. A >, B iff it exists a Set-morphism f : Base(A) — Base(B)
such that B = (1F°P f)A.
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PROPOSITION 1272. For a bijective Set-morphism f : Base(A) — Base(B) the
following are equivalent:

1°. B= {GsapeR .
2°. YC € Base(B) : (C € B& (f~1)'C € A).
3°. VC € Base(A) : (C € (f)"B& C € A).
4°. <TFCD f>|A is a bijection from A to B.
5°. <TFCD f>|A is a function onto B.
6°. B= <TFCD f>.A.
7°. f S HomGreFuan (A7 B)
8°. f S HomFuncBij (A, B)
PROOF.
1°e2°.
C € & Base(B *
B= {<f—1>*c E(A)} & VC € PBase(B) : (C B« (f1)CeA.
2°¢<3°. Because f is a bijection.
2°=5°. For every C € B we have <f*1>*C € A and thus <TFCD f>|A<TFCD f’1>C =
(/) (f~1Y"C = C. Thus (1FP f)|4 is onto B.
4°=5°. Obvious.
5°=4°. We need to prove only that <TFCD f>\A is an injection. But this follows
from the fact that f is a bijection.
4°=3°. We have YC € Base(A) : (((1FP f)|4)C € B < C € A) and consequently
VC € Base(A) : ({(f)"C € B« C € A).
6°<1°. From the last corollary.
1°<7°. Obvious.
7°<8°. Obvious.

COROLLARY 1273. The following are equivalent for every filters A and B:

1°.
2°.

3°.

4°.

5°.

6°.

7°.
8°.

A is directly isomorphic to B.
There is a bijective Set-morphism f : Base(A) — Base(B) such that for
every C' € & Base(B)

CeBs (fH)'CeA

There is a bijective Set-morphism f : Base(A) — Base(B) such that for
every C' € & Base(B)

(f)CeBeCeA

There is a bijective Set-morphism f : Base(A) — Base(B) such that
(1FCP f)].4 is a bijection from A to B.

There is a bijective Set-morphism f : Base(A) — Base(B) such that
(1FCP f)|.4 is a function onto B.

There is a bijective Set-morphism f : Base(A) — Base(B) such that
B = <TFCD f>.A

There is a bijective morphism f € HomgreFunc, (A, B).

There is a bijective morphism f € Hompyncsij(A, B).

ProrosiTiON 1274. GreFunc; and GreFunc, with function composition are
categories.

ProoOF. Let f: A — B and g : B — C be morphisms of GreFunc;. Then
BT (1FP f)A and C C (1FP g)B. So

<TFCD (go f))A= <TFCD g><TFCD fAD <TFCD g)BIC.
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Thus g o f is a morphism of GreFunc;. Associativity law is evident. idgage(4) is
the identity morphism of GreFunc; for every filter A.

Let f: A — Band g : B — C be morphisms of GreFunc,. Then B =
<TFCD f>.A and C = <TFCD g>B. So

<TFCD (go f)>A _ <TFCD g><TFCD f>.A _ <TFCD g>B —c
Thus g o f is a morphism of GreFuncy. Associativity law is evident. idpage(4) is
the identity morphism of GreFuncs for every filter A. O
COROLLARY 1275. <; and <, are preorders.
THEOREM 1276. FuncBij is a groupoid.

PRrROOF. First let’s prove it is a category. Let f: A — B and g : B — C be
morphisms of FuncBij. Then f : Base(.A) — Base(B) and g : Base(B) — Base(C)
are bijections and B = (1FP f)A and € = (1FP g)B. Thus go f : Base(A4) —
Base(C) is a bijection and C = (1FP (go f))A. Thus g o f is a morphism of
FuncBij. idpase(a) is the identity morphism of FuncBij for every filter A. Thus
it is a category.

It remains to prove only that every morphism f € Hompuncsij(A4, B) has a
reverse (for every filters A, B). We have f is a bijection Base(.A) — Base(B) such
that for every C' € & Base(A)

(f)'CeB&Ce A
Then f~!: Base(B) — Base(A) is a bijection such that for every C' € & Base(B3)
fHY'cedsCeB
Thus f~! € Hompuncsij(B, A). O
COROLLARY 1277. Being directly isomorphic is an equivalence relation.
Rudin-Keisler order of ultrafilters is considered in such a book as [43].

OBvIOUs 1278. For the case of ultrafilters being directly isomorphic is the same
as being Rudin-Keisler equivalent.

DEFINITION 1279. A filter A is isomorphic to a filter B iff there exist sets
A € A and B € B such that A + A is directly isomorphic to B = B.

OBvious 1280. Equivalent filters are isomorphic.
THEOREM 1281. Being isomorphic (for small filters) is an equivalence relation.

PROOF.

Reflexivity. Because every filter is directly isomorphic to itself.

Symmetry. If filter A is isomorphic to B then there exist sets A € A and B € B
such that A+ A is directly isomorphic to B+ B and thus B+ B is directly
isomorphic to A + A. So B is isomorphic to A.

Transitivity. Let A be isomorphic to B and B be isomorphic to C. Then exist
Ae A, By € B, B, € B, C € C such that there are bijections f : A — By
and g : By — C such that

VX e PA:(XeBa (Y XecA) and VX € PB: (XA (f)'X €B)

and also VX € By : (X € B& (g)"X €C).
So go f is a bijection from (f~)"(BiNBy) € A to (g)"(B1NB2) €C
such that

XeceAs(i'XeBe (@) (f)'XeCe(gof)'X eC.
Thus g o f establishes a bijection which proves that A is isomorphic to C.
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O

LEMMA 1282. Let card X = cardY, u be an ultrafilter on X and v be an
ultrafilter on Y; let A € w and B € v. Let u+ A and v + B be directly isomorphic.
Then if card(X \ A) = card(Y \ B) we have u and v directly isomorphic.

PRrROOF. Arbitrary extend the bijection witnessing being directly isomorphic to
the sets X \ A and X \ B. O

THEOREM 1283. If card X = card Y then being isomorphic and being directly
isomorphic are the same for ultrafilters v on X and v on Y.

PRrROOF. That if two filters are isomorphic then they are directly isomorphic is
obvious.

Let ultrafilters u and v be isomorphic that is there is a bijection f : A — B
where A € u, B € v witnessing isomorphism of u and v.

If one of the filters uw or v is a trivial ultrafilter then the other is also a trivial
ultrafilter and as it is easy to show they are directly isomorphic. So we can assume
u and v are not trivial ultrafilters.

If card(X \ A) = card(Y \ B) our statement follows from the last lemma.

Now assume without loss of generality card(X \ A) < card(Y \ B).

card B = card Y because otherwise card(X \ A) = card(Y \ B).

It is easy to show that there exists B’ D B such that card(X\ A) = card(Y' \ B’)
and card B’ = card B.

We will find a bijection g from B to B’ which witnesses direct isomorphism of
v to v itself. Then the composition g o f witnesses a direct isomorphism of v + A
and v + B’ and by the lemma u and v are directly isomorphic.

Let D = B’ \ B. We have D ¢ v.

There exists a set E C B such that card E > card D and E ¢ v.

We have card E = card(DU E) and thus there exists a bijection h : E — DUE.

Let

K ifx € B\ E;
9(@) {h(m) ifreFE.

glp\E and g|g are bijections.
im(g|p\g) = B\ E; im(g|g) = imh = DU E;

(DUE)N(B\E)=(DN(B\E)U(EN(B\E))=0U0 = 0.

Thus g is a bijection from B to (B\ E)U(DUFE)=BUD = B’.
To finish the proof it’s enough to show that (g)*v = v. Indeed it follows from
B\ E €. O

PROPOSITION 1284.

1°. For every A € A and B € B we have A >, Biff A+ A >; B+ B.
2°. For every A€ Aand B € B we have A>; Bif A+ A>, B+ B.

PROOF.

1°. A >o B iff there exist a bijective Set-morphism f such that B =
<TFCD f >.A. The equality is obviously preserved replacing A with A + A and B
with B =+ B.
2°. A >; B iff there exist a bijective Set-morphism f such that B C
<TFCD f >A. The equality is obviously preserved replacing A with A + A and B
with B =+ B.
]
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PROPOSITION 1285. For ultrafilters > is the same as Rudin-Keisler ordering
(as defined in [43]).

PROOF. x© >5 y iff there exist sets A € x and B € y and a bijective Set-
morphism f : X — Y such that

;B—{ Ce2y }
VP T Y Cezs A

that is when C € y + B < <f71>*C € = + A what is equivalent to C € y <
< f ’1>*C’ € x what is the definition of Rudin-Keisler ordering. O

REMARK 1286. The relation of being isomorphic for ultrafilters is traditionally
called Rudin-Keisler equivalence.

OBVIOUS 1287. (>1) 2 (>2).

DEFINITION 1288. Let  and R be binary relations on the set of (small) filters.
I will denote MonRIldg r the directed multigraph with objects being filters and
morphisms such monovalued reloids f that (dom f) @ A and (im f) R B.

I will also denote CoMonRIdg g the directed multigraph with objects being
filters and morphisms such injective reloids f that (im f) @ A and (dom f) R B.
These are essentially the duals.

Some of these directed multigraphs are categories with reloid composition (see
below). By abuse of notation I will denote these categories the same as these
directed multigraphs.

LEMMA 1289. CoMonRIdg r # 0 < MonRldg r # 0.

PRrROOF.

f € CoMonRldg r < (im f) Q AA (dom f) R B &
(dom f) Q AA (im f~') RB <« f~! € MonRIdg g
for every monovalued reloid f (or what is the same, injective reloid f~1). O

THEOREM 1290. For every filters A and B the following are equivalent:
1°. A > B.

2°. HomponR1d
3°. HommonR1d-
4°. HommonR1d-
5°. HomcomonRId_,
6°. HomcoMonR1d
7°. HomgoMonR1d

PROOF.
1°=2°. There exists a Set-morphism f : Base(A) — Base(B) such that B C
<TFCD f>.A. We have
dom(1RP )| 4 = AN T(Base(A)) = A

and
im(1RP £)| 4 = im(FCD) (1R f)].4 = im(17P f)la = (17P f)AD B.

Thus (1RYP f)|4 is a monovalued reloid such that dom(tRP f)|4 = A
and im(tRP £)| 4 I B.
2°=3°, 4°=3°, 5°=6°, 7°=6°. Obvious.



14.1. ORDERING OF FILTERS 251

3°=1°. We have B LC ((FCD)f)A for a monovalued reloid f €
RLD(Base(A), Base(B)). Then there exists a Set-morphism
F : Base(A) — Base(B) such that B C (1FP F)A that is A >; B.

6°=7°. Let f be an injective reloid such that im f C A and dom f 3 B. Then
im f|s £ A and dom f|s = B. So f|s € HomcomonRid. _ (A, B).

2°5°, 3°6°, 4°<7°. By the lemma. -

THEOREM 1291. For every filters A and B the following are equivalent:
1°. A >, B.
2°. HOmMonRId:‘:(Aa B) # 0.
3°. HomcoMoand:,:(Aa B) # 0.

PROOF.

1°=2°. Let A >, B that is B = (1FP f)A for some Set-morphism f : Base(A) —
Base(B). Then dom(1RP f)|4 = A and
im(1R2 f)|a = im(FCD)(1RP f)[.a = im(17P f)la = (17° f)A = B.
So (1RLP £)|4 is a sought for reloid.
2°=1°. There exists a monovalued reloid f with domain .4 such that ((FCD)f)A =

B. By corollary 1327 below, there exists a Set-morphism F' : Base(A) —
Base(B) such that f = (1R F)| 4. Thus

(1FP F)A = im(1FP F)|4 = im(FCD) (1P F)| 4 = im(FCD) f = im f = B.

Thus A >5 B is testified by the morphism F.
2°43°. By the lemma.

THEOREM 1292. The following are categories (with reloid composition):
1°. MOHRldE,g;

2°. MonRldc _;

3°. MonRId— _;

4°. CoMonRIdc o;

5°. CoMonRIdc —;

6°. CoMonRId_ _.

PrROOF. We will prove only the first three. The rest follow from duality. We
need to prove only that composition of morphisms is a morphism, because associa-
tivity and existence of identity morphism are evident. We have:

1°. Let f € HommonRidc 5 (A, B), g € HommonRria: - (B,C). Then dom f &
A, imf 3 B, domg C B, img 3 C. So dom(go f) C A, im(g o f) 3 C that is
go f € Hommonridc 5 (A, C).

2°. Let f € HommMmonrid- _ (A, B), g € Hommonriac _(B,C). Then dom f C
A, imf = B, domg C B, img = C. So dom(go f) C A, im(go f) = C that is
go f S HomMoand;: (A, C)

3°. Let f € HommonRrid_ _ (A, B), g € Hommonria_ _ (B,C). Then dom f =
A, im f = B, domg = B, img = C. So dom(go f) = A, im(go f) = C that is
go f S HomMoand:): (A, C)

O

DEFINITION 1293. Let BijRId be the groupoid of all bijections of the category
of reloid triples. Its objects are filters and its morphisms from a filter A to filter B
are monovalued injective reloids f such that dom f = A and im f = B.

THEOREM 1294. Filters A and B are isomorphic iff Homp;jria (A, B) # 0.
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PROOF.

=. Let A and B be isomorphic. Then there are sets A € A, B € B and a bijective
Set-morphism F : A — B such that (F)" : ZANA - ZBNBisa

bijection.
Obviously f = (1RP F)| 4 is monovalued and injective.
imf =
|£| imG B
G eup(tRP F)|a )

ﬁ{ im(H N F|x)
Heup(tRP F)[4, X € A

}
i)
k) -
w5l -
5
[ (#BnB) =
5

[]B=8

Thus dom f = A and im f = B.

<. Let f be a monovalued injective reloid such that dom f = A and im f = B.
Then there exist a function F’ and an injective binary relation F” such
that F/, F" € f. Thus F = F' N F" is an injection such that F' € f. The
function F' is a bijection from A = dom F to B = im F'. The function
(F)" is an injection on ZA N A (and moreover on £ A). It’s simple to
show that VX € ZANA: (F)"X € BN B and similarly

VY € ZBNB: ((F)")7'Y =(F1)'Y € ZAN A.

Thus (F)*|2an4 is a bijection ZAN A — ZBnNB. So filters A and B
are isomorphic.
O

PROPOSITION 1295. (>1) = (3) o (>2) (when we limit to small filters).

ProoOF. A >; B iff exists a function f : Base(A) — Base(B) such that B C
(1FP fYA. But B C (1FP f) A is equivalent to 38" € % : (B I BAB =
(1FCP f)A). So A >; B is equivalent to existence of B € .# such that B’ J B and
existence of a function f : Base(A) — Base(B) such that B’ = (1FP f)A. This is
equivalent to A ((J) o (>2)) B. O

PROPOSITION 1296. If a and b are ultrafilters then b >1 a < b >4 a.

PROOF. We need to prove only b >1 a = b >3 a. If b >; a then there exists
a monovalued reloid f : Base(b) — Base(a) such that dom f = b and im f J a.
Then im f = im(FCD)f € {17 Base()} U atoms? Base(a)) because (FCD)f is a
monovalued funcoid. So im f = a (taken into account im f # 1 Z(Base(@))) and thus
b 22 a. O

COROLLARY 1297. For atomic filters > is the same as >s.
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Thus I will write simply > for atomic filters.

14.1.1. Existence of no more than one monovalued injective reloid
for a given pair of ultrafilters.

14.1.1.1. The lemmas. The lemmas in this section were provided to me by
ROBERT MARTIN SOLOVAY in [42]. They are based on WISTAR COMFORT’s work.

In this section we will assume p is an ultrafilter on a set I and function f : I — I
has the property X € u < <f_1>*X € u.

LEMMA 1298. If X € p then X N (f)*X € p.

PROOF. If (f)*X ¢ pthen X C (f~1)"(f)"X ¢ p and so X ¢ pu. Thus
X e uA{f)*X € p and consequently X N (f)*X € pu. O

We will say that z is periodic when f"(x) = z for some positive integer z. The
least such n is called the period of x.

Let’s define o ~ y iff there exist i, j € N such that fi(x) = fI(y). Trivially it
is an equivalence relation. If x and y are periodic, then z ~ y iff exists n € N such
that f™(y) = .

Let A = { z€l }

x is periodic with period>1

We will show A ¢ p. Let’s assume A € p.

Let a set D C A contains (by the axiom of choice) exactly one element from
each equivalence class of A defined by the relation ~.

Let « be a function A — N defined as follows. Let z € A. Let y be the unique
element of D such that x ~ y. Let a(z) be the least n € N such that f"(y) = z.

Let By = {%} and B, = {%}

a(x) is even a(x) is odd
Let By = { 5545 }-

LEMMA 1299. By N (f)*By C Ba.

PROOF. If z € By N (f)" By then for a minimal even n and = = f(z’) where
f™(y') = 2’ for a minimal even m. Thus f™(y) = f(2’) thus y and 2’ laying in
the same equivalence class and thus y = y’. So we have f"(y) = f™*1(y). Thus
n < m+ 1 by minimality.

2’ lies on an orbit and thus 2’ = f~!(x) where by f~! I mean step backward
on our orbit; f™(y) = f~!(z) and thus 2’ = f*~!(y) thus n — 1 > m by minimality
orn =0.

Thus n = m+ 1 what is impossible for even n and m. We have a contradiction
what proves By N {f)" By C 0.

Remained the case n = 0, then x = f°(y) and thus a(z) = 0. O

LEMMA 1300. By N {f)"B; = 0.

PROOF. Let x € By N (f)"B;. Then f"(y) = z for an odd n and = = f(z)
where f™(y’) = a’ for an odd m. Thus f™(y) = f(2) thus y and 2’ laying in
the same equivalence class and thus y = y’. So we have f"(y) = f™*1(y). Thus
n < m+ 1 by minimality.

2’ lies on an orbit and thus 2’ = f~1(x) where by f~! I mean step backward
on our orbit;

f™(y) = f~1(x) and thus 2’ = f"~1(y) thus n — 1 > m by minimality (n = 0
is impossible because n is odd).

Thus n = m + 1 what is impossible for odd n and m. We have a contradiction
what proves By N {(f)" By = 0. O

LEMMA 1301. Bo N {(f)" By = 0.
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PROOF. Let # € By N (f)*By. Then x = y and 2’ = y where x = f(z'). Thus
x = f(x) and so ¢ A what is impossible. O

LEMMA 1302. A ¢ p.

PROOF. Suppose A € p.

Since A € 1 we have By € por By € p.

So either By N (f)*By € By or By N {f)"B; C By. As such by the lemma
1298 we have By € p. This is incompatible with By N (f)*Bs = 0. So we got a
contradiction. d

Let C be the set of points z which are not periodic but f(x) is periodic for
some positive n.

LEMMA 1303. C ¢ u.

PROOF. Let 8 be a function C — N such that §(x) is the least n € N such
that f™(z) is periodic.
Let Cy = {7I€C } and Cp = {7/3( zeC }

B(x) is even z) is odd
Obviously C;N{f)"C; = 0 for j = 0,1. Hence by lemma 1298 we have Cy, C; ¢
w and thus C = CyUCy ¢ p. O

Let E be the set of z € I such that for no n € N we have f"(z) periodic.

LEMMA 1304. Let 2,y € E be such that fi(z) = f7(y) and f* (z) = f7'(y) for
some 1, ,1',5' € N. Then ¢ —j = ¢ — j'.

PROOF. i+ fi(x) is a bijection.

Soy = fi7i(y) and y = f7 7' (y). Thus fiI(y) = f' 7' (y) and so i — j =
i — 4. O

LEMMA 1305. E ¢ p.

PRrROOF. Let D’ C E be a subset of E with exactly one element from each
equivalence class of the relation ~ on F.

Define the function v : E — Z as follows. Let x € E. Let y be the unique
element of D’ such that # ~ y. Choose 7,7 € N such that fi(y) = f7(x). Let
~v(x) =i — j. By the last lemma, v is well-defined.

It is clear that if © € E then f(x) € E and moreover v(f(z)) = v(x) + 1.

Let Ey = {%} and By = {%}

~y(z) is even y(x) is odd
We have Eq N (f)*Ey =0 ¢ p and hence Ey ¢ p.
Similarly E; ¢ pu.
ThuSE:EOUE1¢M. [l

LEMMA 1306. f is the identity function on a set in u.

ProoF. We have shown A, C, E ¢ p. But the points which lie in none of these
sets are exactly points periodic with period 1 that is fixed points of f. Thus the
set of fixed points of f belongs to the filter u. O

14.1.1.2. The main theorem and its consequences.

THEOREM 1307. For every ultrafilter a the morphism (a, a, idZCD) is the only

1°. monovalued morphism of the category of reloid triples from a to a;
2°. injective morphism of the category of reloid triples from a to a;
3°. bijective morphism of the category of reloid triples from a to a.
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PRrROOF. We will prove only 1° because the rest follow from it.

Let f be a monovalued morphism of reloid triples from a to a. Then it exists
a Set-morphism F such that F € f. Trivially (1F°® F)a J a and thus (F)"A € a
for every A € a. Thus by the lemma we have that F' is the identity function on a
set in @ and so obviously f is an identity. O

COROLLARY 1308. For every two atomic filters (with possibly different bases)
A and B there exists at most one bijective reloid triple from A4 to B.

PROOF. Suppose that f and g are two different bijective relmds from A to
B. Then g~!o f is not the identity reloid (otherwise g~ o f = domf and so
f = g because f and g are isomorphisms). But g~! o f is a bijective reloid (as a
composition of bijective reloids) from A to A what is impossible. O

14.2. Rudin-Keisler equivalence and Rudin-Keisler order

THEOREM 1309. Atomic filters a and b (with possibly different bases) are iso-
morphic iff a > bAb > a.

PrOOF. Let @ > b Ab > a. Then there are a monovalued reloids f and g
such that dom f = ¢ and im f = b and domg = b and img = a. Thus g o f
and f o g are monovalued morphisms from a to a and from b to b. By the above
we have go f = dRLD and fog = 1dRLD sog=fland f7lof = idsLD and
foft= 1dRLD. Thus f is an injective monovalued reloid from a to b and thus a
and b are isomorphic. O

The last theorem cannot be generalized from atomic filters to arbitrary filters,
as it’s shown by the following example:

ExampLE 1310. A > BAB > A but A is not isomorphic to B for some filters
A and B.

ProoF. Consider A =1® [0;1] and B = H{M} Then the function

e>0
f =Xz € R: z/2 witnesses both inequalities A >; B and B >; A. But these filters
cannot be isomorphic because only one of them is principal. O

LEMMA 1311. Let fy and f; be Set-morphisms. Let f(z,y) = (foz, f1y) for a
function f. Then

<TFCD(Src foxSrc f1,Dst foxDst f1) f>(A « RLD B) = <TFCD fo>A « RLD <TFCD f1>B

PRrROOF.
<TFCD(Src foxSrc f1,Dst foxDst f1) f>(A «RLD B) =

Sr Sr
<TFCD(Srcf0><Srcf1,DstfoxDstfl) f>|—|{T ¢ foXSre f1 (A x B)

AeABeB

TDSt foxDst f1 A X B

H{ AeABeB

}
|
|_|{TDstfo><Dstf1 ((fo) A x (f1)" }
)
°)

Ae A BebB
|_|{TDst fo <f0> Ax TDSt f1

(th 891
Ac ABeB corem 891)

TDSt fo <f0 RLD TDSt fl fl
H{ AeA } [T{ BeB

<TFCD f0>./4 ><RLD< FCD fl>B
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THEOREM 1312. Let f be a monovalued reloid. Then GR f is isomorphic to
the filter dom f.

PrROOF. Let f be a monovalued reloid. There exists a function F' € GR f.
Consider the bijective function p = Az € dom F : (z, F'z).
(p)* dom F' = F and consequently

(p)dom f =
RLD
|_| (p)" dom K =
Keup f
RLD
[ (" dom(KNF)=
Keup f
RLD
[ (KnF)=
Keup f
RLD
[ E=7.
Keup f
Thus p witnesses that f is isomorphic to the filter dom f. O

COROLLARY 1313. The graph of a monovalued reloid with atomic domain is
atomic.

COROLLARY 1314. idiLD is isomorphic to A for every filter A.

THEOREM 1315. There are atomic filters incomparable by Rudin-Keisler order.
(Elements a and b are incomparable when a Z bAbZ a.)

PROOF. See [13]. O
THEOREM 1316. > and >, are different relations.

ProoF. Consider a is an arbitrary non-empty filter. Then a >; L7 (Base(a)
but not a >, | F (Base(a)) O

PropoOsSITION 1317. If @ >9 b where «a is an ultrafilter then b is also an ultra-
filter.

PROOF. b = (1FP f)a for some f : Base(a) — Base(b). So b is an ultrafilter
since f is monovalued. ([

COROLLARY 1318. If a > b where a is an ultrafilter then b is also an ultrafilter
or J_?(Base(a)).

PROOF. b T (1P f)a for some f : Base(a) — Base(b). Therefore b/ =
<TFCD f >a is an ultrafilter. From this our statement follows. O

ProrosITION 1319. Principal filters, generated by sets of the same cardinality,
are isomorphic.

PROOF. Let A and B be sets of the same cardinality. Then there are a bijection
f from A to B. We have (f)*A = B and thus A and B are isomorphic. O

PRroPOSITION 1320. If a filter is isomorphic to a principal filter, then it is also
a principal filter induced by a set with the same cardinality.
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PROOF. Let A be a principal filter and B is a filter isomorphic to A. Then
there are sets X € A and Y € B such that there are a bijection f : X — Y such
that (f)"A = B.

So min B exists and min B = (f)* min A and thus B is a principal filter (of the
same cardinality as A). O

ProroOSITION 1321. A filter isomorphic to a non-trivial ultrafilter is a non-
trivial ultrafilter.

PROOF. Let a be a non-trivial ultrafilter and a be isomorphic to b. Then a >5 b
and thus b is an ultrafilter. The filter b cannot be trivial because otherwise a would
be also trivial. O

THEOREM 1322. For an infinite set U there exist 22" equivalence classes of
isomorphic ultrafilters.

PrOOF. The number of bijections between any two given subsets of U is no
more than (card U)4VU = 2¢ardU_ The number of bijections between all pairs of
subsets of U is no more than 202rdU . gcardU — gcardU - Therefore each isomorphism
class contains at most 244U yltrafilters. But there are 22" ultrafilters. So there
are 22" classes. O

REMARK 1323. One of the above mentioned equivalence classes contains trivial
ultrafilters.

COROLLARY 1324. There exist non-isomorphic nontrivial ultrafilters on any
infinite set.

14.3. Consequences

THEOREM 1325. The graph of reloid FxRP 14 {g} is isomorphic to the filter
F for every set A and a € A.

Proor. From 1312. O

THEOREM 1326. If f, g arereloids, f C g and g is monovalued then glaom 5 = f.

PROOF. It’s simple to show that f = |_|{ } (use the fact that

k T fla for some a € atoms” /) for every k € atomsf and the fact that
RLD(Src f, Dst f) is atomistic).

Suppose that glqom s 7 f. Then there exists a € atomsdom f such that g|, #
fla:

Obviously gla 3 fla-

If gla 3 fla then g, is not atomic (because f|, # LR-PGrefDstf)y what
contradicts to a theorem above. So g|, = f|, what is a contradiction and thus

glaom § = f. a

fla
a€atomsZ (Stc f)

COROLLARY 1327. Every monovalued reloid is a restricted principal monoval-
ued reloid.

PrROOF. Let f be a monovalued reloid. Then there exists a function F' € GR f.

So we have

(RO D5 1) ) = f.

O

COROLLARY 1328. Every monovalued injective reloid is a restricted injective
monovalued principal reloid.
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PROOF. Let f be a monovalued injective reloid. There exists a function F' such
that f = (tRLDSCS.DstS) )| 400 ¢ Also there exists an injection G € up f.
Thus

f _ f M (TRLD(Src f,Dst f) G)|domf —

(TRLD(SrC f,Dst f) F) TRLD(Src f.,Dst f) G)

|domf =
(RS LD D) (B 1 G))|dom /-

|domf r (

Obviously F'M G is an injection. O

THEOREM 1329. If a reloid f is monovalued and dom f is an principal filter
then f is principal.

PROOF. f is a restricted principal monovalued reloid. Thus f = F|qom f Where
F is a principal monovalued reloid. Thus f is principal. ([

LEMMA 1330. If a filter A is isomorphic to a filter B then if X is a typed set
then there exists a typed set Y such that 152%¢(4) X M A is a filter isomorphic to
TBase(B) Y nB.

PRrROOF. Let f be a monovalued injective reloid such that dom f = A, im f = B.

By proposition 629 we have: 1B25¢(A) X M 4 = X where X is a filter comple-
mentive to A. Let Y = A\ X.

((FCD)f)X M {(FCD)f)Y = ((FCD) f)(X MY) = L by injectivity of f.

({(FCD) /)X U ((FCD) /)Y = ((FCD) /) (X UY) = ((FCD)f)A = B. So ((FCD)f)X
is a filter complementive to B. So by proposition 629 there exists a set Y such that
(FCD)fY)X =t Y N B.

flx is obviously a monovalued injective reloid with dom(f|x) =t X M .A and
im(f|x) =TY NB. Sot X MNA is isomorphic to 1Y N B. O

EXAMPLE 1331. A >3 BAB >3 A but A is not isomorphic to B for some filters
A and B.

PROOF. (proof idea by ANDREAS BLASS, rewritten using reloids by me)
Let u,, h, with n ranging over the set Z be sequences of ultrafilters on N
and functions N — N such that (tFPEN b Ny, o = w, and u, are pairwise

non-isomorphic. (See [6] for a proof that such ultrafilters and functions exist.)
def def
A= pen (17 {n} xRPusni1); B= ,en (1" {n} xR0 usn).
Let the Set-morphisms f,g : Z x N — Z x N be defined by the formulas

f(n,x) = (n, hapx) and g(n,x) = (n — 1, hap_12).
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Using the fact that every function induces a complete funcoid and a lemma
above we get:

(17 f\A =
|_|<<TFCD f>>*{TZ {n} « RLD —_—

n e Z }
|—|{T {nr}; Z Z } B
B.
<TFCD _
oy {0

|_| TZ{n—il}x Up—1
{U{ 17 {”}EXZ U2n 41 }

n €z

It remains to show that A4 and B are not isomorphic.

Let X € up(t” {n} xRP uy, 1) for some n € Z. Then if 12*N X M A is an
ultrafilter we have 12*N X M A =1% {n} xRP uy, 1 and thus by the theorem 1325
is isomorphic to ug,+1-

If X ¢ up(tZ {n} xR0 wy, 1) for every n € Z then (Z x N) \ X € up(t?
{n} xRP sy, 1) and thus (Z x N) \ X € up A and thus 12N X n.A = 12xN,

We have also

(1 {0} x®PN) 1B = (1% {0} xO N) ml_l{w} -

|_|{ (17 {0} xRON) 1 (17 {n} xRP u2n)} —1% {0} xRLD

nez

o (an ultrafilter).

Thus every ultrafilter generated as intersecting A with a principal filter 12*N X
is isomorphic to some ug,+1 and thus is not isomorphic to ug. By the lemma it
follows that A and B are non-isomorphic. O

14.3.1. Metamonovalued reloids.

PROPOSITION 1332. (N G)o f =(,cq(g0 f) for every function f and a set G
of binary relations.

PRrOOF.
€ (ﬂG)of@
y:(fr=yn(y2)e(G) <
(fz,2) € ﬂG@
VgeG: (fr,2z) eg<
VgeGIy: (fr=yN(y,2) Eg) &
VgeG:(x,z)€Egofe

(¢,2) € () (go /)

geG
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LemMA 1333. ([1G) o f =[],eq(go f) if f is a monovalued principal reloid
and G is a set of reloids (with matching sources and destinations).

ProoF. Let f =tRLP o for some monovalued Rel-morphism ¢.
RLD
(l_l G) © f = I—]gEuprlG(g o 30)’

up [ ](gof) =
ge
RLD
up [] [] @ow) =
geGT€upyg
Mo reg)
wU{
= I'cupyg
RLD
up |—| (Top) =
Peup[G
(Toop) N (F 0 ) N
t b
P |_|{ I, €eup[ |G where i =0,...,nforn e N (proposition above)

P FiEupﬂGWhereZ—O, nfornEN

TFop
upH{FEHPI_IG}
Thus ([1G)o f = ngG(gof). O

THEOREM 1334.

1°. Monovalued reloids are metamonovalued.
2°. Injective reloids are metainjective.

ProoOF. We will prove only the first, as the second is dual.

Let G be a set of reloids and f be a monovalued reloid.

Let f’ be a principal monovalued continuation of f (so that f = f'|qom ¢)-

By the lemma ([|G)o f' = ngG(g o f’). Restricting this equality to dom f we
get: ([1G)o f=Tleclgof) O

CONJECTURE 1335. Every metamonovalued reloid is monovalued.



CHAPTER 15

Counter-examples about funcoids and reloids

For further examples we will use the filter defined by the formula
Z(R)

|-cie
A= — .
I_l {e eR,e>0
I will denote Q(A) the Fréchet filter on a set A.

EXAMPLE 1336. There exist a funcoid f and a set S of funcoids such that

fals # L s.

PROOF. Let f = AxFP +7(®) {0} and § = { T2kl dOD L en

fn |_|S _ (AXFCD 17 (R) {ohHn 4FCD(R,R) (10; +-00[x{0}) =
(A T?(R)]O; JrOODXFCD T&’(R) {0} # | FCD(R,R)
while | J(f)*S = | J{ LFCP®RR)} — | FCDRE), -

ExaMPLE 1337. There exist a set R of funcoids and a funcoid f such that
folUR#LU(fo)"R.

PROOF. Let f — AxFCD TL@(R) {0}’ R = {TR{O}XEFHCQDTE]OE;—FOO[}'

We have | |R =1% {0}xFP 18]0; +00[; f o | |R =tFPER) ({0} x {0}) #
LFCO®R) and | |(fo)*R = | [{LFEO®RB)Y — | FCD(RE) 0

EXAMPLE 1338. There exist a set R of reloids and a reloid f such that fo| | R #
LI(fo)"R.

PROOF. Let f = AxRP+Z®) (o} R = {W}

eeR,e>0
We have | JR =1% {0}xRP 1%]0: tool; £ o |JR =1MPER ({0} x {0}) #
J_RLD(R,]R) and |_|<f0>*R —_ U{J_RLD(R,]R)} — J_RLD(IR,R)' O

ExXAMPLE 1339. There exist a set R of funcoids and filters X and Y such that
1°. X R YARf € R: X [f] V;

2. (R 3 {5}

PROOF.
FCD(R,R .
1°0 Take ¥ = A and Y = T9® R — {W} Then
|| R =tFPER) (10; +00[xR). So X [ |R] Y and Vf € R: —~(X [f] V).
2°. With the same X and R we have (| |R)X = TZ® and (f)x = 17® for
every f € R, thus U{%} =17®),
O

EXAMPLE 1340. | |gop(A XREP B) £ A xRP | | T for some filter A and set of
filters T' (with a common base).
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PROOF. Take Ry = {25}, A= A, 7= {11} where 1 = 1%,

LT =t Ry; A xR T = AXRLD 4 R,

User(AxRP B) = [1,cq (AX®O 1 {z}).

We'll prove that | |, g, (AxRED 4 fa1) £ AXRID AR,

Consider K = {J,cg, ({z}x] — 1/z;1/z]).

K € up(AxRP 1 {z}) and thus K € up|],cp, (AXRP 1 {z}) . But K ¢
up(AxRP A R,). O

RLD

THEOREM 1341. For a filter a we have a x®°a 150 )

a = 1 FBase(a)) o g is a trivial ultrafilter.

only in the case if

PRrOOF. If a xRP g C 1R then there exists m € up(a xR'P a) such that

Base(a)
m C 131}:;(3(&). Consequently there exist A, B € upa such that A x B C 13;19((1)
what is possible only in the case when 1 A =1 B = a is trivial a ultrafilter or the
least filter. 0

COROLLARY 1342. Reloidal product of a non-trivial atomic filter with itself is
non-atomic.

PROOF. Obviously (a xRP a) M 1%'5'36((1) # LRP and (a xRP q) M 1%';56(@ C
a xRD g U

ExXAMPLE 1343. There exist two atomic reloids whose composition is non-
atomic and non-empty.

PROOF. Let a be a non-trivial ultrafilter on N and x € N. Then

RLD(N,N)
(ax®P Nz} o (N {a} xRPa) =[] ((Ax{z})o({z} x4) =
Aca
RLD(N,N)
|_| (Ax A)=axRPq
Aca
is non-atomic despite of axRP N f21 and M {z} xRP @ are atomic. O

EXAMPLE 1344. There exists non-monovalued atomic reloid.

PRrROOF. From the previous example it follows that the atomic reloid 1V
{x} xRP g is not monovalued. O

ExXAMPLE 1345. Non-convex reloids exist.

PROOF. Let a be a non-trivial ultrafilter. Then id{-P is non-convex. This

follows from the fact that only reloidal products which are below 1R-2 a) Are reloidal

Base(
RLD
da

products of ultrafilters and i is not their join. O

EXAMPLE 1346. There exists (atomic) composable funcoids f and g such that
Hecup(gof)# IFcup f,Geupg: HIGoF.

PROOF. Let a be a nontrivial ultrafilter and p be an arbitrary point, f =
ax" P Ip} g = {p} xFPa. Then go f = a x"Pa. Take H =1. Let F € up f
and G € upg. We have F € up(Ag x P {p}), G € up({p} xFP A;) where
Ap, A1 € upa (take Ag = (F)*@Q{p} and similarly for A;). Thus Go F J Ag x A;
and so H ¢ up(G o F). O

EXAMPLE 1347. (RLD)in f # (RLD)out f for a funcoid f.
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PrOOF. Let f = 1§CD. Then (RLD)mf = Llaeatomsy(l\”(a xRLD a) and
(RLD)out f = 1§LD. But we have shown above a xR q Z 1§LD for non-trivial

ultrafilter a, and so (RLD)i, f Z (RLD)out f- O
PROPOSITION 1348. 15EPM PPN (g0 x 40) \ idy) = idgqy # LFPEH for

every infinite set i[.

Proor. Note that <id5c(3)>)€ =X Q) for every filter X on 4.

Let f=1§P, g =tFPELD (& x 1) \ idy).

Let x be a non-trivial ultrafilter on 4. If X € upa then card X > 2 (In fact,
X is infinite but we don’t need this.) and consequently (g)*X = TZ®). Thus
(g)x = TZW) Consequently

(fRgz=(fHlzn{gz=anT7M® =z
Also <idg§3)>m =2MQW) = 2.
Let now « be a trivial ultrafilter. Then (f)z = x and (g)z = TZ®)\ z. So
(fng)z=(flzn{gz=an(T7E\z) = L7,
Also <id5c(a)>x =z NQL) = L FW)
So (fNg)z = <idgc(g)>x for every ultrafilter z on 4. Thus fMg = idgc(jg), O
EXAMPLE 1349. There exist binary relations f and g such that TFCD(AvB )
frIAFEDAB) g L4FCDIAB) (£ M g) for some sets A, B such that f,g C A x B.
PROOF. From the proposition above. O

ExXAMPLE 1350. There exists a principal funcoid which is not a complemented
element of the lattice of funcoids.

1FCD

PRrROOF. I will prove that quasi-complement of the funcoid is not its com-

plement (it is enough by proposition 145). We have:
(15D

¢ € FCD(N,N)
I_I vlFCD

}
U{arem o =)
-
|

I

e )
a,feNa#p
FCD(N,N) {a} x {8}
f U{ BeN,a#p
TFCD(N ,N) (N x N \ ldN

(used corollary 923). But by proved above (15P)* M 1FCP # 17 M), O

ExXAMPLE 1351. There exists a funcoid h such that up h is not a filter.

PRrROOF. Consider the funcoid h = idg%g). We have (from the proof of proposi-
tion 1348) that f € uph and g € uph, but fMg & uph. O

EXAMPLE 1352. There exists a funcoid h # LFP(4-B) such that (RLD)guh =
| RLD(A,B)
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PRroOOF. Consider h = idgc(g). By proved above h = f Mg where f =
1I§ICD :TFCD(N,N) idN, g :TFCD(N,N) (N x N \ idN).
We have idy, N x N\ idy € GR h.

So
RLD RLD(N,N)
(RLD)outh = |_| uph = |_| GR h THRPEN) (14 N(N x N\ idy)) = LRPEN),
and thus (RLD)gyh = LREPALN), 0

EXAMPLE 1353. There exists a funcoid h such that (FCD)(RLD)uth # h.
Proor. It follows from the previous example. O
ExaMPLE 1354. (RLD);, (FCD)f # f for some convex reloid f.

PROOF. Let f = 1R'P. Then (FCD)f = 1P, Let a be some non-trivial ultra-
filter on N. Then (RLD);,(FCD)f 3 a xRP q Z 1RP and thus (RLD);,(FCD)f Z
f. O

ExaMPLE 1355. There exist composable funcoids f and g such that
(RLD)out(g o f) 3 (RLD)outg © (RLD)out f-

PrOOF. f = idgc(g) and g = TZMXFCD 4N Lo} for some o € N. Then
(RLD)outf = LRPEN and thus (RLD)ousg © (RLD)gue f = LREPIN),

We have go f = Q(N)xFP N fq},

(RLD)out (2UN) xFCP N La}) = Q(N)xRLP 4N Lo} by properties of funcoidal
reloids.

Thus (RLD)ou(g o f) = Q(N)xRLD 4N £} £ | RLDVN), O

CONJECTURE 1356. For every composable funcoids f and g

(RLD)out(g © f) - (RLD>outg © (RLD)outf~

ExXAMPLE 1357. (FCD) does not preserve binary meets.

PROOF. (FCD)(1RP rm (TRLDMLN) \ {RLDY) — (FCD) LRLDNN) — L FCD(N.N)
On the other hand,

(FCD)1f-P 1 (FCD)(TRPWEM \ 1/P) =
]-IETCDI_l TFCD(N,N) (N x N \ ldN) _ ldEC(g) # J_FCD(N7N)
(used proposition 1058). O
COROLLARY 1358. (FCD) is not an upper adjoint (in general).

Considering restricting polynomials (considered as reloids) to ultrafilters, it is
simple to prove that each that restriction is injective if not restricting a constant
polynomial. Does this hold in general? No, see the following example:

ExXAMPLE 1359. There exists a monovalued reloid with atomic domain which
is neither injective nor constant (that is not a restriction of a constant function).

PrOOF. (based on [34]) Consider the function F' € N¥*N defined by the for-
mula (z,y) — x.

Let w, be a non-trivial ultrafilter on the vertical line {z} x N for every x € N.

Let T be the collection of such sets Y that Y N ({z} x N) € w, for all but
finitely many vertical lines. Obviously T is a filter.

Let w € atomsT'.

For every x € N we have some Y € T for which ({z} x N)NY = () and thus
TNxN ({x} % N) MNw = | ZOxN)
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Let g = ($RLPAVN) )| . If g is constant, then there exist a constant function
G € upg and F NG is also constant. Obviously dom tRPEXNN) (Frq G) T o,
The function F N G cannot be constant because otherwise w C dom TRLD(N xN,N)
(FNG) TN ({2} x N) for some = € N what is impossible by proved above. So
g is not constant.

Suppose that g is injective. Then there exists an injection G € upg. FN G €
up g is an injection which depends only on the first argument. So dom(F M G)
intersects each vertical line by atmost one element that is dom(F MG) inter-
sects every vertical line by the whole line or the line without one element. Thus
dom(F MG) € T Jw and consequently dom(F M G) ¢ w what is impossible.

Thus g is neither injective nor constant. O

15.1. Second product. Oblique product

DEFINITION 1360. A xR B = (RLD)oui (A xFP B) for every filters A and B.
I will call it second product of filters A and B.

REMARK 1361. The letter F' is the above definition is from the word “funcoid”.
It signifies that it seems to be impossible to define A xR B directly without
referring to funcoidal product.

DEFINITION 1362. Oblique products of filters A and B are defined as
4RLD
Ax B= |_| .
f € Rel(Base(A), Base(B)),3B € up B :AFCP f J AxFCD + B
ARLD £
AxB= |_| .
f € Rel(Base(A), Base(B)),3A € up A AFCP f It A xFCD B
PROPOSITION 1363.

1°. Ax B=AxRP Bif A and B are filters and B is principal.
2°. AxB=AxRPBif Aand B are filters and A is principal.

PROOF. AxB = HRLD{W} = AxR®PB. The other is analogous.
O

ProrosITION 1364. A xRLD BLC Ax BLC AxRP B for every filters A, B.

PROOF.
Ax BC
TRLD f
|_|{f € Rel(Base(A), Base(B)),3JA € up A, B € up B :1FCD f I AxFCD ¢ B}

I—l 1+ AxRP 4+ B B
Acup A, BeuwhB/[

A xRD B

Ax B3
TRLD f
|_|{ f € Rel(Base(A), Base(B)), 1FCD f 3 A xFCD B} -
4RLD ¢
H{f € up(A xFP B>} B
(RLD) oyt (A xFP B) =
AxRDO B
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CONJECTURE 1365. A xR B = A x B for some filters A, B.
A stronger conjecture:

CoNJECTURE 1366. A x®P B = A x B = A xRP B for some filters A, B.
Particularly, is this formula true for A = B = A 1%]0; +ool?

The above conjecture is similar to Fermat Last Theorem as having no value
by itself but being somehow challenging to prove it (not expected to be as hard as
FLT however).

EXAMPLE 1367. A x BT A xRP B for some filters A, B.

PROOF. It’s enough to prove A x B # A xRP B,

Let Ay = AN ¥)0; +oof. Let A=B=A.

Let K = (§)|R><R-

Obviously K ¢ up(A xRP B).

A x B CHRED(Base(A),Base(B)) | and thus K € up(A x B) because

4FCD(Base(4).Base(B)) | 3 A, xFCP 4 B — AxFCP 4
for B =]0; 4+o00[ because for every X € dA there is © € X such that x €]0;¢[ (for
every positive €) and thus Je; +00[C (K)"{x} so having
(K)*X =]0; +oole GR{A;x"P 1 B)"X.
Thus A x B # A xRP B, O
EXAMPLE 1368. A xR0 B = A xRD B for some filters A, B.
PROOF. This follows from the above example. O

CONJECTURE 1369. (A x B) M (A x B) # A x®P B for some filters A, B.

(Earlier I presented a proof of the negation of this conjecture, but it was in
error.)

EXAMPLE 1370. (A x B) U (A x B) C A xRP B for some filters A, B.

PROOF. (based on [8]) Let A = B = Q(N). It’s enough to prove (A x B) U
(AxB)#AxRDP B

Let X eup A, Y € up B that is X € Q(N), Y € Q(N).

Removing one element x from X produces a set P. Removing one element y
from Y produces a set Q. Obviously P € Q(N), Q € Q(N).

Obviously (P x N)U (N x Q) € up((A x B) U (A x B)).

(PxN)U(NxQ) 2 X XY because (z,y) € X XY but (z,y) ¢ (PxN)U(NxQ)
for every X € up A, Y € up B.

Thus some (P x N)U (N x Q) ¢ up(A xRP B) by properties of filter bases. [

EXAMPLE 1371. (RLD)out(FCD)f # f for some convex reloid f.

PROOF. Let f = A xRD B where A and B are from example 1368.

(FCD)(A xRP B) = A xFCP B by proposition 1070.

So (RLD)out (FCD)(A xRP B) = (RLD)out (A xFP B) = A xRD B £ A xRLD
B. O



CHAPTER 16

Funcoids are filters

The motto of this chapter is: “Funcoids are filters on a (boolean) lattice.”

16.1. Rearrangement of collections of sets

Let Q be a set of sets.
Let = be the relation on | Q defined by the formula

a=beVXeQ: (ce X ebeX).
PROPOSITION 1372. = is an equivalence relation on |J Q.

PROOF.

Reflexivity. Obvious.

Symmetry. Obvious.

Transitivity. Let a = bAb=c. Thenae X ©be X & ce€ X for every X € Q.
Thus a = c.

O

DEFINITION 1373. Rearrangement R(Q) of Q is the set of equivalence classes

of JQ for =.
OBvious 1374. JR(Q) =UQ.
OBvIoUs 1375. () ¢ R(Q).
LEMMA 1376. card R(Q) < 2684 @,

PrOOF. Having an equivalence class C, we can find the set f € ZQ of all
X € Q such that a € X, for every a € C.

b=aoVXe@: ceXeobeX)eoVXe@: (XefebeX).

b=a

card 22Q = 2°*"1Q classes. O

b
SoC = cye } can be restored knowing f. Consequently there are no more than

COROLLARY 1377. If ) is finite, then JR(Q) is finite.

PROPOSITION 1378. If X € Q, Y € R(Q) then X NY #0 & Y C X.

PROOF. Let XNY # P and z € X NY. Then
yeYor=yevVX' cQ:reX' syecX) = @reXeoyeX)syeX

for every y. Thus Y C X.
Y CX=XNY # 0 because Y # 0. O

PROPOSITION 1379. If ) # X € @ then there exists Y € R(Q) such that
YCXAXNY 0.

267
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PRrROOF. Let a € X. Then

beJ@
[G]Z{VX/GQ;(QEX’@Z)GX’)}Q
(e it - () -
But [a] € R(Q).

X NY #( follows from Y C X by the previous proposition. O

PROPOSITION 1380. If X € @ then X = |J(R(Q) N ZX).

Proor. JR(Q) N LX) C X is obvious.

Let x € X. Then there is Y € R(Q) such that x € Y. We have Y C X that
isY € ZX by a proposition above. So x € Y where Y € R(Q) N ZX and thus
z € JR(Q) N ZX). We have X C J(R(Q) N £X). O

16.2. Finite unions of Cartesian products

Let A, B be sets.

I will denote X = A4\ X.

Let denote I'(A4, B) the set of all finite unions Xo x Yo U...UX,,_1 xY,,_1 of
Cartesian products, wheren € Nand X; € ZA,Y; € B foreveryi=0,...,n—1.

ProprosITION 1381. The following sets are pairwise equal:

1°. T'(A, B);

2°. the set of all sets of the form (Jy (X x Yx) where S are finite collections
on A and Yx € &B for every X € S,

3°. the set of all sets of the form (J . ¢(X X Yx) where S are finite partitions
of Aand Yy € &B for every X € S}

4°. the set of all finite unions (J x y)¢, (X x V) where o is a relation between
a partition of A and a partition of B (that is dom o is a partition of A
and im o is a partition of B).

5°. the set of all finite intersections ni:O,‘..,nfl (X,» xY; UX,; x B) where n €
Nand X; € ZA) Y, € B foreveryi=0,...,n— 1.

PRrOOF.
1°22°, 2°23°. Obvious.
1°C2°. Let Q@ € T(A,B). Then Q = Xg x Yy U...UX,_1 xY,_;. Denote S =

.....

2°C3°. Let Q@ = Jyxeg(X x Yx) where S is a finite collection on A and Yx € #B
for every X € S. Let

p= J (X’X U{HXESY:XX’QX})

X'eR(S) Xes

To finish the proof let’s show P = Q.
(Py*{z} = UXeS{HXe;/%} where z € X'.
Thus (P)*{x} = U{ sxdiex } = (@ (e} So P =@
4°C3% Uix,yyeo (X xY) = UXEdoma(X X U{ &iﬁfa }) € 37
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3°C4°.
U (X x Yy) = U (X X U(m({XYXS}) N Q’YX>> =
Xes Xes <
Y e R({ X
U<XXU{ ({XES})}>:
Y’ CYx
Xes
V' en({x3))
U<XXU{ Kaves §) = W0
XeSs (X,Y)eo
where o is a relation between S and R({§25}), and (X,Y') €0 & Y’ C
Yx.
5°C1°. Obvious.
3°C5°% Let Q@ = Uxes(X x Yx) = Uimg. 1 (Xi x ;) for a partition S =

{Xo,...,anl} of A. ThenQ:ﬂiZO nil(XiXY;‘UEXB).

.....

EXERCISE 1382. Formulate the duals of these sets.
PROPOSITION 1383. T'(A, B) is a boolean lattice, a sublattice of the lattice
P (A x B).

Proor. That it’s a sublattice is obvious. That it has complement, is also
obvious. Distributivity follows from distributivity of &(A x B). O

16.3. Before the diagram

Next we will prove the below theorem 1399 (the theorem with a diagram).
First we will present parts of this theorem as several lemmas, and then then state
a statement about the diagram which concisely summarizes the lemmas (and their
easy consequences).

Below for simplicity we will equate reloids with their graphs (that is with filters
on binary cartesian products).

OBvIOUS 1384. up!Sref:Dstf) £ — (up f)NT for every reloid f.

CoNJECTURE 1385. 11%(®) up® X is not a filter for some filter X € FT'(A, B)
for some sets A, B.
REMARK 1386. About this conjecture see also:
e http://goo.gl/DHyuulU
e http://goo.gl/4a6wY6
LEMMA 1387. Let A, B be sets. The following are mutually inverse order
isomorphisms between §I'(4, B) and FCD(A, B):
1°. A |_|FCD up A;
20, frsupl B f,
PROOF. Let’s prove that up” (45 f is a filter for every funcoid f. We need to
prove that PN @ € up f whenever

P= (] (XixYiuXixB) and Q= () (XjxY/UX]xB),
i=0,...,n—1 §=0,...,m—1

This follows from P € upf & Vi €0,...,n—1: (f)X; CY; and likewise for @,
so having (f)(X; N X)) CY;NY] for every i =0,...,n —land j =0,...,m — L.
From this it follows

(XN X)) x (YU (X0 X x B) 2 f


http://goo.gl/DHyuuU
http://goo.gl/4a6wY6
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and thus PN Q € up f.
Let A, B be filters on I'. Let |_|FCD up A = [—|FCD up B. We need to prove A = B.
(The rest follows from proof of the lemma 924). We have:

FCD

_ XxYUXxBeupA
A_H{ X e PAY € 7B }

FCD

FCD

I—l{ XxYUXxB }
XecPAY ec B, APcupA:PCXxYUX xB

|—| XxYUXxB _
XePAY c #B,APcupA: (PY’XCY [
FIET XxYUX x B } B
(P)" X -
XezAyeB {5}y
TET XxYUX x B } B
(P)*X B
Xe2AY € 7B ez} CY
FCD -
|—| XxYUXxB = ()
X e PAY ¢ B, <(FCD) R upA>X Cy
FC|—L|’ XxYUX x B B
X e PAY € #B, <|—|FCD up |_|RLD up.A>X CY
FC|_T XxYUXxB
X € ZAY € PB, <|‘|FCD up A>X Cy
* o : o . (P)"X | s .
(*) by properties of generalized filter bases, because { Peap A} is a filter base.

(**) by theorem 1060.
Similarly

FCD

5=

XxYUXxB
X e PAY ¢ @B,<|‘|FCD upB>X Cy

Thus A = B. O

PROPOSITION 1388. go f € I'(A,C) if f € T'(A,B) and g € I'(B, C) for some
sets A, B, C.

PROOF. Because composition of Cartesian products is a Cartesian product. [

DEFINITION 1389. go f = HSF(A’C){%} for f € FT'(A, B) and
g € §T(B, C) (for every sets A, B, C).

We define f~! for f € §T'(A, B) similarly to f~! for reloids and similarly derive
the formulas:

()7 =5
2°. (gof)~t=f"log™h.
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16.4. Associativity over composition

Lemma 1390. [T upf@(go f) = (HRLD up!'(B:9) 9) © (HRLD up!? ’C)>
for every f € F(I'(A, B)), g € F(I'(B,C)) (for every sets A, B, C).

ProoF. If K € up |_|RLD up' ) (go f) then K D GoF forsome F € f,G € g.
But F € up" 45 f thus
RLD

Fe |_| upF(A,B) f

and similarly
RLD

Ge |_| up! (B:€) g.

RLD RLD
KD GoFGup((ﬂ upF(B’C)g> o <|_| upF(A’B) f))

RLD RLD
K e up<<|_| upF(B’C) g> o <|_| upF(A’B) f))

Then there exist F' € up |_|RLD up' ™5 f and G € up |_|RLD up'(B-€) g such that
K D GoF. By properties of generalized filter bases we can take F' € up' %) f and
G € up" B9 g, Thus K € upt @ (go f) and so K € up[ [P up" @ (go f). O

So we have

Let now

LeEMMA 1391. (RLD)y, X = X for X € T'(A, B).
PROOF. X = XoxYyU...UX, xY, = (Xox PYy)uFP UFP (X, xFPY,).
(RLD)jn X =
(RLD)in (Xo xFP ¥5) LRP | LRLD (RLD);, (X, xFPY) =

(XO ><RLD YO) |_|RLD ...|_|RLD (Xn ><RLD Yn) —
XQXYOU...UXnXYn:X.

0
LeEMMA 1392. [P f = (RLD);, [17P f for every filter f € FT(A, B).
PRrROOF.
FCD RLD RLD
(RLD)is [ ] f = [ J((RLD)ss)"f = (by the previous lemma) = [ ] f.
0

LEMMA 1393.
1°. f— |_|RLD up f and A — I'(4, B) Nup A are mutually inverse bijections
between FI'(A, B) and a subset of reloids.
2°. These bijections preserve composition.

PRrROOF.

1°. That they are mutually inverse bijections is obvious.
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2°.

RLD RLD RLD GoF
<|_| ng) o <|—| upf) = |—|{F€ HRLDﬁGEHRLDQ} -
RLD

RLD 3I'(Src f,Dst g) RLD
FefGeg FefGeg

So |_|R|'D preserves composition. That A — T'(A, B) Nup A preserves composition
follows from properties of bijections.

O

LEMMA 1394. Let A, B, C be sets.

1o (M upg) o (MFPupf) = [P up(g o 1) for every f € FT(A,B),
g € §T(B, C);

20, (up" B9 g) o (up"AB) f) = uplAB)(g o f) for every funcoids f €
FCD(A, B) and g € FCD(B : C).

PRrROOF. It’s enough to prove only the first formula, because of the bijection
from lemma 1387.

Really:

FCD FCD  RLD

[Tupgof)=[]up[ |up(gof) =
FCD RLD RLD RLD RLD
|_|up<|_|upgo up f FCD <|—|upgo|_|upf>:

RLD
( (FCD) upf) =

FCD RLD FCD RLD
(l—l up [ |upg ( up [ ] upf)

()« (o).

O

COROLLARY 1395. (hog)of = ho(gof) for every f € F(I'(A, B)), g € (B, C),
h € T(C, D) for every sets A, B, C, D.

LEMMA 1396. T'(A, B)NGR f is a filter on the lattice I'(A, B) for every reloid
f € RLD(A, B).

Proor. That it is an upper set, is obvious. If A, B € I'(4,B) N GR f then
A,BeT(A,B)and A,B€ GRf. Thus ANB T (4,B)NGRf. O

PROPOSITION 1397. If Y € up(f)X for a funcoid f then there exists A € up X
such that Y € up(f)A.

PROOF. Y € up ﬂf@p o(f)A. So by properties of generalized filter bases, there
exists A € upa such that ¥ € up(f)A. O

LEMMA 1398. (FCD)f =1 °(I(4, B)NGR f) for every reloid f € RLD(A, B).



16.5. THE DIAGRAM 273

PROOF. Let a be an an atomic filter object. We need to prove

FCD
((FCD) f)a = <|_| (T'(A, B) N GR f)>a

that is
FCD FCD
<|_| upf>a = <|—|(F(A,B) N GRf)>a
that is
F F
|_| (F)a = |_| (F)a.
Feup f FeT(A,B)Nup f

For this it’s enough to prove that Y € up(F)a for some F € up f implies Y €
up(F")a for some F’ € I'(A,B)NGR f.

Let Y € up(F)a. Then (proposition above) there exists A € upa such that
Y € up(F)A.

Y € up(AxFPY UAXFP Tha; (AXFPYUAXFPTIXY =Y € up(F)X if
L#XCAand (AXFPYUAXFPTHXY =T eup(F)X if ¥ Z A.

Thus A xFPY UAXFPT T3 F. So AxFPY LA xFP T is the sought
for F’. O

16.5. The diagram

THEOREM 1399. The diagram at the figure 10 is a commutative diagram (in
category Set), every arrow in this diagram is an isomorphism. Every cycle in
this diagram is an identity (therefore “parallel” arrows are mutually inverse). The
arrows preserve order, composition, and reversal (f — f~1).

funcoids

funcoidal reloids filters on I

FIGURE 10

PROOF. First we need to show that [1°-°

from lemma 1392.

Next, we need to show that all morphisms depicted on the diagram are bijec-
tions and the depicted “opposite” morphisms are mutually inverse.

That (FCD) and (RLD);, are mutually inverse was proved above in the book.

That |_|RLD and f — fNT are mutually inverse was proved above.

That |_|FCD and up' are mutually inverse was proved above.

That the morphisms preserve order and composition was proved above. That
they preserve reversal is obvious.

So it remains to apply lemma 196 (taking into account lemma 1392). O

Another proof that (FCD)(RLD);, f = f for every funcoid f:

f is a funcoidal reloid. But it follows
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PRrROOF. For every filter X € % (Srcf) we have ((FCD)(RLD);,f)X =
F F
HFeup(RLD)h,f<F>X = I_lFeupF(Src £.Dst f) f<F>X'
Obviously [T7eypresee some ) (F)X 3 (f)X. So (FCD)(RLD);r f 3 f.
Let Y € up(f)X. Then (proposition above) there exists A € up X’ such that
Y e up(f)A.

Thus AxYUAx T € up f. So (FCD)(RLD)in f)X = [Tieyprisresome ) 4(F)X T
(AXxYUAXxT)X =Y. SoY € up((FCD)(RLD);,f)X that is (f)X 3
{(FCD)(RLD)s, f3X that is f 3 (FCD)(RLD)s, f. O

16.6. Some additional properties

PROPOSITION 1400. For every funcoid f € FCD(A, B) (for sets A, B):

1°. dom f = ﬂy(A)<dom>* up!(4-B) f.
2°. im f = |_|“6/7(B)<im>* up! (A-B) f.

PRrOOF. Take {Xe@A,Y)e(;;]/B,XxYQf} C up'“B) f. I leave the rest reasoning

as an exercise. O

THEOREM 1401. For every reloid f and X € Z#(Src f), Y € & (Dst f):
1°. X [(FCD)f] Y & VF € upl (SrefDst f) £y [F] Y
2°. <(FCD)f>X = H?eupF(Src £.Dst ) f <F>X

Proor.

1°.

VF € up! GreSDsth ¢ ¥ [Fl1y <

VE € upl GrefDst ) £ (x xFP YV F £ | o (%)
FCD
(X ><FCD y) M |_| upF(Srcf,Dst ) f 7& HPES

FCD
¥ l|—| up!t Sre£:Dstf) g1y o X [(FCD) f] V.

(*) by properties of generalized filter bases, taking into account that funcoids
are isomorphic to filters.

2°. H?eupr(stcf,nsm f(Fa= <|_|FCD up! (Sre £,Dst f) f>a = ((FCD) f)a for every
ultrafilter a.

It remains to prove that the function

F
©=AX € .Z(Srcf): [ (F)X

Fecupl(Sre £,Dst f) f

is a component of a funcoid (from what follows that ¢ = ((FCD)f)). To prove this,
it’s enough to show that it preserves finite joins and filtered meets.
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pl = L is obvious. @(ZU.J) = [Theupresmesonn ;(FYI U (F)T) =

H?EupF(STCfaDSt £ f<F>I U Hf@pr(src £.Dst £) f<F>j = pZUepJ. If S is a general-
ized filter base of Src f, then

e[ 1= [] (B[]S = [] [E) s =
Feupl'(Src f,Dst f) f Feupl(Sre £.Dst ) §
Z Z z F z P
[] [1Fx=T] [ (F)x =[] ex =[S
Feupl'(Sre f,Dst f) f XeS X€S Feupl(Sre f,Dst f) f xes

So ¢ is a component of a funcoid.

DEFINITION 1402. @f = [1°-0 up" /P65 f for reloid f.
CONJECTURE 1403. @f = (RLD);, (FCD) f for every reloid f.
OBvious 1404. mf 3 f for every reloid f.

EXAMPLE 1405. (RLD)i, f # E(RLD)out f for some funcoid f.

PROOF. Take f = idg((:g). Then, as it was shown above, (RLD)ouf = L
and thus @(RLD)owef = L. But (RLD)wf 3 (RLD)inf # L. So (RLD)iwf #
@(RLD)oue /- 0

Another proof of the theorem “dom(RLD);,, f = dom f and im(RLD);, f = im f
for every funcoid f.”:

PROOF. We have for every filter X € % (Src f):
X 3 dom(RLD);, f < X xR T I (RLD);f &
Vae Z(Srcf),be FMstf): (ax"PboC f=axFPhC x xRPT) o
Va e F(Srcf),be F(Dstf): (ax"PbhC f=aC X)
and
XJddomfeXxfPTOfe
Vae . Z(Srcf),be FDstf): (ax" P f=ax"PrCax xfPT) s
Va € .F(Srcf),be F(Dstf): (ax"PbC f=>aC X).
Thus dom(RLD);, f = dom f. The rest follows from symmetry. O

Another proof that dom(RLD);,f = dom f and im(RLD);,f = im f for every
funcoid f:

ProoF. dom(RLD);,f 3 dom f and im(RLD);, f J im f because (RLD);,f 3
(RLD);, and dom(RLD);, f = dom f and im(RLD);, f = im f.

It remains to prove (as the rest follows from symmetry) that dom(RLD);, f C
dom f.

Really,
T (Xe updom f
dom(RWD)wf E[ N\ FoF ey [ =
F F
X €updom f| B
I_l{X = updomf} = |_|updomf = dom f.

O
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16.7. More on properties of funcoids
PROPOSITION 1406. T'(A, B) is the center of lattice FCD(A, B).
PrOOF. Theorem 613. ]
PROPOSITION 1407. up'PB)(A xFP B) is defined by the filter base

{%} on the lattice I'(A, B).

PRrROOF. It follows from the fact that A xFP B = HFCD{W}. 0
PROPOSITION 1408. up'(45B)(A xFCP B) = F(I'(4, B)) Nup(A xRP B).

5 FCD _ MFCD AxB
PROOF. It follows from the fact that A xFP B = [TFP{ A ol O

PROPOSITION 1409. For every f € F(I'(A, B)):
1°. fo f is defined by the filter base { FoF } (if A = B);

Feup f
o -1 i E_loF
2°. f=% o f is defined by the filter base {FEupf };
3°. fo f~1is defined by the filter base {;Zf;; }

PrOOF. I will prove only 1° and 2° because 3° is analogous to 2°.

1°. It’s enough to show that VF,G € up fdH ¢ upf: Ho H C Go F. To
prove it take H = FFN G.
2°. It’s enough to show that VF,G € up f3H € upf: H o HC G 1o F.
To prove it take H = FG. Then H 1o H = (FMNG) 1o (FNG)C G toF.
U

THEOREM 1410. For every sets A, B, C if g, h € FT'(A, B) then

1°. fo(gUh)=foglU foh;
2°. (gUh)of=goflUhof.

PROOF. It follows from the order isomorphism above, which preserves compo-
sition. 0

THEOREM 1411. fNg= fNFP gif f g € T(A, B).

PROOF. Let f =Xo xYoU...UX, xY,and g=X) xYjU...UX/ xY/.

Then

frg= U ((xGxy)n(Xjxy)) =
1=0,...,n,7=0,...,m
U (X; N X)) x (Y;nY))).
1=0,...,n,7=0,...,m

But f = Xox YoUFP . UFP X, x Y, and g = X}, x Y UFP | UFP x7 vy .

FfPg= ] (XGxY) P (X) < Y))) =
1=0,...,n,7=0,...,m
|_| (Xin X)) xFP(v;nY))).
1=0,...,n,5=0,....,m
Now it’s obvious that f N g = f NFCP g. O

COROLLARY 1412. If X and Y are finite binary relations, then
1°. XNy = X nv;
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2°. (TAX) PP (T\Y) = (T\X) N (T\Y);
3. XFO(T\Y) =X (T\Y).

THEOREM 1413. The set of funcoids (from a given set A to a given set B) is
with separable core.

PRrOOF. Let f,g € FCD(A, B) (for some sets A,B).
Because filters on distributive lattices are with separable core, there exist F, G €
I'(A, B) such that F'N G = (). Then by the previous theorem FNFP G = 1. 0O

THEOREM 1414. The coatoms of funcoids from a set A to a set B are exactly
(Ax B)\ ({a} x{y}) forz € A, y € B.

ProoF. That coatoms of I'(A, B) are exactly (A x B)\ ({z} x {y}) for z € A,
y € B, is obvious. To show that coatoms of funcoids are the same, it remains to
apply proposition 560. O

THEOREM 1415. The set of funcoids (for given A and B) is coatomic.
PROOF. Proposition 562. (|

EXERCISE 1416. Prove that in general funcoids are not coatomistic.

16.8. Funcoid bases

This section will present mainly a counter-example against a statement you
have not thought about anyway.

FCIgJEMMA 1417. If S is an upper set of principal funcoids, then |_|FCD(S Nr) =
[T 6S.

Proor. [1P(SNT) 2P S is obvious.

7P S =17 Miees T 2[1T°(SNT). where T € 2(SNT). So [17P(SN
r)=[1<Cs. O

THEOREM 1418. If S is a filter base on the set of binary relations then S is a
base of [17P S.

First prove a special case of our theorem to get the idea:

(z,y)

EXAMPLE 1419. Take the filter base S = {W and K = {%}

>0 |z—y|<expzx

where x and y range real numbers. Then K ¢ up |—|FCD S.

PRrROOF. Take a nontrivial ultrafilter x on R. We can for simplicity assume
r CZ.

FCD F F F
<|—| S>x: |_|(L>33: |_| (L)*X = |_| I_I]a—s;a—i—s[.
Les LeS,Xeupz e>0,X€upz a€X
() =M eup oK) X = Meupe Unexlo —expasa+expal.
Suppose for the contrary that (K)z 3 <|_|FCD S>x.
Then
Llpe x]a—expa; atexpal 3 Himx@pi |lpe x]oa—e; a+te[ for every X € up ;
thus by properties of generalized filter bases ({W} is a filter base
and even a chain)
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Lpex]o —exposa+expal 3 Hieupx |lpex]o — €50+ ¢[ for some € > 0 and
thus by properties of generalized filter bases ({%};ﬁ%[} is a filter base) for
some X' € upx

U]a—expa;a—&—expa[g I_I la—e;a+¢|

aEX aeX’
what is impossible by the fact that exp a goes infinitely small as o — —oo and the
fact that we can take X = Z for some x. O

Now prove the general case:

PROOF. Suppose that K € up[]"® S and thus (K)z J <|—|FCD S>$. We need

to prove that there is some L € S such that K 3 L.
Take an ultrafilter x.

(NP 8 Yo = MEes L)z = Mies xeups (DX

F *
(K)r =[xeup.K) X.
Then (K)*X 3 I_lfGS,XEUpm<L>*X for every X € upz; thus by properties of

generalized filter bases ({ <i>€§( } is a filter base);

(K)*X 3 Hi@pw([»*X for some L € S and thus by properties of generalized

filter bases ({ )<(Le>u;;} is a filter base) for some X’ € upx

(K)*X J3(L)"X' 3 (L)x.
So (K)xz J (L)x because this equality holds for every X € upz. Therefore
KL U

EXAMPLE 1420. A base of a funcoid which is not a filter base.

ProoF. Consider f = idSFzCD. We know that up f is not a filter base. But it is
a base of a funcoid. O

EXERCISE 1421. Prove that a set S is a filter (on some set) iff
VXo,...,Xp€S:up(Xon---NX,)CS
for every natural n.

A similar statement does not hold for funcoids:

ExXAMPLE 1422. For an upper set S of binary relations
VX0, ., Xp €S up(XonfP...nFP x Y C §
does not imply that there exists funcoid f such that S =up f.

PrOOF. Take Sy = up 17°P (where 17P is the identity funcoid on any infinite

set) and S = UFGS@{%} (that is S1 = Upe,pr 170 up F).

Both Sy and S; are upper sets. Sy # S; because 1FP € Sy and 1FP ¢ ;.

The formula in the example works for S = Sy because Xy, ..., X, € up1FP.
It also holds for S = S; by the following reason:

Suppose Xg, ..., X, € S;. Then X; 3 F; where F; € Sy. Consequently (take
into account that I' is a sublattice of FCD) Xy, ..., X, 3 Fy, P ... OFP F and
0 XonFP ...FP x . = Xy ..M X, 3 F, P ... FC . 3 17D Thus
XoM---nX, €up’1FP C Sy; up(XoM---MX,,) C S as Sy is an upper set.

To finish the proof suppose for the contrary that up fo = Sy and up f1 = 51
for some funcoids fy and f;. In this case fy = |—]FCD Sy = 1FCP = |_|FCD up! 1F€D =
|—|FCD S7 = f1 and thus Sy = S, contradiction. O
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PROPOSITION 1423. For a set S of binary relations
VX0,..., Xp €S up(XonfP...AFP x Y C §
does not imply that S is a funcoid base.

PROOF. Suppose for the contrary that it does imply. Then, because S is an
upper set (as follows from the condition, taking n = 0), it implies that S = up f
for a funcoid f, what contradicts to the above example. O

CONJECTURE 1424. Let VX,Y € S :up(X NFPY) C S.

Then
VX0, .., Xn €S :up(XorFP...AFP x, ) C S.
EXERCISE 1425. up(fo MFCP ... MFCP £y C {Foeup?(?;'::;'g:@p fn} for every

funcoids fo, ..., fn (n € N).

16.9. Some (example) values

I will do some calculations of particular funcoids and reloids.
First note that M™P can be decomposed (see below for a short easy proof):

f P g = (FCD)(((RLD)inf M (RLD)ing).

The above is a more understandable decomposition of the operation MNP which
behaves in strange way, mapping meet of two binary relations into a funcoid which
is not a binary relation (1FP FP (T \ 1FP) = 15D).

The last formula is easy to prove (and proved above in the book) but the result
is counter-intuitive.

More generally:
FCD RLD

[]5 = (FCD) [ J((RLD)iw)"S.
The above formulas follow from the fact that (FCD) is an upper adjoint and
that (FCD)(RLD)i, f = f for every funcoid f.
Let FCD denote funcoids on a set U.
Consider a special case of the above formulas:
1FCP AFCP (T\ 17P) = (FCD)((RLD);n 17P M (RLD);in (T \ 17P)).  (17)

We want to calculate terms of the formula (17) and more generally do some
(probably useless) calculations for particular funcoids and reloids related to the
above formula.

The left side is already calculated. The term (RLD);,1FP which I call “thick
equality” above is well understood. Let’s compute (RLD);, (T \ 17P).

PROPOSITION 1426. (RLD);, (T \ 1F€P) = T\ 1FCP,

Proor. Consider funcoids on a set U. For any filters « and y (or without loss
of generality ultrafilters x and y) we have:

2 xFP y £ T\ 1FP &
(theorem 574 and the fact that funcoids are filters) <
e xFPy=<1FP o (2 [1IFP]y) o=y =
JX €upz,Y cupy: X xY.

Thus (RLD)u (T \ 17P) = | { x5y | = T\ 170, O
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So, we have:

1FCD — 1FCD FCD (T \ 1FCDY — (RLD);, 17 (FCD (T \ 1FCP).

PROPOSITION 1427. If XgUl...U X, = T then (Xo x Xo)U...U(X, x X,) €
up(RLD);, 17P.

PRrOOF. It’s enough to prove (X x Xo) U...U (X, x X,,) € up(z x z) for
every ultrafilter x, what follows from the fact that x C X; for some ¢ and thus
T xXx Xi X Xl U

PRrROPOSITION 1428. For finite tuples X, Y of typed sets

(XO XYO)U...U(XH xYn)Q 1<:>(X0|_|Y0)|_|...|_|(Xn|_|)/”)=—|—.

PROOF.

(XOXYO)I_I...I_I(anYn)Ql<:>
(XoxY)U..UXpxY,))Nl=1<
(XoxYy)NnHU...U(Xp,xY,)N)=1<
idXol‘lYO ...y ianﬂYn =1¢&

id(x,nvo)u...u(x,ny,) = 1 &
(XoMYy)U...u(X,NY,)=T.

O

COROLLARY 1429.
uprlz{ (XOXYE))LJ...I_I(anYn) }

neNVien: X;,Y,€ 7U,(XoNYo)U...U(X,NY,) =T

COROLLARY 1430. The predicate (Xo MYp) U ... U (X, MY,) = T for an
element (Xo x Yp) U ... U (X, xY,) of T does not depend on its representation
(X() X YQ)U...H(Xn XYn)

ProPOSITION 1431.

wpt'1=| | up’ ((Xo x Xo) U... U (X, x X,,))
P neNVien: X;€¢ JU, XoU...UX, =T/

PROOF. If (Xo x Yp) U... U (X, x Y,) € up’ 1 then we have

(XQ XYO)U...U(XHXYTL);
(XoMYy) x (XoNYp))U...U((X,MY,) x (X, MY,)) €up 1.

Thus
apl 1 QU upr(gXo x Xo)U...U(X, x X,)) .
neNVien: X;€e U, XoUU...UX,=T
The reverse inclusion is obvious. O

PROPOSITION 1432.
RLD

(RLD) 1FCD _ |—| (XO XXO)UL'(Xn XXn)
" neNYien: X, € JU, XoU...UX, =T/

PROOF. By the diagram we have (RLD);,17P = |—|RLD up’ 1. So it follows from
the previous proposition. O

PROPOSITION 1433. up’ (RLD);, 1FP = up' 1.
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PROOF. If K € up' 1 then K € up"((Xy x Xo)U...U (X, x X,)) and thus
K € up"(RLD);,1F<P (see proposition 1427). Thus up! 1 C up'(RLD);,1FP. But
up" (RLD);, 1FP C up' 1 is obvious. O



CHAPTER 17

Generalized cofinite filters

The following is a straightforward generalization of cofinite filter.

A A
DEFINITION 1434. Qq, = |_|X€C0awmsa X5 Qup = ﬂXecoatomsm X.

PRrROPOSITION 1435. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator.
3°. Q14 = Q4 for this filtrator.

PrOOF.
1°=-2°. Obvious.
2°=-3°. Proposition 560.
O

PROPOSITION 1436. Let (2, 3) be a primary filtrator. Let 3 be a subset of 2U.

Let it be a meet-semilattice with greatest element. Let also every non-coempty
cofinite set lies in 3. Then

ag:{ Yes } (18)

card atoms’® Y > w

PROOF. 2 exists by corollary 518.

A
YeeY# [] Xe

X €coatoms3

(by properties of filter bases) <

VS € Py, coatoms? : Y #2 ﬁS &
(corollary 536) < V.S € Pgy, coatoms? : YV % |_| S &
VK € Z5 U :Y\K 40 &
cardY > w & card atoms® Y > w.
(Here Py denotes the set of finite subsets.) O
COROLLARY 1437. Formula (18) holds for both reloids and funcoids.

PROOF. For reloiods it’s straightforward, for funcoids take that they are iso-
morphic to filters on lattice I'. O

COROLLARY 1438. QFCP =£ | FCD (for FCD(A, B) where A x B is an infinite
set).
ProprosITION 1439. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (A,3) is a primary filtrator over an atomic ideal base and Va €
atoms® 3X € coatoms? : a Z X.

282
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3°. Qi, and Cor Qy, are defined, Ya € atoms® 3X € coatoms® : ¢ Z X and 3
is an atomic poset.
4°. Cor Qy, = 13.

PRrROOF.

1°=2°. Obvious.
2°=-3°. Obvious.
3°=4°. Suppose a € atoms?® Cor§). Then 3X € upQ : @ Z X. Therefore a ¢
atoms> Cor Q. So atoms?® Cor Q;, = () and thus by atomicity Cor Q;, =
13.
O

COROLLARY 1440. Cor QFCP = |

PRrROPOSITION 1441. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over an atomic meet-semilattice with greatest
element such that Vo € atoms® 3X € coatoms? : a Z X.
3°. A is a complete lattice, Vo € atoms? 3X € coatoms? : a [Z X and (2;3)
is a filtered filtrator over an atomic poset.

_ xXe
4°. Qg = max{icorxzﬂ,

PRroOOF.
1°=2°. Obvious.
2°=-3°. Obvious.
3°=4°. Due the last proposition, it is enough to show that Cor X = 13 = X C Qy,
for every X € 2.
Let CorX = 13 for some X € 2. Because of our filtrator being
filtered, it’s enough to show X € up X for every X € upQy, . X =ao
...May, for a; being coatoms of 3. a; J X because otherwise a; Z Cor X.
So X eupX.
O

PRrOPOSITION 1442. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a meet-semilattice.

o - J___11s
3°. up Qla - {Seﬂﬁn coatoms3 }

PROOF.

1°=2°. Obvious.

o_y Q0 [1s .
2°=3°. Because {W} is a filter.

COROLLARY 1443. up QFP = up QRLP,
DEFINITION 1444. ;. = | |(atoms®\3).

PRroPOSITION 1445. The following is an implications tuple:
1°. (2; 3) is a powerset filtrator.
2°. (A; 3) is a down-aligned filtered complete lattice filtrator over an atomistic
poset and Vo € atoms?® 3X € coatoms? : a £ X.
3°. Qie = Qg

PRrROOF.
1°=2°. Obvious.
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2°=3°. For x € atoms® \3 we have Corx = L because otherwise 1 # Corz C z.
Thus by previous = C Q1, and so Q1. = | |(atoms® \3) T Q.
If © € atoms 4, then x ¢ 3 because otherwise Corz # L. So

Qg = |_|atoms e = |_|(at0ms Q1,\3) C |_|(atornsQL \3) = Q1.

THEOREM 1446. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a complete atomic boolean lattice.
3°. All of the following:
(a) 21 is atomistic complete starrish lattice.
(b) 3 is a complete atomistic lattice.
(¢) (A,3) is a filtered down-aligned filtrator with binarily meet-closed
core.
4°. Cor’ is the lower adjoint of Qq. L% —.

Proor.

1°=2°. Obvious.

2°=3°. Obvious.

3°=4°. It with join-closed core by theorem 534.

We will prove Cor’ Y T Y & X T Q. U,

By atomisticity it is equivalent to: atoms® Cor’ X C atoms® ) < atoms® X C
atoms® (1. U Y); (theorem 603) atoms® Cor’ X C atoms®) & atoms® X C
atoms® Q. U atoms® ); what by below is equivalent to: atoms® X C atoms® Y <
atoms® X C atoms® Q. U atomsZ V.

Cor' X C Y < atoms¥ Cor’ X C atoms® ) = atoms? Cor’ X C atoms® Y <
atoms? X - atoms? V;

atoms3 X C atoms®) = (theorem 599) = Cor’X C Cor') =
(theorem 543) = Cor’ X C ).

Finishing the proof atoms®* X C atoms? Q. U atoms?Y < atoms?X C
(atoms™ \3) U atoms? Y < atoms’ X C atoms? Y < atoms> X C atoms V.

O

Next there is an alternative proof of the above theorem. This alternative proof
requires additional condition Vo € atoms® 3X € coatoms? : a Z X however.

PROOF. Define Q = Q1, = Q4.
It with join-closed core by theorem 534.
It’s enough to prove that

XCQU*Co’ X and Cor'(QU*Y)C ).
Cor’(Q U™ ) = (theorem 603) = Cor’ Q I3 Cor’ Y = (proposition 1439) = 13 U3
Cor’ Y C (theorem 543) C ).
QU Cor’ X = | |atoms(Q U Cor’ X) = | |(atoms Q U Cor’ X) = | |atoms Q LI

| Jatoms X) O] |(atoms X\ 3)U| |(atoms XN3) = | |((atoms X\ 3)U(atoms XN3) =
| Jatoms X = X. O

COROLLARY 1447. Under conditions of the last theorem Cor’ |_|ng =
A 7\ *
L7 (Cor")"5S.
PRrROPOSITION 1448. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.

2°. (2, 3) is a primary filtrator over a complete atomic boolean lattice.
3°. All of the following:
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(a) 21 is atomistic complete co-brouwerian lattice.

(b) 3 is a complete atomistic lattice.

(c) (™,3) is a filtered down-aligned filtrator with binarily meet-closed
core.

4°. Cor’ X = X \* Qi
PRrOOF.

1°=2° Obvious.
2°=3° Because complete atomic boolean lattice is isomorphic to a powerset.
3°=4° Theorems 1446 and 154.

O

PROPOSITION 1449.

1°. (QFCP) {z} = QU

2°. (QFP)p = T for every nontrivial atomic filter p.
PROOF. (QFP){a} = [Ty (U {4}) = O (QFP)p =[Py T=T. O
PROPOSITION 1450. (FCD)QRLD = QFCD,
PROOF. (FCD)QRLD = [17P yp QRLD = FCD O
PROPOSITION 1451. (RLD)4y Q7P = QRLD,
PROOF. (RLD)ou¢Q2FP = [TFP up QFCD = [P yp QRLD = ORLD, O

PROPOSITION 1452. (RLD);, QP = QRLD,

PROOF.

RLD
(RLD);, QFP = |_|{ a x"Pb } _

a € atoms” , b € atoms” , a xFCD p C QFCD

a xRLD },
|—|{ a € atoms” | b € atoms” , not a and b both trivial} N

] { L] atorms(a «RLD p) } _

a € atoms” , b € atoms” , not a and b both trivial

|_| U atoms(a xRLD p) B
a € atoms” , b € atoms” , not a and b both trivial B
|_|(nontrivial atomic reloids under A x B) = QRP,

O



CHAPTER 18

Convergence of funcoids

18.1. Convergence

The following generalizes the well-known notion of a filter convergent to a point
or to a set:

DEFINITION 1453. A filter F € .Z#(Dstu) converges to a filter A € F(Srcu)
regarding a funcoid p (F 5 A) iff F C (u).A.

DEFINITION 1454. A funcoid f converges to a filter A € % (Srcu) regarding
a funcoid p where Dst f = Dsty (denoted f £ A) iff im f © (u)A that is iff
. 1
im f = A.

DEFINITION 1455. A funcoid f converges to a filter A € % (Srcp) on a filter
B € Z(Src f) regarding a funcoid p where Dst f = Dst u iff f|g 2 A.

OBvIOUS 1456. A funcoid f converges to a filter A € .Z#(Srcp) on a filter
B € Z(Src f) regarding a funcoid p iff (f)B C (u).A.

REMARK 1457. We can define also convergence for a reloid f: f %5 A< im f C
(1) A or what is the same f % A < (FCD)f & A.

THEOREM 1458. Let f, g be funcoids, i, v be endofuncoids, Dst f = Srcg =
Obpu, Dstg=Obv, Ac Z(Obp). If f 5 A,

9luya € Clum ((n)A XL () A),v),
and (u)A J A, then go f 5 (g).A.
PRrROOF.
im f C (u) A;
(9)im f & (g) (1) A;
im(go <g‘ () A >
im(g o f) E (glgu.a) (N (1) A XFCD <u>«4)>«4;
im(g o f) E (gluao (N () AxP (1)4)))A;
im(go f)C <1/og\ u)A>A
im(go f) E (vog)A;
gof = (g)A.

C
-

O

COROLLARY 1459. Let f, g be funcoids, p, v be endofuncoids, Dst f = Srcg =
Obpu, Dstg = Obw, A € Z(Obpu). If f 5 A g € C(u,v), and (u)A 3 A then
gof = (g)A.

PRrOOF. From the last theorem and theorem 1184. O

286
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18.2. Relationships between convergence and continuity

LEMMA 1460. Let u, v be endofuncoids, f € FCD(Ob u,Obv), A € Z(Obp),
Src f = Obpy, Dst f = Obw. If f € C(u|4,v) then

Flyya = (HAS (foula)AT (vo flA
PRrROOF.

Fluya = (HASIm fluya E W) (A=
(HMAE W) (flAs (fou) AT (vo flAs (foula)AE (vo f)A.
O

THEOREM 1461. Let u, v be endofuncoids, f € FCD(Obu,Obv), A €
F(Obp), Src f = Obp, Dst f = Obw. If f € C(u|a,v) then f|y4 = (f)A.

PROOF.

flopa = (f)A < (by the lemma) < (f o pu[4)AC (vo f)A <
foulaCrvofe felCula,v).
1
COROLLARY 1462. Let u, v be endofuncoids, f € FCD(Obu,Obr), A €
Z(Obp), Stc f = Obp, Dst f = Obw. If f € C(u,v) then f|,y4 — (f)A.

THEOREM 1463. Let p, v be endofuncoids, f € FCD(Ob u, Obv), A € %#(Ob p)
be an ultrafilter, Src f = Obpu, Dst f = Obwv. f € C(ula,v) iff flya LA

PROOF.
flona 5 (f)A < (by the lemma) < (f o pu|)AC (vo flA &
(used the fact that A is an ultrafilter)

foulaCrvoflae foulaCrof e feClula,v).
O

18.3. Convergence of join

PROPOSITION 1464. | |S % A < VF € S: F % A for every collection S of
filters on Dst p and filter A on Src p, for every funcoid pu.

PRrROOF.
||sBAe| |[SEmWAeVFeS: FL(WAaVFeS: Fh A
O

COROLLARY 1465. | |[F & A o Vf e F: f B A for every collection F of
funcoids f such that Dst f = Dst x4 and filter A on Src u, for every funcoid p.

PRrROOF. By corollary 896 we have
| |F5 Asim| |[F5As]| |(im)'F5H As
Vie(m)'F: FA AevVfeF imfh AavfeF: 5 A
O

THEOREM 1466. f|p,us, — A < fls, = AN flz, = A. for all filters A, By,
B; and funcoids y, f and g on suitable sets.

PROOF. As easily follows from distributivity of the lattices of funcoids we have
flBous, = flB, U flB,. Thus our theorem follows from the previous corollary. O
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18.4. Limit

DEFINITION 1467. lim* f = a iff f £45# {4} for a Th-separable funcoid p
and a non-empty funcoid f such that Dst f = Dst u.

It is defined correctly, that is f has no more than one limit.

PROOF. Let lim" f = @ and lim" f = b. Then im f C (u)"@{a} and im f C

()" @{b}.
Because f # LFEPGelf.Dstf) we have im f # L (Pt (py*@{a}n(p) @{b} #

LMt 4Sren A (p= Y () @fa} # LT Grem; 4Sen (pa (o p)@{a} #
17 Sren). @fq} (1wt o u] @{b}. Because y is Th-separable we have a = b. O
DEFINITION 1468. lim}; f = lim"(f|p).

REMARK 1469. We can also in an obvious way define limit of a reloid.

18.5. Generalized limit

18.5.1. Definition. Let x4 and v be endofuncoids. Let G be a transitive per-
mutation group on Ob pu.

For an element r € G we will denote 1 r =

We require that 4 and every r € G commute, that is

FCD(Ob 1,0b 1) .

po Tr ="rropu.
We require for every y € Obv
v 2 (v)"a{y} x*P (v)"afy}. (19)

PROPOSITION 1470. Formula (19) follows from v Jvov~!.
PROOF. Let v Jvov~!. Then
)@y} <70 ()" afy) =
(n)afy} x"P ()afy} =
vo (100 (<" 197 {y)) o =
vo FFED(Ob.0bY) (fn o 1) 6=l
Vo1, 01" =
voyr ! C v

O

REMARK 1471. The formula (19) usually works if v is a proximity. It does not
work if p is a pretopology or preclosure.

We are going to consider (generalized) limits of arbitrary functions acting from
Ob p to Obwv. (The functions in consideration are not required to be continuous.)

REMARK 1472. Most typically G is the group of translations of some topological
vector space.

Generalized limit is defined by the following formula:

DEFINITION 1473. xlim f et {%} for any funcoid f.

REMARK 1474. Generalized limit technically is a set of funcoids.
We will assume that dom f 3 (u) " @{x}.

DEFINITION 1475. xlim, f = xlim f|,y*a{a}-
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OBvVIOUS 1476. xlim, f = {W}

REMARK 1477. xlim, f is the same for funcoids p and Compl p.

The function 7 will define an injection from the set of points of the space v

W

(“numbers”, “points”, or “vectors”) to the set of all (generalized) limits (i.e. values
which xlim, f may take).

DEFINITION 1478. 7(y) & {WV@{I};:;(W@{M }

PROPOSITION 1479. 7(y) = {(<“>*@{m}XFCDg’)*@{y})OTT} for every (fixed) z €

D. re
PROOF.
() @{a} x"P () a{y}h)o tr=
(tr ) w efe} x"P () afy} =
() (1) afz} xFP ) afy} =
*@Lz) xFCD (\*
<,UJ>*@{’/‘71J)} ><FCD <I/>*@{y} c {<:UJ> @{ }xxe D< > @{y} }
Reversely (u)"@{x} x P (vy*@{y} = ((u)*@{x} x P (v)*@{y})o 1 e where e
is the identify element of G. O

PROPOSITION 1480. 7(y) = xlim({p)*@{z} xFCD 4Base(Obv) 11y (for every ).
Informally: Every 7(y) is a generalized limit of a constant funcoid.

PROOF.
xlim({jr) " @} x PP P00 fy}) —

(o0} ) fhotr,
reG
{«W@{””} X" (1) @{y})o 1 )
reqG

=7(y).
0

THEOREM 1481. If f is a function and fly)rezy € C(u,v) and
(py*@{x} 31°P# {x} then xlim, f = 7(fx).
PROOF. flyyrafey o E v o fluyay T vo f; thus (f)(u)" @z} T
(V){(f)*@{x}; consequently we have
v 3 (w)(f)"a{z} x"P (v)(f)"@{z} T (f){w) Q{z} x"P (v)(f)"Q{z}.
vo fliyray 2
(M) @z} x"P ) () a{z}) o fliyarey =
(fly g2y) " P ) @} xTP (v)(f)"@fz} 2
(a5 111y ) ) @} X (1) ()" @2} 3
dom f|yragey XTP W) (f) @fa} =
()" @{z} x"P () (f) a{z}.
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im(v o fly afay) = V)(f) @{z};
vo fliyrafay E
() @{z} xFPim(v o floyragey) =
(w)*@{z} x"P () (f) @{z}.

Sovo fluyagey = (1) @{z} xFP () (f) @{z}.
Thus xlim, f — { W8N DN () O

reG

REMARK 1482. Without the requirement of (u)*@{x} JtP# {z} the last
theorem would not work in the case of removable singularity.

THEOREM 1483. Let v Cvowv. If f|y afa) L40P 1 L) then xlim, f = 7(y).
PROOF. im fliu)-aqe) £ (" O{y}: (F) ()" @f} T () afy);
vo flyy afey 2
(n)"@fy} x P )" Q{y}) o fly gy =
(flgyratey) ) @{y} xFP () afy} =
(TSR 1y of ) )" @y} <7 (1) @y} 3
(TR 0y of ™ W) ()" @fr} PP (1) @ fy) =
(idfR ) )£~ 0 £t @} xFP ()" 0y} 2
(TSR 1) ) (aFR ) V) @) <P ()" @y =
(n)*@{a} xFP () afy}.
On the other hand, f|y ez} T (1) @{z} x P (v)"@{y};
v o fliyragey C (1) @z} xFP (v)(v)"a{y} C (u) @z} x"P ()" a{y}.

So v o flyyrafey = (B @{z} xFP (v) afy}.

«lim,, f = {yof|(M;;@G{z}oTT} _ { ((u)*@{x}xicet)c(;y)*@{y})oTr} = 7(y). 0

COROLLARY 1484. If lim{,,y«a(,) f = y then xlim, f = 7(y) (provided that
vCvovw).

We have injective 7 if (1)*@{y,} M ()" @{yo} = L7 (OPH) for every distinct
y1,y2 € Obv that is if v is Ty-separable.

18.6. Expressing limits as implications

When you studied limits in the school, you was told that lim, ., f(z) = 8
when ¢ — « implies f(z) — 5. Now let us formalize this.

ProprosiTIiON 1485. The following are pairwise equivalent for funcoids u, v, f
of suitable (“compatible”) sources and destinations:

1% fluygay = B;
2°. Vz € Z(Obp): (acﬁa: (f)xﬁﬂ);

3°. Vx € atoms” (OP#) . (m La=(flz > ﬁ).

PROOF.
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1°2°.
Vo € F(Oby) : (xﬁ>oz:> <f>xi>ﬁ) =
Vo € F(Obp) : (2 C (ma =
(HzE W) & (HmaC )8 & fluyia) = 5.

2°=3°. Obvious.
3°=2°. Let 3° hold. Then for z € .Z(Obp) we have z % o & z C (u)a & V' €
atomsz : 2’ C (u)o < V' € atomsz : 2’ B o = Vo' € atomsz : (f)z’ 5
B & Vo' €atomsz : (f)a' C (V)8 & |y catomso(f)Z E (V) & (f)z E
()8 & (flz = B.
]

LEMMA 1486. If f is an enterely defined monovalued funcoid and z is an ul-
trafilter, y is a filter, then (f)x Cy < 2 C (f~1)y.

PROOF. (f)x is an ultrafilter. (flza Cy < (fla ty ez £ (fly ez C
(fF . O
ProroSITION 1487. The following are pairwise equivalent for funcoids u, v,

f, g of suitable (“compatible”) sources and destinations provided that g is entirely
defined and monovalued:

1. (fog (e} = B
2°. Vz € Z(Obp): ((g)x Aa= (flrz > ﬁ);

3°. Vx € atoms” (OP#) . ((g)x Ba=(flzd B).

PRrROOF.

1°3°. Equivalently transforming: (f o ¢~ )|y (a1 — B5 (f){g7 )" (w)*{a}
(v)*{B}; for every = € atoms” (OP#) we have z C (g~ ") (u)*{a} = (f)z
(v)*{B}; what by the lemma is equivalent to {(g)z C (u)*{a} = (f)z
(V)*{B} that is (g)z B a = (flz 5 5.

3°22°. Let z € .Z(Obp) and 3° holds. Let (g)z & a. Then Vz' € atomsz :
()" B o and thus (f)a’ = B that is (f)z’ T (WB. (flz =
L, catoms = ()" E (v) B that is (f)z 5 5.

M

O

PROBLEM 1488. Can the theorem be strenhtened for: a. non-monovalued; b.
not entirely defined g? (The problem seems easy but I have not checked it.)



CHAPTER 19

Unfixed categories

Unfixed categories like my other ideas is a great idea. However, previously I
thought it is also great for studying funcoids and reloids, because unfixed funcoids
is a generalization of funcoids, etc.

Unfixed funcoids are not a so important generalization as I imagined, be-
cause there is a simpler and yet more general generalization of funcoids: Every
Hom-set of small funcoids can be embedded into FCD(|J % ,|J %) where % is the
Grothendieck universe. Thus in principle it would be enough to study the semigroup
FCD(U% ,J %) rather than all categories of funcoids.

In this chapter I show how to embed one Hom-set into another Hom-set, so
this chapter is indeed important. But the topic after which this chapter was titled,
“Unfixed categories” is not so much important for our book.

19.1. Axiomatics for unfixed morphisms

DEFINITION 1489. Category with restricted identities is defined axiomatically:
Restricted identity idgc(A’B) and projection A — [A] are described by the axioms:
1°. C is a category with the set of objects 3;
2°. every Hom-set C(A, B) is a lattice;
3°. 3 and A are lattices;
4°. A — [A] is a lattice embedding from 3 to 2;
5°. idS((A’B) € Home (A, B) whenever 2 5 X C [A] N [B];

o :C(AA

6°. 1d[/§] ) =1¢;

7. 1S P 01 = idSAS) whenever 243 X C [A]N[B] and A3 Y C
[BI N [C]:

8. VAeAIB € 3: AC [B].
For a partially ordered category with restricted identities introduce additional
axiom X CY = id3™*? CaS4P),
For dagger categories with restricted identities introduce additional axiom

;
(id(;A’B)> = 4B,

DEFINITION 1490. I call a category with restricted identities injective when the
axiom X # Y = id{?) £idSP) whenever X,Y C [A] 11 [B] holds.

DEFINITION 1491. Define 5&4’3 = id[céﬁf?].

PROPOSITION 1492.
1°. If [A] C [B] then Sf’B is a monomorphism.
2°. If [A] O [B] then 5&4’B is an epimorphism.
ProoF. We'll prove only the first as the second is dual.
Let 5&4’Bof = 554’Bog. Then 5CB’A05(’34’Bof = ECB’AOE?’BOQ; 140f=1%0g;
f=g. O

292
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PROPOSITION 1493. EB ¢ EA B = Eél’c if B3 ANC (for every sets A, B,

Proor. 8¢ oMb EA s equivalent to:
d%(l_]?cc) dA(A B = dA(A ©) what is obviously true. g

S = g,

19.2. Rectangular embedding-restriction

DEFINITION 1495. g, g, f = 5(135”’31 of ogfo’srcf for f € Home(Ag, Ay).

DEFINITION 1494.

For brevity tpf =t Bf.

OBvious 1496. tp,,B, f C f.
PROPOSITION 1497. tgrc fost £ f = f-
PRrooF.

LSrc f,Dst ff =

gCDst f,Dst f ° f ° gCSrc f,Sre f —

ICDStf ofo 12“1( = f.
[l

PROPOSITION 1498. The function LBO,Bl|feHomc(Ao,A1) is injective, provided
that Ag C By and Ay C Bjy.

A1,B;

Proor. Because &; is a monomorphism and 5&4 050 ig an epimorphism. O

COROLLARY 1499. The function ¢p, B, |feHome(4q,4,) 18 order embedding if
Ay C By A A C By for ordered categories with restricted identities.

19.3. Image and domain

Let define that A = {axeﬁ%} holds not only for filters but for any set A

of sets.

OBviIOUS 1500. . A D A.

DEFINITION 1501.

1°. IMf: {gYDstf st?fyof f}
2°. DOMf{

o 551cfx XSrcf f}

OBvIOUS 1502.
_ Ye Ye .
1°. IMf — { dC(Dstf Dst f) } { C(Dst f)3 }»
1y )nDst £] dy rpsi 5 ©

2. DOMf:{ Xe3 } Xedo }
P

C(Src f,8rc ) _
foldxingie =7

DEFINITION 1503.
1o T f = { L

2°. Dom f = {%%Aff}.

PRrOPOSITION 1504.
1°. IM f=SIm f;
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2°. DOM f = . Dom f;
3°. Im f = (Dst fN)" IM f;
4°. Dom f = (Dst fN)* DOM f.

Proor. IM f = {dC(DfYDE%}
Wy s s - o =F
Suppose Y € IM f. Then take Y =Y MDst f. WehaveY J Y’ and Y’ € Im f.
SoYeImf. f Y € Imf then Y € IM f obviously. So IM f = . Im f.
(Dst fN)*IM f C Im f is obvious. If Im f C (Dst fN)*IM f is also obvious.
The rest follows from symmetry. (]

CONJECTURE 1505. Im f may be not a filter for an injective category with
restricted morphisms.

PROPOSITION 1506. Dom f = {XESrCf Jf;ed%(mf)if }
= s e =

= *J_ Xey — Xe3
PROOF. Dom f = <DSt fﬂ> { foidC(Src f,srcf):f } - { XCSre f,foidf((D“ f):f }

[X]n[Sre £]

ProrosITION 1507. Dst f € Im f; Src f € Dom f for every morphism f of a
category with restricted identities.

PrROOF. Prove Dst f € Im f (the other is similar): We need to prove that
EYSIDS L o gDt IDs o f — f what follows from £5% PS¢/ ogDst LDst ] — qDstf - [

ProrosiTioN 1508. IM f, Im f, DOM f, Dom f are upper sets.

PRrROOF. For Im f, Dom f it follows from the previous proposition.
For IM f, DOM f it follows from the thesis for Im f, Dom f. t

DEFINITION 1509.

1°. An ordered category with restricted identities is with ordered image iff
fCg=1IMfCIMyg.

2°. An ordered category with restricted identities is with ordered domain iff
fEg=DOMf CDOMgy.

3°. An ordered category with restricted identities is with ordered domain and
tmage iff it is both with ordered domain and with ordered image.

OsBvious 1510.
1°. An ordered category with restricted identities is with ordered image iff
fEg=ImfClImg.
2°. An ordered category with restricted identities is with ordered domain iff
fEg= Dom f C Domg.
3°. An ordered category with restricted identities is with ordered domain and
image iff it is both with ordered domain and with ordered image.

OBvIous 1511.

1°. For an ordered category C with restricted identities to be with ordered
image it’s enough that id[c)((]]DSt EDst) of = fAgC f = id[c)((?St FDstf) 60 =
g for every parallel morphisms f and g and 3 3 X C Dst f.

2°. For an ordered category C with restricted identities to be with ordered
domain it’s enough that fOid[C)((?rc fsref) - fAgE f= goid[c)((?m fisref) —

g for every parallel morphisms f and g and 3 3 X C Src f.

CONJECTURE 1512. There exists a category with restricted identities which is
not with ordered image.
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OBvVIOUS 1513. For an ordered category with restricted identities with ordered
domain and image we have tgrc ¢,pst fLA,Bf = f A9 E f = tsrc £,Dst fLa,Bg = g for
parallel morphisms f and g.

DEFINITION 1514.
1°. imf = minIm f;
2°. domf = min Dom f.

NOTE 1515. It seems that im and dom are defined not for every category with
restricted identities.

PROPOSITION 1516.
1°. imf = min IM f;
2°. domf = min DOM f.
Proor. It follows from IM f = . Im f (and likewise for domf). O

THEOREM 1517. DOM(go f) 2 DOM £, IM(go f) 2 IM g, Dom(go f) 2 Dom f,
Im(go f) 2 Img.

PROOF. Séf’DStf OS?Stf’Y ogof=gof <« Sé/’DStf OSEStf’Y og =g and it
implies IM(g o f) 2 IM g. The rest follows easily. d

COROLLARY 1518. dom(go f) C domf, im(go f) C img whenever dom/im are
defined.

19.4. Equivalent morphisms

PROPOSITION 1519. 14 gix,yf = ta,pf for every sets A, B, X, Y whenever
DOM f and IM f are filters and X € DOM f, Y € IM f.

PROOF.

LA’Bf _ gé)st B o f o gél,Srcf —
(by definition of IM f and DOM f) =

Dst f,B Y,Dst f Dst f,Y X,Src f Src f,X A,Src f __
& o0& 0&; ofo& o0& 0 & =

Y,B Dst f,Y X,Src f AX
& o0& ofoé& of =

taBtx,yf
because
gDst f.B ° 5Y,Dstf o SDst LY _
(qCDst £.B) L C(Y.B) 4 aC(Dst fY) _

ynDst fmB — YynB YMDst f
8Y,B o gDst Y

and thus €' 1o ‘Sé/’DStf 0 & = gl ol 1Y and similarly for Sé(’srcf o
gref.X  gAsref o

DEFINITION 1520. I call two morphisms f € C(Ap, By) and g € C(A;,B;) of a
category with restricted morphisms equivalent (and denote f ~ g) when

LAguAl,Bol_lB1 f = LAO'_’Al,B()uBl g.

ProposIiTION 1521. f ~ g iff 1o pf = tapg for some A € DOMf N
DOMyg, BeIMfnNIMg.
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Proor. Both

tA,Bf = 1A,B9 = LAuA,,BouB, [ = LAqUAL,BouB, 9
and
tA,Bf =1A,B9 < taoua,,BouB, [ = LAgUAL,BouB. Y
follow from proposition 1519. O

THEOREM 1522. Let f : Ag — Bp and g : Ay — By (for a partially ordered
category with restricted identities). The following are pairwise equivalent:
1° f~g;
2°. LAlvBlf =g and LAg,BoY = I
3° 1a,,B,f 2 gand ta,,B,9 2 f.

PRrROOF.
1°=2° 1a04,,BouB, | = LAgUA:,BoUB. T} LAy, B1bAgUAL,BoUBy I =
LAy, By LAGUAL BoUB, 95 LALB f = tay,B.G; tayBf = 9. tagBg = [
is similar.

3°=1°. Let ta,,5,f J gand ta, B,9 =2 f.

LA{,B1VAg,BoY Jdg;

EBo,B1 o £B1,Bo go EAo AL o gA1,A0 3 g
. C(B1,B1) C(A1, A1) . C(B1,B1) _..c(Bi,B1)
idp,n[8,] Aoy 2 95 Mg s, ©9 2 95 (g e s,) °9 = 9

. \C(BoMB1,B1) _ . C(B1,BoNB

digoipn ) oid{SEnEE) 0g = g5 EBNBLEL o gBLENE o g — g
Thus By M By € Img. Similarly AqgM A; € Domg.

SO LAouAl,BguB1f = LAoLlAl,B()L’Bl LAg,ng = [/Aol_lAl,B()\_’Blg'
2°=-3°. Obvious.

ogoid

O

PROPOSITION 1523. Above defined equivalence of morphisms (for a small cat-
egory) is an equivalence relation.
PROOF.

Reflexivity. Obvious.

Symmetry. Obvious.

Transitivity. Let f ~ g and g ~ h for f : Ay — By, g : A1 — Bi, h
Ay — Ba. Then ta,u4,,BouB [ = taguas,Bous g and L4 14, B,UBG =

LA1UA5,B1UB; h.
Thus

LAouAluAQ,BOuBluBQLA0|_|A1,BO|_|BIf = LAgUAUA2,BoUB1UByLAGUAL,BoLIB1 9
and
LAGUA LA, BoUUB1UBy LA LAy, B1LUB Y = LAOuAll_lAQ,BouBluBQLAll_lAQ,BluBQh
that is (proposition 1519)
LAouAlqu,BOuBluBgf = LAgUAUA,BoLIB1LUB>Y
and
LAGUAUAS,BoUBUB2Y = LAOuAluAQ,BOuBluBQh-
Combining, t 4,4, A2, BouB1UB. S = LAgLALUAs, BouB LB, I and thus
LAouAg,BouBgLAOuAluA2,BO|_|B1uBgf = LAOqu,BOuBQLAOuAluAQ,BOuBluBzh;
(again proposition 1519) ta,u4,,BouBsf = LAgUAs, BouB, b that is f ~ h.

O
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Proor. If A € DOM f, B € IM f then

LAUSre f,BUDst fbA,Bf = tAuSre £,BUDst f.f-

Thus ta,gf ~ f that is va g f € [f].
Let now g € [f] that is f ~ g;

LSrc fuSrc g,Dst fLUDst g.f = lSrc fUSrc g,Dst fUDst g9-
Take A = Srcg, B = Dstg. We have
LA,BlSrc fuSrc g,Dst fUDst gf = LA,BlSrc fUSrc g,Dst fUDst g9
taBf =t1a,89 =9

[l
PROPOSITION 1525.
o _ Ye3 .
1°. IMf - {Schﬁtf,Yofo}7
o _ Xe3
2°. DOM f = {fogcxys,.cfwf}.
PRrOOF.
£ WY oo fnfeigey yupst £ (E5 SIY 6 F) = tsre fyupst &
EY,YuDstf o gDst IDg ° f ° SSrc fiSre f SDst f,YUDst f ° f ° ESTC f,Src f o
EY,YuDstf ° gDst LYy ° f — 5Dst f,YUuDst f o f o (pI’OpOSitiOIl 1492)
YUDst f,Dst f Y,YUDst f Dst f,Y _ oYUDst f,Dst f Dst f,YUDst f
& & o& o& of=¢& o& of &
gY,Dstf ° gDstﬂY o f _ f
From this our thesis follows obviously. O
PROPOSITION 1526. t4,.B,tA,.Bof T ta,,B, f-
PRrOOF.
LAl,BlLAO,Bof:
EBo.B1 o ghst f.Bo fo gAoSref o oA, A0 —
. 1C(Bo,B1) C(Dst f,Bo) C(Ag,Srcf) . ,C(A1,A0) __
il i) © 1 at i) ©F © 1amgre °1d[A1]1mvfo1 =
C(Dst £,B1) C(A1,Src f)
d[Dst f]ﬂ[Blo]l‘l[Bl] of oid AO]II—I[A iAsre f] &
id C(Dst f,B1) of o C(Al,STCf)
[Dst f]M1[B1] Al]"'[Src 1=
LAy,By f
[l

19.5. Binary product

DEFINITION 1527. The category with binary product morphism is a category
with restricted identities and additional axioms
1°. 1dSP P o f 01dSA = F M (X x 4.5 Y) (holding for every A, B € 3, %>
XC[A,A>5Y C [B], X x48Y € C(A, B) and morphism f € C(A, B));
2° 14,8, (X X448, Y) = X Xua,.B, Y whenever X C [Ag] M [A;] and ¥V T
[Bo] 11 [B1]-

PRrROPOSITION 1528. The second axiom is equivalent to the following axiom:
1°f ~ X Xay8, Y © f =X Xa, 5 Y whenever X T [Ag] M [4;] and
YLC [Bo] 1 [31]7 f : Al — Bj.
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PROOF.

«. Obvious.
= f~Xxap Y < f=Xxanp Y because ta, 5 (X Xa,8, Y) =
X X Ay,Bq Y and LAo,Bc)(X X Ay,Bq Y) =X X Ag,Bo Y.
Let’s prove f ~ X Xa,.8, Y = f =X Xa,,5, Y. Really, if f ~ X x4,,8, Y
then f =14,.B, f ~ LAl,Bl(X X Ag,Bo Y)=X Xa,,B, Y and thus f =X x4, B, Y.
]

PROPOSITION 1529. [A] x 4 p [B] is the greatest morphism T¢(4:5) . A — B.
PROOF. It’s enough to prove f M ([A] xa,5 [B]) = f for every f : A — B.
Really, f 1 ([A] x 4.5 [B]) = id5 5P of 0id Y =180 fo14 = f. O
ProrosiTioN 1530. For every category with binary product morphism
X xapY =idPP) oTCAB) o jq{A4)

PROOF. X x 45 Y Jid{!"" oTCAB) 0 id{{"* because id{! "™ oTCAB) o
idSA ) = TCAB M (X x45Y).

idg/(B7B) oTC(AB) id()Z((A,A) -

1dSPB) o(X x4 g V) 0idSA Y =
(X XA7BY)|_|(X XA,BY) =X XA7BY.
O
PROPOSITION 1531. ¢4, g(fMg) = ta,gfMea By for every parallel morphisms f

and g and objects A and B, whenever all £ are metamonovalued and metain-
jective.

PRrROOF.
vaB(fg) =
gDst f,B o (f M g) ° 5A,Srcf —
(gDst B ° f OgA,Srcf) M (gDst f,B og OgA,Srcf) _
ta,BfMta,BY.

(]
PROPOSITION 1532. (Xo X A,B YQ) 1 (Xl X A,B Y]_) = (XO ﬂXl) X A,B (YO |_|Yi)

PROOF. (Xo x4, Yo) M (X1 xa,p Y1) = id5\ "™ o(Xg x4, Yo) 0id =
. .C(B,B) _..C(B,B . .C(A,A) . .C(AA . .C(B,B . .C
1dy( ) 01dy(() ) 6TC(AB) o 1dX(1 )01dX(0 ) = ldYr(mYl) oTCAB) o 1dX0|_le =
(X0|_|X1) XA, B (Y0|_|Y1). U
I

C(AA) _
X1
(A,A4)

ProprosITION 1533. For a category with binary product morphism Im
Dom f, IM f, and DOM f are filters.

PRrROOF. That they are upper sets was proved above.
To prove that Im f is a filter it remains to show A, B € Im f < AN B € Im f.
Really,

ABelmfeTxAJfATXxBIf=Tx(ANB)df< ANBelnmf.

Dom f is similar.
The thesis for IM f, DOM f follows from above proved for Im f, Dom f. U
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NOTE 1534. For example for below defined category of funcoids (with binary
product morphism), these filters are filters on filters on sets not filters of sets and
thus are not the same as im and dom.

19.6. Operations on the set of unfixed morphisms

19.6.1. Semigroup of unfixed morphisms.

ProprosITION 1535. Let f : AO — A; and g: A7 — Ay and Ay C By. Then
!By,B2 (g © f) = 1B,,B9° LBO,Blf-

PROOF.

LBo,Bs (g © f) =
5542,32 ogof 05507140 —
((/‘642732 ogo 1A1 o fOECBO,AO _

As,Bs Dst f,Srcg) Bo,A0 __
& ofeo&e =

-
ogoldA1
A2,B> B1,A A.,B Bo,Ap __
56 0go&PLAt o &M 1ofo<‘:c =
LBlvBQ‘gOLBUaBlf'

O

DEFINITION 1536. We will turn the category C into a semigroup C/~ (the semi-
group of unfixed morphisms) by taking the partition regarding the relation ~ and
the formula for the composition [g] o [f] = [g o f] whenever f and g are composable
morphisms.

We need to prove that [g] o [f] does not depend on choice of f and g (provided
that f and g are composable). We also need to prove that [g] o [f] is always defined
for every morphisms (not necessarily composable) f and g. That the resulting
structure is a semigroup (that is, o is associative) is then obvious.

PROOF. That [g] o [f] is defined in at least one way for every morphisms f
and g is simple to prove. Just consider the morphisms f’ = tssc 7.Dst fusrcgf ~ f
and gl = LDst fuSrcg,Dstgg ™~ 9- Then we can take [g} o [f] = [gl © f/]

It remains to prove that [g] o [f] does not depend on choice of f and g. Really,
take arbitrary composable pairs of morphisms (fy : Ag = By, go : Bo — Cp) and
(fi: A1 — Bi,g1 : By — C4) such that fy ~ f1 and go ~ g1. It remains to prove
that gg o fo ~ g1 o f1. We have

LBoUB1,ColC: 90 © LAgLIAL, BoLiB, Jo = (proposition 1535) =

Co,ColIC AoUA+1,B
EU0 " ogoo foo &G0 = Laguay,coucs (9o © fo)-

Similarly
UBoUIB ,ColiC 91 © LAgUAL, BBy J1 = taguas,coucy (g1 © f1).
But
LByUB:,ColUC1 90 © LAGLIAL, BoUBy J0 = LBoUB,,CouC: 91 © LAgUAL, BoUB; J1

thus having ¢ a,14,,cou0: (900 fo) = taguay,coucs (g10f1) and so goo fo ~ grofi. O
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19.6.2. Restricted identities.

DEFINITION 1537. Restricted identity for unfixed morphisms is defined as:
idx = [1d5%*?)] for an X C [A]M[B].

We need to prove that it does not depend on the choice of A and B.

PRrROOF. Let A > X C [Ao} M [Bo] and > X C [Al] I [Bl} for Ag, By, A1, By €

3. We need to prove id;(A“’B“) ~ id%Al’Bl).

Really,

idg{(AO»BO) —

LAy,By
EgBo,B1 idC(AmBo) oEA A0 —

C(Bo,B1) C(Ao,Bo) C(A1,Ao)

id g, °1dx i gg)nay =

ldC(AhBl)
[Ao]M[A1]N[Bo]M[B1]NX —

il By

Similarly ¢, 5, idgg(Al’Bl) = jd§{ Ao Bo),

So id3 A0 ~ APy, -

PrOPOSITION 1538. idy oidy = idxny for every X, Y € 2.

PRrROOF. Take arbitrary 1dC(A Bo) ¢ idx and 1dC(Bl’C) € idy.
Obviously, 1dC(A BolB1) idx and 1dC(B°UB1 9 ¢ idy. Thus idy oidx =
ISP o [1gEA PR _ [1gSAO iy O

19.6.3. Poset of unfixed morphisms.

LEMMA 1539. f C g = ta,Bf C ta,pg for every morphisms f and g such that
Src f = Srcg and Dst f = Dst g.

PROOF.

taBf Etapg <
gDst f.B o f ogA,Srcf C gDstg,B og OgA,Srcg o

C(Dst f,B) (A,Src f) C(Dst g,B) C(A Src g)
i gyst £ Of °© ld[A]I_I[Src 1= ld[B]I‘l[]qut g 09 0idy Srcgg] =
fEyg
3 C(Dst f,B) __ (Dst g,B) C(A,Srcf) _ .,C(A,Srcg)
because idg %) = i S and idin sy = ATt =

COROLLARY 1540.

1°. o EgoAfo~ fiNgo ~ g1 = f1 C g1 whenever Srcfy = Srcgg and
Dst fo = Dst gg and Src f; = Srcg; and Dst f; = Dst g;.

2°. fo € go < fi1 C g1 whenever Src fy = Srcgy and Dst fo = Dst gy and
Src f1 = SI‘Cgl and Dst f1 = Dst g1 and fo ~ f1 A go ~ J1-

PRrROOF.

1°. Because fl = lSrc f1,Dst f1 fO and g1 = LlSrc g1,Dst g1 fO-
2°. A consequence of the previous.

The above corollary warrants validity of the following definition:

DEFINITION 1541. The order on the set of unfixed morphisms is defined by the
formula [f] C [¢g] & f E g whenever Src f = Srcg A Dst f = Dst g.
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It is really an order:

PROOF.

Reflexivity. Obvious.

Transitivity. Obvious.

Antisymmetry. Let [f] C [g] and [g] C [f] and Src f = Srcg A Dst f = Dst g. Then
fCgand g C f and thus f = g so having [f] = [g].

O

OBVIOUS 1542. f + [f] is an order embedding from the set C(A, B) to unfixed
morphisms, for every objects A, B.

PROPOSITION 1543. If S is a set of parallel morphisms of a partially ordered
category with an equivalence relation respecting the order, then

1°. [xeglX] exists and [y g[X] = [15];
2°. | |xeglX] exists and | | g[X] = [L]S].
Proor.

1°. [[1S] C [X] for every X € S because [ |S C X.
Let now L C [X] for every X € S for an equivalence class L. Then L C [[]5]
because [ C[]S for I € L because [ C X for every X € S.

. X
Thus [[] 5] is the greatest lower bound of {)[(—E}S}
2°. By duality.

PROPOSITION 1544.

1°. If every Hom-set is a join-semilattice, then the poset of unfixed morphism
is a join-semilattice.

2°. If every Hom-set is a join-semilattice, then the poset of unfixed morphism
is a meet-semilattice.

PROOF. Let f and g be arbitrary morphisms.

[f] u [g} = [LSrc fUSrc g,Dst fUDst gf] u [LSrc fUSrc g,Dst fUDst gg] =

(ObViOUS 1542) = [LSrc fuSrc g,Dst fUDst gf U tsre fuSrc g,Dst fUDst gg]

and

[f] r [g} = [LSrC fUSrc g,Dst fUDst gf] r [LSrc fUSrc g,Dst fUDst gg] =

(ObViOU-S 1542) = [LSI“C fUSrc g,Dst fUDst gf M isre fUSrc g,Dst fUDst gg}

O

COROLLARY 1545. If every Hom-set is a lattice, then the poset of unfixed
morphisms is a lattice.

THEOREM 1546. Meet of nonempty set of unfixed morphisms exists provided
that the orders of Hom-sets are posets, every nonempty subset of which has a
meet, and our category is with ordered domain and image and that morphisms &
are metamonovalued and metainjective.

PROOF. Let S be a nonempty set of unfixed morphisms. Take an arbitrary
unfixed morphism f € S. Take an arbitrary F' € f. Let A = Src F and B = Dst F.
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[1s =[] s=[FInN"S = H{m} -

|—| [tausre ¢, BuDst G F M tausee ¢, BuDst ¢ Gl
geS,Geg '

We will prove tausre G, BuDst ¢F T tausre ¢, BuDst G ~ F Mg BG.
tausre G, BuDstGF T tausrea,BuDst aG c tAusreg,BuDstgF and
LAUSre G,BUDst GLA,BLAUSte G,BuDst GF = tausrc,Bupst ', thus by being with
ordered domain and image
LAuSre G, BuDst ¢ F T tausre ¢, BuDst cG =
LAUSrc G,BUDst GLA,B(bAuSrc G,BUDst aF Tiausee G,BUDst GG) =
(by being metamonovalued and metainjective) =
LAUSre G,BUDst G (LA, BLAUSTe @, BuDst G F T LA, BLAUSTe ¢, BUDst ¢G) =
tausre G, BuDst G(tA,BF MiagG) ~ 1apFMiapG=FMNuy pG.

[FHLAYBG]

Je5.0cq } Now we can apply

Due the proved equivalence we have [ ]S = |_|{

proposition 1543: [].S = [H{%H We have provided an explicit formula

for [S. O

The poset of unfixed morphisms may be not a complete lattice even if every
Hom-set is a complete lattice. We will show this below for funcoids.

19.6.4. Domain and image of unfixed morphisms.

PROPOSITION 1547. IM f = {m}; DOM f = {m}

PRrROOF. We will prove only the first, as the second is similar.
idy o[f] = [f] &
idg,(Y"'DSt f,YUDst f) oEDst £,YUDst f f= £Dst f,YUDst f fo
id{c}gl]Dl_T[ths,szl_]let ) of _ 5Dst f,YuDst f f PN
gYUDst f.Dst f id[CéI]DI:/[th;z’fl—]let 1) of = f &
g s D of = fY e IM .
O
The above proposition allows to define:
DEFINITION 1548. DOM f = DOMF and IM f =IM F for F € f.

DEFINITION 1549. dom f = min DOM f and im f = minIM f for an unfixed
morphism f.

NoTE 1550. dom f and im f are not always defined.
19.6.5. Rectangular restriction.
PROPOSITION 1551. ta.gf =ta,pgif f~g.

ProOOF. Let f ~ g. Then g = tsrcqg,Dstgf- SO LA,Bg = LABlSrcgDstgf T
(proposition 1526) C ¢4, f. Similarly, ta f C ta,Bg. S0 ta,Bf = ta,BY. O

The above proposition allows to define:
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DEFINITION 1552. 14, gF = 14 pf for an unfixed morphism F' and arbitrary
fekF.
DEFINITION 1553. Fy4 g = [ta,gF] for every unfixed morphism F.

PROPOSITION 1554. F4 g =idp oF oidy for every unfixed morphism F' and
objects A and B.

Proor. Take f e F. FDA’B = [LA,BF] = [LA,Bf] = [5D5tf’B o
o . .C(Dst f,B . 1C(A,Sr . 1C(Dst f,B) _ . ,C(Dst f,D
fo&gtsrel] = [ldB(I‘I[S)tstff )Of °© ldA(I_ISrchf)] = [ldB( ‘! )OldD(st;tf 0 of o
. 1C(Src f,Src . 1C(A,Src . 1C(Dst f,B . 1C(A,Src . 1C(Dst f,B
id§C S0 0 iaGAS D) = [dP P of o 1a{ M) = [P o [f] o
[idi(A’SrCf)} —idgoF oid4. 0

PROPOSITION 1555. fOa,.B,UAa,,B, = fOAyn4,,40B, -

ProoOF. From the previous f0a, B,004,,B, = idp, cidp,of oida, 0ida, =
idp,np, of oida,na, = fUAa,nA4,,4,0B;- g

DEFINITION 1556. f|x = foidx for every unfixed morphism f and X € .
OBvVIOUS 1557. (f|X)|Y = fX|_|Y.

19.6.6. Algebraic properties of the lattice of unfixed morphisms. The
following proposition allows to easily prove algebraic properties (cf. distributivity)
of the poset of unfixed morphisms:

THEOREM 1558. The following are mutually inverse bijections:
1°. Let A and B be objects. f +— [f] and F' +— 14 pF are mutually inverse

order isomorphisms between { f i‘ggig‘f& ;ngré’lhl\f I;ls} and C(A,B). f A=B

they are also semigroup isomorphisms.

2°. Let T be an unfixed morphism. f — [f] and F — tgyct,pst 1 F' are mutually
inverse order isomorphisms between the lattice DT and Dt whenever t €
T.

PrROOF. We will prove that these functions are mutually inverse bijections.
That they are order-preserving is obvious.

1°. 14 F € C(A, B) is obvious.

We need to prove that [f] € { ff“ggéﬁ ;ngré’lhl\i/[s‘;‘s } For this it’s enough to prove

A € DOM[f]A B € IM[f] what is the same as A € DOM f A B € IM f what follows
from proposition 1507.

Because f — [f] is an injection, it is enough’ to prove that 14 5[f] = f. Really,
easlfl=wasf =1

That they are semigroup isomorphisms follows from the already proved formula
[go f]=lg]o[f]-

2°. Because of the previous, it is enough to prove that [f] € DT < f € Dt.
Really, it is equivalent to [f] © T < f C t what is obvious.

O

ProprosITION 1559. If every Hom-set is a distributive lattice, then the poset
of unfixed morphisms is a distributive lattice.

PROOF. It follows from the above isomorphism. O

ProproSITION 1560. If every Hom-set is a co-brouwerian lattice, then the poset
of unfixed morphisms is a co-brouwerian lattice.

1https://math.sta(:kexchange.(:()111/;1/300705 1/4876


https://math.stackexchange.com/a/3007051/4876

19.6. OPERATIONS ON THE SET OF UNFIXED MORPHISMS 304

PRrOOF. It follows from the above isomorphism and the definition of pseudod-
ifference. u

ProprosIiTION 1561. If every Hom-set is a lattice with quasidifference, then the
poset of unfixed morphisms is a lattice with quasidifference.

PROOF. It follows from the above isomorphism and the definition of quasidif-
ference. 0
PROPOSITION 1562.

1°. If every Hom-set is an atomic lattice, then the poset of unfixed morphisms
is an atomic lattice.

2°. If every Hom-set is an atomistic lattice, then the poset of unfixed mor-
phisms is an atomistic lattice.

Proor. Follows from the above isomorphism. O

19.6.7. Binary product morphism.

DEFINITION 1563. For a category C with binary product morphism and X,Y €
A define X XY =[X x4 pY] where A€ 3, [A]JX,Be3 [B]JY. (Such A
and B exist by an axiom of categories with restricted identities.)

We need to prove validity of this definition:
PROOF. Let AQ S 37 [Ao] | X, Bo S 3, [Bo] | Y, A1 S 3, [A1] | X, B1 S 3,

[Bi1] 2 Y. We need to prove X x4, B, Y ~ X X4, B, Y, but it trivially follows
from an axiom in the definition of category with binary product morphism. t

PROPOSITION 1564. (X x Yp) M (X1 x Yy) = (Xo M X1) x (Yo MY7) for every
Xo, X1,Y0, Y7 € 2.
PRrROOF. Take Ay € 3, [4g] J Xo, By € 3, [Bo] 2 Yo, 41 € 3, [A1] T Xy,
By €3, [Bi] 2V
Then
(Xo x Yo) M1 (X1 x V1) =
[Xo X Aouay,BouBy Yol M [X1 X 4004,,BouB, Y1] =
[(Xo Xaeuay,BouB, Yo) M (X1 XAguA;,BouB, Y1)] =
[(XoMX1) Xa,ua,,Boun, (YoMY1)] =
(Xo M X1) x (Yo MY1).
[l

PROPOSITION 1565. fOa p = fM(A X B).
PrROOF. Take F € f. Let F' = tausrc F.BuDst #F'. We have F' € f.

fOap =[ta,BF'] =

[gBI_IDst F,B o F/ ° SA,AuSrcF]

[idgfumt F.B) (s o id[CIgf\,Al_lSrcF)] _
CP P o (F] o [
[idfé]BUDSt F,BUDst F)] ° [F/] o [id[CA(qurc F,AUSrc F)] _

. 1C(BUDst F,BUDst F . 1C(AUSrc F,AUSrc F
[1d[E(}] UDst F,BUDst ), por 01d[1§] - - )] =
[F' M (A X Ausee F.BUDst F B)] =

[F'] M [A X ausre F,BuDst 7 B] = f 1 (A X B).
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19.7. Examples of categories with restricted identities

19.7.1. Category Rel. Category Rel of relations between small sets can be
considered as a category with restricted identities with 3 = 2 being the set of all
small sets, projection being the identity function and restricted identity being the
identity relation between the given sets.

Moreover it is a category with binary product morphism with usual Cartesian
product.

Proofs of this are trivial.

19.7.2. Category FCD. Category FCD can be considered as a category with
restricted identities with 3 being the set of all small sets, 2 is the set of unfixed
filters, projection being the projection function for the equivalence classes of filters,
restricted identity being defined by the formulas

(id pren(a,my)X = ([X]MF) + B
<(id_7:FCD(A,B))71>y =(nF)+A

(whenever F C [A] M [B]).
We need to prove that this really defines a funcoid.

PRrOOF.
y;£< FCDAB)>X<:>

VA(XINF)-BeY#4(X+B)N(F+B)<
(V] # [X] 1T F.

Similarly ((idgreoca.my-1)Y < [X] % [V] O F.
Thus y }é <1d]:FCD(A.B)>X S X X <(id]:FCD(A,B))71>y. O

We need to prove that the restricted identities conform to the axioms:

PrROOF. The first five axioms are obvious. Let’s prove the remaining ones:
idf LA — = 15P because <idFCD(A’A)>X =([X|NA)+A=[X]+A=2X.

(4] (4]
.dFCD(B,C) .dFCD(A,B) _ id;c%(/A,C) becatise <id§/CD(B,C)Oid§(CD(A,B)>X _

<1dFCD(B Dl x = (1afPE D) ((X)1X) = B) = ([([XNX)+ BINY)+

C= }TIXWY) B)=C = (because [X]MXNY C [B]) =([XINXNY)+C =
FCD(A,C)

<1deY >
VA€ A3B € 3: AL [B] is obvious. O

PROPOSITION 1566. £f¢h = (A, B,AX € F(A) : X + B,\Y € §(B) : Y + A)
for objects A C B of FCD.

PrOOF. Take F = [A] M [B]. Then F 3 [X] and F 3 [], thus [X] 1 F = [X]
and [Y] M F = [V]. So, it follows from the above. O

PROPOSITION 1567. dFCD(A 4) _

= id°, whenever A € 3 and 2 5 X C [A].
PROOF. <1dFCDAA)> = ([XNX)+ A= ([X] = AN(X = A) = XN(X +A) =

<1dFCD > (used bijections for unfixed filters) for every X € F(A). O
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DEFINITION 1568. Category FCD can be considered as a category with binary
product morphism with the binary product defined as: X x4 p Y = (X + A) xFP
(Y + B) for every unfixed filters X and ).

It is really a binary product morphism:

ProOOF. Need to prove the axioms:

1. fI(X xapY)=fM((X+A)xFP (Y +B)) =idypof oidiy
idFPED) o f 61 EPAA).

2°.  Let wunfixed filters X LT [A4g] M [41] and Y LT [By] N
[Bi]. Then for X € F(A1) we have (14, B, (X Xa,8,Y))X =
<5FCD(BO,Bl)><X X 49,80 Y><5FCD(A1,A0)>X = (X X Ay, Bo YV X + Ag)) ~ By =
(((X = Ag) xFP (Y + By))(X + Ap)) + By.

On the other hand, (X x4, 5, Y)X = (X + 4;) x"P (Y + By))X

If [X] < X then (use isomorphisms) X =< X + A; and X + Ap < X + Ap. So
<LA1731(X X Ag,Bo Y))X = 1 and <X X Ay,By Y)X =1.

If [X] # X then (use isomorphisms) X % X + A; and X + Ag % X + Ap. So
<L’A17Bl(X X Ag,Bo Y)>X = (Y—Bo)—Bl =Y =+ By and <X X Ay,B; Y>X =Y+ B;.

So in all cases, (ta,,B,(X Xa,,8, Y))X = (X x4, B, Y)X.

U
LEMMA 1569. X +A = (X M[A])+ A for every unfixed filter X and small set A.
PrOOF. (XM[A)+A=(X=AN([A]+A) =X - ANTSW =x= 4. O
COROLLARY 1570. There is a pointfree funcoid p such that (p)X = X + A.

PROOF. Let ¢ be the order embedding (see the diargram) from unfixed filters F
such that A € F to filters on A.
Then (X + A)X = (X N[A]) = A)X = <q o jph Dl ixed flters) >X. O
Let f be a funcoid. Define pointfree funcoid . f between unfixed filters as:
DEFINITION 1571. For every unfixed filters X and )
(IhHX=[NHX=sef); (LHHY =)+ Dstf)].
It is really a pointfree funcoid:

PRrROOF. For an unfixed filter )V we have

VAL HX =
Y #[{NX +Sre f)] &
Y+Dstf#£(f)(X=+Sref) &
X +Sref#(fYNY+Dstf) <
XA +Dstf)]
X £ ().
U

DEFINITION 1572. Y F = . f for an unfixed funcoid F' and f € F.
We need to prove validity of the above definition:

ProOOF. Let f,g € F,let f: Ag — By, g: A1 — Bi. Need to prove ./ f = .Zg.
We have

[/Ao\_lA17Bo|_|B1 f = LAQI_IAl,Bo\_IBl g.



19.7. EXAMPLES OF CATEGORIES WITH RESTRICTED IDENTITIES 307

<yLA0uA1,BUuBlf>X =
[(taguay,BouB, [)(X + (Ao U Ay)] =
[<5FCD(BO7BO|_IBl)><f><5FCD(A0|_|A1,A0>(X + (AU A1))} _
[((FH((X + (Ao U A1) + Ag)) + Bo| =
()X + Ag)] =
(L)X

Similarly (Zta,u4,,B,uB,9)X = (L g)X.
So (Z )X = (Sg)X. -

DEFINITION 1573. So, we can define (f)X = (% f)X for every unfixed funcoid f
and an unfixed filter X.

PROPOSITION 1574.
1°. . from a Hom-set FCD(A4, B) is an order embedding.
2°. . from the category FCD is a prefunctor.
3°. & from unfixed funcoids is an order embedding and a prefunctor (= semi-
group homomorphism).

PROOF.

1°. ((LfHx) +Dst f = (f)X. Thus for different f we have different X'
(L f)X. So it is an injection. That it is a monotone function is obvious.

2. (S0 S X = (FYINHX = (LR = Sre )] = (X =
St £)] + Sre.g)] = [{g) ((F)(X = Ste F) + Sre g)] = [{gh(f) (X =Sre f)] = [{g o f)(X =
Src f)] = (F(go f))X for every composable funcoids f and g and an unfixed fil-
ter X. Thus Sgo S f=S(go f).

3°. To prove that it is an order embedding, it is enough to show that
f = g implies ./f # g (monotonicity is obvious). Let f ~ g that is
LAoUAL, BouB: S F taguay,Boup,g- Then there exist filter X € F(Ao U A1) such
that (ta,ua,,BouB, /)X # (Laua,,B,uB,g)X.

Consequently, (Zf)X = (Liaua,Boun [)X # (Llagua,,BuB g)X =
(ZLg)X.

It remains to prove that #Go S F = . (GoF) but it is equivalent to S go.” f =
(g o f) for arbitrarily taken f € F and g € G, what is already proved above.

O
LEMMA 1575. For every meet-semilattice a % b and ¢ J b implies a M ¢ % b.

PROOF. Suppose a % b. Then there is a non-least « such that  C a,b. Thus
rCc¢,s0oxCale We have allc £ b. O

PROPOSITION 1576. /(X x Y) = X xPFCPEO) Y for every unfixed filters X
and Y.

PrROOF. (X xY) = (X x4,pY) for arbitrary filters A, and B such that
X C [A] and Y C [B]. So for every unfixed filter X we have

(X XYNX =(L(X xapY))X =
(X xa5Y)(X +A)]=[((X+A) x"P (Y +B))(x+A).

Thus if P % X then (by the lemma) PN A % X; P+ A # X + A
(A (XXY)X =]V +B]=Y.
fP=xXthenPNA<X;P+A=xX+ A4 (X xY)x=[1]=1.
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So (X xY) =X xPFEPE©@) v, O

PROPOSITION 1577. . idx = id% ) for every unfixed filter X.

PROOF. For every unfixed filter X we for arbitrary filters A and B such that
X C [A] M [B] have

(Fidx)X = <§”[id§fD(A’B)}>X - <5’id§fD(A’B)>X _

[<id§(CD(A,B)>(X - A)} =[([¥X +A4NX)=+B]=
(XNX)+Bl=XMNX.

Thus . idx = id% CF©), O

19.7.3. Category RLD.

DEFINITION 1578. f+D = (A, B, (GR f) + D) for every reloid f and a binary
relation D.

Category RLD can be considered as a category with restricted identities with
3 being the set of all small sets, 21 is the set of unfixed filters, projection being the
projection function for the equivalence classes of filters, restricted identity being
defined by the formula

. JRLD(A4,B) _ . ;RLD .
ld]_- ( ) :ld]-'+(AﬂB) —(AXB)
We need to prove that the restricted identities conform to the axioms:

PrROOF. The first five axioms are obvious. Let’s prove the remaining ones:

idfy " =Ry (A x A) =id5P (A x A) = 1RLD.

idf/(B,C) Oid()l{(A,B) _ |—| (idg(Bx,*) Oidg(A,B)) _
x€up X, ycupY
. 1C(A,B . 1C(A,B
|_| 1dxgy ) — 1dX(,_|Y )
zeup X,ycupY

VA € A3B € 3: AL [B] is obvious. O

OBVIOUS 1579. oy =tRPAB) id 4.
PROPOSITION 1580. RLD with X x4 5 Y = (X + A) xRP (X + B) for every
unfixed filters X and ) is a category with binary product morphism.

PROOF. idg,(B’B) of o idg((A’A) = fM (X xa,5)Y) because

id$PP) o f 0id{iM M =
(id5=2p +(B x B)) o f o (id}24 +(A x 4)) =
id§Py of 0id§ P, =
(X =A)xfP(y+B) =
f(X xaB)).
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LA1,By (X X Ao,Bo y) =
EBo:B1 4 (X Xa,,B, )0 gAnAo —
ARED(Bo.Br) i g g, (X + Bo) x (¥ = Ag))o tRPALAD jq 0y, =
((X - B()) - Bl) X ((y— A(]) —Al) = (X—Bl) X (y—Al) =

X X Aqy,Bq y
O
PRrROOF.
tasf=
Dst f,B ASrcf
8RLDf o fo&rp =
RLD
|_| (TRel(DSt f,B) istt fAB oFo TRel(A,SrC f) idAﬁSrcf) —
Feup f
RLD
|_| (PRIAB) (idpg, nB o GR F oidpgt srB)) =
Feup f
RLD
[] tReAP (Fn(Ax B)) =
Feup f
f+(AxB).
O
ProposiTION 1581. id 3P4 — iqRD, whenever A € 3 and 23 X C [A].
Proor. id§y > = id¥P 44 +(A x A) = 1d¥2,. O

DEFINITION 1582. Category RLD can be considered as a category with binary
product morphism with the binary product defined as: X x4 Y = (X + A) xRP
(Y + B) for every unfixed filters X and ).

It is really a binary product morphism:

ProoOF. Need to prove the axioms:

1°0 f(X xapY)=fN((X +A) xR (Y = B)) =id¥Psof 0id¥?, =
. \RLD(B,B) . 1RLD(A,A)
idy of oidy .

2°. Let unfixed filters X C [Ag] M [41] and Y T [Bg] M [By]. Then we

have LA1,By (X on;Bo Y) = 86(30731) © (X XAO,BO Y) © 86(1417140) :TRLD(B[)’Bl)
idBoﬂBl O((X - AO) xRLD (Y - Bo))o TRLD(Al’AO) idAoﬁAl-
. . RLD
But (X + Ag) xR (Y + By) = erup(X+Ao),y6up(Y+Bo)(m <y =
I RLD
(by the bijection) = [;cu, x yeuwpy (7 + Ao) X (y + Bo)).

Thus by definition of reloidal product ¢4, g, (X XayB, Y) =
RLD(A;,B . . . . RLD(A;,B X
Mg ¥ ycop v (dmyns, o((@+40)x (= Bo))oidayna,) = [Tieny ¥yl v (2+-40) %

RLD(A;,B; . .
(+B0)) = oeo X oy yeun(y 5oy (@XY) = (X2 A1) XRP (V£ B)) = X x4, 5, Y,
O

DEFINITION 1583. Reloid .7 f € Endgip(small sets) is defined by the formula
GR.7f =GR f for every reloid f.
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DEFINITION 1584. Reloid .7 f € Endgip(small sets) if defined by the formula
S f=SF for arbitrary F € f for every unfixed reloid f.

That the result does not depend on the choice of F' obviously follows from the
corresponding result for filters.

PROPOSITION 1585.

1°. . from a Hom-set RLD(A, B) to Endgp(small sets) is an order embed-
ding.

2°. . from the category RLD to Endgrip(small sets) is a prefunctor.

3°. . from unfixed reloids is an order embedding and a prefunctor (= semi-
group homomorphism).

PROOF.

1°. That it’s monotone is obvious. That it is an injection follows from . for
filters being an injection.

2°. Let f and g be composable reloids.

If HeupS(gof)then H D H € up(gof), H D GoF forsome H', F € up f
and G € upg. Consequently F € GR.f, G € GR.%g. So Go F € up(.¥go .7f)
and thus .#(go f) 3 Sgo ./f.

Whenever H € up(¥go L f), we have H O G o F where F € upLf, G €
upZg. Thus FO F' eupf, GO G €upg; H DO G oF' €up(go f) for some F’,
G’ and so H € up(#(go f)). So Lgo L f I S(go f).

So S(go f)=Sgo LS.

3°. That it is a prefunctor easily follows from the above.

Suppose f, g are unfixed reloids and . f = .#g. Let F' € f, G € g and thus
SF = .G. It is enough to prove that F' ~ G.

Really, YF = YG = YGRF = YGRG = GRF ~ GRG = GRG =
(GRF)+ (domG ximG) & G = F + (dom G x imG) = tdom ¢,imcF'. Similarly
F= Ldom F,imFG~ So F' ~ Q.

O

I yet failed to generalize propositions 1576 and 1577. The generalization may
require first research pointfree reloids.

19.8. More results on restricted identities

In the next three propositions assume A € 3, A> X C A.

. jRel(4) _ . Rel(A,A)
PROPOSITION 1586. idy = idjy .
PROOF. idg(e]l(A’A) = idfelAA) = jqRel), -

PROPOSITION 1587, idy > = idf (P,

PROOF. <idFCD(A’A)>X = ((XN[X)+A=[¥NX)+4=2XNX =

(X]
(0P forws x C A O
PROPOSITION 1588. idiLD(A) = id[R;]D(A’A).

PrOOF. il = 1dReP. 40y +(A x A) = id}P +(4 x 4) =1dFPY. O

PRrROPOSITION 1589. {%} is a function and moreover is an order iso-

morphism for a set A C U.
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PrOOF. A + A and A M A are determined by each other by the following
formulas:

A+A=(ANA)+A and ANA=(A+ A) -+ Base(A).

Prove the formulas: (AMA)+ A= H{T;g&i)} = H{%} =A+ A

(A+ A) + Base(A) =
T (X Nn4)
|_|{ Xc A } + Base(A) =

1Base(4) (Y N Base(A
|—| A(XNA)
)=

Y€|—] TXeA

(by properties of filter bases

|_|{TBase(.A (XmAmBase( ))}

|_| TBase .A) (X ﬂA) B
XcA B
AMA.
That this defines a bijection, follows from A + A ~ A M A what easily follows
from the above formulas. O
Rel(Dst f) ¢ :  Rel(Src f)
PROPOSITION 1590. {(LX .y fdy feRel(AfB)d )4 s a function and more-

over is an (order and semigroup) isomorphism, for sets X C Src f, Y C Dst f.

PROOF. txyf = (X,Y,GR fN(XxY)); id¥ ofoid¥e! = (Src f, Dst f, GR fN

(X xY)). The isomorphism (both order and semigroup) is evident. O
FCD(Dst £)  po; 4FCD(Ste £) ) )
PROPOSITION 1591, { {xx/idy feFCD(AfBl)d )4 is a function and more-

over is an (order and semigroup) isomorphism, for sets X C Src f, Y C Dst f.

PrROOF. From symmetry it follows that it’s enough to prove that

(E¥oridiPor) | .o 4 q . 4 q : .
W(A,B) is a function and moreover is an (OI‘ er an semlgroup) 1S0mor-

phism, for a set Y C Dst f

Really, {%W} = {%ﬁf}”} is an order isomorphism by proved

.. . Y of idfP . . .
above. This implies that {M} is an isomorphism (both order and
semigroup). O

(ex,v FidPPs ) 6 oigfPGre )y .
PROPOSITION 1592. { FERID(A,B) is a function and more-

over is an (order and semigroup) isomorphism, for sets X C Src f, Y C Dst f.

PROOF. 1xyf = (X,Y,(upf) + (X x Y)); id¥Pof o id¥P =
(Src f,Dst f, (up f) M (X x Y)). They are order isomorphic by proved above.

ly,zg © LX,Yf =
gDstg,Z ogo gY,Srcg o gDst Y o f o gX,Srcf —

EP9.Z 5 g o id}R/LD oid)R/LD of o gXSref
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because £Y:57¢9 o EPsE 1Y — jqRe! = idP* 0idF®'. Thus by proved above

{ (tv.290 tx.y [,1d3P 0g 0 idFP 0 1dRP o f 0 idREP) }

f € RLD(A, B)
is a bijection. O
Can three last propositions be generalized into one?

PROPOSITION 1593. fo(gUh) = fogU foh for unfixed morphisms whenever
the same formula holds for (composable) morpshisms.

PROOF. fo(gUh) = [tsrcgusrch,Dst f(f © (gL h))] because dom(fo (gUh)) C
Srcg U Srch and im(f o (g U h)) C Dst f.

So

fo(guh)=
[tSrc guSre b Dst £ © LSre guisre h,Dst F(g L R)] =
[tSre gusre h,Dst £.f © (tSre gusre h,Dst £9 U tsre guiSre h,Dst F1)] =
[tSrc gusre h,Dst £.f © tsre guiSre h,Dst £9 U tSre gusre h,Dst £.f © LSre gLiSre h,Dst fh] =
[tsre gusre h,Dst £(f © ) U tsre gusre n,bst £ (f 0 h)] =
[tSre gusreh,Dst f(fogU foh)] =
fogUfoh

because dom(fogl foh)C Srcgl Srch and im(f ogU foh) C Dst f. O



Part 3

Pointfree funcoids and reloids



CHAPTER 20

Pointfree funcoids

This chapter is based on [30].

This is a routine chapter. There is almost nothing creative here. I just general-
ize theorems about funcoids to the maximum extent for pointfree funcoids (defined
below) preserving the proof idea. The main idea behind this chapter is to find
weakest theorem conditions enough for the same theorem statement as for above
theorems for funcoids.

For these who know pointfree topology: Pointfree topology notions of frames
and locales is a non-trivial generalization of topological spaces. Pointfree funcoids
are different: I just replace the set of filters on a set with an arbitrary poset, this
readily gives the definition of pointfree funcoid, almost no need of creativity here.

Pointfree funcoids are used in the below definitions of products of funcoids.

20.1. Definition

DEFINITION 1594. Pointfree funcoid is a quadruple (2, B, «, ) where 2 and B
are posets, a € B and § € AP such that

Ve e A,y € B : (y ¥ ax & x % Py).

DEFINITION 1595. The source Src(A,B,a,5) = A and destination
Dst(2, B, «, 8) = B for every pointfree funcoid (2, B, «, ).

To every funcoid (A, B, «, 8) corresponds pointfree funcoid (ZA, #B, «, ).
Thus pointfree funcoids are a generalization of funcoids.

DEFINITION 1596. I will denote pFCD(2(,B) the set of pointfree funcoids from
2A to B (that is with source 2 and destination %), for every posets 2 and 5.

(2,8, a, B)) 4ef o for every pointfree funcoid (2, B, a, §).

DEFINITION 1597. (A4,B,a,8)"! = (B, B,a) for every pointfree funcoid
(%A, B, a, B).

PROPOSITION 1598. If f is a pointfree funcoid then f~! is also a pointfree
funcoid.

PROOF. It follows from symmetry in the definition of pointfree funcoid. O
OBvVIOUS 1599. (f~1)~! = f for every pointfree funcoid f.

DEFINITION 1600. The relation [f]€ &(Src f x Dst f) is defined by the formula
(for every pointfree funcoid f and z € Src f, y € Dst f)
def

v [fly = y#(flz.

OBvIOUS 1601. z [f]y < y # (f)z < x # (f~ 1)y for every pointfree funcoid
fand x € Src f, y € Dst f.

OBvIOUS 1602. [f’l]:[fr1 for every pointfree funcoid f.
THEOREM 1603. Let 2 and B be posets. Then:

314
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1°. If 2 is separable, for given value of (f) there exists no more than one
f € pFCD(%, B).
2°. If 2 and B are separable, for given value of [f] there exists no more than
one f € pFCD(, B).
PROOF. Let f,g € pFCD(2, B).
1°. Let (f) = (g). Then for every z € 2, y € B we have
s (fysytHreytgreat{g )y
and thus by separability of 2 we have (f~')y = (g7 )y that is (f~') = (¢~!) and
so f=g.
2°. Let [f]=[g]. Then for every x € 2, y € B we have
e (fyealflysalglyesat{g )y

and thus by separability of A we have (f~!)y = (g~ 1)y that is (f~) = (¢71).
Similarly we have (f) = (g). Thus f =g.
U

PROPOSITION 1604. If Src f and Dst f have least elements, then (f) 15/ =
1 Pstf for every pointfree funcoid f.

PROOF. y # (f)L5¢f & 15 % (f~1)y < 0 for every y € Dst f. Thus
(fyLSref < (fy1Sref, So (fyLSref = | Dstf, d
PROPOSITION 1605. If Dst f is strongly separable then (f) is a monotone func-
tion (for a pointfree funcoid f).
PROOF.
al b=
Ve €Dstf:(a® (fa=b%(f "z)=
Vo € Dst f: (z % (fla= x % (f)D) &
*(f)a C*(f)b=

(fla E(f)b.
O

THEOREM 1606. Let f be a pointfree funcoid from a starrish join-semilattice
Src f to a separable starrish join-semilattice Dst f. Then (f)(i U j) = (f)i U {f)j
for every i,j € Src f.

PROOF.

{yﬁ<ﬁivy%<ﬁj
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Thus (f)(iUj) = (f)i U (f)j by separability. O

ProrosiTION 1607. Let f be a pointfree funcoid. Then:

1°. k[flivj e k[f]iVk][f]jforeveryi,j€Dstf, keSrcfifDstfisa
starrish join-semilattice.

2°. iU [flk<i[flkVy[f] kfor every i,j € Src f, k € Dst f if Src f is a
starrish join-semilattice.

PRrROOF.

1°k[flibjeiug A (HkeiA(HEVIA (ke k[flivE([f]]

2°. Similar.

20.2. Composition of pointfree funcoids
DEFINITION 1608. Composition of pointfree funcoids is defined by the formula
(B, €, az,B2) 0 (A, B, a1,51) = (A, &, az 0 a1, B1 0 Pa).
DEFINITION 1609. I will call funcoids f and g composable when Dst f = Srcg.

ProrosiTiON 1610. If f, g are composable pointfree funcoids then g o f is
pointfree funcoid.

PrOOF. Let f = (2,B,a1,61), g = (B, €, s, f2). For every z,y € 2 we have
y#(moa)z &y £ amr & oz & by & x4 fifay & v £ (Brofa)y.

So (A, €, as 0ay, 31 0 Ba) is a pointfree funcoid. O

OBvIous 1611. (go f) = {g) o (f) for every composable pointfree funcoids f
and g.

THEOREM 1612. (gof)~! = f~tog! for every composable pointfree funcoids f
and g.

ProOF.
((go )™y =(f"oelg)=(fTog™ ")
(((gof) ) )y=(gof)=((f"og™ ™).
O

PROPOSITION 1613. (hog)o f = ho(go f) for every composable pointfree
funcoids f, g, h.

PROOF. ((hog)of) = (hog)o(f) = (h)o(g) o(f) = (h)olgof) =
(ho(gef));

(((hog)o )y~) =(fTolhog)™)=(fTTog T oh™!) =
((gof)~ton™h) =((ho(go f))7).
]

EXERCISE 1614. Generalize section 7.4 for pointfree funcoids.
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20.3. Pointfree funcoid as continuation
ProrosiTION 1615. Let f be a pointfree funcoid. Then for every = € Src f,
y € Dst f we have

1°. If (Src f, 3) is a filtrator with separable core then z [f] y < VX € upd z :

X [fly.
2°. If (Dst f, 3) is a filtrator with separable core then x [f] y < VY € updy :

z[f]Y.

PROOF. We will prove only the second because the first is similar.
z[flyey s (lze VY euwdy: Y # (flz e VY cup’y:z [f]Y.
O

COROLLARY 1616. Let f be a pointfree funcoid and (Src f, 3¢), (Dst f, 31) be
filtrators with separable core. Then

z[flye VX eup®z,Y eup’ y: X [f] Y.
PROOF. Apply the proposition twice. O

THEOREM 1617. Let f be a pointfree funcoid. Let (Src f,30) be a binarily
meet-closed filtrator with separable core which is a meet-semilattice and Vz €
Src f : up3° x # () and (Dst £, 31) be a primary filtrator over a boolean lattice.

Dst f

(=[] N uwp .
PrOOF. By the previous proposition for every y € Dst f:
y £ (flrz ez [flye VX cup®a: X [fly e VX eup®z:y £2 (X

Let’s denote W = {%} We will prove that W is a generalized filter
(NHX

m} is a generalized

base over 31. To prove this enough to show that V = {
filter base.

Let P,Q € V. Then P = (f)A, Q = (f)B where A, B € up3° z; Ao
B € up3° z (used the fact that it is a binarily meet-closed and theorem 535) and
REPMPSS Q for R = (f)(AM3° B) € V because Dst f is strongly separable by
proposition 579. So V is a generalized filter base and thus W is a generalized filter
base.

1Dstf ¢ W 10567 ¢ [P/ W by theorem 572. That is

Dst f
VX €up? x:y Pty (f)X # 1P oy nDsts |_| (f)) up® z # 1Pt/
Comparing with the above,

Dst f
y P (f)a # 1P <y P[] ((F)" upe @ # LD

So (f)z = |_|DStf<<f>>* up?° x because Dst f is separable (proposition 579 and the
fact that 3; is a boolean lattice). O

THEOREM 1618. Let (2, 30) and (8, 31) be primary filtrators over boolean
lattices.

1°. A function o € B30 conforming to the formulas (for every I,.J € 3¢)

ald =1% o(IuJ)=alUaJ
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can be continued to the function (f) for a unique f € pFCD(2, B);
B

(X =[ (@) uwp x (20)

for every X € 2.
2°. A relation § € (3¢ x 31) conforming to the formulas (for every I, J, K €
30and I',J',K' € 31)

~(L35I), TUJIK ©I§K' VJ§K',

21
~(I613), K6I'uJ & K§I'VKSJ 2D

can be continued to the relation [f] for a unique f € pFCD(2L, B);
X[flYeVXecuwp X, Y eup?'Y: XY (22)
for every X € A, Y € B.

PROOF. Existence of no more than one such pointfree funcoids and formulas
(20) and (22) follow from two previous theorems.

20, {XEd } is obviously a free star for every X € 3¢. By properties of filters

XY
on boolean lattices, there exist a unique filter X such that d(aX) = {};fg} } for

every X € 3g. Thus o € B30, Similarly it can be defined § € 23* by the formula
O(BY) = {3532}, Let’s continue the functions o and 8 to o € B> and ' € AP
by the formulas

B 2
o' X = |_|<a)* up?* X and B'Y = |_|<B>* upst Y
and ¢ to &' € Z(A x B) by the formula
XV YeVXeup®X,Y euprY: X .

YNadX # 1% < Yr[la) up X # 1% < [V () up?e X # 1P, Let’s
prove that
W = (V)™ {a)" up” X
is a generalized filter base: To prove it is enough to show that (a)"up®° X is a
generalized filter base.
If A,B € (a)"up3° X then exist X;, Xy € up® X such that A = aX; and
B = aX;. Then a(X; M3 X5) € (a)" up3® X. So (a)" upd® X is a generalized filter
base and thus W is a generalized filter base.
By properties of generalized filter bases, [|(J)" (a)" up3° X # 1L is equiva-
lent to
VX eup?® X :YnaX # L7,
what is equivalent to
VX cup XY eup? Y : Y NP aX £ 1% o
VX cup® XY eup? Y :Y € 9(aX) &
VX eup?® X, Y eup'Y: X Y.

Combining the equivalencies we get Y Mo/X # 1P < X ¢ ). Analogously
XNBY#12 < X8 Y. SoYNadX # 1% < XNpP'Y# 1% thatis (A, B, a, )
is a pointfree funcoid. From the formula Y Mo/X # 1% < X § Y it follows that
(2,8, 0/, 8')] is a continuation of ¢.

1°. Let define the relation 6 € £ (30x 31) by the formula X 6 Y & Y1®aX #
1%,

That —(L3° § I') and —(I § L31) is obvious. We have
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Kor'uhJ <

' Jyn® ek # 1% o

(I'u® JYnak # 1% &

(I'm® aK)U(J'N®aK) # 1% <

I'nPaK #12PvJ P aK # 1% &
KSI'VKS.J

and

T J§K' &

K'nPa(luJg)# 1% <

K'n®(aluad)# 1% &

(K'M®Pal)U(K'M®al) # 1% <

KnPal#1PVK N®Pal# 1% <
ISK' VIS K.

That is the formulas (21) are true.

Accordingly the above ¢ can be continued to the relation [f] for some f €
pFCD(, B).

VX € 30,Y €31 : YMIP ()X # 1% & X [flY & Y 1P aX # LP),
consequently VX € 3p : aX = (f)X because our filtrator is with separable core.
So (f) is a continuation of a.

O

THEOREM 1619. Let (2, 3¢) and (28,31) be primary filtrators over boolean
lattices. If @ € B30, § € A3 are functions such that ¥ % aX < X # BY for every
X € 39, Y € 31, then there exists exactly one pointfree funcoid f : 2 — B such

that <f>|30 =qQ, <f_1>|31 = ﬂ

PROOF. Prove a(IUJ) = al UaJ. Really, Y £ a(lUJ) & ITUJ % Y &
T4APY VI #PY &Y #4alVY #(aJ oY #(allald. Soa(lUJ)=alUaJ
by star-separability. Similarly S(I U J) = I U BJ.

Thus by the theorem above there exists a pointfree funcoid f such that (f)|5, =
Q, <f_1>|31 =p.

That this pointfree funcoid is unique, follows from the above. O

PROPOSITION 1620. Let (Src f, 3¢) be a primary filtrator over a bounded dis-
tributive lattice and (Dst f, 31) be a primary filtrator over boolean lattice. If S is a
generalized filter base on Src f then (f) [T § = [T/ ((f))*S for every pointfree
funcoid f.

PROOF. First the meets [1°/ 5 and [T°%7((f))*S exist by corollary 518.

(Sre f, 30) is a binarily meet-closed filtrator by corollary 536 and with separable
core by theorem 537; thus we can apply theorem 1617 (up z # @ is obvious).

(AT S T (f)X for every X € S because Dst f is strongly separable by
proposition 579 and thus (f) [T S C [P ((f))*S.
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Taking into account properties of generalized filter bases:

Dst f

[T [ ]s=

['] <<f>>*{37?€5:)g(€up77} -

Dst f *
X
|_| {37) - é‘f>X - upP} 3 (because Dst f is a strongly separable poset)

() -

Dst f

[1¢ms.

O

PROPOSITION 1621. X [f][]S < 3V € S: X [f] YV if f is a pointfree funcoid,
Dst f is a meet-semilattice with least element and S is a generalized filter base on
Dst f.

PROOF.

X[[]Se[]snHx#Le] J(HXMS# Lo
(by properties of generalized filter bases) <
We{(fHXMS: VAL LeIeS: (NHXNY#+1L<IYesS: X[f]l).
(]
THEOREM 1622. A function ¢ : 2 — 9B, where (2, 3¢) and (B, 31) are primary

filtrators over boolean lattices, preserves finite joins (including nullary joins) and
filtered meets iff there exists a pointfree funcoid f such that (f) = ¢.

PRrROOF. Backward implication follows from above.

Let ¢ = ¢|3,. Then 1 preserves bottom element and binary joins. Thus there
exists a funcoid f such that (f)" = .

It remains to prove that (f) = ¢.

Really, (/)X =[1{(f) " upX =[1(¥)"upX =[1(p) " upX = p[Tup X = pX
for every X € Z(Src f). O

COROLLARY 1623. Pointfree funcoids f from a lattice 2 of fitlters on a boolean
lattice to a lattice B of fitlters on a boolean lattice bijectively correspond by the
formula (f) = ¢ to functions ¢ : A — B preserving finite joins and filtered meets.

THEOREM 1624. The set of pointfree funcoids between sets of filters on boolean
lattices is a co-frame.

PRrRoOOF. Theorems 1618 and 533. O

20.4. The order of pointfree funcoids

DEFINITION 1625. The order of pointfree funcoids pFCD(%,B) is defined by
the formula:

fEgevVzeA: (HlzC(gx AVy € B : <f_1>y C <g_1>y.
PROPOSITION 1626. It is really a partial order on the set pFCD(%, B).
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PROOF.

Reflexivity. Obvious.
Transitivity. It follows from transitivity of the order relations on 2 and 8.
Antisymmetry. It follows from antisymmetry of the order relations on 2 and B.

O

REMARK 1627. It is enough to define order of pointfree funcoids on every set
pFCD(2A,B) where 2 and B are posets. We do not need to compare pointfree
funcoids with different sources or destinations.

OBvIOUS 1628. f C g =[f]Clg] for every f,g € pFCD(,B) for every posets
2 and ‘B.

THEOREM 1629. If 2 and B are separable posets then f C g <[f]C[g].

PROOF. From the theorem 1603. O

PROPOSITION 1630. If 2 and B have least elements, then pFCD (2L, B) has least
element.

PROOF. Tt is (2, B,2A x {LB}, B x {1%}). 0

THEOREM 1631. If 2 and B are bounded posets, then pFCD(2(, B) is bounded.

PrOOF. That pFCD(2, B) has least element was proved above. I will demon-
strate that (2, B, «, ) is the greatest element of pFCD(2L,B) for

1B f X =1% 1% ify=1%
aX = ) ;o BY = ) .
T? if X #£ 1% T ifYy #£ 1%

First prove Y % aX & X # 5Y.

FT? = 1% thenY #aX &Y % 1P &0 X % 1% & X #% pL¥
(proposition 1604). The case T® = 1* is similar. So we can assume T? # 1 and
TB £ 13,

Consider all variants:

X=1%andY = 1% YV #aX & 0& X #BY.

X#1PandY # 1% aX =TP and BY = TH V 4 aX &V £ TP & 1 &
X #£T* & X # BY (used that T* # 1% and T® # 1P).

X=1%andY # 1L®. aX = 1® (proposition 1604) and BY = T%, Y # aX &
Y #1P o 0e 1 £ Y & X £6Y.

X=1%andY # L%, Similar.

It’s easy to show that both a and [ are the greatest possible components of a
pointfree funcoid taking into account proposition 1604. O

THEOREM 1632. Let (2, 30) and (98, 31) be primary filtrators over boolean
lattices. Then for R € ZpFCD(2,B) and X € 30, Y € 3; we have:

1°. X[ JR]Y & 3f € R: X [f]V;
2°. (UR)X = User(NX.

PROOF.
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20, aX ¥ LI;cr(f)X (by corollary 518 all joins on B exist). We have aL* =
J_‘B.
[ |_|30
{77

: 2.
i fﬁRJ}
o

-

e
€
U

al UP aJ

(used theorem 1606). By theorem 1618 the function a can be continued to (h) for
an h € pFCD(2,B). Obviously

VfeR:hdf. (23)
And h is the least element of pFCD(2,B) for which the condition (23) holds. So
h=_]R.
1°.

X [LJr] v e

Yy n® <|_|R>X7£LB =

y n?® U{%} £1% o
JfeER:YMP(HX# 1% =
FERX[f]Y
(used theorem 610).
U

COROLLARY 1633. If (%, 30) and (8, 31) are primary filtrators over boolean
lattices then pFCD(2(,B) is a complete lattice.

ProOOF. Apply [27]. O

THEOREM 1634. Let 2 and 9B be starrish join-semilattices. Then for f,g €
pFCD(2L, B):
1°. (fUg)x = (fHz U (g)x for every z € 2;
2°. [fugl=[f1Ulg).
PROOF. ]
1°. Let atX & (frz U (g)x; BY def (f Yy u{g )y for every z € A, y € B.
Then
y #£% oz &
y#A(flzvy# (g
s (fTHyvaet{gy e
e £ (fTHyulg Hy e
T~ By.
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So h = (A, B, a, 5) is a pointfree funcoid. Obviously h J f and h Jg. If p O f
and p J g for some p € pFCD(2, B) then (p)z I (f)z U (g)z = (h)x and (p~')y I
<f_1>y U <g_1>y = <h_1>y that isp J h. So fLUg=h.

2°.

z[fugly &
y#({fuglz <
y# (flzl{g)z <
y£(fHzVvy#£(gz e
z[flyvalgly
for every x € A, y € B.

20.5. Domain and range of a pointfree funcoid

DEFINITION 1635. Let 2 be a poset. The identity pointfree funcoid 1&FCD =
(A, A, idg, idgy).

It is trivial that identity funcoid is really a pointfree funcoid.
Let now 2 be a meet-semilattice.

DEFINITION 1636. Let a € 2. The restricted identity pointfree funcoid
idPFPE) — (9 9, ar®, ar1?).

PRrROPOSITION 1637. The restricted pointfree funcoid is a pointfree funcoid.

PROOF. We need to prove that (a M z) #* y < (aM® y) #* = what is
obvious. O

OBVIOUS 1638. (idPFP())~1 — jqpFCD(),

OBvious 1639. z [idZFCD(Q{)} Yy<=a XQ{ x N2 y for every x,y € 2.

DEFINITION 1640. I will define restricting of a pointfree funcoid f to an element
a € Src f by the formula f|, %' f o idPFEPGeS),

DEFINITION 1641. Let f be a pointfree funcoid whose source is a set with
greatest element. Image of f will be defined by the formula im f = (f)T.

PROPOSITION 1642. im f O (f)x for every x € Srcf whenever Dst f is a
strongly separable poset with greatest element.

PROOF. (f)T is greater than every (f)a (where z € Src f) by proposition 1605.
O

DEFINITION 1643. Domain of a pointfree funcoid f is defined by the formula
dom f =im f~1.

PROPOSITION 1644. (f)dom f =im f if f is a pointfree funcoid and Src f is a
strongly separable poset with greatest element and Dst f is a separable poset with
greatest element.

PROOF. For every y € Dst f

y# (fdomfedomf#(fHye (FFHTA(Hye
(by strong separability of Src f)

<f_1>y is not least & T # <f_1>y Sy£(HT S y#£imf.
So (f)dom f = im f by separability of Dst f. O
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PROPOSITION 1645. (f)x = (f)(x Mdom f) for every x € Src f for a pointfree
funcoid f whose source is a bounded separable meet-semilattice and destination is
a bounded separable poset.

PROOF. Src f is strongly separable by theorem 225. For every y € Dst f we
have

y £ (fY(zNdom f) < zMNdom f M <f*1>y #£ 15 o
xMim f~1 0 <f_1>y #£ 15 o
(by strong separability of Src f)
a0 (f )y # L5 oy (f)e
Thus (f)z = (f)(x M dom f) by separability of Dst f. O

PROPOSITION 1646. = % dom f < ((f)z is not least) for every pointfree fun-
coid f and x € Src f if Dst f has greatest element T.

PrROOF. # # domf & z # (fOTP e TP % (flz &
({f)x is not least). 5

Src f

PROPOSITION 1647. dom f = U{%} for every pointfree funcoid f
whose destination is a bounded strongly separable poset and source is an atomistic
poset.

Proo¥F. For every a € atoms>™/ we have

a % dom f < a # <f71>TDStf o Thstf #Z{(flae (fla# | Pstf,
acatoms " f acatoms>™/
So dom £ = |I{ S} = L S5y ) .

PROPOSITION 1648. dom(f|,) = aMdom f for every pointfree funcoid f and
a € Src f where Src f is a meet-semilattice and Dst f has greatest element.

PROOF.
dom(f|a) — im(iszCD(SrCf) offl) _
(iagFPEe NN (F=1) TP — (1) TP = arldom f.
O

ProprosIiTION 1649. For every composable pointfree funcoids f and g

1°. If im f J domg then im(g o f) = img, provided that the posets Src f,
Dst f = Srcg and Dst g have greatest elements and Srcg and Dst g are
strongly separable.

2°. If im f C dom g then dom(go f) = dom g, provided that the posets Dst g,
Dst f = Srcg and Src f have greatest elements and Dst f and Src f are
strongly separable.

PROOF.
1°. im(go f) = (go f)T5<S = (g)(f)T5/ C im g by strong separability of
Dst g; im(go f) = (go )T = (g)im f 3 (g) dom g = im g by strong separability
of Dst g and proposition 1644.
2°. dom(go f) = im(f~!og~!) what by the proved is equal to im f~! that is
dom f.
O
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20.6. Specifying funcoids by functions or relations on atomic filters

THEOREM 1650. Let 2 be an atomic poset and (9B,31) is a primary filtrator
over a boolean lattice. Then for every f € pFCD(2(,B) and X € 2 we have

B

(& = J«(f)" atoms™ X
PROOF. For every Y € 3; we have

YA ()X & X A (Y &
Iz € atoms™ Xz £ (f1Y © Tz € atoms® X 1 Y £P (f)a.

Thus 9(f)X = U@ ((f) atoms® X = 8| |%((f))* atoms® X (used corol-
lary 569). Consequently (f)X =[P ((f))" atoms® X by the corollary 568. O

ProprosITION 1651. Let f be a pointfree funcoid. Then for every X € Src f
and Y € Dst f

1°. X [f] Y < 3z € atoms X : z [f] Y if Src f is an atomic poset.
2°. X [f]Y & Jy €atoms) : X [f] y if Dst f is an atomic poset.

PRrROOF. I will prove only the second as the first is similar.
If X [f] YV, then Y # (f)X, consequently exists y € atoms) such that y %
(fYX, X [f] y. The reverse is obvious. O

COROLLARY 1652. If f is a pointfree funcoid with both source and destination
being atomic posets, then for every X € Src f and ) € Dst f

X [f]Y & 3z € atoms X,y € atoms Y : x [f] y.

PrOOF. Apply the theorem twice. O

COROLLARY 1653. If 2 is a separable atomic poset and B is a separable poset
then f € pFCD(2,B) is determined by the values of (f)X for X € atoms™.

ProOF.
y# (et (fye

3X eatomsz: X % (f Ny &
JX € atomsz : y % (f)X.

Thus by separability of B we have (f) is determined by (f)X for X € atomsz.
By separability of 20 we infer that f can be restored from (f) (theorem 1603).
O

THEOREM 1654. Let (2, 30) and (8, 31) be primary filtrators over boolean
lattices.

1°. A function o € B*ms™ guch that (for every a € atoms?)

aa C |_|<|_| o{la)” o atomsg[>* up® a (24)
can be continued to the function (f) for a unique f € pFCD(2, B);
()X =] J(o)" atoms™ x (25)

for every X € 2.
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2°. A relation § € Z(atoms™ x atoms®) such that (for every a € atoms®,

b € atoms™)
VX € up®a,Y € up’t b3z € atoms® X,y € atoms® Y : 2 dy=0adb (26)
can be continued to the relation [f] for a unique f € pFCD(2L, B);
X [f]Y < 3z €atoms X,y € atoms) :xdy (27)
for every X € A, Y € B.

PRrROOF. Existence of no more than one such funcoids and formulas (25) and
(27) follow from theorem 1650 and corollary 1652 and the fact that our filtrators
are separable.

1°. Consider the function o/ € B3¢ defined by the formula (for every X € 3)
o X = |_|<a>* atoms™ X.
Obviously o/ 130 = 1. For every I,.J € 3
d(ITuJ)=
|_|<a>* atoms® (I U J) =
|_|(a>* (atoms® I U atoms™ J) =
|_|(<a>* atoms® I U ()" atoms® J) =
|_|<04>* atoms™ I LI |_|<a>* atoms™ .J
odTua'J

Let continue o’ till a pointfree funcoid f (by the theorem 1618): (f)X =

[e/)" upo .
Let’s prove the reverse of (24):

[N ote)* o atoms™ ) up? a =
[N ote)™) (atoms™) " wpa
ML ote)™) tHatt =
M (Lot Har} =
L) {a}} =
|_|{|_|{aa}} _
[ {aa} = aa.
Finally,
aa = ]ol)" o atomsg‘>* wp® a =[](a) wp¥ a = (f)a,

so (f) is a continuation of a.
2°. Consider the relation §' € (3¢ x 31) defined by the formula (for every
X €30, Y €3)

X ¢§'Y < Iz € atoms® X,y € atoms® Y : 2 6 y.
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Obviously (X ¢" 131) and —(L3° §' V).
IuJéy <
3z € atoms® (I U J),y € atoms® Y :z § y &
3z € atoms™ I Uatoms™ J,y € atoms® Y : z § y <
Jz € atoms™ I,y € atoms® Y : 2 6 y V Iz € atoms™ J,y € atomsT Y 1z y <
I18YvJéy;

similarly X ¢/ TUJ & X § IV X ¢’ J. Let’s continue ¢’ till a funcoid f (by the
theorem 1618):

X[f]YeVXcup X, Y cup®Y: X Y.
The reverse of (26) implication is trivial, so

VX €up®a,Y € up’t b3z € atoms™ X,y € atoms® Y : 2 0y < a d b

VX € up® a,Y € up’* bz € atoms™ X,ycatoms®Y :zdy <
VX eupa,Y eupdtb: X §Y <
alf]b.
So adb< alf]b, that is [f] is a continuation of 4.
O
THEOREM 1655. Let (2, 3¢) and (28,31) be primary filtrators over boolean
lattices. If R € ZpFCD(2,B) and z € atoms®, y € atoms™, then
1°. MRz =[ep(f)z;
2°. z[[1RlyeVfeR:z[f]y.
PROOF.
2°. Letdenote z d y & Vf e R:x|[f]y.

VX € up®a,Y € upt bz € atoms™ X,y € atoms® Y : 2§y =
VfeR X cup®a,Y € up’ b3z € atoms® X,y € atoms® Y : z [f]y =
VfeR X cup®a,Y cup?b: X [f]Y =
VfeR: alflbe
adb.
So by theorem 1654, ¢ can be continued till [p] for some p € pFCD(, B).
For every ¢ € pFCD(2(, ) such that Vf € R: ¢ C f we have z [q] y = Vf €
R:z|[flyexdy< xlply, soqC p. Consequently p=[]R.

From thisz [|R]y < Vf e R:z[f] y.
1°. From the former

yeatoms%<|—|R>x@yﬂ<|_|R>w7$J_% SVfeR:yN{flz # 1% &

yEe ﬂ<at0ms%>*{f<f€>2} Sye atomsl_l{fogi{}

for every y € atoms®.

B is atomically separable by the corollary 582. Thus ([ R)z =[1;cz(f)z.
U
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20.7. More on composition of pointfree funcoids

PROPOSITION 1656. [go f] = = (g _1> ] for every composable
pointfree funcoids f and g.

PRrROOF. For every x € 2, y € B

rlgoflyeyt(goflreyk(g(fHlze (flrlgyex (9o (f)y.
Thus [go f] = [g] o (f)-

lgofl=[(fog ™) =[f"og | = ([folg N = () oSl

THEOREM 1657. Let f and g be pointfree funcoids and 2 = Dst f = Srcg be
an atomic poset. Then for every X € Src f and Z € Dstg

X [go f] Z & 3y € atoms™ : (X [fly Ay [g] 2).
PROOF.
3y € atoms™ : (X [f] y Ay [g] Z)
Jy € atoms™ : (2 £ (g)y Ay # (/)X)
Jy € atoms® : (y # <g_1>Z Ny % (f)X)

()2 £ (N
Xlgofl 2.

4
4
4
54

O

THEOREM 1658. Let A, B, € be separable starrish join-semilattices and B is
atomic. Then:

1°. fo(gUh)= foglU foh for g,h € pFCD(2,B) and f € pFCD(B, €).
20, (gUR)of=gofUhof for f € pFCD(2,B) and g, h € pFCD(B, €).

PROOF. I will prove only the first equality because the other is analogous.
We can apply theorem 1634.
For every ¥ €A, Y e €

X[fo(guh) Z<
Jy € atoms™ : (X [gUh]y Ay [f]
y) Ay

Z) =
Jy € atoms™ : (X [g] y v X [A] N2z)e
3y € atoms™ : (X [gly Ay [f] 2)V (X [Bly Ay f] 2)
Jy € atoms® : (X [g] y Ay [f] 2)V Iy € atoms® : (X W]y Ay [f] 2) &
X[fogl ZVX[foh] Z &
X[fogUfoh) Z
Thus fo(gUh)= foglU foh by theorem 1603. O

THEOREM 1659. Let 2A, B, € be posets of filters over some boolean lattices,
f € pFCD(2(,B), g € pFCD(%3, ), h € pFCD(2(, ¢). Then

gof#theg#hofl
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PRroor.
gof#h<e
Ja € atoms®, ¢ € atoms® : a [(go f)Mh] ¢ <
Ja € atoms®, ¢ € atoms® : (a [go f]cAa[h] c) &
Ja € atoms™, b € atoms™, ¢ € atoms® : (a [f]bAb[g] cAa[h] ¢) <
3b € atoms™, ¢ € atoms® : (b[g] cAb [ho f7!] c) &
3b € atoms™, ¢ € atoms® : b [gM1 (ho f1)] c&

g%hofﬁl.

20.8. Funcoidal product of elements

DEFINITION 1660. Funcoidal product A xFP B where A € A, B € B and A and
B are posets with least elements is a pointfree funcoid such that for every X € %,
ye'B

B ifX#£ A - A HEVAB
<A><FCDB>X:{ 1B if X = A; and <(AXFCDB) 1>y:{J-m ify =< B.

PROPOSITION 1661. A xFCP B is really a pointfree funcoid and
X[AXFPB Y& X £ ANY #£B.
PROOF. Obvious. O

ProrosiTiION 1662. Let 2A and 8 be posets with least elements, f €
pFCD(2A,B), A € 2, B € B. Then

fECAXFPB=domfC AAimfC B.

ProoF. If f C AxFPB then dom f C dom(Ax"PB) C A, im f C im(AxFP
B) C B. O

THEOREM 1663. Let 2 and B be strongly separable bounded posets, f €
pFCD(2A,B), A €2, B € B. Then

fECAXFPB o domfC AAIm fC B.

PRrROOF. One direction is the proposition above. The other:

IfdomfC AAImfC Bthen X [f] Y=V 4 ()X =V #£imf =YV #%B
(strong separability used) and similarly X [f] Y = X # A.

So [f] € [A xFP B] and thus using separability f T A x P B. O

THEOREM 1664. Let 2, B be bounded separable meet-semilattices. For every
fepFCDRL,B)and A €A, BB

FN(AXFPB) = idy ™ of 0idPf P
Proor. h & id%FCD(%) of o iszCD(m). For every X € 2
(& = (i PPN (1) (1@ PO ) = B () (AN X)

and

(= (a5 PN () (PN = A (7B ).
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From this, as easy to show, h T fand hC AxFPB. IfgC fAgC AxFPB
for a g € pFCD(2(,B) then domg C A. 2 and B are are strongly separable by
theorem 225. Thus by propositions 1645 we have:

(9)X = (9)(X TTdomg) = (g)(X T A) =B (g)(ANX) C
B{AHANX) = (1 ) () (1P )X = (),
and similarly (¢g=')Y C (h™')Y. Thus g C h.
So h = (A xFP B). O
COROLLARY 1665. Let 2, B be bounded separable meet-semilattices. For
every f € pFCD(2,B) and A € 2 we have f|4 = f (A x P TE),
PROOF. f (A xFP TB) = idPP®) o roidPf PR — foigd% P — f|,. O
COROLLARY 1666. Let 2, B be bounded separable meet-semilattices. For
every f € pFCD(2(,B) and A € 2, B € B we have
f#AXPB o Alf] B.
PROOF. Existence of f 1 (A xFP B) follows from the above theorem.
f#AXFPB o
f M (A ><FCD B) 7& J_pFCD(Ql,%) o
(FRAXFPB)TY £ 1P &
(1af P of 01 PNTH 2 1P
(iafr ) f><idf’4FCD(Q[)>TQ‘ £1% &
Bn(fHANTH) £ 1% &
BNn{f)A# 1% o
A[f] B.
O

THEOREM 1667. Let 2, B be bounded separable meet-semilattices. Then the
poset pFCD(2(,B) is separable.

ProOOF. Let f,g € pFCD(2,B) and f # g. By the theorem 1603 [f] # [g].
That is there exist z,y € 2 such that z [f] y < = [g] y that is f 1 (z x"P y) #
LPFEDELB) g1 (2 xFCP y) #£ LPFCDELB) - Thus pFCD(A, B) is separable. O

COROLLARY 1668. Let 2(, B be atomic bounded separable meet-semilattices.
The poset pFCD(, B) is:
1°. separable;
2°. strongly separable;
3°. atomically separable;
4°. conforming to Wallman’s disjunction property.

Proor. By the theorem 233. U

REMARK 1669. For more ways to characterize (atomic) separability of the
lattice of pointfree funcoids see subsections “Separation subsets and full stars” and
“Atomically Separable Lattices”.

COROLLARY 1670. Let (2, 30) and (B, 31) be primary filtrators over boolean
lattices. The poset pFCD(2, B) is an atomistic lattice.
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PROOF. By the corollary 1633 pFCD(2L,B) is a complete lattice. We can use
theorem 231. O

THEOREM 1671. Let 2 and B be posets of filters over boolean lattices. If
S e Z(AU x B) then

|_| (A xFP B) = |_|domS xFep I_IimS.
(A,B)eS

PROOF. If z € atoms® then by the theorem 1655
(A xFP B,
[] (AxFP B)>a: = |‘|{ :
<(A,B)€S (4,B) € §
If zM[]dom S # 1? then
V(A,B) €S (zNA#£ LY A (AXFP B)a = B);

{(A x FD B)x} -

(A,B) e S
if zM[]dom S = 1* then
IAB) €S (anNA= LA ({AXTP Bz = 1F);

{<AXF<:D B>x} e

(A,B) e S
So
< |—| (AXFCDB)>x:{|_|iH1S ifxﬂﬂdomS;éJ_ﬂ;
B . "
(A,B)eS 1 if zM[]Jdom S = 1%,
From this by theorem 1654 the statement of our theorem follows. 0

COROLLARY 1672. Let 2 and 8 be posets of filters over boolean lattices.
For every Ag, A; € A and By, B, € B

(AO ><FCD BO) M (»Al ><FCD Bl) _ (AO |_|A1) ><FCD (BO ﬂBl)-

PRrROOF. (Ao x FCD Bo) [l (.Al x FCD Bl) = |_|{.A0 x FCD Bo,.Al x FCD Bl} what is
by the last theorem equal to (Ao M.A;) x P (By M By). O

THEOREM 1673. Let (2, 30) and (9B, 31) be primary filtrators over boolean
lattices. If A € A then AxFCP is a complete homomorphism from the lattice 2 to
the lattice pFCD(2L,B), if also A # 1 ® then it is an order embedding.

PROOF. Let S € 22U, X € 3, = € atoms™.

(Lo s)x -
|_| (AXFPBYX =

BesS
LIS if Xt A# LY
1B X A=12

(4x5<0] Js)x.
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Thus |_|<.A><FCD>*S = A xFP| | S by theorem 1617.

(MNAxF) s =
[ (A <" Byz =
BesS
MsS if Xm*A# 1>
1P X A=1%

<A x FCP |_| S>x.
Thus [{AxP)"S = A xFP ]S by theorem 1650.

If A # L% then obviously AxFPX C AxFPY & X C Y, because im(A x P
X) = X and im(A xFP ) = . 0

PROPOSITION 1674. Let 2 be a meet-semilattice with least element and B be
a poset with least element. If a is an atom of 2, f € pFCD(2,B) then f|, =
a x P (HHa.

PROOF. Let X € 2.
XNa# 1™ = (flaX = (fla, XNa=1"= (fl)x = L%
O

PROPOSITION 1675. f o (A xFP B) = A xFP (f)B for elements A € A and
B € B of some posets 2, B, € with least elements and f € pFCD(%B, €).

PROOF. Let X € A, Y € B.
(fo(AXFPRB)HX = ({iﬁg iiiij) = (A X P (f)B)x;
((fo(AXFPB)™HY =
<(B ><FCD A) ° 1>

.
({ if (1Y # ) _
Loif(fHy=n
A Y A(HBY _
1L Y= (B
({(f)Bx"P Ay =
((AXFL(nB) ).

20.9. Category of pointfree funcoids

I will define the category pFCD of pointfree funcoids:

The class of objects are small posets.

The set of morphisms from A to B is pFCD(2, B).

The composition is the composition of pointfree funcoids.
Identity morphism for an object 2 is (2, 2, idg(, idg).

To prove that it is really a category is trivial.
The category of pointfree funcoid quintuples is defined as follows:

e Objects are pairs (2, A) where 2 is a small meet-semilattice and A € 2.
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e The morphisms from an object (2,.A) to an object (B,B) are tuples
(A, B, A, B, f) where f € pFCD(2(,B) and

VeeA: (flzC A VyeB:(f HyCB (28)
e The composition is defined by the formula

(%7¢7B7C79)O(m’%"’4787f) = (Ql7¢7A’C7gof)'

e Identity morphism for an object (2, .A) is idi‘FCD(m). (Note: this is defined

only for meet-semilattices.)

To prove that it is really a category is trivial.

PROPOSITION 1676. For strongly separated and bounded 2l and 9B formula (28)
is equivalent to each of the following:
1°. dom fC AAim f C B;
2°. fC AxFP B

PROOF. Because (f)z Cim f, (f~')y C dom f, and theorem 1663. O

20.10. Atomic pointfree funcoids

THEOREM 1677. Let 2, B be atomic bounded separable meet-semilattices. An
f € pFCD(, B) is an atom of the poset pFCD(2A, B) iff there exist a € atoms® and
b € atoms® such that f = a x P b,

PROOF.

=. Let f be an atom of the poset pFCD(2,B). Let’s get elements a € atoms dom f
and b € atoms(f)a. Then for every X € 2

X=a= (ax"PoHH)x =12 C(HX, X#,a= (ax"PhHX=bLC (f)X.

So (axFPp)x C (f)X and similarly (b xFPa)y T (f~HY for ev-
ery Y € B thus a xF°P b C f; because f is atomic we have f = a x"P b.

<. Let a € atoms®, b € atoms™, f € pFCD(A,B). If b <T (f)a then —=(a [f] b),
f 1 (a <P p) = 1PFCDELE) (hy corollary 1666 because 2 and B are
bounded meet-semilattices); if b C (f)a, then for every X € 2

X=a={(ax"PyH)X=12C(HX, X#ta= (ax"Phx=bC (HHX

that is <a x FCb b>X C (f)X and likewise <b x FCD a>y C <f_1>y for every
YeB,s0 fJax"Pbh Consequently f(ax P p) = [PFEPERB) /£ T
a xFCP b; that is a xP b is an atomic pointfree funcoid.

O

THEOREM 1678. Let 2, 8 be atomic bounded separable meet-semilattices.
Then pFCD(%, 9B) is atomic.

PROOF. Let f € pFCD(2A,B) and f # LPFPELB) Then dom f # L*, thus
exists a € atomsdom f. So (f)a # L% thus exists b € atoms(f)a. Finally the
atomic pointfree funcoid a x P b C f. O

ProprosITION 1679. Let A, B be starrish bounded separable lattices.
atoms(f U g) = atoms f U atoms g for every f,g € pFCD(2(,B).
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PROOF.

(a xFLC Y M (f U g) # LPFPED) o (corollary 1666) <
a [fUg]b< (theorem 1634) <
a[f]bValg]b< (corollary 1666) <
(a xFCP b) 11 f # LPFCDEAB) /(4 5 FCD ) o £ | PFCD(AB)

for every a € atoms® and b € atoms™. (]

THEOREM 1680. Let (2, 30) and (8, 31) be primary filtrators over boolean
lattices. Then pFCD(2, B) is a co-frame.

PRrROOF. Theorems 1618 and 533. O

COROLLARY 1681. Let (2, 3¢) and (B, 31) be primary filtrators over boolean
lattices. Then pFCD(%, ®B) is a co-brouwerian lattice.

ProprosiTION 1682. Let A, B, € be atomic bounded separable meet-
semilattices, and f € pFCD(2,B), g € pFCD(*B, €). Then

atoms(go f) =

T « FCD P

x € atomsm, RS atomsc,

Jy € atoms® : (z x"Py € atoms f Ay x"P 2 € atoms g)
PROOF.
( xFP 2) M (g o f) # LPFDELE) o
zlgoflze
Jy € atoms® : (z [fly Ay [g] 2)
3y € atoms? : ((z xFP y) M1 f £ LPFDELE) (4 5 FCD oy [ g £ | PFCD(B,0))
(were used corollary 1666 and theorem 1657). O

THEOREM 1683. Let f be a pointfree funcoid between atomic bounded sepa-
rable meet-semilattices 2 and ‘B.

1°. X [f]Y e IF €catoms f : X [F] Y for every X € A, Y € B;
2°. (/)X = Upecatoms f(F)X for every X' € A provided that B is a complete
lattice.

PROOF.
1°.
JF catoms f: X [F] Y <
Ja € atoms™, b € atoms® : (a xFP b fAX [a x Feb b V) &
Ja € atoms®, b € atoms® : (a x"Pb# fAaxFPh£ X xFPY) o
JF catomsf: (F#£ fAF #XxPYy) o
(by theorem 1678)
fAXXFPY s
X[
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2°. Let Y € B. Suppose Y # (f)X. Then X [f] V; IF € atoms f : X [F] Y;
JF € atoms f : Y # (F)X; and (taking into account that 9B is strongly separable
by theorem 225) ¥ # | pcatoms f(E)X- S0 (f)X T |Upcatoms s(F)X by strong
separability. The contrary (f)& J | |pecapoms f(£)X is obvious.

O

20.11. Complete pointfree funcoids

DEFINITION 1684. Let 2 and 9B be posets. A pointfree funcoid f € pFCD(2L, B)
is complete, when for every S € 22 whenever both | | S and | |({f))*S are defined
we have

s =] Jums.

DEFINITION 1685. Let (2, 30) and (28, 31) be filtrators. I will call a co-complete
pointfree funcoid a pointfree funcoid f € pFCD(2L,B) such that (f)X € 3; for every
X € 30.

PROPOSITION 1686. Let (A, 30) and (8, 31) be primary filtrators over boolean
lattices. Co-complete pointfree funcoids pFCD(2L, B) bijectively correspond to func-
tions 3‘130 preserving finite joins, where the bijection is f — (f)|3,.

PRrROOF. It follows from the theorem 1618. O

THEOREM 1687. Let (2, 3¢) be a down-aligned, with join-closed, binarily meet-
closed and separable core which is a complete boolean lattice.
Let (9B,31) be a star-separable filtrator.
The following conditions are equivalent for every pointfree funcoid f €
pFCD (2, B):
1°. f~!is co-complete;
2°.VSe U Je3 (| PS[f]J=3TeS:T[f]J)
3°. VS € P30, €3 : (| P°S[f]J=3UeS:I[f]J]);
4°. f is complete;

5°. VS € P30 ()78 = LIP((f))S.

PROOF. First note that the theorem 583 applies to the filtrator (2, 3).
3°=1°. For every S € &3, J € 31

30
L|sm* ()T # 1" =>3res: 1m™ (f1)J # 1%, (29)

consequently by the theorem 583 we have <f_1>J € 3.
1°=2°. For every S € P, J € 31 we have <f_1>J € 39, consequently

A
VS e PUJ €3 <|_|S;£<f‘1>J:>HIeS:Ix<f_1>J>.

From this follows 2°.
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2°=54° Let (f)| J?° S and | |®((f))*S be defined. We have (f)| [* S = (f)|>°S.
A
IR ]s#1% <

A
L|sin7e
TesS:ITflJe
T eS: I (HT+#1% <

B
JOB () s # L%

(used theorem 583). Thus (f) [ |*S = [ |®((f))*S by star-separability of
(B, 31).

5°=3°. Let (f) |_|3°S be defined. Then U%<<f>>*5 is also defined because
(HLP S =UP((f)"S. Then

30 30 B
LIS(17ean®(H]]s# 1% e n® | J(nH)s# L%

what by theorem 583 is equivalent to 31 € S : J M (f)I # L* that is
A eS:I[f]J.
2°=3°, 4°=5°. By join-closedness of the core of (2, 3¢).

d

THEOREM 1688. Let (2, 30) and (9B, 31) be primary filtrators over boolean
lattices. If R is a set of co-complete pointfree funcoids in pFCD(2(,B) then | | R is
a co-complete pointfree funcoid.

PROOF. Let R be a set of co-complete pointfree funcoids. Then for every
X € 39

B 31
(LUryx = [ Jinx = [ |(nx e3s
feRr feRr
(used the theorems 1632 and 534). O

Let 2 and B be posets with least elements. I will denote ComplpFCD(2(, B) and
CoComplpFCD(2L, B) the sets of complete and co-complete funcoids correspondingly
from a poset 2 to a poset B.

PROPOSITION 1689.
1°. Let f € ComplpFCD(2(,B) and g € ComplpFCD(B, €) where 2 and € are
posets with least elements and B is a complete lattice. Then go f €
ComplpFCD(%, €).
2°. Let f € CoComplpFCD(2L,B) and g € CoComplpFCD(%B, €) where (2, 3¢),
(B, 31), (€, 32) are filtrators. Then go f € CoComplpFCD(2(, €).
PROOF.
1°. Let | |S and | |{{go f))*S be defined. Then

(go s =wnls = Jm s =1t m s=]go N"s.

2°. (g o f)30 = (9)(f)30 € 32 because (f)30 € 31.
(]

PROPOSITION 1690. Let (A, 30) and (8, 31) be primary filtrators over boolean
lattices. Then CoComplpFCD(2(,B) (with induced order) is a complete lattice.
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ProOF. Follows from the theorem 1688. O

THEOREM 1691. Let (2, 30) and (B, 31) be primary filtrators where 3¢ and
31 are boolean lattices. Let R be a set of pointfree funcoids from 2 to B.
go(UR) = ,er(gof) = LU(go) R if g is a complete pointfree funcoid from B.

PROOF. For every X € 2

So go (LJR) =LI(go)" R. 0
20.12. Completion and co-completion

DEFINITION 1692. Let (2, 3¢) and (2B, 31) be primary filtrators over boolean
lattices and 37 is a complete atomistic lattice.

Co-completion of a pointfree funcoid f € pFCD(2L,9B) is pointfree funcoid
CoCompl f defined by the formula (for every X € 3¢)

(CoCompl fYX = Cor{f)X.
PROPOSITION 1693. Above defined co-completion always exists.

ProoF. Existence of Cor(f)X follows from completeness of 3;.
We may apply the theorem 1618 because

Cor(f)(X U3 Y) = Cor({f)X U™ (f)Y) = Cor(f)X U3 Cor(f)Y
by theorem 603. O
OBvIOUS 1694. Co-completion is always co-complete.
ProrosiTIiON 1695. For above defined always CoCompl f C f.
ProoF. By proposition 542. 1

20.13. Monovalued and injective pointfree funcoids
DEFINITION 1696. Let 2 and B be posets. Let f € pFCD(%, B).
The pointfree funcoid f is:

e monovalued when fo f~1 C Lp;CD.

e injective when f~1o f C 15[FCD.

Monovaluedness is dual of injectivity.

PROPOSITION 1697. Let 2 and B be posets. Let f € pFCD(2L,B).
The pointfree funcoid f is:
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e monovalued iff fo f~1 C idf;CfD(%), if 2 has greatest element and B is a
strongly separable meet-semilattice;

e injective iff f~1o f C idzzan}m), if B has greatest element and 2 is a
strongly separable meet-semilattice.

PROOF. It’s enough to prove fo f~! C 1%:(:0 & foftL idizip(%). im f

is defined because 2 has greatest element. idf;CfD(%) is defined because B is a

meet-semilattice.
<. Obvious.
=. Let fof 1 LC 1P£CD. Then (fof')a C z; (fof "z C imf (proposi-

tion 1605). Thus (fo f )z CaNim f = <id§’;CfD<%>>x,

(fof ™) HaCaand((fof ) o= (fof ')uCimf. Thus
(7o £ o Cmim s = (P )
Thus fo f~' C idichp(%).

O

THEOREM 1698. Let 2 be an atomistic meet-semilattice with least element, %5
be an atomistic bounded meet-semilattice. The following statements are equivalent

for every f € pFCD(2,B):
1°. f is monovalued.
2°. Va € atoms® : (f)a € atoms® U{ LT}
3. Vi, i €B(fTENg) = (fin(f1)j.
PROOF.
2°=3°. Let a € atoms®, (f)a = b. Then because b € atoms™ U{ L®}
GNHNb# L% einb# LB Ajnb# L%,
alflinj < alflinalf]j;
injg[fasilfani[f]a
am® (N # L e an(f A L Aan (1)) £ LY
am (N5 # L e an(fHyin (7 # LY
(fHang) = (FHin (i
3°=1°. <f_1>al_l <f_1>b = <f_1>(al_l b) = <f_1>J_sB = 1 ¥ (by proposition 1604)
for every two distinct a,b € atoms®. This is equivalent to =({f~')a [f]
b); b (f){(fa = L%, b {(fof 1 ha = LP; =(a [fof ] b). So
a [fof~'] b= a = b for every a,b € atoms®. This is possible only
(corollary 1652 and the fact that 9B is atomic) when fo f~1 C 1p£CD.
—-2°= —1°. Suppose (f)a ¢ atoms™ U{ L®} for some a € atoms®. Then there exist

two atoms p # ¢ such that (f)a I p A (f)a J q. Consequently pM (f)a #
LB an(fp# LY aC(fN)p (fofp=(Af"pI(fladqg
(by proposition 1605 because 9B is separable by proposition 234 and thus
strongly separable by theorem 225); (fo f~1)p Z pand (fo f~')p # L%,
So it cannot be fo f~! C 1‘;03.

U

THEOREM 1699. The following is equivalent for primary filtrators (2, 3¢) and
(B, 31) over boolean lattices and pointfree funcoids f : A — B:

1°. f is monovalued.
2°. f is metamonovalued.
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3°. f is weakly metamonovalued.

PRrooF.
2°=3°. Obvious.
1°=-2°.
((Me)er)e=((Me))ine=T@N= o fa <Huwf»x
geG geG geG

for every atomic filter object x € atoms®. Thus ([]G)o f = [Nyec(gof).
3°=1°. Take g = a x Py and h = b x Py for arbitrary atomic filter objects a # b
and y. We have g M h = L; thus (go f)M(ho f) =(¢gMNh)o f=_1 and
thus impossible = [f] a A x [f] b as otherwise x [go f] y and = [ho f] y so
z[(go f)M(ho f)]y. Thus f is monovalued.
U

THEOREM 1700. Let (2, 30) and (8, 31) be primary filtrators over boolean
lattices. A pointfree funcoid f € pFCD(2L,B) is monovalued iff

VI,J €3 (f UM J) = HIn{f

PROOF. 2 and B are complete lattices (corollary 518).

(%8, 31) is a filtrator with separable core by theorem 537.

(%8, 31) is binarily meet-closed by corollary 536.

2 and ‘B are starrish by corollary 531.

(2, 30) is with separable core by theorem 537.

We are under conditions of theorem 1617 for the pointfree funcoid f~1.
=. Obvious (taking into account that (25, 3;) is binarily meet-closed).
.

<*>w>:
(W) w?@ng) =
.

" 31 g
> I eupZ, Jeupj}

{
H{Iifugéﬁ”;pj}

|—| II_I J
IEupI,JEUpJ

(! }
{5 {5
DT

(T (f
(used theorem 1617, corollary 521, theorem 1606).
O

ProprosITION 1701. Let 2 be an atomistic meet-semilattice with least element,
B be an atomistic bounded meet-semilattice. Then if f, g are pointfree funcoids
from A to B, f C g and g is monovalued then g|qom r = f-

PROOF. Obviously gldaom f = f. Suppose for contrary that ¢g|aom ¢ T f. Then
there exists an atom a € atomsdom f such that (g|aom f)a # (f)a that is (g)a C
(f)a what is impossible. O
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20.14. Elements closed regarding a pointfree funcoid
Let A be a poset. Let f € pFCD(2, ).

DEFINITION 1702. Let’s call closed regarding a pointfree funcoid f such element
a € A that (f)a C a.

PROPOSITION 1703. If ¢ and j are closed (regarding a pointfree funcoid f €
pFCD(2, 1)), S is a set of closed elements (regarding f), then

1°. iU j is a closed element, if 2 is a separable starrish join-semilattice;
2°. []S is a closed element if 2 is a strongly separable complete lattice.

PROOF. ()(iLU7) = (f)iU{f)j CiLj (theorem 1606), (f)[1S C [((f))"S C
[1S (used strong separability of 2 twice). Consequently the elements i1l j and [ ].S
are closed. O

PROPOSITION 1704. If S is a set of elements closed regarding a complete point-
free funcoid f with strongly separable destination which is a complete lattice, then
the element | | S is also closed regarding our funcoid.

PrOOF. (f) IS =LI{(f)"SELIS. 0
20.15. Connectedness regarding a pointfree funcoid
Let 2 be a poset with least element. Let u € pFCD(2(,2).

DEFINITION 1705. An element a € 2 is called connected regarding a pointfree
funcoid p over 2 when

Ve,y € A\ {L?}: (2 Uy =a =z [u] y).

PROPOSITION 1706. Let (2,3) be a co-separable filtrator with finitely join-
closed core. An A € 3 is connected regarding a funcoid p iff

VX, Y €3\ {13} : (X3 Y =A4= X [y V).

PROOF.
=. Obvious.
<. Follows from co-separability.
O

OBvIous 1707. For 2 being a set of filters over a boolean lattice, an element
a € A is connected regarding a pointfree funcoid p iff it is connected regarding the
funcoid 1M (a x7P ).

EXERCISE 1708. Consider above without requirement of existence of least ele-
ment.

20.16. Boolean funcoids
I call boolean funcoids pointfree funcoids between boolean lattices.

PRroPOSITION 1709. Every pointfree funcoid, whose source is a complete and
completely starrish and whose destination is complete and completely starrish and
separable, is complete.

PRrROOF. It’s enough to prove (f) | |S = |[{{f))*S for our pointfree funcoid f
for every S € & Src f.

Really, Y # (fUS e US # (MY ©3X e S: X £ (f1)Y & 3X €
S:Y £ ()X &Y £ |J{{(f)"S for every Y € Dst f and thus we have (f)[ ]S =
LI{{f))"S because Dst f is separable. O
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REMARK 1710. It seems that this theorem can be generalized for non-complete
lattices.

COROLLARY 1711. Every boolean funcoid is complete and co-complete.
PRrROOF. Using proposition 226 and corollary 89. U

THEOREM 1712. Let 2, 8 be complete boolean lattices.
A function a € B* is equal to the component (f) of a pointree funcoid f €
pFCD(2L, ) iff « is preserving all joins (= lower adjoint).

PROOF. Let a € B and preserves all joins. Then a € .Z(B)% (We equate
principal filters of the set .#2 of filters on 2 with elements of ). Thus (theo-
rem 1618) o = (g)* for some g € pFCD(.ZA, F*B).

(g1 e Z ()7,

Let y € B. We need to prove (g7 1)y € A that is | |S # (¢ Ny < Jx € S :
(g7 YYy # x for every S € 2.

Really, [ |S £ (g7 )y« y 4 (@ US «y#4U(9)' S IweS:y#(gr e
Jr e S: (g7 Yy # .
Take 3 = (g~')*. We have 5 € A%.

r# By ety e ytgr ey kar
So (2,8, «, 8) is a pointfree funcoid.

The other direction: Let now f € pFCD(2(,B). We need to prove that it
preserves all joins. But it was proved above. O

CONJECTURE 1713. Let 2, B be boolean lattices.

A function o € B* is equal to the component (f) of a pointfree funcoid f €
pFCD(2,B) iff av is a lower adjoint.

It is tempting to conclude that (f) is a lower adjoint to < f _1>. But that’s false:

We should disprove that (f)X CY < X T (f~1)Y.

For a counter-example, take f = {0} x N. Then our condition takes form
Y =N& X C {0} for X 30,Y >0 what obviously does not hold.

20.17. Binary relations are pointfree funcoids
Below for simplicity we will equate 7 A with ZA.

THEOREM 1714. Pointfree funcoids f between powerset posets 7 A and 7 B
bijectively (moreover this bijection is an order-isomorphism) correspond to mor-
phisms p € Rel(4, B) by the formulas:

=" FH=e"" (30)
(z,y) € GRp sy e (f{z} &z e (fH){yh (31)
PROOF. Suppose p € Rel(A4, B) and prove that there is a pointfree funcoid f
conforming to (30). Really, for every X € A, Y € 9B
VANX Y AP XY £ PpX e

XAP WY X4 ) YeX£(NY

Now suppose f € pFCD(J A, 7 B) and prove that the relation defined by the
formula (31) exists. To prove it, it’s enough to show that y € (f){z} & =z €

<f_1>{y}. Really,
ye (NMzy oyt £ (e o e A )y ez e ()

It remains to prove that functions defined by (30) and (31) are mutually inverse.
(That these functions are monotone is obvious.)
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Let po € Rel(A, B) and f € pFCD(.7 A, 7 B) corresponds to pg by the for-
mula (30); let p; € Rel(A, B) corresponds to f by the formula (31). Then py = p;
because

(z,y) € GRpo & y € (po) {z} & y € (f){z} & (2,y) € GRp1.

Let now fo € pFCD(J A, 7 B) and p € Rel(A, B) corresponds to fy by the

formula (31); let f; € pFCD(7 A, .7 B) corresponds to p by the formula (30). Then

(z,y) € GRp < y € (fo){z} and (f1) = (p)"; thus
ye (fifz} e yep){z} & (z,y) € GRp &y € (fo){z}.
So (fo) = (f1). Similarly (f3') = (fi ). O

PROPOSITION 1715. The bijection defined by the theorem 1714 preserves com-

position and identities, that is is a functor between categories Rel and (A, B) —
pFCD(J A, 7 B).

PROOF. Let (f) = (p)” and (g) = {g)". Then (go f) = (g)o(f) = (q)"o(p)" =

(gop)”. Likewise ((go f)~') = ((gop)~')". So it preserves composition.
Let p = 11, for some set A. Then (f) = (p)" = <1i:4{el>* = idp4 and likewise
(f7') =idwa, that is f is an identity pointfree funcoid. So it preserves identities.
[l

PrOPOSITION 1716. The bijection defined by theorem 1714 preserves reversal.
ProoF. (f~1) = (p~1)". O

PRrROPOSITION 1717. The bijection defined by theorem 1714 preserves monoval-
uedness and injectivity.

PROOF. Because it is a functor which preserves reversal. O

PRrROPOSITION 1718. The bijection defined by theorem 1714 preserves domain
an image.

PROOF. im f = (f)T = (p)*T = imp, likewise for domain. O

ProroOSITION 1719. The bijection defined by theorem 1714 maps cartesian
products to corresponding funcoidal products.

ProoF. (AXFPB)X = B %f Xrd = (AxB)"X. Likewise
1 ifX <A
(AxFPB)=1Y = {((Ax B)~1)"Y. O

»»» > master



CHAPTER 21

Alternative representations of binary relations

THEOREM 1720. Let A and B be fixed sets. The diagram at the figure 11
is a commutative diagram (in category Set), every arrow in this diagram is an
isomorphism. Every cycle in this diagram is an identity. All “parallel” arrows are
mutually inverse.

For a Galois connection f I denote f; the lower adjoint and f; the upper adjoint.
For simplicity, in the diagram I equate £ A and 7 A.

PRrOOF. First, note that despite we use the notation \I/Z-_l, it is not yet proved
that W, ! is the inverse of ¥;. We will prove it below.

Now prove a list of claims. First concentrate on the upper “triangle” of the
diagram (the lower one will be considered later).

Claim: {%} = {me(afcff{)y }} when f is an antitone Galois connection be-
tween Z A and ¥ B.

Proof: y € fo{z} < {y} C fo{z} & {2} C fily} & z € fi{y}. u
Claim:  (X=Meoxy 1y (OaY = Myeayvy iy (7 H0)=(X=Moex M} Y= M,er (£ {0})
when f is a pointfree funcoid between A and & B.

Proof: It is enough to prove [],cox\(11(f)z = [1,ex(f){z} (the rest follows

from symmetry). [,ezx\(1y (e E Mex (£){z} because 7x\ {1} 2 {2} }.
HzggX\{L}<f>x 3 [Teex(fH{z} because if x € FX \ {1} then we can take
' € z that is {2/} C =z and thus (f)xz I (f){z'}, so erﬂX\{L}<f>x |
Mo xy (P2} 2T ex (FHa} |

Claim: (24, 2B, X = U,ezxy 1) Jors Y = Uyery 1y f1v) =

(@A, PB, X = |ex folz}h, Y = Uyey fl{y}) when f is an antitone Galois
connection between A and & B.

Proof: It is enough to prove | |,¢ 7\ (1} for = L,ex fo{z} (the rest follows from
symmetry). We have | |, c 7\ 1} for 2 [,cx fo{z} because {z} € X \{L}. Let
r e X\ {L}. Take 2’ € X. We have fox C fo{z'} and thus fox C | | . fo{z}.
So Uyezx\qoy for E Lex fofz}- u
Claim: \Il?j1 =WUy0W,.

Proof: UoW,f = (@A, PB, X s {W}Y}—) {m}) -

(@A, PB,X 5 yex fola}. Y = Loy fl{y}) —u;lf m
Claim: W3 = U7 ' oWyt

. —1-1 _ _ yeB _ x€A _
Proof: ¥;7%, f = (X = {Vwexy{z}m{y} }7Y = {Ver:{w}[f]{y} }) =

(¥ = (st ) ¥+ {swereiom }) _
(X — HmeX<f>{x}, Y — |_|y€Y<f71>{y}) =Usf. ]

343
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binary relations
between A and B

7 ~
pointfree funcoids antitone Galois

between connections
between
s and 78 YA and B

N s

Galois connections
between A and B

v fo Gl - (e )

\111—1. res (X»—){%},YH{#%})
\112 v (PA,PB, (1), (1))

o
Us. fro (X = [eongy(HeY = Hyeyy\{¢}<f_l>y) =
X o Moex (b Y o My (7))
Uil fe (@A, PB.X o ey ot Y = Uye v (1 f1y> =
PA,PBX 5 ey folah Y = Loy fl{y})
X =l herx\ iz Y — HyeﬂY\{L}<f71>ﬁy) =
X Upeaxyyuy (e Y — I_IyeﬂY\{J_}<f_l>ﬁy) =
X A ex (Nl Y o Ty (F 1) ~{w}) =
X o Upex ~(MHeh Y = My (F7)~{0)
e (714’ B, X = | erx\i1y for, Y = Uye a1y flﬁy) =
PA,PB.X = [oerxyy for. Y = Lyeoyi fl—\y) =
PA,PBX > Uex ~fofahY = Uyey in{u}) =
PA,PBX = ~[ex SolehY = Uyey fim{u})
s =0t frs (mofo, from)

P Ve

7

Uy. f’—)

TN NN

TN NN

FIGURE 11

Claim: ¥; maps antitone Galois connections between #A and & B into binary
relations between A and B.

Proof: Obvious. |
Claim: W' maps binary relations between A and B into antitone Galois connec-
tions between A and £ B.

Proof: We need to prove Y C {#B;y} e X C {#‘iw} After we equiva-

lently rewrite it:

VyeYVeeX:zryeVzeXVyeY  xzry
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it becomes obvious. |
Claim: ¥4 maps binary relations between A and B into pointfree funcoids be-
tween Z A and #B.

Proof: We need to prove that f = (ZA, ZB,(f), <f*1>) is a pointfree funcoids
that is Y # (/)X < X # (f1)Y. Really, for every X € 7A,Y € B

YA(NHXSY £ M XY £MX e
XA W X £ ) YeX£(f 1Y

|
Claim: ¥y ! maps pointfree funcoids between ZA and ZB into binary relations
between A and B.
Proof: Suppose f € pFCD(.7 A, J B) and prove that the relation defined by the
formula W5' exists. To prove it, it’s enough to show that y € (f){z} & z €

<f’1 > {y}. Really,

y € (M} &y # (e} e (o} £ (O e 2 e () )

|
Claim: W3 maps pointfree funcoids between ZA and & B into antitone Galois
connections between ZA and & B.
Proof: Because W3 = W' o U5t u
Claim: ¥; ' maps antitone Galois connections between ZA and &B into pointfree
funcoids between A and ZB.
Proof: Because \Ifgl = Wy0 Wy, [ |
Claim: ¥y and ¥5 ' are mutually inverse.
Proof: Let rg € #(A x B) and f € pFCD(J A, 9 B) corresponds to 7o by the
formula Wq; let 11 € Z2(A x B) corresponds to f by the formula \112_1. Then ro = 71
because

(z,y) €ro &y (ro){z} & ye (fi{zr} & (v,y) €r.

Let now fy € pFCD(J A, 7 B) and r € &(A x B) corresponds to fy by the
formula W5 '; let f; € pFCD(.7 A, .7 B) corresponds to r by the formula ¥y, Then
(2.) € 7 & y € (fo){x} and (1) = (r)"; thus

ve e} &y e () o) & (@) €r sy e (o)ah

So (fo) = (f1). Similarly (f3") = (fi ). [ ]

Claim: ¥; and \Ill_1 are mutually inverse.
Proof: Let 79 € 2(AxB) and f € 7 A®.7 B corresponds to 7 by the formula ¥ *;
let 1 € Z(A x B) corresponds to f by the formula ¥;. Then rg = r; because

€eB
(%y)Gn@yGfo{w}@ye{y}@wroy.
rTroy

Let now fo € AR B andr € P(Ax B) corresponds to fy by the formula Wy;
let f1 € ZA® J B corresponds to r by the formula \Ill_l. Then fy = f1 because

FloX = yebB _ yeB _
10 VieX:axry Ve e X :yé€ foolz}

|_| foo{z} = (obvious 142) = fpoX.
reX

|
Claim: ¥z and U5 ! are mutually inverse.
Proof: Because W5 ' = Wy0 Wy and ¥y = U, ' o U, " and that W;! is the inverse of
Uy and ¥y Lis the inverse of U3 were proved above. |
Now switch to the lower “triangle”:
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Claim: (X = Ueeaxyiiy 7oz Y = Lo i1y fl_‘y> =
(X = Lyex ~folah Y o Uyey fin{n})-

Proof: It is enough to prove | |, ¢ 7\ (1} ~for = ,cx ~fo{z} for a Galois connec-
tion f (the rest follows from symmetry).

Usezx\g1y ~for 2 U,ex ~fo{z} because {z} € X\ {L}. Ifz € 7X\{Ll}
then there exists ' € {z} and thus = fo{2'} 3 = fox. Thus —foxr C | | .y ~fo{z}

and so | |,c 7 x\ (13 fox E L, ex ~fo{z} [ |
Claim: ¥y is self-inverse.

Proof: Obvious. |
Claim: \IJ4 = \115 o} \113.

Proof: Easily follows from symmetry. |
Claim: U, ' = ¥ oW !,

Proof: Easily follows from symmetry. |

Claim: ¥, and ¥, ' are mutually inverse.

Proof: From two above claims and the fact that W3 is the inverse of W3 and W;!

is the inverse of W5 proved above. |
Note that now we have proved that ¥; and ;' are mutually inverse for all

1=1,2,3,4,5.

Claim: For every path of the diagram on figure 12 started with the circled node,

the corresponding morphism is with which the node is labeled.

ot vt
\112 \I/l
U3 1
W, v
vyt
Wy
vt ;/5:\1'51
U500t
FIGURE 12

Proof: Take into account that \Ilgl =Wy0Wy, ¥y = U50W3 and thus also ¥40¥, =
U5 0 UL, Now prove it by induction on path length. |
Claim: Every cycle in the diagram at figure 11 is identity.

Proof: For cycles starting at the top node it follows from the previous claim. For

arbitrary cycles it follows from theorem 195. |

Claim: The diagram at figure 11 is commutative.

Proof: From the previous claim. |
O

PROPOSITION 1721. We equate the set of binary relations between A and B
with RId(4, B). ¥, and \112—1 from the diagram at figure 11 preserve compo-
sition and identities (that are functors between categories Rel and (A4, B) —
pFCD(7 A, 7 B)) and also reversal (f — f~1).

PROOF. Let (f) = (p)” and (g) = (¢)". Then (go f) = (g)o(f) = {g)" o (p)" =
(gop)”. Likewise ((go f)™') = {((qgop)™") . So @y preserves composition.

Let p = 144 for some set A. Then (f) = (p)* = (1) = id»a and likewise
< f _1> = idg 4, that is f is an identity pointfree funcoid. So ®- preserves identities.
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That ®5 1 preserves composition and identities follows from the fact that it is
an isomorphism.
That is preserves reversal follows from the formula (f~') = <p*1>*. O

ProOPOSITION 1722. The bijections ¥ and \112_1 from the diagram at figure 11
preserves monovaluedness and injectivity.

PROOF. Because it is a functor which preserves reversal. O

ProOPOSITION 1723. The bijections ¥ and \112_1 from the diagram at figure 11
preserves domain an image.

PROOF. im f = (f)T = (p)*T = im p, likewise for domain. O

ProprosiTION 1724. The bijections Wy and \1151 from the diagram at figure 11
maps cartesian products to corresponding funcoidal products.

PrOOF. (AXFPB)X = B ?f X74A = (AxB)"X. Likewise
1 fXx<A
((AxFP B)™ 1YY = ((Ax B)"1)'Y. O

Let ® map a pointfree funcoid whose first component is ¢ into the Galois con-
nection whose lower adjoint is ¢. Then @ is an isomorphism (theorem 1712) and
®~! maps a Galois connection whose lower adjoint is ¢ into the pointfree funcoid
whose first component is c.

Informally speaking, ® replaces a relation r with its complement relations —r.
Formally:

PROPOSITION 1725.

1°. For every path P in the diagram at figure 11 from binary relations between
A and B to pointfree funcoids between Z A and & B and every path @ in
the diagram at figure 11 from Galois connections between ZA and & B
to binary relations between A and B, we have Q®Pr = —r.

2°. For every path @ in the diagram at figure 11 from binary relations between
A and B to pointfree funcoids between # A and & B and every path P in
the diagram at figure 11 from Galois connections between ZA and & B
to binary relations between A and B, we have P®~1Qr = —r.

PROOF. We will prove only the second (P o ®~! o @Q = —), because the first
(Q o ® o P = ~) can be obtained from it by inverting the morphisms (and variable
replacement).

Because the diagram is commutative, it is enough to prove it for some fixed P
and Q. For example, we will prove \Pgl¢_1\II4\I/2r = —r.

Walr = (X = 2 aex () (2} Y o Myey (0 (0}).

&~ 104 Wyr is pointfree funcoid f with (f) = X — =[], oy (r) {2}

U, 1 ®— W, Wyr is the relation consisting of (z,y) such that {z} [f] {y} what is
equivalent to: {y} % (f){z}; {y} # ~(r){a}; {y} L () {z} y ¢ (n){=}.

So U, o1, Uyr = —r. 0

PROPOSITION 1726. ® and ®~! preserve composition.

PROOF. By definitions of compositions and the fact that both pointfree fun-
coids and Galois connections are determined by the first component. (]



Part 4

Staroids and multifuncoids



CHAPTER 22
Disjoint product

I remind that [T X = U,cqom x (4, Xi) for every indexed family X of sets.

OBvious 1727. [] X € Set(dom X, im X).

DEFINITION 1728. I will call disjoint join of an indexed family & of filters the
following reloid: [T X = [ ];cqom ({7} xR x).

22.1. Some funcoids

PROPOSITION 1729. (z + (i,2))X = {i} xRP X for every filter X.

PROOF. (z+ (i,2))X = ﬂ{%} - ﬂ{)?e}fp)gc} — [} xR0y, O

PROPOSITION 1730. {(z — (i,2))")X = im(X|(;) for a filter X on the set
U J{%} where % is a Grothendieck universe.

((w(i,2)) 1) " X

PROOF. ((z — (i,2)) " HX = I_I{)(GupX} = H{%i;ij}

z€im X |¢; . zeX|q; .
|_|{ Xeup;f}}:lml—I{XGup{é\}f}zlm(‘Xl{i})' O

22.2. Cartesian product of funcoids

22.2.1. Definition and basic properties.

DEFINITION 1731. Cartesian product of an indexed family f of funcoids is a

funcoid
(J)

[I7= | (@~ Ga)osio@ Ga)™)

i€dom f
PROPOSITION 1732. <H(‘]) f>X = Hiedomf<fi o (x> (i,x)_1>X-
Proor.

H <fl o(x (i,x)71>X =

i€dom f

L] (i} xBP (fio (@ (i,2)71)X) =

i€dom f

349
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22.2.2. Projections.
THEOREM 1733. f; can be restored from the value of H(‘]) f=rf
PROOF. f; = (x> (i,x)"1)o H(J) fo(zw (i,2)~!) (taken into account that
x — (i,2)"! is a principal funcoid). O
22.3. Arrow product of funcoids
DEFINITION 1734. Arrow product of an indexed family f of funcoids is a funcoid
—
[Ir= 1 (@=Gapet
i€dom f
PrOPOSITION 1735. ([T /)X = IT;cqom £(fi)X-

PROOF.

I ox=

i€dom f

L] (i} xR () =

i€dom f

L] G (o)) ifi)x) =

i€dom f

22.3.1. Projections.
DEFINITION 1736. Arrow projections m;” = (x + (i,x)) L.
THEOREM 1737. 7> o [[” f = fi

PROOF. Because 7;” is a principal funcoid, we have
—
ﬂ?OHf |_| (= (i,2)) " o (x (j,2)) 0 f;).

j€dom f
But (z — (i,2))"! o (z — (j,o)) is the idenitity if i = j or empty otherwise. So

o[ f=fi O

22.4. Cartesian product of reloids

22.4.1. Definition and basic properties.

DEFINITION 1738. Cartesian product of an indexed family f of reloids is a
reloid

()
[Ir= L] (@ Ga)ofio@r (i,2)™).

iedom f
CONJECTURE 1739. H(") (gof)= H(‘I)g o H(") f.
22.4.2. Projections.
THEOREM 1740. f; can be restored from the value of H(‘]) f=r.

PROOF. f; = (z+ (i,2)" ) o [[Y) fo(z s (4,2)7Y). O
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22.5. Arrow product of reloids

DEFINITION 1741. Arrow product of an indexed family f of reloids is a reloid
—
[Ir= L (@ Gapers
i€dom f
22.5.1. Projections.

DEFINITION 1742. Arrow projections w7 = (z + (i,x))~ L.

PROPOSITION 1743. 7177 o [[” f = fi.

PROOF. Because x + (i,z) is a pricipal funcoid, we have ;7 o [[~ f = 7" o
I—liEdomf((x = (l7x)) o fl = I_ljedomf((‘r = (i’x))71 o (fE = (j,fE)) o fZ

But (z + (i,2)) "o (x = (j,z) is the identity if i = j or empty otherwise. So
a7 o[ f=fi O



CHAPTER 23

Multifuncoids and staroids

23.1. Product of two funcoids
23.1.1. Definition.

DEFINITION 1744. T will call a quasi-invertible category a partially ordered
dagger category such that it holds

gof#heg#thoff (32)
for every morphisms f € Hom(A4, B), g € Hom(B,C), h € Hom(A, C), where A,
B, C are objects of this category.

Inverting this formula, we get fTo g % hf o g' % foh!. After replacement of
variables, this gives: ffog# h < g% foh.

EXERCISE 1745. Prove that every ordered groupoid is quasi-invertible category
if we define the dagger as the inverse morphism.

As it follows from above, the categories Rel of binary relations (proposi-
tion 283), FCD of funcoids (theorem 882) and RLD of reloids (theorem 1004) are
quasi-invertible (taking ff = f~!). Moreover the category of pointfree funcoids
between lattices of filters on boolean lattices is quasi-invertible (theorem 1659).

DEFINITION 1746. The cross-composition product of morphisms f and g
of a quasi-invertible category is the pointfree funcoid Hom(Src f,Srcg) —
Hom(Dst f,Dst g) defined by the formulas (for every a € Hom(Src f,Srcg) and
b € Hom(Dst f, Dst g)):

<f x(©) g>a =goaofl and <(f x (©) g)’1>b:gT obo f.
We need to prove that it is really a pointfree funcoid that is that
bt (%9 g)asas ((fx g,

This formula means b % goao ff < a % g obo f and can be easily proved applying
formula (32) twice.

PROPOSITION 1747. a [f x(@) g] b ao fT % gt ob.

PROOF. From the definition. O
PROPOSITION 1748. a [f x(@ gl b f [a x D b] g.

PrOOF. f [ax(©)b] g& foa® #blogeacfi#globealfx@Dglb O
THEOREM 1749. (f x(©) g)=1 = fT x(©) gt

PROOF. For every morphisms a € Hom(Src f, Src g) and b € Hom(Dst f, Dst g)
we have:

((f x(© gy b =gt obo f = (f x(© gt),
(f x D gy ) Ha=(fxDgla=goao fl=((f1 xVgH))a. O

352
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THEOREM 1750. Let f, g be pointfree funcoids between filters on boolean
lattices. Then for every filters Ag € F(Src f), By € F(Srcg)

(1 %19 g) (Ao X Bo) = () Ao P (g)5.

ProOF. For every atom a; x"P by (a; € atoms®s*f, b, € atomsPst9) (see
theorem 1677) of the lattice of funcoids we have:

ay xFP by # <f x (@) 9>(A0 x"P By)
Ay xFP B, {fx ©) } a; X" Pp &
(Ao xFeb Bo)oft#g o(ay x Feb b)) &
() Ao xFP By # ay xFP (g7)by &
(F) A0 £ a1 A (g~ " )b # By &
(F) Ao # a1 A (g)Bo % b1 <

(f)Ao x"P (g)Bo # ar xFP by.

Thus <f x (©) g>(Ao xFPC By) = (flAy xTP (g)By because the lattice
pFCD(Z# (Dst f),.# (Dst g)) is atomically separable (corollary 1668). O

COROLLARY 1751. Ay xFP By [f x(©@) g] Ay xFP By & Ay [f] A1 ABo [g] B
for every Ay € Z(Srcf), Ay € F(Dstf), By € F#(Srcyg), By € F#(Dstg) where
Src f, Dst f, Src g, Dst g are boolean lattices.

PROOF.
Ay xFP B, [f x(©) g} A xFP B, &
Ay xFP B, # <f x (©) g>A0 xFP B, <
A xFP By £ (f) Ay xFP (g)By =

(
Ay % (f) Ao A By % (9)Bo <
./40 [f] A1 A Bo [g} Bl.

23.2. Definition of staroids

It follows from the above theorem 831 that funcoids are essentially the same as
relations d between sets A and B, such that {nggb%} and {ayé{e%%} are
free stars. This inspires the below definition of staroids (switching from two sets X
and Y to a (potentially infinite) family of posets).

Whilst T have (mostly) thoroughly studied basic properties of funcoids, staroids
(defined below) are yet much a mystery. For example, we do not know whether the
set of staroids on powersets is atomic.

Let n be a set. As an example, n may be an ordinal, » may be a natural
number, considered as a set by the formula n = {0,...,n — 1}. Let A = A;c, be a
family of posets indexed by the set n.

DEFINITION 1752. T will call an anchored relation a pair f = (form f, GR f) of
a family form(f) of relational structures indexed by some index set and a relation
GR(f) € Z[]form(f). I call GR(f) the graph of the anchored relation f. I denote
Anch(2) the set of anchored relations of the form 2.
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DEFINITION 1753. Infinitary anchored relation is such an anchored relation
whose arity is infinite; finitary anchored relation is such an anchored relation whose
arity is finite.

DEFINITION 1754. An anchored relation on powersets is an anchored relation
f such that every (form f); is a powerset.

I will denote arity f = dom form f.

DEFINITION 1755. [f]” is the relation between typed elements T (form f); (for
i € arity f) defined by the formula L €[f]"< To L € GR f.

Every set of anchored relations of the same form constitutes a poset by the
formula f C g < GR f C GR g.

DEFINITION 1756. An anchored relation is an anchored relation between posets
when every (form f); is a poset.

DEFINITION 1757. (val f);L = {%}

PROPOSITION 1758. f can be restored knowing form(f) and (val f); for some
i € arity f.

ProoFr.
K e[formf]
GRf= { KeGRf } B
{ Lu{( X)} } _
L € [](form f)|carity p)\{i}, X € (form f);, LU{(3, X)} € GR f

{ Lu{(i,X)} }
L € [](form f)|(arity p)\{i}, X € (val f);L ’
O

DEFINITION 1759. A prestaroid is an anchored relation f between posets such
that (val f);L is a free star for every i € arity f, L € [[(form f)|(arity £)\{i}-

DEFINITION 1760. A staroid is a prestaroid whose graph is an upper set (on
the poset [] form(f)).

DEFINITION 1761. A (pre)staroid on power sets is such a (pre)staroid f that
every (form f); is a lattice of all subsets of some set.

PROPOSITION 1762. If L € [[form f and L; = L™ /)i for some i € arity f
then L ¢ GR f if f is a prestaroid.

PROOF. Let K = L|(arity r)\{i}- We have L ¢ (val f);K; KU{(i, L)} ¢ GR f;
L¢GR. O

Next we will define completary staroids. First goes the general case, next sim-
pler case for the special case of join-semilattices instead of arbitrary posets.

DEFINITION 1763. A completary staroid is an anchored relation between posets
conforming to the formulas:
1°. VK € [[form f : (K 3 LoAK 3 L; = K € GRf) is equivalent to
Je e {0,1}" 1 (Xi € n: Leyi) € GR f for every Lo, Ly € []form f.
2°. If L € [[form f and L; = 1 (Form )i for some i € arity f then L ¢ GR f.

LEMMA 1764. Every graph of completary staroid is an upper set.

ProOOF. Let f be a completary staroid. Let Ly T L; for some Lg,L; €
[[form f and Ly € GR f. Then taking ¢ = n x {0} we get \i € n : L.;)i =
AN €n: Logi =Ly € GR f and thus L; € GR f because L1 3 Lo A Ly 3 L. O
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PROPOSITION 1765. An anchored relation f between posets whose form is a
family of join-semilattices is a completary staroid iff both:

1°. Lo Ly € GRf & 3c € {0,1}" : (Mi € n: Lyyi) € GR f for every
Lo, Ly € [ form f.
20, If L € [[ form f and L; = L™ for some 4 € arity f then L ¢ GR f.
PROOF. Let the formulas 1° and 2° hold. Then f is an upper set: Let Ly C Ly
for some Ly, L1 € [[form f and Ly € f. Then taking ¢ = n x {0} we get Ai € n :
Lc(i)i =Xiéen: Lyt =Ly € GR f and thus L1 = Lo U L; € GR f.
Thus to finish the proof it is enough to show that

LoULi € GRf VK € [Jform f: (K 3 LyAK 3Ly = K € GR f)

under condition that GR f is an upper set. But this equivalence is obvious in both
directions. (]

PROPOSITION 1766. Every completary staroid is a staroid.
PRrROOF. Let f be a completary staroid.
Let i € arity f, K € [ic(anty g\ (s (form f)i. Let Lo = K U {(i, Xo)}, L1 =
K U{(i, X;)} for some Xy, X; € 2.
Let
VZ e, : (Zg XoNZdX1=Z € (valf)zK),
then

VZeW(ZIXgANZ DX, = KU{(i,2)} € GR §).

If 2 3 Lo Az 3 Ly then z J K U{(4, )}, thus taking into account that GR f is an
upper set,

Vze [[U: (22 LoAzD Ly = KU{(i,%)} € GR f).
Vze[[%: (:23LoAz3 L1 =2€GRY).

Thus, by the definition of completary staroid, Ly € GR f V L; € GR f that is
Xo € (val f); KV Xy € (val ), K.

So (val f); K is a free star (taken into account that z; = 1 frmfi = » ¢ GR f and
that (val f); K is an upper set). d

EXERCISE 1767. Write a simplified proof for the case if every (form f); is a
join-semilattice.

LEMMA 1768. Every finitary prestaroid is completary.
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PRrOOF.
Jee {0,1}" : (Mien: Ly;i) € GR f &
({(n—1,Lo(n— 1))} U (M €n—1: L) € GRfv)

dee {0,137 <({(n_1 Li(n =1))}U (N €n—1: Lyyi)) € GR f

e (T S S ) -
3CE{Oal}n_lVK€(formf)i:( K JLo(n =1 VK ILi(n-1)= )@
K € (val f)p—1(Ai €n—1: Leyyi)
3Ce{()vl}n_1VK€(formf)iZ( K JLo(n—=1)VKJLi(n—-1) ><:>
{(n=1,K)JUu(Aien—1:Lei) € GRf
VKéHformf:(KQLOAKngéKGGRf).
O

EXERCISE 1769. Prove the simpler special case of the above theorem when the
form is a family of join-semilattices.

THEOREM 1770. For finite arity the following are the same:

1°. prestaroids;
2°. staroids;
3°. completary staroids.

PROOF. f is a finitary prestaroid = f is a finitary completary staroid.
f is a finitary completary staroid = f is a finitary staroid.
f is a finitary staroid = f is a finitary prestaroid. O

DEFINITION 1771. We will denote the set of staroids of a form 2 as Strd(2().

23.3. Upgrading and downgrading a set regarding a filtrator
Let fix a filtrator (2, 3).
DEFINITION 1772. || f = f N3 for every f € P (downgrading f).

DEFINITION 1773. 1T f = {ﬁ} for every f € 23 (upgrading f).

OBVIOUS 1774. a €] f < upa C f for every f € 3 and a € 2.
ProrosiTiON 1775. ||1T f = f if f is an upper set for every f € £23.

PROOF. umfznfm:{u;ggf}:{g—g}:fmz,:f. 0

23.3.1. Upgrading and downgrading staroids. Let fix a family (2, 3) of
filtrators.
For a graph f of an anchored relation between posets define || f and T f

taking the filtrator of ([, ] 3).
For a anchored relation between posets f define:
foorm || f=3 and GR || f=]| GRf;
form 7T f=2A and GR 1] f =1 GR f.

Below we will show that under certain conditions upgraded staroid is a staroid,
see theorem 1800.
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PROPOSITION 1776. (val || f);L = (val f); LN 3; for every L € [] 3|arity £)\{i}-

. _ Xe3; — _ Xe3i
ProoF. (val || f)iL = { LU{(i,X)}eGR fn] [ 3 } - {Lu{(i,X)}eGRf}
(val f);L N 3;.

PROPOSITION 1777. Let (2;, 3;) be binarily join-closed filtrators with both the
base and the core being join-semilattices. If f is a staroid of the form 2, then || f
is a staroid of the form 3.

PRrROOF. Let f be a staroid.
We need to prove that (val || f);L is a free star. It follows from the last
proposition and the fact that it is binarily join-closed. O

PROPOSITION 1778. Let each (2;, 3;) for i € n (where n is an index set) be a
binarily join-closed filtrator, such that each 2; and each 3; are join-semilattices. If
f is a completary staroid of the form 2 then || f is a completary staroid of the
form 3.

PROOF.

LolPLieCGR fe LWL eGRf& Ly L eGRf <
Je e {0,1}" : (Mi€n: Lyyyi) € GR f <
306{0,1}” : ()\iG?’LZLC(i)i) eGR || f

for every Lo, L1 € ][] 3. O

23.4. Principal staroids

DEFINITION 1779. The staroid generated by an anchored relation F' is the
staroid f =154 F on powersets such that + oL € GR f < [[ L # F and (form f); =
T (form F); for every L € ] T (form F);.

i€arity f

REMARK 1780. Below we will prove that staroid generated by an anchored
relation is a staroid and moreover a completary staroid.

DEFINITION 1781. A principal staroid is a staroid generated by some anchored
relation.

ProrosiTiON 1782. Every principal staroid is a completary staroid.

Proor. That L ¢ GR f if L; = LForm fi for some i € arity f is obvious. It
remains to prove

[[(Zou L)) # F e 3ee {0,135 ] Lewyi # F.

SO
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Really
[[(ZouL) #F &
Jee[[(Louly):zeFe

dx € H (form f);Vi € arity f : (x; € LoiULji Az € F) &
i€arity f

dz € H (form f);Vi € arity f : ((z; € Lot Va; € Lyi) ANz € F) &
i€arity f

dr e H (form f); | Fe € {0,1}1¥ 7/ . 5 € H LepyinzeF | <

i€arity f i€arity f

e € {0,139 ] Leqayi # F-
1EN

O

DEFINITION 1783. The upgraded staroid generated by an anchored relation F
is the anchored relation 1115t F.

PROPOSITION 1784. 45td Fr — || 1115t F.
PROOF. Because GR 15t F' is an upper set. -

ExaMPLE 1785. There is such anchored relation f that 71 f is not a com-
pletary staroid. This also proves existence of non-completary staroids (but not on
powersets).

PROOF. (based on an ANDREAS BLASS’s proof) Take f the set of functions
0 ifn <z
1 ifn>xg
for i =1,2,3,.... Thus f is the graph of a staroid of the form \i € N : &N (on
powersets).

Let £o(0) = £1(0) = Q(N), Lo(i) =1 {0} and £ () =1 {1} for i > 0.

Let X € up(Lo U L) that is X € up Lo Nup L;.

X contains all but finitely many elements of N.

For ¢ > 0 we have {0,1} C X;.

Evidently, [[ X contains an element of f, that is up(Lo U £1) € f what means
LoU Ly €Nt S

Now consider any fixed ¢ € {0,1}. There is at most one & € N such that
the sequence = = [k, c(1),¢(2),...] (i.e. ¢ with ¢(0) replaced by k) is in f. Let
Q = N\ {k} if there is such a k and @ = N otherwise.

Take Y; = ?c(z)} iz;g for i = 0,1,2,.... We have Y € up(Xi € N :
Lei)(i)) for every ¢ € {0,1}".

But evidently [[Y does not contain an element of f. Thus, [[Y = f that is
Y ¢ fiuY ¢ f;Y ¢ GR 111 f what is impossible if 11 f is completary. O

z : N — N where zg is an arbitrary natural number and x; =

EXAMPLE 1786. There exists such an (infinite) set N and N-ary relation f
that P € GR 111 f but there is no indexed family a € [, atomsP; of atomic
filters such that a € GR 171 f that is VA € upa : f # ] A.

PRrOOF. Take Ly, £1 and f from the proof of example 1785. Take P = LoUL;.
If a € [, v atoms P; then there exists ¢ € {0,1}" such that a; T L.(;)(i) (because
Leiy(i) # L). Then from that example it follows that (\i € N : Lo (7)) ¢ GR 1171
f and thus a ¢ GR 1171 f. O
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CONJECTURE 1787. Filtrators of staroids on powersets are join-closed.

23.5. Multifuncoids

DEFINITION 1788. Let (2;,3;) (where ¢ € n for an index set n) be an indexed
family of filtrators.

I call a mult f of the form (2;,3;) the triple f = (base f, core f, (f)") of n-
indexed families of posets base f and core f and (f)" of functions where for every
1EN

(15 + T (core £)il(oma iy — (base f);.
I call (base f, core f) the form of the mult f.

REMARK 1789. I call it mult because it comprises multiple functions (f):

DEFINITION 1790. A mult on powersets is a mult such that every
((base f);, (core f);) is a powerset filtrator.

DEFINITION 1791. T will call a relational mult a mult f such that every (base f);
is a set and for every 4,7 € n and L € [] core f
Li € (f); Lltaom L)\ (i} € Lj € (£); Ll(dom L)\ {5} -
I denote arity f = n.

DEFINITION 1792. Prestaroidal mult is a relational mult of the form (2, Ai €
dom®A : &(2;)) (where 2 is a poset), that is such that (f); L is a free star for every

i €nand L € [[;cqom )\ () core fi-
DEFINITION 1793. T will call a multifuncoid a mult f such that (core f); C

(base f); (thus having a filtrator ((base f);, (core f);)) for each ¢ € n and for every
i,7€mnand L € []core f

Li % ()i Lltaom o)\ (iy € Lj # ()} Lltdom L)\ {5} - (33)
I denote the set of multifuncoids for a family (2, 3) of filtrators as pFCD(2l, 3) or
just pFCD(2A) when 3 is clear from context.

DEFINITION 1794. To every multifuncoid f corresponds an anchored relation g
by the formula (with arbitrary i € arity f)

LeGRg e Li # (f)ILl(dom £)\{i}-

PROPOSITION 1795. Prestaroidal mults Ag = f of the form (3, € dom 3 :
&(3;)) bijectively correspond to pre-staroids g of the form 3 by the formulas (for
every K € [[3,i€dom3, L€ Hje(domm)\{i} 3j, X € 3i)

K € GRg & K; € (f); Kl(dom L)\{i}: (34)

Xe(fiiL< LU{(i,X)} € GRy. (35)

PRrROOF. If f is a prestaroidal mult, then obviously formula (34) defines an

anchored relation between posets. (valg); = (f);L is a free star. Thus g is a
prestaroid.

If ¢ is a prestaroid, then obviously formula (35) defines a relational mult. This
mult is obviously prestaroidal.

It remains to prove that these correspondences are inverse of each other.

Let fy be a prestaroidal mult, g be the pre-staroid corresponding to f by
formula (34), and f; be the prestaroidal mult corresponding to g by formula (35).
Let’s prove fo = f1. Really,

Xe(fi)iLe LU{(i, X)) e GRgs X € (fo)iL.
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Let now gg be a prestaroid, f be a prestaroidal mult corresponding to gg by
formula (35), and g; be a prestaroid corresponding to f by formula (34). Let’s
prove go = g1. Really,

K € GRg1 & K; € (f); K|(om £)\{i} © Kl(dom £)\(13U{(5, Ki)} € GR go & K € GR go.
O

DEFINITION 1796. I will denote [f]*= GR g for the prestaroidal mult f corre-
sponding to anchored relation g.

PROPOSITION 1797. For a form (3,Ai € dom3 : &(3;)) where each 3; is a
boolean lattice, relational mults are the same as multifuncoids (if we equate poset
elements with principal free stars).

PROOF.

(Li # (f); Ll(dom L\ (i} © Lj # ()] Ll (dom L)\ (5}) ©
(Li € 0(f); Ll(dom L)\ iy € Lj € O(F); Ll(gom L)\ (j}) ©
(Li € {f); Ll(dom L)\ (i} © Lj € () Ll(dom L)\ (5})-
O

THEOREM 1798. Fix some indexed family 3 of join semi-lattices.

(val £);(LUA{(i, X UY)}) = (val f); (L U{(z, X)}) U (val £); (L U{(:,Y)})
for every prestaroid f of the form 3 and ¢,j € arity f, i # j, L € erL\{iJ} 3k,
X, Y e 31

PRrROOF. Let i,j € arity f, i # j and L € erL\{ij} 3k. Let Z € 3;.

€ (val f);(LU{(;, X UY)}) &
Lu{(z XUY),(j,2)}eGR f &
XUY e (valf);(LU{(4,2)}) &
X e(valf)i(LUL(4,2)}) VY € (val f)i(LU{(5, 2)}) &
Lu{(i,X),(4,2)} e GRfVLU{(4Y),(5,2)} eGR f &
Z € (val f);(LU{(;, X)}) V Z € (val f);(LU{(i,Y)}) &
Z € (val f);(LU{(i,X)}) U (val f);(LU{(i,Y)})
Z € (val f);(LU{(i,X)}) U (val f);(LU{(i,Y)})
Thus (val f);(LU{(i, X UY)}) = (val f);(LU{(i, X)}) U (val f);(LU{(i,Y)}). O

Let us consider the filtrator (Hiearityf &((form f):), [ [;carity f(form f)l)

€
U
L
U

CONJECTURE 1799. A finitary anchored relation between join-semilattices is a
staroid iff (val f),;(LU{({, X UY)}) = (val f);(LU{(5, X)}) U (val f);(LU{(:,Y)})
for every i, j € arity f (i # j) and X, Y € (form f);.

THEOREM 1800. Let (2;, 3;) be a family of join-closed down-aligned filtrators
whose both base and core are join-semilattices. Let f be a staroid of the form 3.
Then 17 f is a staroid of the form 2.

PRrOOF. First prove that {7 f is a prestaroid. We need to prove that 1 ¢
(GR 11 f)i (that is upL € (GR f); that is L ¢ (GR f); what is true by the
theorem conditions) and that for every X, Y € ; and £ € H \(i} i where
i € arity f

LU{(i,XUY)}€GRT fe LU{(L,X)}eGRT FVLU{(GY)} € GRT .

i€ (arity f)
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The reverse implication is obvious. Let LU{(i, X UY)} € GR 1T f. Then for every
LeupLand X cup, Y €up) we have LU {(i, X U3 Y)} € GR f and thus
Lu{(#,X)}eGRfVLU{(:Y)} eGRf

consequently LU {(i,X)} € GR 1T fVLU{(:,Y)} € GR 1] f.
It is left to prove that 17 f is an upper set, but this is obvious. O

There is a conjecture similar to the above theorems:

CoNsecTURE 1801. L €11 [f]" =11 [f]" N [Licaom o atoms L; # 0 for every
multifuncoid f for the filtrator (F™, 3™).

CONJECTURE 1802. Let (21, 3) be a powerset filtrator, let n be an index set.
Consider the filtrator (.#™,3™). Then if f is a completary staroid of the form 3™,
then 17 f is a completary staroid of the form 2A™.

ExXAMPLE 1803. There is such an anchored relation f that for some k£ € dom f

(M1 f)"kL # | ] (111 f)ra.

aEHie(dom PN(ED atoms L
ProOOF. Take P € GR f from the counter-example 1786. We have

Ya € H atomsP; : a ¢ GRP.
i€dom f
Take k = 1.

Let £ = P|(dom f)\{k}- Thena ¢ GR 111 f and thus a; =< (111 f)’kka\(domf)\{k}.
Consequently P = ar f>*ka|(d0mf)\{k} and thus Py =

* . . .
a because Py, is principal.
aeHie(domf)\{k} atoms£i<ﬁT f> k k p P

But Py # (Mt £ L. Thus follows (1171 il £
UGEHiE(domf)\(k} atoms £, {11 ) va. O

L

23.6. Join of multifuncoids

Mults are ordered by the formula f C g < (f)* C (g)" where C in the right
part of this formula is the product order. I will denote M, U, [], | | (without an
index) the order poset operations on the poset of mults.

REMARK 1804. To describe this, the definition of product order is used twice.
Let f and g be mults of the same form (2, 3)

(f)y"C{g)" & Viedom3: (f); C(9);;
(£); E9); © VL € [ 3lom3ngy : (F)i L E (9); L.

OBvious 1805. (L] F)K = | |;cp fK for every set I of mults of the same form
3 and K € [[3 whenever every | |, fK is defined.

THEOREM 1806. f LIPFCP() ¢ — £ 1 g for every multifuncoids f and g for the
same indexed family of starrish join-semilattices filtrators.

PROOF. ajz 2 (fi)*z U (g;)"x. Tt is enough to prove that « is a multifuncoid.

We need to prove:

L; # aiL|(@om p)\{iy < Lj % ajL|(dom L)\ {43}~
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Really,
Li # i L|(qom L)\ {i} &
Li % (fi)" Ll(dom £)\{i} U (9) " Ll (dom L)\ {i} &
Li # (fi)" Ll(aom )\ V Li # (9)" Ll(aom L)\ (i} <
Lj # (i) Lltaom g5y v Lj # (95) " Lltdom L)\ (5} ©
Lj # (£3)" Ll(@om L\ U (95) " Lldom L)\ (5} €
Lj # a; Ll (dom )\ (5}
[l

THEOREM 1807. UPFCD(Q[) F = | |F for every set F of multifuncoids for the
same indexed family of join infinite distributive complete lattices filtrators.

PROOF. a;x def L]feF<f>f1:. It is enough to prove that « is a multifuncoid.
We need to prove:
Li # @iL|(dom L)\{i} © Lj # @jLl(dom L)\ {5}
Really,
Li # a;L|(dom L)\ {i} &
L; % |_| (fi)"Ll(dom L)\ {3} &
feF
3f € F: Li #{fi)" Ll (dom L)\ (s} <
Af € F: Lj 4 {fi) Ll @om L)\ (5} ©
Li # | ()" Dldom vy <
fer
Lj # ajLl(@om )\ (5}
O
THEOREM 1808. If f, g are multifuncoids for a primary filtrator (2;, 3;) where
3, are separable starrish posets, then f LIPFCP() g € pFCD(2A).
PrOOF. Let A € [f LIPFCD() g]* and B J A. Then for every k € dom 2
A £ (FUPPP OV Al goman iy Ak # (UG Al@omangey; Ax #
() (Algoma\(x3) U g)" (Al dom 2\ ()- ) ) )
Thus Ag % (f)" (Al @oman(x}) V Ak % (9)" (Aloman\ (k1) A € [fI" VA € [g]7;
B e [fI"VBe[g]"; Br % (f)" (Bloman{r}y) V Br # (9) (B|(domil)\{k})§
B % (f)"(Bl(aoma\{x}) U (9) " (Bl(dom 20\ {x}); Br % (f U 9)" Bl(dom2\{k} =
(f LPFEPAY 00" Bl (dom 20)\ (£}
Thus B € [f LPFEPR g]™ O
THEOREM 1809. If F is a set of multifuncoids for the same indexed family of
join infinite distributive complete lattices filtrators, then UPFCD(Q[) F € pFCD(2).

ProOF. Let A € [UPFCD(Q[) F} and B J A. Then for every k € dom

Ay # <UPFCD(QU F> Al (dom 20\ {k} = (LUF)" Al (dom 20\ {1} =
I_IfeF<f>*(A|(dom2l)\{k})'

Thus Af € F : A, % <f>*(A‘(dole)\{k})7 dfeF: A E[f]*; B E[f]* for some
f e F;3f € F: By % (f) (Blomanis}); Br % Uper(f) (Blomanixy) =

(PP F) Bliaomayy sy Thus B € [PFP F] 0
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23.7. Infinite product of poset elements

Let A; be a family of elements of a family 2(; of posets. The staroidal product
1574 A is defined by the formula (for every L € []2)
Strd(2A) Strd(2A)
form J[[ A=2 and LeGR J] AeVicdomA: A4; # L.

ProrosITION 1810. If 2; are powerset algebras, staroidal product of principal

Strd
Tﬁ’

filters is essentially equivalent to Cartesian product. More precisely, [[7cqom a

Ay =115 [T A for an indexed family A of sets.
PRrROOF.
LeGRM™ ][4«

upL C GR 1% [[A &

VX ewlL: [[X#][A«
VX ecupl,icdomA: X; A, &
Vie domA: L; XT‘Q A, &
Strd
LeGR J] 174
i€dom A
O

COROLLARY 1811. Staroidal product of principal filters is an upgraded princi-
pal staroid.

PROPOSITION 1812. [[*™a =111] [[*" a if each a; € 2; (for i € n where n is
some index set) where each (;en, Jicn) is a filtrator with separable core.

PROOF.
Strd

GR 1T [Ja=

Lelld B
upL C 3NGR HStrd
Le]l
upL C GR HStrd

Le][A
VK cupL: K € GR[["™a

}
I-
{ Lell2 }
}
}

VK euplL,ien: K; ¥a;
Lelld
{‘v’zEnKEupL K, #£ a;
Lel]A
{VZEn L; %a;

Strd
GR H a

(taken into account that our filtrators are with a separable core). ]

THEOREM 1813. Staroidal product is a completary staroid (if our posets are
starrish join-semilattices).
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PrOOF. We need to prove
Vi € dom 2 : A1 # (L()Z (] Lll) & dee {0, 1}”VZ € dom% : A1 % Lc(z)l
Really,

Vi € dom 2 : Az 7{ (Lol ULli) & Vi e dom® : (Az X LotV A; ?é LlZ) =4
Je € {0,119 Vi € dom A : A; # Ly (yi.

O

DEFINITION 1814. Let (2;, 3;) be an indexed family of filtrators and every 2;

has least element.
Then for every A € [[2 funcoidal product is multifuncoid HFCD(Q[) A defined
by the formula (for every L € []3):

*

1% otherwise.

PROPOSITION 1815. GR[[*™®™) 4 = {]‘[FCD(Q‘) A] :

PROOF.

Strd(2A)
L eGR H A s

Viedom®A: A; £ L; &
V’LE(dOHlQ[)\{]{)}Azf\Lz/\ka\Ak@

*

FCD(2)
Ly, # < H A> L|(dom 20\ {k} <
k

Fco@) |

Le| ] 4

COROLLARY 1816. Funcoidal product is a completary multifuncoid.

PRrROOF. It is enough to prove that funcoidal product is a multifuncoid. Really,

*

FCD(2A)
Li # < 1T A> Lf(aoman\ {1} &

K3
*

FCD(2A)
Vi€ dom®: A; # Li < L; # < 1T A> L| (dom 20\ {5}
J

O

THEOREM 1817. If our each filtrator (2;, 3;) is with separable core and A €
HS, then 17 HStrd(3) A= HStrd(Q{) A
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PROOF.
Strd(3)

GR1T ] A=

Lel[ B
upL C HStrd(3) A -

Lell
VK euplL,i e dom®2: A; £ K,

Lel[
{Viedomﬁl,KEupLi:AiﬁK}
Lelld
{Viedom%-AXL}
Strd(21)
GR [] A
O

PrOPOSITION 1818. Let ([]2(, ][] 3) be a meet-closed filtrator, A € [[ 3. Then
1L TSR0 A = 393 4,

PRrROOF.
Strd(2A)

GR || H A=
Strd(2A)

UGR [ A=
U{. Le]l2 }:

Vi e dom®l: A; %~ L;
Lel[A B

Le]l3 B
VZEdOHlmAZ%LZ o

Strd(3)

GR [] 4

d

COROLLARY 1819. If each (2;,3;) is a powerset filtrator and A € [] 3, then
1L TT°"®) A is a principal staroid.

Proor. Use the “obvious” fact above. O

THEOREM 1820. Let % be a family of sets of filters on meet-semilattices with
least elements. Let a € [[ %, S € ][] %, and every Pr; S be a generalized filter

base, [ 1S = a. Then
Strd(F) Strd(F)

Il «=[11I 4

AeS

Strd(F)
Proor. That HStrd(‘g) a is a lower bound for HAGS} is obvious.

Strd(F)
Let f be a lower bound for {HAESA} Thus VA € § : GRS C

GR HStrd(?) A. Thus for every A € S we have L € GR f implies Vi € dom % :
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A; # L;. Then, by properties of generalized filter bases, Vi € dom % : a; % L; that
is L € GR HStrd(‘gz) a. So f C HStrd(‘% a and thus HStrd(g) a is the greatest lower

Strd ()
bound of { 1 a } . O

AeS

CONJECTURE 1821. Let .# be a family of sets of filters on meet-semilattices
with least elements. Let a € [[.#, S € Z[[F be a generalized filter base,
[1S =a, f is a staroid of the form [[.%#. Then

Strd(%) Strd(3)

[[ e#tfrevaes: J[ A#f

23.8. On products of staroids

ZEHF

DEFINITION 1822. H(D) F = {“ncurryz} (reindexation product) for every in-
dexed family F' of relations.

DEFINITION 1823. Reindezation product of an indexed family F' of anchored
relations is defined by the formulas:

(D) (D) (D)
form H F = uncurry(formoF) and GR H F = H(GR oF).

OBVIOUS 1824.
1°. formH(D)F - {M}’

i€dom F,jecarity F;

((i,5),(z4)5)
° (D) o { icdom F,jcarity I
2°. GRII F_{ z€[ [(GRoF) }

PROPOSITION 1825. H(D) F' is an anchored relation if every F; is an anchored
relation.

PROOF. We need to prove GR H(D) Fe Z][]form (H(D) F) that is

((.3).(z0)5)

(D) (D) 1. { el
GRIIWF < [lform([I” F); { icner } c
((3,4),(form F3);) .

Vz € [[(GRoF),i € dom F, j € arity F; : (zi)j € (form F});.
Really, zi € GR F; C [[(form F;) and thus (z7)j € (form F});. O

OBvIOUS 1826. arity H(D) F = [1;cqom r arity F; = {#}

i€dom F,j€arity F;
DerINITION 1827. f x) g = [[P'[ £, g]-
LEMMA 1828. H(D) F' is an upper set if every F; is an upper set.

PrOOF. We need to prove that H(D) F is an upper set. Let a € H(D) F and
an anchored relation b J a of the same form as a. We have a = uncurry z for some
z € [[F that is a(i,j) = (#4)j for all ¢ € dom F' and j € dom F; where zi € F}.
Also b(3,7) 3 a(i,7). Thus (curryb)i 3 zi; curry b € [[ F because every F; is an
upper set and so b € H(D) F. O

ProroOSITION 1829. Let F' be an indexed family of anchored relations and
every (form F'); be a join-semilattice.

1°. H(D) F' is a prestaroid if every F; is a prestaroid.
2°. H(D) F' is a staroid if every F; is a staroid.
3°. H(D) F' is a completary staroid if every F; is a completary staroid.
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PRrooF.
1°. Let ¢ € arity H(D) F that is ¢ = (4,j) where ¢ € dom F, j € arity F;; let

(D)
Le H formHF |(amyl—[(p) F)\{q}

that is L /) € (form % F)(_ : for every (i, ') € (arity 1~ F) \ {¢}, that
Z/yj/

is L jry € (form Fyr);. We have X € (form H(D) F) & X e (form F;);. So

(4,9)

(D)
X € (form F});
wl[[F] L= = I =
L Loy e r
0

{ X € (form F;); } B
3z € [[(GRoF) : LU{((i,5), X)} = uncurry z |

€ (form F;),

HZEH <(GR oF)| (arity H(D) F) \{(i,_i)}) ,2WEGR F;:(L=uncurry zAv;=X)

€ (form F}),

EIZel—l <(GR OF)' H(D) F) \{(i’ﬂ}) :L=uncurry zAFvEGR F;:v; =X

If 32 € H< (GRoF)| amwa) F)\{(ij)}> : L = uncurry z is false then

(VaIH(D) F)(. : = () is a free star. We can assume it is true. So
ir

(D)
X € (form F});
1 F L - J =
val [ {HUEGRFi:vj:X}
(i,9)
{ € (form F;), } B
1K € (formF‘,;)karityFi)\{j} KU {(],X)} € GRF;

{ € (form Fy), }
dK e (formﬂ>|(arityFi)\{j} : X € (valF,-)jK '

Thus
(D)
AuBe (val]]F L=
(4,9)
dK € (formFi)|(arityF,y)\{j} :AUBE€ (ValFi)jK =
3K € (form F})|(arity )\ {5} : (A € (val F3); KV B € (val F;);K) &
JK € (form Fi)l(arityFi)\{j} tAe (Val Fi)le\/
JK € (form Fi)‘(arityFi)\{j} :B e (val Fz‘)jK
(D) (D)
Ae |val]]F LvBe |val]]F L.
(4,5) (4,5)

Least element L is not in (VaIH(D) F)(‘ ‘)L because K U {(j, L)} ¢ GR F;.
Z’j
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2°. From the lemma.
3°. We need to prove

(D)
LyuLeGR][F &

(D) (D)
. (D)
e e {0,1) I 7 [ i e arity [[ F: Logyi | e GRT] F

for every Ly, Ly € []form H(D) F that is Lo, Ly € [Juncurry(formoF').

Really Lo U Ly € GRI[”) F & Ly UL, € {n«;m :

(D) (D)
. (D)
3ee {0, [17F . [y e arity [[ F: Leyi | € GR][F =

(D)

Jee {O, 1}ar1tyn F YRS arltyHF : Lc(z)Z S {m} 54

(D)
Je € {0, 1}ar1tyH Fcurry [ M e arityHF tLeiyi | € H(GR oF) &

(D)
L TT(D)
Je € {0, l}a“tyH v curry | A(i,j) € arityHF Loy (i,9) | € H(GR oF) &

. (D)
Fe € {0,131 7 (N € dom F - (Aj € dom Fy : L) (3,5)) € [[(GRoF) &

3 e {0,111 Pyi € dom F - (\j € dom Fy : Lo jy (i1 5)) € GRF;
Vi € dom F3c € {0,1}9°™F : (\j € dom F; : L(;(i,5)) € GRF; <
Vi € dom F3c € {0,1}9°™F 1 (\j € dom F; : (cwrry(L,(;))i)j) € GRF; <
Vi € dom F : curry(Lg)i U curry(Lq )i € GR F; <
Vi € dom F' : (curry(Lo) U curry(Lq))i € GRF; &
Vi€ dom F : curry(Lo U Lq)i € GR F; <
uncurry z
ot { oo )
(D)
LyUL € GR]]F.

O

For staroids it is defined ordinated product []*¥

above.

as defined in the section 3.7.4

OBviIOUs 1830. If f and g are anchored relations and there exists a bijection

@ from arity g to arity f such that {Fe%f{f} = GR g, then:

1°. f is a prestaroid iff g is a prestaroid.
2°. f is a staroid iff g is a staroid.
3°. f is a completary staroid iff g is a completary staroid.

COROLLARY 1831. Let F be an indexed family of anchored relations and every
(form F); be a join-semilattice.
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1°. H(Ord) F is a prestaroid if every F} is a prestaroid.
2°. [1"Y F is a staroid if every F} is a staroid.
3°. H(Ord) F is a completary staroid if every F; is a completary staroid.

1
PRrROOF. Use the fact that GR H(Ord) F= {IW} O
FeGR][™ s

DEFINITION 1832. f x (D) g = [TV [, g].

REMARK 1833. If f and ¢ are binary funcoids, then f x(©'9 ¢ is ternary.

23.9. Star categories

DEFINITION 1834. A semicategory with star-morphisms consists of

1°. a semicategory C (the base semicategory);

2°. a set M (star-morphisms);

3°. a function “arity” defined on M (how many objects are connected by this
star-morphism);

4°. a function Obj,, : arity m — Obj(C) defined for every m € M;

5°. a function (star composition) (m,f) — StarComp(m, f) defined for
m € M and f being an (arity m)-indexed family of morphisms of C' such
that Vi € aritym : Src f; = Obj,, ¢ (Src f; is the source object of the
morphism f;) such that

such that it holds:
1°. StarComp(m, f) € M,
2°. arity StarComp(m, f) = arity m;
3°. ObjStarComp(m,f) i = Dst flv
4°. (associativity law)
StarComp(StarComp(m, f), g) = StarComp(m, \i € arity m : g; o f;).
The meaning of the set M is an extension of C' having as morphisms things

with arbitrary (possibly infinite) indexed set Obj,,, of objects, not just two objects
as morphisms of C have only source and destination.

DeFINITION 1835. I will call Obj,,, the form of the star-morphism m.

(Having fixed a semicategory with star-morphisms) I will denote StarHom (P)
the set of star-morphisms of the form P.

PROPOSITION 1836. The sets StarHom(P) are disjoint (for different P).

PrROOF. If two star-morphisms have different forms, they are clearly not equal.
O

DEFINITION 1837. A category with star-morphisms is a semicategory with star-
morphisms whose base is a category and the following equality (the law of compo-
sition with identity) holds for every star-morphism m:

StarComp(m, Ai € aritym : lop;j, i) = m.

DEFINITION 1838. A partially ordered semicategory with star-morphisms is a
category with star-morphisms, whose base semicategory is a partially ordered sem-
icategory and every set StarHom(X) is partially ordered for every X, such that:

mo C my A fo C f1 = StarComp(myg, fo) C StarComp(my, f1)
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for every mg, m1 € M such that Obj,, = Obj,, and indexed families fo and f; of
morphisms such that

Vi € arity m : Src foi = Src f1i = Obj,,, i = Obj,, i
Vi € arity m : Dst foi = Dst fy1.

DEFINITION 1839. A partially ordered category with star-morphisms is a cate-
gory with star-morphisms which is also a partially ordered semicategory with star-
morphisms.

DEFINITION 1840. A quasi-invertible semicategory with star-morphisms is a
partially ordered semicategory with star-morphisms whose base semicategory is a
quasi-invertible semicategory, such that for every index set n, star-morphisms a
and b of arity n, and an n-indexed family f of morphisms of the base semicategory
it holds

b # StarComp(a, f) < a % StarComp(b, fT).

(Here fT = Xi € dom f: (fi)T.)

DEFINITION 1841. A quasi-invertible category with star-morphisms is a quasi-
invertible semicategory with star-morphisms which is a category with star-
morphisms.

Each category with star-morphisms gives rise to a category (abrupt category,
see a remark below why I call it “abrupt”), as described below. Below for simplicity
I assume that the set M and the set of our indexed families of functions are disjoint.
The general case (when they are not necessarily disjoint) may be easily elaborated
by the reader.

e Objects are indexed (by arity m for some m € M) families of objects of
the category C and an (arbitrarily chosen) object None not in this set.
There are the following disjoint sets of morphisms:
1°. indexed (by arity m for some m € M) families of morphisms of C;
2°. elements of M;
3°. the identity morphism Inone on None.
Source and destination of morphisms are defined by the formulas:
— Src f = Ai € dom f : Src f;;
— Dst f = Xi € dom f : Dst f;;
— Srcm = None;
— Dstm = Obj,,.
Compositions of morphisms are defined by the formulas:
—gof =X € domf : g; of; for our indexed families f and g of

morphisms;
— fom = StarComp(m, f) for m € M and a composable indexed family
fi

— m o Inone = m for m € M,
- 1None o 1None = 1None-
Identity morphisms for an object X are:
— A€ X : 1y, if X # None;
— 1INone if X = None.

PROOF. We need to prove it is really a category.
We need to prove:

1°. Composition is associative.
2°. Composition with identities complies with the identity law.

Really:
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1°. (hog)of = Xi € dom f : (hjog;)of; = Xi € dom f : h;o(g;0f;) = ho(gof);

g o (f om) = StarComp(StarComp(m, f), g) =
StarComp(m, A\i € aritym : g; o f;) = StarComp(m,go f) = (go f) om;

fo (mo 1None) = me = (fom)o 1None~
2°. m 0 INone = M; lpgym © m = StarComp(m, i € arity m : Lop;, ) = m.

O

REMARK 1842. T call the above defined category abrupt category because (ex-
cluding identity morphisms) it allows composition with an m € M only on the left
(not on the right) so that the morphism m is “abrupt” on the right.

By [zo,-..,%n-1] I denote an n-tuple.

DEFINITION 1843. Semicategory with star morphisms induced by a dagger sem-
icategory C' is:
The base category is C.
Star-morphisms are morphisms of C.
arity f = {0,1}.
Obj,, = [Srcm, Dst m].
StarComp(m, [f,g]) = gomo fT.

Let prove it is really a semicategory with star-morphisms.

PRrROOF. We need to prove the associativity law:

StarComp(StarComp(m, [f, g]), [p, q]) = StarComp(m, [p o f,q o g]).
Really,

StarComp(StarComp(m, [f, g]), [p, ¢]) = StarComp(g o m o fT, [p, q]) =

gogomo flop’ =gogomo(po f)T =StarComp(m, [po f,qo g]).
O

DEFINITION 1844. Category with star morphisms induced by a dagger cate-
gory C'is the above defined semicategory with star-morphisms.

That it is a category (the law of composition with identity) is trivial.

REMARK 1845. We can carry definitions (such as below defined cross-
composition product) from categories with star-morphisms into plain dagger cat-
egories. This allows us to research properties of cross-composition product of in-
dexed families of morphisms for categories with star-morphisms without separately
considering the special case of dagger categories and just binary star-composition
product.

23.9.1. Abrupt of quasi-invertible categories with star-morphisms.

DEFINITION 1846. The abrupt partially ordered semicategory of a partially
ordered semicategory with star-morphisms is the abrupt semicategory with the
following order of morphisms:

e Indexed (by aritym for some m € M) families of morphisms of C are
ordered as function spaces of posets.

e Star-morphisms (which are morphisms None — Obj,,, for some m € M)
are ordered in the same order as in the semicategory with star-morphisms.

e Morphisms None — None which are only the identity morphism ordered
by the unique order on this one-element set.
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We need to prove it is a partially ordered semicategory.

PROOF. It trivially follows from the definition of partially ordered semicategory
with star-morphisms. O
23.10. Product of an arbitrary number of funcoids

In this section it will be defined a product of an arbitrary (possibly infinite)
indexed family of funcoids.

23.10.1. Mapping a morphism into a pointfree funcoid.

DEFINITION 1847. Let’s define the pointfree funcoid x f for every morphism f
of a quasi-invertible category:

(xfla=foa and {((xf) ")b=flob.

We need to prove it is really a pointfree funcoid.

PROOF. b# (xflae b# foaw a¥ flobe as ((xf)~ b u

REMARK 1848. (xf) = (fo—) is the Hom-functor Hom( f, —) and we can apply
Yoneda lemma to it. (See any category theory book for definitions of these terms.)

OBvIOUS 1849. (x(go f))a = g o f o a for composable morphisms f and ¢ or
a quasi-invertible category.

23.10.2. General cross-composition product.

DEFINITION 1850. Let fix a quasi-invertible category with with star-morphisms.
If f is an indexed family of morphisms from its base category, then the pointfree
funcoid H(C) f (cross-composition product of f) from StarHom(Ai € dom f : Src f;)
to StarHom(\i € dom f : Dst f;) is defined by the formulas (for all star-morphisms
a and b of these forms):

©) © \
<Hf>aStarComp(a,f) and < 117 >bStarcomp(b,fT).

It is really a pointfree funcoid by the definition of quasi-invertible category with
star-morphisms.

THEOREM 1851. (H(C) g) o (H(C) f) = Hfgi(gz o f;) for every n-indexed
families f and g of composable morphisms of a quasi-invertible category with star-
morphisms.

PROOF. <]_[fg7)l(gZ ofi)>a = StarComp(a,\i € n : g; o f;) =

StarComp(StarComp(a, f), g) and

(©) (©) () (©)
< Hg o Hf >a = <Hg><H f>a = StarComp(StarComp(a, f), g).

The rest follows from symmetry. O
COROLLARY 1852. (H(C) fk_l) o...0 (H<C> f0> =19 (fr10...0 fo) for
every n-indexed families fo, ..., f,_1 of composable morphisms of a quasi-invertible

category with star-morphisms.

Proor. By math induction. U
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23.10.3. Star composition of binary relations. First define star compo-
sition for an n-ary relation a and an n-indexed family f of binary relations as an
n-ary relation complying with the formulas:

ObjStarComp(a,f) = {*}n,
L € StarComp(a, f) & Iy €aVien:y; fi L;

where * is a unique object of the group of small binary relations considered as a
category.

PROPOSITION 1853. b # StarComp(a, f) < Jx € a,y € OVj € n: z; f; y;.

PRrROOF.

b # StarComp(a, f) < Jy : (y € b Ay € StarComp(a, f)) &
Jy:(yebAIzecavVjen:z; fjy;) & e ca,yecbjen:z;f;uy;.

O

THEOREM 1854. The group of small binary relations considered as a category
together with the set of of all small n-ary relations (for every small n) and the above
defined star-composition form a quasi-invertible category with star-morphisms.

PrROOF. We need to prove:

1°. StarComp(StarComp(m, f), g) = StarComp(m, X\i € n : g; o f;);
2°. StarComp(m, Ai € arity m : lop;, i) = m;
3°. b # StarComp(a, f) < a % StarComp(b, f1) (the rest is obvious).

Really,
1°. L € StarComp(a, f) < Iy € aVi € n: y; fi L.
Define the relation R(f) by the formula z R(f) y < Vi € n: z; f; y;. Obviously
R(M\iemn:g;ofi)=R(g)oR(f).
L € StarComp(a, f) & Jy € a:y R(f) L.

L € StarComp(StarComp(a, f), g) < Ip € StarComp(a, f) : p R(g) L &

Ipyca:(yR(f)pApR(g) L)<= Iy ca:y(R(g)oR(f)) L+
Jyca:yRANen:giof;) L < LeStarComp(a, i €n:g;of;)

because p € StarComp(a, f) < Jy € a: y R(f) p.
2°. Obvious.
3°. It follows from the proposition above.

O

OBvIous 1855. StarComp(a U b, f) = StarComp(a, f) U StarComp(b, f) for
n-ary relations a, b and an n-indexed family f of binary relations.

THEOREM 1856. <H(C) f>Ha = [Ticn(fi) ai for every family f = ficn of
binary relations and a = a;c,, Where a; is a small set (for each i € n).
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ProoFr.
()
Le <H f> [Iee=
L € StarComp (H a, f) =
EIyEHaViEn:yifiLi(:)
Jye[[avien: {u}# (f7) {Li} &
Viendyeai: {y} £ (f7) {Li} &
Yien:a; % <f171>*{L7,} 54
Vien:L; € (f)a; &

Le [ a
1EN
O
23.10.4. Star composition of Rel-morphisms. Define star composition for

an n-ary anchored relation a and an n-indexed family f of Rel-morphisms as an
n-ary anchored relation complying with the formulas:

Objstarcomp(a,f) = At € arity a : Dst f;;
arity StarComp(a, f) = arity a;
L € GR StarComp(a, f) < L € StarComp(GR a, GR of).
(Here I denote GR(A, B, f) = f for every Rel-morphism f.)
PROPOSITION 1857.
b % StarComp(a, f) & 3z € a,y € bVj € n: x; GR(f;) v;.

PROOF. From the previous section. O

THEOREM 1858. Relations with above defined compositions form a quasi-
invertible category with star-morphisms.

PROOF. We need to prove:
1°. StarComp(StarComp(m, f), g) = StarComp(m, Ai € aritym : g; o f;);
2°. StarComp(m, \i € arity m : lov;, ) = m;
3°. b % StarComp(a, f) < a % StarComp(b, fT)
(the rest is obvious).
It follows from the previous section. O

PRrROPOSITION 1859. StarComp(a U b, f) = StarComp(a, f) U StarComp(b, f)
for an n-ary anchored relations a, b and an n-indexed family f of Rel-morphisms.

PROOF. It follows from the previous section. O

THEOREM 1860. Cross-composition product of a family of Rel-morphisms is a
principal funcoid.

PROOF. By the proposition and symmetry H(C) f is a pointfree funcoid. Ob-
viously it is a funcoid [[,., Src fi — [];c, Dst fi. Its completeness (and dually
co-completeness) is obvious. (]
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23.10.5. Cross-composition product of funcoids. Let a be a an anchored
relation of the form 2 and dom 2 = n.

Let every f; (for all i € n) be a pointfree funcoid with Src f; = 2.

The star-composition of a with f is an anchored relation of the form i €
dom 2l : Dst f; defined by the formula

L € GR StarComp(a, f) < (Xi € n: (f; 1) L;) € GRa.

K2

THEOREM 1861. Let Src f; be separable starrish join-semilattice and Dst f; be
a starrish join-semilattice for every i € n for a set n. Let forma = [],,,(Src f;).

1°. If a is a prestaroid then StarComp(a, f) is a prestaroid.
2°. If a is a staroid and Src f; are strongly separable then StarComp(a, f) is
a staroid.
3°. If a is a completary staroid and then StarComp(a, f) is a completary
staroid.
ProoF. We have (7' WX UY) = (f7 )X U(f7")Y by theorem 1606.
1°. Let L € [[;e(arity £\ () (form f;) for some k € n and X,V € form fj,. Then

X 1Y € (StarComp(a, f)); L <
()\iedomf:<fi1><{ ey iii;i )) €GRa

—1 —1 e
()\iedomf: <{ 2;152%“ )Y ifz;: )) €GRa <

(FTHX (DY € {ah(Ni € (dom f)\ {k} = (f ") Li)
(F7HX € (ap(Nien\{k} : (f7)L) vV (f7 DY € la)(Ni € n\ {k}: (f7 ") La)
(veser- ({5 2158)) conn
(s ({1, 1152 )) cone
()\i edomf:<f;1><{ . ﬁj;: >) € GRav
(Az‘edomf:(f[1>({ }Lf E#Z )) € GRa
Lv

Thus StarComp(a, f) is a pre-staroid.
2°. <fz-_1> are monotone functions by the proposition 1605. Thus <fi_1>Xi C
(fFHY it XY € [Lic arity py\ g1y (form f;) and X C© Y. So if a is a staroid and
X € GRStarComp(a, f) then (Xi € dom f : (f;')X;) € GRa then (i € dom f :
(f71)Y;) € GRa that is Y € GR StarComp(a, f).
3°.
Ly U L, € GR StarComp(a, f)
(Nien:(f")(LoULy)i) € GRa
(Nien:(fi )LoiU (f; ") L1i) € GRa
Jee{0,1}: (Ni€n: (f7")L.;i) € GRa
e € {0,1} : (Mi € n: L)1) € GR StarComp(a, f).

t o0

¢t ¢
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CONJECTURE 1862. b #A7M() StarComp(a, f) & VA € GRa,B € GRb,i €
n: A; [fi] B; for anchored relations a and b on powersets.

It’s consequence:

CONJECTURE 1863. b #2422 StarComp(a, f) < a #2**) StarComp(b, f1)
for anchored relations a and b on powersets.

CONJECTURE 1864. b %574 StarComp(a, f) < a #£54) StarComp(b, f1)
for pre-staroids @ and b on powersets.

ProOPOSITION 1865. Anchored relations with objects being posets with above
defined star-morphisms is a category with star morphisms.
PROOF. We need to prove:

1°. StarComp(StarComp(m, f), g) = StarComp(m, A\i € aritym : g; o f;);
2°. StarComp(m, Ai € arity m : lopj, ) = m.

(the rest is obvious). Really,

L € GR StarComp(StarComp(m, f),g) <
(\i € aritym : <gi_1>Li) € GR StarComp(m, f) <
Nen:(ffHNjen: <gj_1>Lj)i) € GRm <&
(Xi € aritym : (f;"){g;')L;) € GRm &
(Ni € aritym : ((g; o f;) "1 L;) € GRm <
L € GR StarComp(m, \i € aritym : g; o f;);

and

L € GR StarComp(m, Xi € arity m : loy;,, ) <
(Men: <10bjmi>Li) cGRm <&
(\i € aritym : <1Objmi>Li) € GRm <&
(\i € aritym : L;) € GRm < L € GRm.
O

CONJECTURE 1866. StarComp(a U b, f) = StarComp(a, f) U StarComp(b, f)
for anchored relations a, b of a form 2, where every 2; is a distributive lattice, and
an indexed family f of pointfree funcoids with Src f; = ;.

23.10.6. Cross-composition product of funcoids through atoms. Let
a be a an anchored relation of the form 2 and dom 2 = n.

Let every f; (for all ¢ € n) be a pointfree funcoid with Src f; = ;.

The atomary star-composition of a with f is an anchored relation of the form
At € dom 2 : Dst f; defined by the formula

L € GR StarComp(a)(a, f)e dye GRan H atoms® Vi € n : y; [fi] Ls.
S0
THEOREM 1867. Let Dst f; be a starrish join-semilattice for every i € n.

1°. If a is a prestaroid then StarComp(® (a, f) is a staroid.
2°. If a is a completary staroid and then StarComp'®(a, f) is a completary
staroid.

PROOF.
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1°. First prove that StarComp(a)(a, f) is a prestaroid. We need to prove that
(val StarComp'® (a, f)); L (for every j € n) is a free star, that is

X € (form f);
LU{(j,X)} € GR StarComp'® (a, f)
is a free star, that is the following is a free star

iy

where R(X) < Jy € [[,., atoms® : (Vi € n\ {j} : v [fi] Li Ay, [fj] X Ay € GRa).

€N
R(X) &

Jy € Hatoms% c(Vien\{j} v [fil Li Ny [f5] X ANyj € (vala);(ylng51)) <

€N
Vien\{j}:y:[fi] LiA
Jy e H atomsmi,y’ € atoms% : , \{ }/ i [fi] Li
ien\{j} Y 1fil X Ay € (vala);(yln )
e [ atoms™vien\ {j}:y[fil Lin
i€n\{j}

Jy' € atoms™ : (v [fi] X A y' € (val a)j(y|n\{j})).
If 3y € [Lien gy atoms® Vi € n\ {j} : vi [f;] Li is false our statement is

obvious. We can assume it is true.
So it is enough to prove that

X € (form f);
Jy € HiEn\{j} atoms®i |y’ € atoms®i : (y/ [fi] X Ny € (vala)j(yln\(51))

is a free star. That is

Q= { X € (form f); }

By € [Lien iy atoms®*, y’ € (atoms®) N (vala);(yln ;) 0 v [f5] X

is a free star. | (formf); ¢ @ is obvious. That @) is an upper set is obvious. It remains
to prove that Xo U X7 € Q = Xo € QV Xy € Q for every Xy, X; € (form f);.
Let Xo U X1 € Q. Then there exist y € [[ic, (; atoms¥', y' € (atoms®/) N
(vala);(yln\ ;1) such that 3’ [f;] Xo U X;. Consequently (proposition 1607) 3’ [f;]
XoVy [f]] X;7. But then Xg € QV X7 € Q.

To finish the proof we need to show that GR StarComp( a)(a, f) is an upper
set, but this is obvious.

2°. Let a be a completary staroid. Let LolLL; € GR StarComp'® (a, f) that is
Jy € [Lic,, atoms®A; : (Vi € n:y; [fi] Loi U Lii Ay € GRa) thatis 3c € {0,1}",y €
[Lic. atoms™ : (Vi € n:y; [fi] Leiyi Ay € GRa) (taken into account that Dst f;
is starrish) that is 3c € {0,1}" : (AMi € n : L;)i) € GR StarComp(a)(a,f). So
StarComp® (a, f) is a completary staroid.

O

LEMMA 1868. b #Anch(B) StarComp(a)(a, f) & VA e GRa,B € GRbi €n:
A; [f:] B; for anchored relations a and b, provided that Src f; are atomic posets.

PROOF.
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b #20(B) StarComp (a, f) <

3z € Anch(B) \ {1} : (z C b Az C StarComp¥(a, f)) <

3z € Anch(B)\ {L}: (x EbAVB € GRz : B € GR StarComp'® (a, f)) &
Jz € Anch(B)\ {L}:

<l’ CbAVBeGRedA € H atoms®i : (Vien: A; [fi] BiNA€ GRa)) &
i€dom ‘B

Jr € Anch(B)\ {L}: (e CbAVB € GRz,A€ GRa,i €n: A, [fi] Bi) &
Jz € Anch(B) : (x CTbAVB € GRz, A€ GRa,i en: A; [fi] B) &

VB € GRb,A € GRa,i en: A; [fz] B;.
U

DEFINITION 1869. I will denote the cross-composition product for the star-
composition StarComp'® as H(a).

THEOREM 1870. a [H(“) f} b VA e GRa,B € GRb,i € n: A; [f;] B; for

anchored relations a and b, provided that Src f; and Dst f; are atomic posets.

PRrOOF. From the lemma. O

CONJECTURE 1871. b #34(®) StarComp(a, f) < a #£54CY StarComp(b, f1)
for staroids a and b on indexed families 2 and B of filters on powersets.

THEOREM 1872. Anchored relations with objects being atomic posets and
above defined compositions form a quasi-invertible semicategory with star-
morphisms.

REMARK 1873. It seems that this semicategory with star-morphisms isn’t a
category with star-morphisms.

PROOF. We need to prove:

1°. StarComp'® (StarComp'® (m, f), g) = StarComp'® (m, \i € aritym : g; o
fi)s
2°. b # StarComp (a, f) < a # StarComp'® (b, f1)

(the rest is obvious).
Really, let a be a star morphism and 2; = (Obj, )i for every i € arity a;

1°. L € GRStarComp¥(a, f) < Jy € GR an[;e, atoms™ Vi € n : y; [f;] Li.
Define the relation R(f) by the formula z R(f) y < Vi € n : z; [fi] v
Obviously

R(Nien:giofi) = R(g) o R(f).
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L € GR StarComp'® (a,f) < Jy € GRanNT],, atoms™ : y R(f) L.
L e GR StarComp(“)(StarComp(a, 9 <
Jp € GR StarComp' (a, f) N H atoms®*t )i . p R(g) L &

1EN
dp € I_Iatoms(DSt i yeGRan H atoms(5¢ )i (yR(f)pApR(g) L) =
1EN i€en
Jy e GRan H atomsS¢ )i -y (R(g) o R(f)) L &
1EN
Jy € GRan Hatoms(srcf)i cyR(AMen:giof)) L &
iEn

Jy € GRan Hatoms(srcf)"’ yvien:y; [gio fi| Li &

1EN
L € GR StarComp'® (a, i € n: g; o f;)

because p € GR StarComp'® (a, f) < Iy € GRanN [Lic, atomsS iy -y R(f) p.
2°. It follows from the lemma above.

]
THEOREM 1874. <H(a) f> HStrd a = H?gg(fimi for every family f = ficp of
pointfree funcoids between atomic posets and a = a;c,, Where a; € Src f;.
PRrooF.
(a) Strd
Le GR<H f > [Iee
Strd
L € GR StarComp(“) (H a, f) &
dy € H atoms® Vi € n: (yi [fi] Li Ays # a;) <
i€dom 2
Vi € ndy € atoms™ : (y [fi] Li Ay # a;) <
Vien:a; [fi]L1<:>
Vien: L; f <fz>az 54
Strd
L e GR][(fi)a:
€N
Il
CONJECTURE 1875, StarComp®(a U b, f) =  StarComp®(a,f) U

StarComp(a)(b, f) for anchored relations a, b of a form 2, where every 2
is a distributive lattice, and an indexed family f of pointfree funcoids with
Src fz == Q[z

23.10.7. Simple product of pointfree funcoids.

DEFINITION 1876. Let f be an indexed family of pointfree funcoids with every
Src f; and Dst f; (for all i € dom f) being a poset with least element. Simple product

of fis
(S)
Hf: Ax € H Src f; : M € dom f : (fi)xi, My € H Dstfz-:/\iedomf:<f;1>yi

i€dom f i€dom f
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PRroOPOSITION 1877. Simple product is a pointfree funcoid
(5)

[[fepFcD( [[ Srcfi. J] Dstfi

i€dom f i€dom f

PROOF. Let € [[icqom s Srefi and y € [[icqom s Dst fi. Then (take into
account that Src f; and Dst f; are posets with least elements)

y£ | e H Srcfi: Miedom f: (fiyw; |z <
ic€dom f

y#Z M edomf: (fi)x; &

Ji € dom f :y; £ (fi)wi &

Hiedomf:xi;é<fi_l>yi(:>

J;X)\iedomf:<ffl>yl(:)

¥ [ dye ] Dstfi:xiedomf:(fi )|y

i€dom f

OBVIOUS 1878. <1‘[<S) f>:c — i € dom f : (fi)a; for = € [] Sre f;.

OBvIOUS 1879. <<H(S) f>x> = (fi)xz; for = € [] Src f;.
(2
PROPOSITION 1880. f; can be restored if we know H(S) fif f; is a family of
pointfree funcoids between posets with least elements.

PROOF. Let’s restore the value of (f;)x where i € dom f and x € Src f;.
Let 2} = z and o, = L for j # i.

Then (fi)x = (fi)x] = (<H(S) f>x’)i.

We have restored the value of (f;). Restoring the value of ( ;') is similar. O

REMARK 1881. In the above proposition it is not required that f; are non-zero.

PROPOSITION 1882. (H(S) g) ° (H(S) f) = H(.S) (gio fi) for n-indexed families

€N

f and g of composable pointfree funcoids between posets with least elements.

PROOF.

()
<H(gl o fl)>x =Xiedomf:(g;ofiyx; =i €domf: (g;){fi)x; =

iEN

(L)oo - (T D)o~ (i) (1))

Thus (1,00 £)) = ((I1%9) (11 1)).
<(H§2L(gz o fz)>1> = <((H(S) g) o (H(S) f))1> is similar. O
COROLLARY 1883. (H(S) fk,l)o. ) .o(H(S) fo) = Hl(.gzl(fk,lo. ..ofy) for every

n-indexed families fy,..., fn_1 of composable pointfree funcoids between posets
with least elements.
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23.11. Multireloids

DEFINITION 1884. I will call a multireloid of the form A = A;¢,, where every
each A; is a set, a pair (f, A) where f is a filter on the set [] A.

DEFINITION 1885. I will denote Obj(f, A) = A and GR(f, A) = f for every
multireloid (f, A).

I will denote RLD(A) the set of multireloids of the form A.
The multireloid tR-P(4) F for a relation F is defined by the formulas:

Obj 1RPW F =4 and GR RO F =114 F,

For an anchored relation f I define Obj 1 f = form f and GR 1 f :TH form f
GR f.

Let a be a multireloid of the form A and dom A = n.

Let every f; be a reloid with Src f; = A;.

The star-composition of a with f is a multireloid of the form Ai € dom A : Dst f;
defined by the formulas:

arity StarComp(a, f) = n;
RLD(A)
GR StarComp(a, f) = |_|

GR StarComp(A, F) .
AeGRa,Fe[l;e,GRfi )’
Obj,,, StarComp(a, f) = Ai € n : Dst f;.

THEOREM 1886. Multireloids with above defined compositions form a quasi-
invertible category with star-morphisms.

Proor. We need to prove:

1°. StarComp(StarComp(m, f), g) = StarComp(m, A\i € arity m : g; o f;);
2°. StarComp(m, Xi € arity m : lov;, i) = m;
3°. b % StarComp(a, f) < a # StarComp(b, fT)

(the rest is obvious).
Really,

1°. Using properties of generalized filter bases,

StarComp(StarComp(a, f), g) =

LD StarComp(B, G)
B € GR StarComp(a, f),G € [];c,, GRg;

LD StarComp(StarComp(4, F), G)

{A € GRa,Fe]],.,GRfi,G € HiEWGRgi}

RLD

[

StarComp(A,G o F)

AeGRa, Fe]l,.,GRf;,Ge]]
RLD

|_| StarComp(A, H)
A€ GRa, H €], GR(gi o fi)

StarComp(a, Ai € arityn : g; o f;).

i€n i€n GRg;
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2°.
StarComp(m, Ai € aritym : lopj, i) =

RLlD—(lA){ StarComp(A, H)

AEGRm,HEH GRlObJ

i€arity m

AGGRm,HEH GRlObJ

i€arity m

A € GR m, X e Hzearlty m Ome

RL|D_(|A){ StarComp(A, Ai € aritym : 1x,)

AeGRm, X €[]
RLD(A)

[ {AeGRm}:m'

3°. Using properties of generalized filter bases,
b # StarComp(a, f) &

VA€ GRa,B € GRb,F € [[GR f; : B # StarComp(4, F) &

€N

Obj,y, @

RLlD—(lA){ StarComp(A, Ai € aritym : H;) }

RLD(A) ANTIX)
FI{ (ANT]

i1€arity m

©)
VAeGRa,BeGRb,FeHGRfi;Bx<HF>A<:>
iEN
-1
VAeGRa,BeGRb,FeHGRfi:A;é< 1IF >B<:>
iEN
VA€ GRa,B € GRb, F € [[GR f; : A # StarComp(B, F') &
€N
a % StarComp(b, fT).
O

DEFINITION 1887. Let f be a multireloid of the form A. Then for i € dom A

RLD

Prf= |_|<Pr> GR f.

PRrROPOSITION 1888. up PrfLD f = (Pr;)" GR f for every multireloid f and i €
arity f.

PROOF. It’s enough to show that (Pr;)" GR f is a filter.
That (Pr;)* GR f is an upper set is obvious.
Let X,Y € (Pr;)" GR f. Then there exist F,G € GR f such that X = Pr; I’
Y =Pr;G. Then XNY D Pr;(FNG) € (Pr;)" GR f. Thus X NY € (Pr;)" GR f.
U
DEFINITION 1889. [["-P X = ﬂ;";é:ﬁd;mX:Base(Xi)) [T X for every indexed
family X of filters on powersets.

ProrosiTiON 1890. PrELD HRLD x = xy, for every indexed family x of proper
filters.

PrOOF. up PrR0 [P 2 = (Pry)* [[° = = up z4. O
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CONJECTURE 1891. GRStarComp(a U b,f) = GRStarComp(a, f) U
GR StarComp(d, f) if f is a reloid and a, b are multireloids of the same form,
composable with f.

RLD
THEOREM 1892. HRLDA = |_|{ [« } for every indexed family

aeHiEdom 4 atoms A;
A of filters on powersets.

HRLD a
PROOF. Obviously [["-° A J |_|{ }

ac H ) atoms A;
i€dom A

HRLD a
Reversely, let K € GR |_|{

aEH ) atoms A;
i€dom A
Consequently K € GR HRLD a for every a € []

icdom 4 atoms A;; K D [T X and

thus K D Uae]-_['iedomaatoms 4, 11 Xq for some X, € [[;cgom o atoms 4;.

But UaeHledoma atoms A; 11 Xa = Tlicaom 4 Uscatoms 4, Pri) Xa 2
[1jcaoma Z; for some Z; € upAj; because (Pr;)"X € upa; and our lattice
is atomistic. So K € GR HRLD A. O

THEOREM 1893. Let a, b be indexed families of filters on powersets of the same
form 2. Then

RLD RLD RLD
Hal‘le: H (aiﬂbi).
i€dom A
ProOF.
RLD RLD
up <H all H b)
RL|D_(|Q[) PNQ -
PeGR[I[™Pa,Q e [I™Pb
RLD(2A)
I—l I[IprN]lq _
peup[la, g €up[]d
RLD(21)
I_I Hzedole Di N qz _
p€]Jupa,q €JJupb
RLD(2A)
IR el
RLD
up H (a; T Y;).
i€dom 2A

O

THEOREM 1894. If S € P [[;cqom3 7 (3i) where 3 is an indexed family of
sets, then

RLD RLD Z(3:)
MIle= I [] Prs
a€sS i€dom 3 '
PROOF. If § = 0 then [,c [ a =[]0 = TRP®) and
RLD Z#(3 RLD Z(3:) RLD

H |_| Pr§ = H |_| H #(3:) = TRD(3).

i€dom 3 i€dom 3
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RLD RLD F(3i
thus |_|a€S H a= HiedomS I_I (3¢) Pri S.
Let S # 0.

ﬂy(ai)PriS C ﬂ‘g(‘%i){ai} = a; for every a € S because a; € Pr; S. Thus
HRLD |_|g:(3i) Pr; SC HRLD a;

i€dom 3
RLD RLD F(3:)
|_| H ad H |_| PrS
a€sS i€dom 3
Now suppose F € GRH?;‘?OHIBH‘Q(E)PQ S.  Then there exists X €

P [ Ticdom 3 |_|g(3i)PriS such that F' O [[X. It is enough to prove that there
exist a € S such that F € GR [P a. For this it is enough [[ X € GR[[*°a
Really, X; € up |—|y(3i) Pr; S thus X; € upa; for every A € S because Pr; S D
{a:}.
Thus [T X € GR[[®"a. O

DEFINITION 1895. I call a multireloid principal iff its graph is a principal filter.
DEFINITION 1896. I call a multireloid convez iff it is a join of reloidal products.

THEOREM 1897. StarComp(a U b, f) = StarComp(a, f) U StarComp(b, f) for
multireloids a, b and an indexed family f of reloids with Src f; = (forma); =
(form b);.

PRrooF.
GR(StarComp(a, f) U StarComp(b, f)) =

ARLD(form a) StarComp(A, F) ARLD(form b) StarComp(B, F)
AeGRa,F€e]],.,GRf; B e GRb, F e]],., GR f;

€N 1€EN

TRLD(form a) StarComp(4, F)U TRLD(form b) StarComp(B, F)
A€eGRa,BeGRV,Fe][],., GRf;

f-

RLD(forma) (StarComp(A, F) U StarComp(B, F }

g {T ( p(A, F) p(B, ))}
}-

j-

)

1EN

A€ GRa,B€GRb,F €[], GR f;
tRLD(form a) StarComp(A U B, F)
{A € GRa,B € GRb, F €[],.,, GR f;
ARLD(form @) StarComp(C, F)
{Ce GR(aUDb), F € [];c,, GR f;
GR StarComp(a U b, f

1EN

O

23.11.1. Starred reloidal product. Tychonoff product of topological spaces
inspired me the following definition, which seems possibly useful just like Tychonoff
product:

DEFINITION 1898. Let a be an n-indexed (n is an arbitrary index set) fam-

ily of filters on sets. HRLD* a (starred reloidal product) is the reloid of the form
[1;c,, Base(a;) induced by the filter base

Hién . e
Base(a;) ifien\m

m is a finite subset of n, A € [[(alm)
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OBVIOUS 1899. It is really a filter base.

Osvious 1900. [["P*a 3 [fPa.

RLDx* a = HRLD

PROPOSITION 1901. [] a if n is finite.

PROOF. Take m = n to show that [[~"*a C [[*° a. O

ProrosiTion 1902. HRLD* a = L RID(i€n:Base(ai)) if 4. i the non-proper filter
for some ¢ € n.

A if ¢
PROOF. Take A; = 1L and m = {’L} Then Hien ({ ITzem )

Base(a;) ifien\m

EXAMPLE 1903. There exists an indexed family a of principal filters such that
HRLD* a is non-principal.

PROOF. Let n be infinite and Base(a;) is a set of at least two elements. Let
each a; be a trivial ultrafilter.
Ever .
¥ lien ({Base(ai) ifien\m
D

) has at least 2" elements.

There are elements up HRL a with cardinality 1. They can’t be elements of

up HRLD* a because of cardinality issues. O

COROLLARY 1904. There exists an indexed family a of principal filters such
that HRLD* 0+ HRLD a

PRrROOF. Because HRLD a is principal. O

ProposIiTION 1905. PrELD HRLD* x = xy, for every indexed family x of proper
filters.

PROOF. Pr,SLD HRLD* r = (Pr;)" GR HRLD* T = Tp. O

THEOREM 1906. Pri-P f C A, for alli € niff f C HRLD* A (for every reloid f
of arity n and n-indexed family A of filters on sets).

PROOF. f C HRLD* A= PI‘?LD f C PI‘?LD HRLD* A C Ai~
Let now PritP f C A,
RLD e
fC H({Pri / 1fz < m) for finite m C n, as it can be easily be
Base(form f);, ifi¢m
proved by induction.
It follows f C [[°-°* A. 0

23.12. Subatomic product of funcoids

DEFINITION 1907. Let f be an indexed family of funcoids. Then H(A) f (sub-

atomic product) is a funcoid [[;cqom £ ST fi = [licqom  Dst fi such that for every

RLD(Ai€dom f:Src f;) RLD(Xi€dom f:Dst f;)

a € atoms , b € atoms

(4 RLD RLD
a |[[f|beVicdomf: Pralfi] Prb.

PROPOSITION 1908. The funcoid H(A) f exists.
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PrOOF. To prove that H(A)f exists we need to prove (for every a €
atomSRLD(AiEdom f:Src fl), he atomSRLD()\iGdom f:Dst fl))

VX € GRa,Y € GRb

RLD(Ai€dom f:Src f;

Jx € atoms 1 ) X,y € atoms PRED(\i€dom fiDst fi) yr . o, Hf Yy =

Let

VX € GRa,Y € GRb

(4)
Iz € atoms TRLD(AiEdom f:Src fi) X, y € atoms TRLD(z\iEdom f:Dst f;) Y :x Hf Y.

Then

VX € GRa,Y € GRb

3z € atoms TRLD(MEdom f:Src f;) X, y € atoms TRLD()\iGdom f:Dst fi) Y

RLD RLD
Vi € dom f : Prz [f;] Pry.

RLD

Then because Pr; > x € atoms 157/ Pr; X and likewise for y:

VX € GRa,Y € GRbVi € dom f
3z € atoms 151 Pr X,y € atoms 1P/ PrY : ¢ [fi] v

Thus VX € GRa,Y € GRbVi € dom f :157F Pr; X [f;]1P%*F Pr; Y,
VX € GRa,Y € GRWi € dom f : Pr; X [f;]" Pr; Y.
Then VX € (Pr;)*GRa,Y € (Pr;))"GRb: X [f;]" Y.
Thus Pri-P a [f;] Pri-Pb. So

RLD RLD
Viedomf: Pral[f] Prbd

and thus a [H(A) f} b. O

REMARK 1909. It seems that the proof of the above theorem can be simplified
using cross-composition product.

TueoreM 1910. ) (gio f;) = TI" g o [TV f for indexed (by an index set
n) families f and g of funcoids such that Vi € n : Dst f; = Srcg;.
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PROOF. Let a, b be ultrafilters on [ [, Src f; and [],.,, Dst g; correspondingly,

€N 1EN

(4)

a H(gz ofi)| b=

i€n
Vi € dom f : <Pr>*a [gi o fi] <Pr>*b &
Vi € dom f3C € atoms” (Pstfi) . << > [fi] C AC gi] < : > b

Pr )
Vi € dom f3c € atomsRPAiEm:Dstf) (<ljr>*a [fi] <Pir> cA < > ¢ gi] <F;r> )
Pr

Je € atomsREPAEnDst )y o dom f : <<Pir>*a [f:] <Pr>*c/\ < > ¢ [gi) < , > b)
(4)

T ¢

3

Je € atomsR-P(AiEnDst f) Hf cAhc Hg b &
(4) (4)
Hg o H flb.
But
Vi € dom f3C € atoms” (P3¢ fo) . (<I;r>*a [fi] C A C gi] <Pzr>*b>
implies
F(Dst f1) v : W11 C A C o "
icC e gatoms t11) i € dom f : (<fzr> a [fi] CiACj lgi] <P1r> b).
Take ¢ € atoms []X> C. Then
Vi € dom f : (<P2r>*a [fi] PZrc/\ P;rc [g:] <l:;r>*b>
that is
e (Y 1) o en () ) ()
We have o [T1{2) (g 0 f3)] b a [TT g0 TT 1] . O

COROLLARY 1911. (H<A> fk_l) o...0 (HW fo) T2 (fer 0. 0 fo) for
every n-indexed families fy,..., f,_1 of composable funcoids.

ProposiTioN 1912. [[f°a [H(A) f} [1"°b < Vi € dom f : a; [fi] b; for
an indexed family f of funcoids and indexed families a and b of filters where a; €
F(Src f;), by € F(Dst f;) for every i € dom f.

PrROOF. If ¢; = L or b; = L for some 4 our theorem is obvious. We will take
a; # L and b; # L, thus there exist

RLD RLD
T € atoms H a, y € atoms H b.
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RLD (A) RLD

I IR

RLD RLD (A)

ExeatomsHa,yEa‘comsHb:x Hf RS

RLD RLD
Jdz € atoms H a,y € atoms H bVi € dom f : <IZr> x [fi] <f;r> y <
Vi € dom f3z € atomsa;,y € atomsb; : x [f;] y &
Vi € dOIIlf L a; [fy] bz

O

THEOREM 1913. <H(A) f>m = H?el_gomf<fi> PrRP 2 for an indexed family f of

RLD(Ai€dom f:Src f;

funcoids and z € atoms ) for every n € dom f.

PrROOF. For every ultrafilter y € Q(Hiedomf Dst fi> we have:

RLD RLD
y# [ fPrase
i€dom f

RLD RLD
Viedomf: Pry# (fi) Prz &

RLD RLD
Viedomf: Przx[fi] Prye

(4)
T Hf TR=S
(4)
y # <H f>x.
Thus <H(A) f>x = H?édDomf<f1;> PriRP g, O

COROLLARY 1914. (f x™) g)a = (f)(dom z) xRP (g)(im z) for atomic z.

23.13. On products and projections

CONJECTURE 1915. For principal funcoids H(C)and H(A) coincide with the
conventional product of binary relations.

23.13.1. Staroidal product. Let f be a staroid, whose form components are
boolean lattices.
Strd

DEFINITION 1916. Staroidal projection of a staroid f is the filter Pry "™ f cor-
responding to the free star

(val f)i(Ni € (arity f) \ {k} : THrm iy,

ProposiTiON 1917. Priy GR HStrd x = *x} if = is an indexed family of proper
filters, and k£ € dom x.
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PROOF.
Strd

P;rGRHx:

Pr L € formx B
k (Vi edomzx: x; £ L; o

(used the fact that z; are proper filters)

{l € (formx)k} .

.%‘k%l
O

PROPOSITION 1918. Prztrd HStrd x = xp if  is an indexed family of proper
filters, and k£ € dom x.

PROOF.

Strd
(Valnx> (Mi € (doma) \ {k}: T (form I)i) _
k

X e (form Hsnd o:)k
(Xi € (doma) \ {k} : TUorma)i) U {(k, X)} € GR[["™x

X € Basexy,
{ (Vi € (domz) \ {k} : TUorma)i o ) A X #£ 2 }

X € Basexj P
X;éxk N b

Consequently Pryt™ [T 2 = ;. O

23.13.2. Cross-composition product of pointfree funcoids.

DEFINITION 1919. Zero pointfree funcoid LPFCP(B) from a poset A to to a
poset B is the least pointfree funcoid in the set pFCD(2, B).

PROPOSITION 1920. A pointfree funcoid f is zero iff [f]= 0.

PROOF. Direct implication is obvious.
Let now [f]= 0. Then (f)z < y for every z € Srcf, y € Dst f and thus
(f)x =< (f)x. It is possible only when (f)x = 1Pst/, O

COROLLARY 1921. A pointfree funcoid is zero iff its reverse is zero.

PROPOSITION 1922. Values x; (for every i € domx) can be restored from the
value of H(C) x provided that x is an indexed family of non-zero pointfree funcoids,
Src f; (for every @ € n) is an atomic lattice and every Dst f; is an atomic poset with
greatest element.

PROOF. <H(C) m> 1°™p= H?g;i(xl)pz by theorem 1874.

Since x; is non-zero there exist p such that (z;)p; is non-least. Take k € n,
p; = p; for i # k and pj, = ¢ for an arbitrary value ¢; then (using the staroidal
projections from the previous subsection)

Strd Strd

Strd (C) Strd
_ Aol /
(zr)q = Pr [T 1:;€I'<H(E>Hp,

iEN



23.13. ON PRODUCTS AND PROJECTIONS 390

So the value of x can be restored from H(C) x by this formula. O
23.13.3. Subatomic product.

PROPOSITION 1923. Values z; (for every ¢ € domx) can be restored from the
value of H(A) x provided that z is an indexed family of non-zero funcoids.

PROOF. Fix k € dom f. Let for some filters X and Y
Tﬁ(Base(w)) if 4 74 k‘; Tﬁ(Base(y)) if 4 74 k‘;
a_{x iti=k 0Ty if i = k.
Then X [z4] Y < ay, [z4] by < Vi € dom f : a; [2] b < [[*a [H(A) x} 1P o.
So we have restored zj from H(A) x. d

DEFINITION 1924. For every funcoid f : [[A — HB (where A and B are
indexed families of typed sets) consider the funcoid Pr,C f defined by the formula

@ 1 = TFA) f § £ k; = TFB) if £ k;
XlPr ve ]I ({ ‘X ifi=k )[f]‘H ({TBiY ifi =k >
i€dom A i€dom B
PRroproOSITION 1925. PrﬁcA) f is really a funcoid.
ProoF. ﬁ(L [PréA) f} Y) is obvious.
(4)
uJ P]’Cr fl Y&

i€dom A i€dom B

FiL[D TF(A) ifi k) g FﬁD TIE) ifig k)
ad Ut rudeg ifi=k . Yy ifi=k
i€dom tedo

RLD RLD
TZ(A) if i £ k; TFB) if 4+ k;
11 <{ HA(TUT) ifi=k )[f] 1 <{ By ifi=k )‘:)
F
A

dom B
RﬁD TEA) ik )| Fﬁ) T
T ifi=k T

(A if § £ k;
J  ifi=k )[f]

i€dom A i€dom A
RLD <
i ( TEBD i £ ks )
i€dom B T ifi=k
FﬁD TFA) i £ ks RLD ik,
, MT ifi=k ifi==Fk
i€dom A zedom B o
FﬁD T if i £k RLD if 6 # ks
) 14 g ifi=k ifi==k
i€dom A 7€dom B
(4) (4)
I fl’cr f YvVvJ lzr fl Y
The rest follows from symmetry. O

PROPOSITION 1926. For every funcoid f : [[A — [[ B (where A and B are
indexed families of typed sets) the funcoid Pr,(CA) f conforms to the formula

T2 TFAY ity T (J 775 itk
Prf]y<i> H ({ ifi=k )[f] H <{y ifi =k )

i€dom A i€dom B




23.14. CROSS-COMPOSITION AND SUBATOMIC PRODUCTS 391

PROOF.
(4)
X f;rf Y&
@ 1
VX eupX,Yeuply: X 17€rf Y &

VX eup X, Y eupl:

RLD RLD
TFA) if g £ ks TFB) if § # k;
H ({ tALX ifi=k )[f] H ({ 1By ifi=k ><:>

i€dom A i€dom B
RLD RLD
TZA) if 4 £k, TZ(B)  if £k,
vXeuw ]] ({X iwi—n )Yew 11 (15 ifi=k )
i€dom A i€dom B
X[fI'Y &
FﬁD TEAD Ak ) g 'ii'f TFWB) if £k
] X ifi=k ) Yy ifi==k '
i€dom A i€dom B

O

REMARK 1927. Reloidal product above can be replaced with starred reloidal
product, because of finite number of non-maximal multipliers in the products.

OBvIOUS 1928. Pr](CA) H(A) x = xp provided that z is an indexed family of
non-zero funcoids.
23.13.4. Other.

DEFINITION 1929. Displaced product H(DP) =l H(C) f for every indexed
family of pointfree funcoids, where downgrading is defined for the filtrator

(FCD(StarHom(Src of), StarHom(Dst of)), Rel (H(Src of), H(Dst Of))) .

REMARK 1930. Displaced product is a funcoid (not just a pointfree funcoid).

CONJECTURE 1931. Values z; (for every i € domz) can be restored from the
value of H(DP) 2 provided that z is an indexed family of non-zero funcoids.

DEFINITION 1932. Let f € Q(ZH Y) where Z is a set and Y is a function.

PROPOSITION 1933. Pr,(CD) H(D) F = F}, for every indexed family F' of non-
empty relations.

Proor. Obvious. (]

CororLARY 1934, GRPr” [P F = GRF; and formPrl” [P F =
form F}, for every indexed family F' of non-empty anchored relations.

23.14. Relationships between cross-composition and subatomic
products

PROPOSITION 1935. a [f x(@) g] b < doma [f] domb Aima [g] imb for fun-
coids f and g and atomic funcoids a € FCD(Src f, Srcg) and b € FCD(Dst f, Dst g).
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PRroor.
a {f x (©) g} b
aoft#globe
(doma x P ima)o f~' # g~ o (domb x"P imb) &
(fydoma xFPima % domb x*P (g71) imb &
(f)ydoma # dombAima # (g7 ") imb &
doma [f] domb Aima [g] imb.
]

PROPOSITION 1936. X [H(A) f] Y & Vi € dom f : Pr™P X [f;] PrRP Y for
every indexed family f of funcoids and X € RLD(Srcof), Y € RLD(Dstof).
PRrOOF.

(4)

¥ \[[r|ye

(A)
Ja € atoms X, b € atoms ) : a Hf b&

RLD RLD
Ja € atoms X, b € atoms YVi € dom f : Pra [f;] Pr b &

RLD RLD
Vi € dom f3z € atoms Pr X,y € atoms Pr YV : z; [fi] vi &
K3 7

RLD RLD
Vi€ dom f: Pr X [f;] Pr ).
O

COROLLARY 1937. X [f xW g] ¥ © dom X [f] domY Aim X [g] im Y for
funcoids f, g and reloids X € RLD(Src f,Srcg), and Y € RLD(Dst f, Dst g).

LEMMA 1938. For every A € Rel(X,Y) (for every sets X, Y) we have:
(doma,ima) B (dom a, im a)
a € atoms 1FCP A [ | a € atoms TRLD A [
PROOF. Let z € {M} Take g = doma and z; = ima where

a€atomstRLD A
a € atoms TRP A,
Then zy = dom(FCD)a and x; = im(FCD)a and obviously (FCD)a €

atoms 1FP A. So z € {M}

a€atoms?FCP A

Let now z € {%
atoms 1FCP A.

zo [1FP A] 21 & g [(FCD) tRP A] 21 & 2o xRP 2y #RP AL Thus there
exists atomic reloid z’ such that ' € atoms 1R'° 4 and domz’ = ¢, im 2’ = z1.

Soxe { (doma’,ima’) } 0

a’ €atomsTRLD A

}. Take g = doma and x; = ima where a €

THEOREM 1939. 7P A [f x(©) g|tFP B «ARD 4 [f x(4) g|4RLD B for
funcoids f, g, and Rld-morphisms A : Src f — Srcg, and B : Dst f — Dstg.
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PROOF.
4FCD 4 [f < (©) g}TFCD B o
Ja € atoms 1P A4,b € atoms 1FP B : a [f x (©) g} b
Ja € atoms 1FP A, b € atoms 1FP B : (doma [f] domb A ima [g] im b) =

Jao € atomsdom 7P A, a; € atomsim 7P A4,

bo € atoms dom 7P B, b; € atomsim 7P B : (ag [f] bo A a1 [g] b1).
On the other hand:
Jag € atomsdom 1FP A, a; € atomsim 7P A4,
bo € atomsdom 1P B, b; € atomsim 17C B : (aq [f] bo A a1 [g] b1) =
Jag € atomsdom 7P A, a; € atomsim 7P A,
bo € atoms dom 17P B b; € atomsim 7P B : (ao xFPhy % fAar xTP by # 9) =
Ja € atoms 1FP A b € atoms 1FP B : (doma [f] domb A im a [g] im b).
Also using the lemma we have
Ja € atoms 1FP A, b € atoms 1FP B : (doma [f] domb A ima [g] imb) <
Ja € atoms R0 A b € atoms 1R° B : (doma [f] domb A im a [g] im b).
So
AFCD 4 [f «(©) ghFCD B <
Ja € atoms TRP A, b € atoms 7P B : (doma [f] domb A ima [g] im b) <
Ja € atoms tRC A, b € atoms tRP B : q {f x (4) g} b&
4RLD 4 {f « (A) g}TRLD B.
O

COROLLARY 1940. f x4 g =111] (f x(©) g) where downgrading is taken on
the filtrator

(pFCD(FCD(Src of),FCD(Dst of)), FCD(@ [ (srcof), 2 [J (st of)))

and upgrading is taken on the filtrator
(pFCD(RLD(Srcof)7 RLD(Dst of)), FCD(gZ [[(Srcof), 2 [[(Dst of))).

where we equate m-ary relations with corresponding principal multifuncoids and
principal multireloids, when appropriate.

PROOF. Leave as an exercise for the reader. O
CONJECTURE 1941. 1FP 4 [H(C) f}TFCD B otRD 4 {H(A) f]TRLD B

for every indexed family f of funcoids and A € Z]] Srcf;, B €
P Hiedomf Dst f,‘.

THEOREM 1942. For every filters ag, a1, by, by we have

i€dom f

ag XFCD bo |:f X(C) gi| aj XFCD b1 < ag XRLD bo |:f X(A) g:| ay XRLD by.
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PRroor.
ag xRLD bo |:f X(A) g] ai xRLD b1 &

VAg € ag, By € by, A1 € a1,B1 € by : Ag X By |:f X(A) g:| Ay x Bjy.

AOXBO |:f X(A) g:| A1><Bl = AOXBO |:f X(C) g:| A1XBl = AO ['ﬂ* Al/\BO [g]* Bl-
(Here by Ay x By [f % (C) g]* A, x B; 1 mean 1FCD(Basea,Baseb) (A x
BO) [f ><(C’) g]*TFCD(Basea,Baseb) (Al % Bl))

Thus it is equivalent to ag [f] a1 A by [g] b1 that is ag xFP by [f x(©) g]*

a1 XFCD bl.
(It was used the corollary 1751.) O

Can the above theorem be generalized for the infinitary case?

23.15. Cross-inner and cross-outer product
Let f be an indexed family of funcoids.

DEFINITION 1943. Hirédomf f= Hgg()lomf(RLD)infi (cross-inner product).

DEFINITION 1944, [[0%. f = Hgg()lomf(RLD)outfi (cross-outer product).

i€dom f
PROPOSITION 1945. H?&domf f and H?ggomf f are funcoids (not just pointfree
funcoids).

PrROOF. They are both morphisms StarHom(Ai € dom f : Srcf;) —
StarHom(Ai € dom f : Src f;) for the category of multireloids with star-morphisms,
that is StarHom(Ai € dom f : Src f;) is the set of filters on the cartesian product
[Licaom 7 Sre f; and likewise for StarHom(Ai € dom f : Src f;). O

OBvIOUS 1946. For every funcoids f and g
1°. f x g = (RLD)inf x(©) (RLD)ing;
20, f x° g = (RLD) gy f x(©) (RLD)gutg-
COROLLARY 1947.
1°. {f x™ g)a = (RLD)ing o a o (RLD)in f~1;
2°. (f x° gYa = (RLD)outg © a o (RLD)gus f 1
COROLLARY 1948. For every funcoids f and ¢ and filters a and b on suitable
sets:
1°. a[f x"g] b< b # (RLD)ingoao (RLD)inf~! < bo(RLD)inf # (RLD)ingo
a;
2°. a [fxgl b & b # (RLD)outg o a o (RLD)outf~t < bo (RLD)ou f #
(RLD)outg © a.

PROPOSITION 1949. Knowing that every f; is nonzero, we can restore the values

of f; from the value of [[}%4om i

Proor. It follows that every (RLD);,f; is nonzero, thus we can restore
each (RLD),f; from ngc(iomf(RLD)infi = H;rédomff and then we know f; =
(FCD)(RLD)in fi- O

EXAMPLE 1950. The values of f and g cannot be restored from f x°% g for
some nonzero funcoids f and g.
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PRrROOF. Obviously idgc(g) # 1dFC(D) but 1dFC(D) x out idgc(g) =
(RLD) oyt 16y X (@) (RLD) oy idbRy = L x©@© 1 =
(RLD)out 16 gy X @) (RLD) oy idfy = ideyR) x Ut ideR)-

That is the product f x°U' g is the same if we take f = g = idgc(g) and if we
take f = g = idGgR). O

QUESTION 1951. Which of the following are pairwise equal (for a. two funcoids,
b. any (possibly infinite) number of funcoids)?

1°. subatomic product;
2°. displaced product;
3°. cross-inner product.

23.16. Coordinate-wise continuity

THEOREM 1952. Let p and v be indexed (by some index set n) families of
endomorphisms for a quasi-invertible dagger category with star-morphisms, and
fi € Hom(ODb u;, Obw;) for every i € n. Then:

1°. Vien: fi € Clu,v) = [[V fe C(H(C) . IT V);
2°.Vien: fi € Cuiv) =TV fe C/(H(C) w11
3.Vien: f; e C(u,v;) = H(C) fec” (H(C) i, H(C) V).

ProOF. Using the corollary 1852:

() ()
Vien: fi € Clu,v;) e Vien: fiou QuiofiéH(fiopﬁ;) EH(Viofi)<:>
i€En 1EN
() () () c) (©)

1)« (110 < (T1v) « (T7) = T < o(TTe T

(©) (©)
Vien:fieC(uv)eVien: mCfloviofi=[[nC[[(floviof) e
1EN
©) ©) (©) ©)
[Tec (I1 ) o (TTw ) o (115 ) =
1€EN 1EN 1€EN
©) © \' [© ©) © (©)
[ec (T0n) o (T0w) o (T10) = T e e (T TT

iEN €N €N

ViEn:fiGC"(,u,;,Vi)ékW'Gn:ﬁ;ouiof;Em:s

(%)) (©) (®) (O) (©) (©)

[Hfomorhe[vie [[fic[lmeIlH v«

iEN En iEn iEn iEn En
©  © © \' © © (©)
HinHMO Hf, EHm@HﬁGC" H,LL,HV
iEN iEN S0 ien iEN
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THEOREM 1953. Let p and v be indexed (by some index set n) families of
endofuncoids, and f; € FCD(Ob pu;, Ob ;) for every i € n. Then:

1°. Vi€n: f; € Clui,vi) = [[W f € C(H(A) p T V);
2. ¥ien: fi € Cluv) = [ f e (T T v);
3. Vien: fi € C"(u,v;) = H(A) fec” (H(A) ,u,H(A) 1/).

PRrROOF. Similar to the previous theorem. O

THEOREM 1954. Let p and v be indexed (by some index set n) families of point-
free endofuncoids between posets with least elements, and f; € pFCD(Ob p;, Ob v;)
for every i € n. Then:

1°. Vien: f; € Clui,v;) = [[V f € C(H(S) p, T V);
2. Vien: f; € Cluv) = 1% F e (9w 19v);
. Vien: fie Cuv) =[S fec” (H(S> mi& 1/).

PROOF. Similar to the previous theorem. 0

23.17. Upgrading and downgrading multifuncoids

LEMMA 1955. (X - is a filter base on 2 for every family
Xeuptlien\{r} 7" x

(24, 3;) of primary filtrators where i € n for some index set n (provided that f is a

multifuncoid of the form 3 and k € n and X' € J[;c,\ () %)

PRrROOF. Let K, L € { (X } Then there exist X,Y € up &’ such that K =

Xeup X
(). X, L= (f);Y. We can take Z € up X such that Z C X,Y. Then evidently
(1ZCKand (f),ZC Land (f),Z € {)ﬁéij;pXX}. O

DEFINITION 1956. Square mult is a mult whose base and core are the same.
DEFINITION 1957. L €[f]& VL e up L : L € [f]" for every mult f.

DEFINITION 1958. (f)X = I_IXEupX<f>*X for every mult f whose base is a
complete lattice.

DEFINITION 1959. Let f be a mult whose base is a complete lattice. Upgrading
of this mult is square mult 1] f with base [T f = core ] f = base f and (]] f)"X =
(f)X for every X € []base f.

LEMMA 1960. £; % (11 /)" Ll@ome)\fiy < YL € up L : Li % ()" L|(dom £)\{i}>
if every ((base f);, (core f);) is a primary filtrator over a meet-semilattice with least
element.
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PRrOOF.
Li £ (M) Lldom £\ (i} &
Li # ()Ll @om o)\ (i} &
L # ['] (X &
Xeup L|(gom £)\{i}

LM ['] (X +1le

Xeup Ll(dom LO\{3}
[ e i'x+le

Xe€up L (dom £)\{i}

Lin(f)*Xx } *
|_|{X€up£|(dom[l)\{i} #le ()

L¢ { Lin{f)" X } o
X € up L(dom £)\ {3}
VX € up Llgom e} 1 Li ()" X # L& (*¥)
VLeupLl: <f>*L|dom£ nkrL; 7é 1 <
VLeupL:L; ;\/’ <f>*L|dom£-

(*) because {%} is a filter base (by lemma 1955) of the filter

Xeup Llgom o)\ (i} J
(**) by theorem 537. -

PROPOSITION 1961. 1T f is a square multifuncoid, if every ((base f);, (core f);)
is a primary filtrator over a bounded meet-semilattice.

PROOF. Our filtrators are with complete base by corollary 518.

Li #(1 )" Llaomogiy © VL € up L : Li # (f)"L|(dom £)\{s} by the lemma.

Similarly ,Cj }A <TT f>*£|(dom£)\{j} < VL € upﬁ : Lj f <f>*L|(dom,C)\{j}~
So Li # (M) Llaomengy < L5 # (11 F)"Llomey ;3 because L; #
()" Lltaom o)\ {iy © Lj # ()" Ll(dom £)\ {5} a

PROPOSITION 1962. [11 f]" = [f] if every ((base f);, (core f);) is a primary
filtrator over a bounded meet-semilattice.

PrOOF. Our filtrators are with complete base by corollary 518.
LellfI" =
Li % (11 f) Ll (aom c)\giy < (by the lemma)
VL eupL: Li # (f)"Lldom L)\ i} <
VLeupL:Lel|f]" &
L e [f]
d

ProposiTION 1963. £ € [f] & Li # (f)Ll@ome){y if every
((base f);, (core f);) is a primary filtrator over a bounded meet-semilattice.

PRrROOF. Our filtrators are with complete base by corollary 518.
The theorem holds because 1] f is a multifuncoid and [f] = [T f]" and (f)

(1 .f)"

PRrROPOSITION 1964. A 1T g =17 Ag for every prestaroid g on boolean lattices.

Ol
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PROOF. Our filtrators are with separable core by theorem 537.

Ve (A gL e
LU{EY)}eGRTTg<
up(LU{(;,Y)}) € GRg <
VK e up(LU{(},Y)}): K e GRg &
VX euL,PeuY: : XU{(i,P)} e GRg&
VX eupL,PeupY : P # (valg); X &
VX eupLl:Y # (valg); X &
VX cupLl:Y € (valg); X &
VX eul: XU{(i,Y)} e GRg&
VXeupLl:Y € (Ag)'X &
VXeul:YM{Ag)'X # 1 &
Y 1 (Ag) X
L (TR0 e
Y M(Ag)" X
|_|{ Xéuggc }#M:)

[ M) (Ag)'X # L&

Xeup L

Y# [] (Ag)'X &

Xeup L

ve [] (Ag)'X &
Xeup L
Y € (Ag),L &

Y € (11 Ag); L.

(*) because {%} is a filter base (by the lemma 1955) of ﬂ{%}

DEFINITION 1965. Fix an indexed family (2;, 3;) of filtrators. Downgrading of
a square mult f of the form (2;,%;) is the mult || f of the form (2, 3;) defined by
the formula (|| f)f = (f);|3, for every .

OBvIOUS 1966. Downgrading of a square multifuncoid is a multifuncoid.
OBvious 1967. [|1T f = f for every mult f of the form (2;, 3;).

ProprosITION 1968. Let f be a square mult whose base is a complete lattice.

Then 1T]] f = f.
PrOOF. (11| /)" = Nxew 2 X =[Nxewp )X = (f)"X for every
X € [Licarity r(base f)i. O
23.18. On pseudofuncoids

DEFINITION 1969. Pseudofuncoid from a set A to a set B is a relation f between
filters on A and B such that:

~(ZfL), ZTUJfKeIfKVTfK (foreveryZ,Je F(A),Ke Z(B)),
-(LfI), KfIuJeKfIVKfT (foreveryZ,J e F(B), K e F(A)).
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OBvIOUS 1970. Pseudofuncoid is just a staroid of the form (#(A),.Z (B)).
OBvIous 1971. [f] is a pseudofuncoid for every funcoid f.

ExAMPLE 1972. If A and B are infinite sets, then there exist two different
pseudofuncoids f and g from A to B such that fN(TAX T B) =gN(TAx T B) =
[c] N (T A x T B) for some funcoid c.

REMARK 1973. Counsidering a pseudofuncoid f as a staroid, we get fN (T A x
7B)=|| f.

Proor. Take

f_{ (X,9) }
X e F(A),Y e F(B),NX and () are infinite

and

_ (X,Y)
9fU{Xey(A),yey(B),Xga,ygb}

where a and b are nontrivial ultrafilters on A and B correspondingly, ¢ is the funcoid
defined by the relation

[C]* — 5 — (va)
X c PAY € B, X and Y are infinite |

First prove that f is a pseudofuncoid. The formulas ~(Z f 1) and —(L f Z) are
obvious. We have

II_IJfIC(:)m(II_IJ) and ﬂy are infinite <
ﬂIUﬂj and ﬂy are infinite < (mI or ﬂj is inﬁnite) /\ﬂy is infinite <

(ﬂI and ﬂy are inﬁnite) \Y, (ﬂj and ﬂy are inﬁnite) =
ITfKVJTfK.

Similarly K fZTUT < K fZVEK fJ. So f is a pseudofuncoid.

Let now prove that g is a pseudofuncoid. The formulas —(Z g L) and —~(L g Z)
are obvious. Let ZLJ g K. Then either ZUJ f K and then ZUJ g K or ZUJ Ja
and then Z J aVJ Jda thus havingZ g KVT g K. SoZUT gK=ZgKVJT g K.
The reverse implication is obvious. We have ZUJ g K & Z g KV J g K and
similarly X ¢gZUJ < K gZV K gJ. So g is a pseudofuncoid.

Obviously f # g (a g b but not a f b).

It remains to prove fN(TAX TB)=gN(TAx IB) =[N (TAx TB).
Really, f N (TA x IB) = [N (TA x IB) is obvious. If (14 X,18 Y) ¢
gN (FA x IB) then either (14 X,1B Y) € fN(TAx IB) or X € upa,
Y € upb, so X and Y are infinite and thus (14 X,18 Y) € fn(ZA x 7B). So
gN(TAx IB)=fN(TAx TB). O

REMARK 1974. The above counter-example shows that pseudofuncoids (and
more generally, any staroids on filters) are “second class” objects, they are not
full-fledged because they don’t bijectively correspond to funcoids and the elegant
funcoids theory does not apply to them.

From the above it follows that staroids on filters do not correspond (by restric-
tion) to staroids on principal filters (or staroids on sets).
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23.18.1. More on free stars and principal free stars.

ProprosITION 1975. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator.
3°. (2, 3) is a filtrator.

4°. OF =|| xF for every F € 2.

PROOF.

1°=2°. Obvious.
2°=-3°. Obvious.
3°=4°. X €COF & X £ F & X € xF & X €| «F for every X € 3.

PRrROPOSITION 1976. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a meet-semilattice with least element.
3°. (2, 3) is a filtrator with separable core.
4°. xF =11 OF for every F € 2.

PROOF.

1°=-2°. Obvious.
2°=3°. Theorem 537.
3F=4°. X eENOF < upX COF VX cuwp X X A FS X £ F & X exF.
O

PropPOSITION 1977. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (2, 3) is a primary filtrator over a complete boolean lattice.
3°. (U, 3) is a down-aligned, with join-closed, binarily meet-closed and sepa-
rable core which is a complete boolean lattice.
4°. The following conditions are equivalent for any F € 2l:
(a) Fe3.
(b) OF is a principal free star on 3.
(c) *F is a principal free star on 2.

PROOF.
1°=2°. Obvious.
2°=3°. The filtrator (2, 3) is with with join-closed core by theorem 534, binarily
meet-closed core by corollary 536, with separable core by theorem 537.
3°=4°.
4°a=4°b. That 0F does not contain the least element is obvious. That
OF is an upper set is obvious. So it remains to apply theorem 583.
4°b=-4°c. That xF does not contain the least element is obvious. That
*JF is an upper set is obvious. So it remains to apply theorem 583.
4°c=4°a. Apply theorem 583.
O

ProproOSITION 1978. The following is an implications tuple:
1°. (2, 3) is a powerset filtrator.
2°. (A, 3) is a primary filtrator over a join-semilattice.
3°. The filtrator (2, 3) is weakly down-aligned and with binarily join-closed
core and 3 is a join-semilattice.
4°, If S is a free star on %A then || S is a free star on 3.
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PROOF.

1°=2°. Obvious.

2°=3°. It is weakly down-aligned by obvious 511 and with join-closed core by
theorem 534.

3°=4°. For every X,Y € 3 we have

XPYe|lSeXPYeSeXtyesSe
XeSVYeSeXel|SVY €]] S;

Suppose there is least element 13 €|| S. Then 1% = 13 € S what is impossible.
O

ProprosiTION 1979. The following is an implications tuple:

1°. (2, 3) is a powerset filtrator.
2°. (2(,3) is a primary filtrator over a boolean lattice.
3°. If S is a free star on 3 then 17 S is a free star on 2.

PRrROOF.

1°=2°. Obvious.
2°=3°. There exists a filter F such that S = 0F. For every filters X, € A

X PrYyellSeupXLrY)CSeVK cup(XU*Y): K cdF &
VK cup(XLUPY) KA F e XYV 4£EF o XY exF e X exFVYExF &
XAFVY#*FeVXecupX X £FVVY ecuw): Y £#F <
VX eupX: X e€edFVVY cup): Y € 0F &
uwp X CSVupYCSeXelSVYeNS;

LeMSeupl €S« L €S what is false.

ProprosiTION 1980. The following is an implications tuple:

1°. (2, 3) is primary filtrator over a complete lattice.

2°. (2, 3) is down-aligned filtrator with join-closed core over a complete lat-
tice.

3°. If S is a principal free star on 2 then || S is a principal free star on 3.

PRrROOF.

1°=2°. Tt is down-aligned by obvious 506 and with join-closed core by theorem 534.
2°=3° |PTell S| PTeSe | PTeSeTnS£0e TN || S#0for
every T € #3; 1 ¢]|| S is obvious.

O

ProrosiTION 1981. The following is an implications tuple:
1°. (2, 3) is powerset filtrator.

2°. (2, 3) is primary filtrator over a boolean lattice.
3°. If S is a principal free star on 3 then 17 S is a principal free star on 2I.
PRrROOF.
1°=2°. Obvious.
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2°=-3°. There exists a principal filter F such that S = 0F.

A A 2A
| [T e Seuw| |[TCSeVKecw| |T:KedF &
2A A A
VKeuw| |T:K#4F | |T4Fe||TexFeIKeT: KexF &
eT:K£A£F<IKeITVK euwpK: K4 F<IKeTVK eupK: K € dF &
K ecT:wpKCS<IKecT: Kef S TN TS #0.

LeNS<upl CS< L €S what is false.

23.18.2. Complete staroids and multifuncoids.

DEFINITION 1982. Consider an indexed family 3 of posets. A pre-staroid f of
the form 3 is complete in argument k € arity f when (val f),L is a principal free
star for every L € [, ¢ arity £)\ (s} 9i-

DEFINITION 1983. Consider an indexed family (2(;,3;) of filtrators and mul-
tifuncoid f is of the form (2(,3). Then f is complete in argument k € arity f iff
(f),L € 3y for every family L € [Lic arity 1)\ (£} -

PROPOSITION 1984. Consider an indexed family (2l;,3;) of primary filtrators
over complete boolean lattices. Let f be a multifuncoid of the form (2, 3) and
k € arity f. The following are equivalent:

1°. Multifuncoid f is complete in argument k.
2°. Pre-staroid || [f]" is complete in argument .

PROOF. Let L € [[3. We have L € GR [f]" Li # (f); Ll(dom L)\ (i}

(val [f]") L = 8(f),L by the definition.

So (val [f]"),L is a principal free star iff (f);L € 3 (proposition 1977) for
every L € Hie(arity Pk} 3. O

ExaMPLE 1985. Consider funcoid f = 1F°P. Tt is obviously complete in each
its two arguments. Then [f]" is not complete in each of its two arguments because
(X,Y) €[f]"& X # Y what does not generate a principal free star if one of the
arguments (say X)) is a fixed nonprincipal filter.

THEOREM 1986. Consider an indexed family (2, 3) of filtrators which are down-
aligned, separable, with join-closed, binarily meet-closed and with separable core
which is a complete boolean lattice.

Let f be a multifuncoid of the aforementioned form. Let k,I € arity f and
k # 1. The following are equivalent:

1°. f is complete in the argument k.
2°. ()] (LU{(k,UX)}) = Upex ()] (LU{(k,2)}) for every X € P3y, L €
Hie(arity N{k,1} 3i-
3. (ML U{(k,UX)}) = Upex (£ (LU{(k,2)}) for every X € Py, L €
Hie(arity N{K,L} 3i
PROOF.

3°=2°. Obvious.
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2°=1° Let Y € 3.

| |x % (iEu{a Y)})@YX(f)f(LU{(k,UX)})@

Y # |_| J(LU{(k,2)}) < (proposition 583) <
zeX

Jre XY £ (f)](LU{(k,2)}) e Tre Xz (f)(LU(Y)).

It is equivalent (proposition 1977 and the fact that [f]* is an upper
set) to (f),(LU{({,Y)}) being a principal filter and thus (val f), L being
a principal free star.
1°=3°.

v £ (u{ (k| X)}) & X # (eEuie ) <
reX izt (HULU{LY))eIweX Y £ (LU{(ka)}) <
Y L (5@ u ik

zeX

for every principal Y. Thus (f);(LU{(k,[JX)}) = yex(f)/ (LU
{(k,x)}) by separability.

O

23.19. Identity staroids and multifuncoids

23.19.1. Identity relations. Denote id4p,) = {/\;ee’i‘”” = {"fe{j}} the n-

ary identity relation on a set A (for each index set n).

PROPOSITION 1987. [[X % idap) © (e, Xi N A # 0 for every indexed
family X of sets.

PROOF.
[[X #idap e FteAdinx{tye[[X o tecAVienteX; e[| XinAd#0.
ien

O

23.19.2. General definitions of identity staroids. Consider a filtrator
(2A,3) and A € 2.

I will define below small identity staroids i and big identity staroids IDif['fL].
That they are really staroids and even completary staroids (under certain condi-
tions) is proved below.

dStrd

DEFINITION 1988. Consider a filtrator (2, 3). Let 3 be a complete lattice. Let
A € 2, let n be an index set.

formid3{fs) = 3" L € GRid%y & |_| L € DA.

€N

X;MA # 0 if our filtrator

iEn

OBVIOUS 1989. X € GRidif['fl sVAcup A2
is with separable core.

DEFINITION 1990. The subset X of a poset 2 has a nontrivial lower bound (I
denote this predicate as MEET (X)) iff there is nonleast a € 2 such that Vo € X :
aC x.
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DEFINITION 1991. Staroid ID?I[rg] (for any A € 2 where 2 is a poset) is defined
by the formulas:

form D% =A™ L € GRIDY[, < MEET<{ ; in} U {A}>-

OBvIOUs 1992. If 2 is complete lattice, then £ € GR IDi‘t[rfL] sS[1L#£ A

OBvIOUS 1993. If A is complete lattice and a is an atom, then £ € GR IDit[;d] &
[1£ da.

OBvIOUs 1994. If A is a complete lattice then there exists a multifuncoid
ATD%74) such that (AID%E) L = [T,c,, Li 1A for every k € n, L € 2A"\{F},

PROPOSITION 1995. Let (2(,3) be a meet-closed filtrator and 3 be a complete
lattice and 2 be a meet-semilattice. There exists a multifuncoid A idi{['fb] such that

(A idif['fLQkL = I_l?en L; 1 A for every k € n, L € 3"\{*},

PROOF. We need to prove that LU{(k, X)} € GR idi{[rfb] & |_|136n LA £ X
But

3 3
[Lm AL X[ |LimX £ As
€N 1EN
3
[ (L U{(k,X)}): £ Ae LU{(k,X)} € GRid3, .

iEn

23.19.3. Identities are staroids.

PROPOSITION 1996. Let 2 be a complete meet infinite distributive lattice and
A €. Then IDi‘t[rfL] is a staroid.

Proor. That L ¢ GR IDi‘t[rg] if L, = L for some k € n is obvious. It remains
to prove
LU{(k,XLY)} € GRIDY[, < LU{(k, X)} € GRID3f VLU{(k,Y)} € GRID%F, .
It is equivalent to

[1 Ln(XuY)#(Ae [] LinX#Av [] LiNY #A
ien\{k} ien\{k} ien\{k}

Really,

[] Ln(XuY)#(Ae [] (LiNnX)U(LinY)) #Ae

ien\{k} ien\{k}

[1 Zinx|u| [] Liny|#As

ien\{k} ien\{k}
[1 LinX#Av []| LinYy #A
ien\{k} ien\{k}

O

PROPOSITION 1997. Let (2, 3) be a starrish filtrator over a complete meet

infinite distributive lattice and A € 2. Then idif[rg] is a staroid.



23.19. IDENTITY STAROIDS AND MULTIFUNCOIDS 405

PRroOF. That L ¢ GRidif[rfL] if L, = L for some k € n is obvious. It remains
to prove
LU{(k,XUY)} € GRid%[ < LU{(k,X)} € GRid% VLU{(k,Y)} € GRidX[], .
It is equivalent to
3 3 3
[ LinXuY)#Ae [] LinX#Av [] LinY #A
ien\{k} ien\{k} ien\{k}
Really,
3 3
[] Ln(XuY)#(Ae [] (LiNnX)U(L;NY)) <
ien\{k} ien\{k}

3 3
|_| LinX | U |_| LinY | # A&

ien\{k} ien\{k}
3 3
[1 LinX#Av []| LinYy #A
ien\{k} ien\{k}

O
PROPOSITION 1998. Let (2, 3) be a primary filtrator over a boolean lattice.
IDif['fL] is a completary staroid for every A € 2.

PROOF. *A is a free star by theorem 614.

LoyUL; € GRIDY < Vien: (LoULy)i € xA < Vien: Loill Lyi € xA &
Vien: (Lot € %AV Lii € ¥A) & 3c € {0,1}"Vien: Ly;yi € xA &
Je € {0,137 (Ni € n: Lygsyi) € GRIDYE,.
(]
LEMMA 1999. X € GRid%f) © Cor' [T, X; # A for a join-closed filtrator
(2, 3) such that both 2 and 3 are complete lattices, provided that .4 € 2L
Proor. X € GRidi‘t['fL] & |_|?En X; # A< Cor' ﬂ?en X; # A (theorem 602).
(]
CONJECTURE 2000. idif['i] is a completary staroid for every set-theoretic fil-
ter A.
Strd

CONJECTURE 2001. 17 id%, is a completary staroid if A is a filter on a set
and n is an index set.

23.19.4. Special case of sets and filters.

PROPOSITION 2002. 13" X € GRIid}f[] < VA € a : [[ X # idap, for every
filter a on a powerset and index set n.

PROOF.

3
VA€a: || X #idyeVAca: [ | XsNA4DeVAca:| |X; 4 A&
[n]

i€EN ien

3 3 3
VAca:[|Xi P Ae [P X as [ |17 X) £ a et X € GRidyp -
iEN i1EN iEn

O
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PROPOSITION 2003. Y € GRid}fi < VA € up A : Y € GR 15t id 4, for
every filter A on a powerset and Y € 3.

PROOF. Take Y =13" X
VAcupA:Y € GR 1 id ) & VA € up A 17" X € GR 15" idy, &
VAcupA: [[ X #idap) 17" X € GRidYf) < Y € GRid%[).

O
PROPOSITION 2004. 13" X € GRIid}}jj < VA €adt € AVien:t e X,.
PROOF.

P X eGRidj e FAcaFtc Ainx{t e [[X ©VAcadte AVien:te X,

O

23.19.5. Relationships between big and small identity staroids.

Strd
€N

DEFINITION 2005. ag, 4 = [[;
set n.

LEMMA 2006. £ € GR IDS”] iff J,c,, up £;U{a} has finite intersection property
(for primary filtrators over meet semilattices with greatest element).

a for every element a of a poset and an index

Strd

ProOOF. The lattice A is complete by corollary 518. L € GRIDgy <«
[MienupLMa # 17 < VX € [|,c,upLMa : X # L what is equivalent of
Uien £i U {a} having finite intersection property. O

ProrosiTION 2007. 17T id t[?ﬁ C IDSt[n] C ag, 4 for every filter a (on any dis-
tributive lattice with least element) and an index set n.

PROOF.
GR 7 id3f € GRIDYT.
LeGR i) € up L C GRidyj) < VL eupL: L € GRid}jy] <
3
(theorem 537) < VL € up LVA € upa : |_| L4 A&
SO
3
VL eupLVA€upa: [ |LinA# L=
i€En

U up £; U {a} has finite intersection property < £ € GR IDit[;d] .

S
GRID} € GRal,,. £ € GRIDY| < MEET({Z

a & L € GRag, -

)=>Vi€a:/3¢;£

O

ProposITION 2008. 17 1dSt'] C IDSt[:ﬂ = ag, 4 for every nontrivial ultrafilter a
on a set.

PRrROOF. O

GR 7 idyf] # GRID. Let £; =152¢(@) i Then trivially £ € GRID}{{. But

ala) ala] alal*

to disprove £ € GR 11 1d2t[;d it’s enough to show L ¢ GR 1dSt for some
L € up L. Really, take L; = £; =tB2¢(@) j_ Then L € GR lds“] S VAe
adt € AVi € a : t € ¢ what is clearly false (we can always take i € a such

that ¢ ¢ 4 for any point t).
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GRID}I = GRad,,. LEGRID}| & Vica:L;JaeVica: Litas LE
GR ag;g-

COROLLARY 2009. ag,,4 isn’t an atom when a is a nontrivial ultrafilter.

COROLLARY 2010. Staroidal product of an infinite indexed family of ultrafilters
may be non-atomic.

PROPOSITION 2011. idi*f' is determined by the value of 1T i da[n] (for every
element a of a filtrator (2(,3) over a complete lattice 3). Moreover 1dat[;fi] =17
idStrd

a[n]*

ProOOF. Use general properties of upgrading and downgrading (proposi-
tion 1775). O

ProroOSITION 2012. IDZt[:fﬂ is determined by the value of || IDS'  moreover

a[n]»

DStn] S Dit[:f] (for filter a on a primary filtrator over a meet semilattice with

greatest element).
PROOF.
LMD < up L €Il DS & up £ C DY &
VLEupL:LGIDsm@VLEupL |_|L Na+# 17 o

€N
U up £; U {a} has finite intersection property < (lemma) < £ € GR IDit[;d] .
€N
O
PRroPOSITION 2013. i zt[;f] cll IDa[n] for every filter @ and an index set n.
Proor. id3p =|117 id3f 1l IDf. O

Strd
a [a]

PROOF. Suppose idgfsl =|| ID3. Then ID3{ =171l IDJf =11 id3f what

ala] ala
contradicts to the above. O

OBvIOUs 2015. £ € GRID| < aM[]
complete lattice.

ProrosIiTION 2014. i Cll IDit [o) for every nontrivial ultrafilter a.

ien Li # L if a is an element of a

OBviIOUS 2016. £ € GRIDit[:f] sVYien:L;JdasVien: L; #(aifaisan
ultrafilter on 2.

23.19.6. Identity staroids on principal filters. For principal filter 1 A
(where A is a set) the above definitions coincide with n-ary identity relation, as
formulated in the following propositions:

PROPOSITION 2017. 15t id 4(,,] = id%fg‘fn],

PROOF.

LeGR 1P idyy, & [[L#idap & FteAVien: tel;
(VLinA#0s LeGRIidY], .

1EN

Thus 154 id (. = i35, O

COROLLARY 2018. id%ﬁn] is a principal staroid.
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QUESTION 2019. Is ID% A[n] principal for every principal filter A on a set and
index set n?
PROPOSITION 2020. 15t idap, EIL ID?EX[’”] for every set A.
PROOF.
3
L€ GRP™ idyy, © LeGRIRY, ot A£ [ |Li =

S

A% |_|L & L el| GRIDYY,
EN

O

PROPOSITION 2021. 15trd idap CU ID?ZC[’H] for some set A and index set n.

PrROOF. L € GR 15 idyp, < |‘|16n L; #1 A what is not implied by
|_|lEnL #1 A that is L €]] GR ID%{?H]. (For a counter example take n = N,
L; =]0;1/i[, A=R.) O

PROPOSITION 2022. T3 id 47,y =11 id3%,;.
PRrROOF. 1]15td idap) =11 1dStr is obvious from the above. O
PROPOSITION 2023. ]15trd idA[n] C ID%T-
PROOF.
X € GR 111> idap, < up X € GR 12" idyp,) <
VY e upX : Y € GR 15t idgpy & VY eup XY € GRldiiﬁn] &

3 A
VY eupX: [ |VintA# L=[]XNTA#Le X eGRIDY,.
€N €N

PROPOSITION 2024. 11154 id 4, C ID3%{,; for some set A.

PRrROOF. We need to prove 715t id Aln] IDSt d that is it’s enough to prove

(see the above proof) that VY € up X : |_| Yt A #+ 1 < |—] XNt A#£ L
A counter-example follows

VY € upX : [2, ;M 1+ A # L does not hold for n = N, X; =1] — 1/i;0[ for
i €n, A=]—00;0[. To show this, it’s enough to prove |—| Yt A= 1 for
Y; =1] — 1/4; 0] but this is obvious since |—| Y, = 1.

i€n
On the other hand, [T, X;M+ A # L for the same X and A. O

1EN €N

€N

€N

iEN

The above theorems are summarized in the diagram at figure 13:

LD, 3 15 id g, = idR%T,

PR

DE, I 15 idap =17 2%,

FI1GURE 13. Relationships of identity staroids for principal filters.
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REMARK 2025. C on the diagram means inequality which can become strict
for some A and n.

23.19.7. Identity staroids represented as meets and joins.
dStrd

ProrosiTioN 2026.
on a powerset.

HAGupaldA[n] = |—|A€upa1d,4[ | for every filter a

PROOF. Since idim is a staroid (proposition 1997), it’s enough to prove that

. 1Strd - 3 15id 4
idgp,) is the greatest lower bound of | —==0% -

That 1dStrd C45td id 4y, for every A € upa is obvious.
[n]

an—

Let f C15%9 id 4p,) for every A € upa.

LeGRf=VAcupa:LeGRP"idy, &

3
VAEupa:HLiidA[n“:)VAEupa: |_|Li¢A:>
ien
2A A
VAcupa: [ |Li#A=[]|Li#a=LeGRidy.
€n ien
Thus f C idit[f]. O

Strd Strd
PrOPOSITION 2027. IDJ‘H”] = LlaEatomsAIDat[:;l] = |ucatoms A @5erq Where the
join may be taken on every of the following posets: anchored relations, staroids,
completary staroids, provided that A is a filter on a set.

PROOF. IDSt[rn] is a completary staroid (proposition 1998). Thus, it’s enough
Strd

ID
to prove that IDSY is the lowest upper bound of { ——2"L_ 1 (also use the fact
p Aln]

a€atoms A
that D3 = afl,).
IDSt[rd] | IDZt[;L] for every a € atoms A is obvious.

Let f 3 IDit[n] for every a € atoms . A. Then VL € GR IDgt[;f] : L € GR f that is

VL € form f : (MEET({i?n}U{a}> =Le GRf).

But

2A
L
EIaéatomsA:MEET({_ }U{a})@ﬂaéatemsA:HLiﬁa<:
ien

iEN
A
[]Li # A< LeGRIDY,.
1EN
So L € GRIDYfS, = L € GR f. Thus f J ID3F,. O

PROPOSITION 2028. idif[rfl] = I—laeatomsAidit[;?] where the meet may be taken

on every of the following posets: anchored relations, staroids, provided that A is a
filter on a set.

PROOF. Since idif['i] is a staroid (proposition 1997), it’s enough to prove the
result for join on anchored relations.
1dSt[rd] 3 1dSt[;fi] for every a € atoms A is obvious.
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Let f 3 idit[;ld] for every a € atoms.A. Then VL € GR idit[f] : L € GR f that is

3
VL € form f : <|_|Liﬁa¢L€GRf).
EN

But Ja € eautoms.A:|_|3 L #a<= |_|3 Li¥AsLe idif[rg,y

iEN €N

So L € idfn = L € GR f. Thus f Jid%f). O
23.19.8. Finite case.

THEOREM 2029. Let n be a finite set.

1°. idi‘[rg] =]l IDif[rgl] if 20 and 3 are meet-semilattices and (2, 3) is a binarily

meet-closed filtrator.
2°. IDi{[rfL] =1 idi‘t['fl] if (2, 3) is a primary filtrator over a distributive lattice.
PROOF.
1°.

L;
L eGR || ID}{)) < L € GRIDY, < MEET({Z - n} U {A}> &

2 3
|—| L; A # 0« (by finiteness) < |_| LinA#0& Le GRidi{[rfL]
1€EN i€n

for every L € [] 3.

2°.

L € GR 17 id%{) < up L C GRid%f) < VK € up L : K € GRid%}[y <

3 3
VK euwlL:[|K cdAeVKewpl: [ |Ki £ As
i€En iEn

(by finiteness and theorem 535) <

2A |—|?l K,
VK L:||K; & e e
€ up IDL i EA Aeﬂ(*){KEHPL}
(by the formula for finite meet of filters, theorem 523) <
2A 2 2A
A€ﬂ<*>*up|_|Li<ﬁ>VK€upl_|Li:AE*K@VKGupHLi:AﬁK@
€N iEN 1EN
(by separability of core, theorem 537) <
2A
Str
[|Li # Ae LeIDYE,.
iEN

O

PRrROPOSITION 2030. Let (2(,3) be a binarily meet closed filtrator whose core
is a meet-semilattice. || IDif[rgl] and idi{‘[rg] are the same for finite n.

PROOF. Because H?edomL L= ﬂ?ledomL L; for finitary L. O

23.20. Counter-examples

ExaMPLE 2031. 1T]] f # f for some staroid f whose form is an indexed family
of filters on a set.
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PrROOF. Let f = {%} for some infinite set U where A is some non-
principal filter on O.
AUBE f 1P Cor(AUB) # A 1Y% Cor AU1P CorB £ A &
1O CorANA#£17Ov48 Cor BNA £ 170 o Ac fVBef.

Obviously L7®) ¢ f. So f is a free star. But free stars are essentially the
same as 1-staroids.

U f=0A 111 f= {upzzeg%A} = {vmiefxm} = {g;{} —xA#£f. O

For the below counter-examples we will define a staroid ¢ with arity 9 = N and
GR Y € Z(NY) (based on a suggestion by ANDREAS BLASS):

A€ GRY & supcard(4; Ni) =NAVi e N: A; # 0.
€N

PROPOSITION 2032. ¢ is a staroid.
PROOF. (val¥);L = #N\ {#} for every L € (ZN)"\} if
sup card(4; Nj) =NAVj e N\ {i}: L; # 0.

JEN\{i}
Otherwise (val®);L = (. Thus (val¥);L is a free star. So ¢ is a staroid. (That ¢ is
an upper set, is obvious.) O

PROPOSITION 2033. 9 is a completary staroid.

PRrROOF.

AgUA; e GRY & AgU A e GRY &
sup card((Agi U A1i) Ni) = NAVi e N: Agi U A1i £ ) &
i€N
sup card((Aoi Ni) U (A1iNi)) =NAVi € N: Agi U Ayi # 0.
€N
If Agi = 0 then Agi N¢ = () and thus A2 N4 3 Agi Ni. Thus we can select
c(i) € {0,1} in such a way that Vd € {0,1} : card(A.;yi N i) 3 card(Agi N4) and
Aciyi # 0. (Consider the case Agi, A1i # () and the similar cases Agi = ) and
Ai=10.)
So

AgUA; € GRY & supcard(Ae;iNi) =NAVie N: Apyi # 0 <
€N
(Mi€n:Agyi) € GRY,
Thus ¥ is completary. O

OBvIOUS 2034. 9 is non-zero.

ExaMpPLE 2035. There is such a nonzero staroid f on powersets that f 2
[T1°™ a for every family a = a;en.

PROOF. It’s enough to prove 9 2 [[*™ a.

Let ™Y R; = a; if a; is principal and R; = N\ 7 if a; is non-principal.

We have Vi e N : R; € a;.

We have R ¢ GR 1) because sup,cy card(R; M) # N.

Re HStrd a because VX € a; : X N R; # 0.

So 9 2 "™ a. O
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REMARK  2036. At  http://mathoverflow.net/questions/60925/special-
infinitary-relations-and-ultrafilters there is a proof for arbitrary infinite form,
not just for N.

CONJECTURE 2037. For every family a = a;en of ultrafilters HStrd a is not an

atom nor of the poset of staroids neither of the poset of completary staroids of the
form Ai € N : Base(a;).

CONJECTURE 2038. There exists a non-completary staroid on powersets.
CONJECTURE 2039. There exists a prestaroid which is not a staroid.

CONJECTURE 2040. The set of staroids of the form AZ where A and B are sets
is atomic.

CONJECTURE 2041. The set of staroids of the form AZ where A and B are sets
is atomistic.

CONJECTURE 2042. The set of completary staroids of the form A® where A
and B are sets is atomic.

CONJECTURE 2043. The set of completary staroids of the form A where A
and B are sets is atomistic.

EXAMPLE 2044. StarComp(a, f L g) # StarComp(a, f)UStarComp(a, g) in the
category of binary relations with star-morphisms for some n-ary relation a and an
n-indexed families f and ¢ of functions.

ProOF. Let n ={0,1}. Let GRa = {(0,1),(1,0)} and f = [{(0,1)},{(1,0)}],
g9 =TM{(1,0}{0,1)}].

For every {0, 1}-indexed family of p of functions:

L € StarComp(a, u) < Jy € a: (yo po Lo Ay p1 Ln) &
Jyo € dom pg,y1 € dom py : (Yo po Lo Ayr w1 L)
for every n-ary relation pu.
Consequently
L € StarComp(a, f) < Lo=1ANL; =0« L = (1,0)

that is StarComp(a, f) = {(1,0)}. Similarly
StarComp(a, g) = {(0,1)}.
Also

L € StarComp(a, f U g) <

Jyo,y1 € {0,1} = ((yo fo Lo V Yo go Lo) A (y1 fr L1V y1 g1 L)).
Thus
Starcomp(aa f U g) = {(Oa 1)7 (170)a (05 0)7 (L 1)}
O

COROLLARY 2045. The above inequality is possible also for star-morphisms of
funcoids and star-morphisms of reloids.

PROOF. Because finitary funcoids and reloids between finite sets are essentially
the same as finitary relations and our proof above works for binary relations. [

The following example shows that the theorem 1986 can’t be strengthened:

ExXAMPLE 2046. For some multifuncoid f on powersets complete in argument
k the following formula is false:

(MNLU{E LX)} = Uex (F)i(L U {(k,2)}) for every X € P3y, L €
i€ (arity f)\{k,l} yﬁ


http://mathoverflow.net/questions/60925/special-infinitary-relations-and-ultrafilters
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ProoF. Consider multifuncoid f = Aid?;}?g] where U is an infinite set (of the
form 33) and L = (V) where Y is a nonprincipal filter on U.

(oL U{(k LIX)}) = ¥ AL X

Uzex (oL U{(k,2)}) = ,ex (Y Na).

It can be Y M| | X =[] . x(Y Mz) only if Y is principal: Really: Y M| |X =
,ex (Y Ma) implies Y £ | | X = | |,cx (Y N2) # L= 3r € X:Y % and thus
Y is principal. But we claimed above that it is nonprincipal. O

EXAMPLE 2047. There exists a staroid f and an indexed family X of principal
filters (with arity f = dom X and (form f); = Base(X;) for every i € arity f), such
that f C HStrdX and Y M X ¢ GR f for some Y € GR f.

REMARK 2048. Such examples obviously do not exist if both f is a principal
staroid and X and Y are indexed families of principal filters (because for powerset
algebras staroidal product is equivalent to Cartesian product). This makes the
above example inspired.

PROOF. (MONROE ESKEW) Let a be any (trivial or nontrivial) ultrafilter on
an infinite set U. Let A, B € a be such that AN B C A, B. In other words, A, B
are arbitrary nonempty sets such that ) # AN B C A, B and a be an ultrafilter on
AN B.

Let f be the staroid whose graph consists of functions p : U — a such that
either p(n) D A for all but finitely many n or p(n) 2 B for all but finitely many n.
Let’s prove f is really a staroid.

It’s obvious pz # () for every x € U. Let k € U, L € aV\*}. Tt is enough
(taking symmetry into account) to prove that

LU{(k,zUy)} € GRf & LU{(k,2)} € GRFVLU{(k,y)} €GRf.  (36)

Really, LU{(k,zUy)} € GR f iff zUy € a and L(n) 2D A for all but finitely many n
or L(n) D B for all but finitely many n; LU{(k,z)} € GR fiff z € aand L(n) D A
for all but finitely many n or L(n) D B; and similarly for y.

But zUy € a <z € aVy € abecause a is an ultrafilter. So, the formula (36)
holds, and we have proved that f is really a staroid.

Take X be the constant function with value A and Y be the constant function
with value B.

Vp € GRf : p % X because p; N X; € a; so GRf C GR HStrd X that is
f C HStrd X

Finally, Y M X ¢ GR f because X MY =X i€ U : AN B. O

23.21. Conjectures

REMARK 2049. Below I present special cases of possible theorems. The theo-
rems may be generalized after the below special cases are proved.

CONJECTURE 2050. For every two funcoids f and g we have:
1°. (RLD)ina [f x (DP) g} (RLD)inb < a [f x(©) g] b for every funcoids a €
FCD(Src f,Srcg), b € FCD(Dst f, Dst g);
2°. (RLD)outa [f x (DP) g] (RLD)outd < a [f x (©) g] b for every funcoids
a € FCD(Sre f,Srcg), b € FCD(Dst f, Dst g);
3°. (FCD)a [f x(©) g] (FCD)b & a [f x (PP) g] b for every reloids a €
RLD(Src f,Srcg), b € RLD(Dst f, Dst g).

CONJECTURE 2051. For every two funcoids f and g we have:
1°. (RLD)iwa [f x (4) g] (RLD)inb < a [f x(©) g] b for every funcoids a €
FCD(Src f,Srcg), b € FCD(Dst f, Dst g);



23.21. CONJECTURES 414

2°. (RLD)outa [f x (4) g] (RLD)outd < a [f x (©) g] b for every funcoids a €
FCD(Src f,Srcg), b € FCD(Dst f, Dst g);

3°. (FCD)a [f x(©) g] (FCD)b & a [f x (4) g] b for every reloids a €
RLD(Src f, Srcg), b € RLD(Dst f, Dst g).

CoNJECTURE 2052. [["™a %2 ™Mb e be[[™awac[[™be Vien:
a; % b; for every n-indexed families a and b of filters on powersets.

CONJECTURE 2053. Let f be a staroid on powersets and a € []
b € [Ticaity s Dst fi- Then

Src f;,

i€arity f

Strd Strd

H Hf Hb@VzEn a; [fi] bi.

PrOPOSITION 2054. The conjecture 2053 is a consequence of the conjec-
ture 2052.

PROOF.

Strd (©) Strd Strd Strd Strd Strd
ITe 117 ITo < I10 # <Hf>Ha@beH (fiya; &
1EN
O
CONJECTURE 2055. For every indexed families a and b of filters and an indexed

family f of pointfree funcoids we have

Strd (©) Strd RLD (DP) RLD

[Ie|II7] 1Tt ITa | 1T #| IT®

CONJECTURE 2056. For every indexed families a and b of filters and an indexed
family f of pointfree funcoids we have

Strd Strd RLD RLD

o |T0¢| TTv= T |T1/| TT

Strengthening of an above result:

CONJECTURE 2057. If a is a completary staroid and Dst f; is a starrish poset
for every i € n then StarComp(a, f) is a completary staroid.

Strengthening of above results:

CONJECTURE 2058.
1°. H(D) F is a prestaroid if every Fj is a prestaroid.
2°. H(D) F' is a completary staroid if every F; is a completary staroid.

CONJECTURE 2059. If f; and fy are funcoids, then there exists a pointfree
funcoid f; x fa such that

(f1 X fo)o = |_|{ {f1)X xF<P <f2>X}

X € atomszx

for every ultrafilter x.
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CONJECTURE 2060. Let (2(,3) = (U, 3);en be a family of filtrators on boolean
lattices.
A relation § € &[] atoms™ such that for every a € [] atoms™:

VAGa:éﬁHatomsT3iAi7é®:>a€5 (37)
1EN
can be continued till the function T f for a unique staroid f of the form Ai € n : 2,;.
The funcoid f is completary.

CONJECTURE 2061. For every & € [],.,, 7 (2;)
XeGRﬂf(:)éﬂHatomin#[b. (38)
iEN

CONJECTURE 2062. Let R be a set of staroids of the form Ai € n : Z#(2;) where
every 2; is a boolean lattice. If z € [],,, atoms” ) then z € GR [ [|R < Vf €
R:z €l f.

There exists a completary staroid f and an indexed family X of principal filters
(with arity f = dom X and (form f); = Base(X;) for every i € arity f), such that
FEIT™ X and Y 11X ¢ GR f for some Y € GR f.

CONJECTURE 2063. There exists a staroid f and an indexed family x of ultra-
filters (with arity f = dom« and (form f); = Base(x;) for every ¢ € arity f), such
that f C HStrdx and Y Mz ¢ GR f for some Y € GR f.

Other conjectures:

CONJECTURE 2064. If staroid L # f C ag,4 for an ultrafilter ¢ and an index
set n, then nx{a} € GR f. (Can it be generalized for arbitrary staroidal products?)
CONJECTURE 2065. The following posets are atomic:

1°. anchored relations on powersets;
2°. staroids on powersets;
3°. completary staroids on powersets.

CONJECTURE 2066. The following posets are atomistic:

1°. anchored relations on powersets;
2°. staroids on powersets;
3°. completary staroids on powersets.

The above conjectures seem difficult, because we know almost nothing about
structure of atomic staroids.

CONJECTURE 2067. A staroid on powersets is principal iff it is complete in
every argument.

CONJECTURE 2068. If a is an ultrafilter, then idzt[;f] is an atom of the lattice

of:
1°. anchored relations of the form (& Base(a))™;
2°. staroids of the form (& Base(a))™;
3°. completary staroids of the form (& Base(a))™.
CONJECTURE 2069. If a is an ultrafilter, then 1T idzt[;f] is an atom of the lattice
of:

1°. anchored relations of the form .#(Base(a))™;
2°. staroids of the form % (Base(a))";
3°. completary staroids of the form .7 (Base(a))".
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23.21.1. On finite unions of infinite Cartesian products. Let 2l be an
indexed family of sets.

Products are [] A for A € [l

Let the lattice I" consists of all finite unions of products.

Let the lattice I'* be the lattice of complements of elements of the lattice I'.

ProBLEM 2070. Is |_|FCD a bijection from a. §T'; b. FT'™* to:

1°. prestaroids on 2,
2°. staroids on 2,
3°. completary staroids on A7
If yes, is up’ defining the inverse bijection?
If not, characterize the image of the function |_|FCD defined on a. §I'; b. FT'*.

23.21.2. Informal questions. Do products of funcoids and reloids coincide
with Tychonoff topology?

Limit and generalized limit for multiple arguments.

Is product of connected spaces connected?

Product of Ty-separable is Ty, of T} is 117

Relationships between multireloids and staroids.

Generalize the section “Specifying funcoids by functions or relations on atomic
filters” from [30].

Generalize “Relationships between funcoids and reloids”.

Explicitly describe the set of complemented funcoids.

Formulate and prove associativity of staroidal product.

What are necessary and sufficient conditions for up f to be a filter (for a fun-
coid f)? (See also proposition 1125.)
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Algebra of general topology



CHAPTER 24

Introduction

I will show that most of the topology can be formulated in an ordered semigroup
(or, more generally, an ordered semicategory).

I will make this part of the book mostly self-contained, for example, reminding
definitions of funcoids.

418



CHAPTER 25

Prerequisites

You need to know about semigroups, ordered semigroups, semigroup actions,
before reading further. If in doubt, consult Wikipedia.

Filtrators are pairs of a poset and its subset (with the induced order). An
important example of filtrator is the set of filters on some poset together with the
subset of principal filters. (Note that I order filters reversely to the set inclusion
relation: So for filters I have a C b < a D b.)

I will denote meet and join on a poset correspondingly as M and U.

I call two elements a and b intersecting (a # b) when there is a non-least
element ¢ such that ¢ C a A ¢ E b. For meet-semilattices with meet operation [
this condition is equivalent to a M b being non-least element.

I call two elements a and b joining (a = b) when there is no non-greatest
element ¢ such that ¢ J a A c Jb. For join-semilattices with meet operation U this
condition is equivalent to a LI b being the greatest element.

I denote (f)*X = { Iz }

reX

419



CHAPTER 26

Basic examples

A topological space is determined by its closure operator.

Consider the semigroup formed by composing together any finite number of
topological closure operators (on some fixed “universal” set).

This semigroup can be considered as its own action.

So every topological space is an element of this semigroup that is associated
with an action.

The set, on which these actions act, is the set of subsets of our universal set.
The set of subsets of a set is a partially ordered set.

So we have topological space defined by actions of an ordered semigroup.

Below I will define a space as an ordered semigroup action element.

This includes topological spaces, uniform spaces, proximity spaces, (directed)
graphs, metric spaces, semigroups of operators, etc.

Moreover we can consider the semigroup of all functions U — 0 for some
set U (the set of “points” of our space). Above we showed that topological spaces
correspond to elements of this semigroup. Functions on U also can be considered
as elements of this semigroup (replace every function with its “image of a set”
function). Then we have an ordered semigroup action containing both topospaces
and functions. As it was considered above, we can describe a function f being
continuous from a space p to a space v by the formula fopu C vo f. See, it’s an
instance of algebraic general topology: a topological concept was described by an
algebraic formula, without any quantifiers.
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CHAPTER 27

Semicategories

DEFINITION 2071. A semicategory is a directed multigraph together with a
partial binary operation o on the set M of edges (called the set of morphisms in
the context of semicategories) such that go f is defined iff Dst f = Srcg (for every
morphisms f and g) such that

1°. Sre(g o f) = Src f and Dst(g o f) = Dst g whenever the composition g o f
of morphisms f and g is defined.
2°. (hog)of = ho(go f) whenever compositions in this equation are defined.

DEFINITION 2072. A prefunctor is a pair of a function from the set of objects
of one semicategory to the set of objects of another semicategory and a function
from the set of morphisms of one semicategory to the set of morphisms of that
another semicategory (these two functions are denoted by the same letter such
as ¢) conforming to the axioms:

1°. o(f) : &(Src f) — ¢(Dst f) for every morphism f of the first semicategory;
2°. ¢(go f) = &(g) o ¢(f) for every composable morphisms f, g of the first
semicategory.

NoTE 2073. A semigroup is essentially a special case of a semicategory (with
only one object) and semigroup homomorphism is a prefunctor.
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CHAPTER 28

Ordered semicategories

DEFINITION 2074. Ordered semicategory (or posemicategory) is a semicategory
together with an order on the set of morphisms conforming to the equality:

ToE w1 Ay Eyr = yooxg Eyromwy.
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CHAPTER 29

Ordered semigroups

DEFINITION 2075. Ordered semigroup (or posemigroup) is a set together with
binary operation o and binary relation C on it, conforming both to semigroup
axioms and partial order axioms and:

ToE w1 Ay Eyr = yooxg Eyromwy.

Essentially, a posemigroup is just an ordered semicategory with just one object.

In this book I will call elements of an ordered semigroup spaces, be-
cause they generalize such things as topological spaces, (quasi)proximity spaces,
(quasi)uniform spaces, (directed) graphs, (quasi)metric spaces.

As T shown above, functions (and more generally binary relations) can also be
considered as spaces.
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CHAPTER 30

Semicategory actions

DEFINITION 2076. Semicategory action is a prefunctor from a semicategory to
the category Set.
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CHAPTER 31

Ordered semicategory actions

The category Pos is the category whose objects are (small) posets and whose
morphisms are order homomorphisms.

DEFINITION 2077. Semiordered semicategory action on a is a semicategory
action () to the category Pos of all partially ordered sets, such that
1°. a C b= (a)x C (b)x for all a,b € S, x € 2.

I call morphisms of such a semicategory as semi-interspaces.

DEFINITION 2078. Ordered semicategory action on a is a semicategory action ()
to the category Pos of all partially ordered sets, such that
1°. aC b= (a)x C (b)x for all a,b € S, z € A;
2°. zCy={a)zC{(a)yforallae S, z,y € A.
In other words, an ordered semicategory action is a (not necessarily strictly) increas-
ing semicategory action (we consider transformations of this action to be ordered
pointwise, that is by the product order).
I call morphisms of such a semicategory as interspaces.

Note that this “inducting” is an ordered semigroup homomorphism.

IThe prefix inter- is supposed to mean that the morphisms may have the source different
that the destination.
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CHAPTER 32

Ordered semigroup actions

DEFINITION 2079. Curried semiordered semigroup action on a poset 2 for an
ordered semigroup S is a function () : S — (2 — 2A) such that
1°. (boa)x = (b){a)x for all a,b € S, z € A; z,y € A,
2°. aCb= (a)z C (b)z for all a,b € S, z € 2.
I call elements of such an action semispaces.

DEFINITION 2080. Curried ordered semigroup action on a poset 2 for an or-
dered semigroup S is a function () : S — (A — ) such that
1°. (boa)r = (b){a)x for all a,b € S, x € A; z,y € A,
2°. aCb= (a)z C (b)z for all a,b € S, z € L,
3°. 2 Cy=(a)x C (a)yy foralla € S.
I call elements of such an action spaces.

REMARK 2081. Google search for “"ordered semigroup action"” showed noth-
ing. Was a spell laid onto Earth mathematicians not to find the most important
structure in general topology?

Essentially, an ordered semigroup action is an ordered semicategory action with
just one object.
We can order actions componentwise. Then the above axioms simplify to:
1°. (boa) = (b) o (a) for all a,b € S;
2°. () is a (not necessarily strictly) increasing;
3°. (a) is a (not necessarily strictly) increasing, for every space a.

DEFINITION 2082. A functional ordered semicategory action is such an ordered
semicategory action that {(a) = a for every space a.

THEOREM 2083. Each ordered semicategory action induces as functional or-
dered semicategory action, whose morphisms are the same a of the original one but
with objects being posets, spaces are the actions of the original semicategory, the
composition operation is function composition, and order of spaces is the product
order.

Proor. That it’s a semicategory is obvious. The partial order is the same as
the original. It remains to prove the remaining axioms.
For our semicategory

(boa) =boa=(b)o{a).
() is increasing because it’s the identity function.

(a) is the same as one of the original ordered semicategory action and thus is
increasing. U

Having a ordered semicategory action and a homomorphism to its ordered
semicategory, we can define in an obvious way a new ordered semicategory action.
The following is an example of this construction (here (RLD);, is a functor of ordered
semicategories).
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32. ORDERED SEMIGROUP ACTIONS 427

Funcoids form an ordered semicategory with action (). Reloids form an ordered
semicategory with action a — ((RLD)ipa). As we know from the above, funcoids
are a generalization of topological spaces, proximity spaces, and directed graphs
(“discrete spaces”), reloids is a generalization of uniform spaces and directed graphs.
Funcoid is determined by its action. So most of the customary general topology
can be described in terms of ordered semicategory actions (or ordered semigroup
actions, see below).

Remember that elements of our posets of objects may be such things as sets or
more generally filters, they may be not just points. So our topological construction
is “pointfree” (we may consider sets or filters, not points).

This part of the book is mainly about this topic: describing general topology
in terms of ordered semicategory actions. Above are the new axioms for general
topology. No topological spaces here.

Semiordered semicategory action is ordered by elements when

aCb< {(a) C(b)
that is when
aCb<Vr: (a)x C (b)x.
Obviously, in this case () is a faithful functor. So our ordered semicategory
action is essentially functional (functional, up to a faithful functor).



CHAPTER 33

Ordered dagger categories and ordered semigroups
with involution

DEFINITION 2084. Dagger semicategory is a semicategory together with the
operation a + a' (called involution or dagger) such that:
1°. ot = a;
2°. (boa)t =al obl.
For an ordered dagger semicategory we will additionally require a C b = af C bf
(and consequently a C b < af C bf).

DEFINITION 2085. Semigroup with involution is a dagger semicategory with
just one object.

For an ordered semigroup with involution or ordered dagger semicategory we
will additionally require @ C b = a C b' (and consequently a C b < af C b).
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CHAPTER 34
Topological properties

Now we have a formalism to describe many topological properties (following
the idea above in this book):

Continuity is described by the formulas foa C ao f, foaoff Ca,a C ffoaof.

Convergence of a function f from an endomorphism (space) p to an endo-
morphism (space) v at filter z to a set or filter y is described by the formula
=

Generalized limit of an arbitrary interspace f (for example, of an arbitrary

(possibly discontinuous) function), see [33], is described by the formula
vofor
1' = —_—
xlim f { reG }7

where G is a suitable group (consider for example the group of all translations of a
vector space).

Neighborhood of element x is such a y that (a)x C y. Interior of x (if it exists)
if the join of all y such that x is a neighborhood of z.

An element x is closed regarding a iff (a)x C z. x is open iff z is closed
regarding (a)'.

To define compactness™ we additionally need the structure of filtrator (2, 3) on
our poset. Then it is space a is directly compact iff

1

Vo € 2 : (x is non-least = Cor(a)x is non-least);

a is reversely compact iff al is directly compact; a is compact iff it is both directly
and reversely compact.

Denote ¢ the element of the semicategory Set such that (¢) = Cor, then the
above can be rewritten

Vo € 2 : (x is non-least = (¢ o a)zx is non-least);

what is equivalent to 1 C coa.

However, we can define compactness without specifying 3 as we can take 3 to
be the center (the set of all its complemented elements) of the poset 2.

The same reasoning applies to Cor’ in place of Cor.

It seem we cannot define total boundness purely in terms of ordered semigroups,
because it is a property of reloids and reloid is not determined by its action.

IThat this coincides with the traditional definition of compactness of topological spaces,
follows from the well known fact that a topological space is compact iff each proper filter on it
has an adherent point.
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CHAPTER 35

A relation

Every ordered semicategory action () defines a relation R: z [a] y < y # (a)z.

If [a]'=[a] " for every a, we call the action () on an dagger semicategory inter-
section-symmetric. In this case our action defines a pointfree funcoid.

A space is connected iff x =y = z [a] y.

We can define open and closed functions.

430



CHAPTER 36

Further axioms

Further possible axioms for an ordered semigroup action with binary joins:

o (f)(xUy) = (NHzU(f)y;
e (fUg)x = (flzU (g)z.

FiXme: Need to generalize for a wider class of posets.
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CHAPTER 37

Restricted identity transformations

Restricted identity transformation id,, where p is an element of a poset, is the
(generally, partially defined) transformation x +— x M p.

OBvIOUS 2086. id, oid, = idpn, if p and ¢ are elements of some poset for which
binary meet is defined.

PROPOSITION 2087. p # g = id,, # id,.
PRrOOF. id,p=p # ¢ =1id,q. O

Ordered semicategory action with identities is an ordered semicategory S ac-

tion () together with a function p — id, € S such that

1°. (idp) = id, whenever this equality is defined,;

2°. idp oz C x;

3°. xoid, C .
(I abuse the notation id, for both interspaces and for transformations; this won’t
lead to inconsistencies, because as proved above this mapping is faithful on re-
stricted identities.)

OBvVIOUS 2088. For every ordered semicategory action with identities, the iden-
tity transformations are entirely defined on their domains.

From injectivity it follows id,n, = id, 0 id,.
Restriction of an interspace a to element z is al, = a o id,.

Square restriction (a generalization of restriction of a topological space, metric
space, etc.) of a space a to element x is id, oa o id,.
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CHAPTER 38

Binary product of poset elements

DEFINITION 2089. I call an ordered semicategory action correctly bounded when
the set of interspaces between two fixed objects is bounded and:

1°. (L)ax = L for every poset element z;
. T iz,
l<ﬂx_{¢ if = L.

Binary product in an ordered semigroup action having a greatest element T is
defined as p x ¢ =id4oT oid,.

THEOREM 2090. If our action is correctly bounded, then

@xwx={q Hezp

1 ifz=xp.
PRrOOF.
(pxqz=
(idgoT oidy)x =
(id,) (T){idy)a =
gr(T)(pNz) =
q ifxz#p,
1 ifx=xp.
O
THEOREM 2091. If our action is correctly bounded, then
zlpxgysrtphy¥ta
ProOOF.
rpxgdyeytpxgre
q ifxz#p,
y# { 1 ifx=p. <
TEPAY F£Q.
O
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CHAPTER 39
Separable spaces

T1-space a when = R Cor a y for every x < y.

Ty-space or Hausdorff is such a space f that f~! o f is Ti-separable.
Tu-space is such a space f that f~!' 1 f is Tj-separable.

Ty-space is such a space f that

fofofof T fof
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CHAPTER 40

Distributive ordered semigroup actions

We can define (product) order of ordered semicategory actions. For functional
ordered semicategory actions composition is defined. So we have one more “level”
of ordered semicategories. By the way, it can be continued indefinitely building
new and new levels of such ordered semicategories.

More generally we could consider ordered semicategory functors (or specifically,
ordered semigroup homomorphisms). Examples of such homomorphisms are (),
(FCD), (RLD);y.

Pointfree funcoids (and consequently funcoids) are an ordered semicategory
action. Reloids are also an ordered semicategory action.
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CHAPTER 41

Complete spaces and completion of spaces

A space a is complete when (a)| ]S = |]{(a))"S whenever both | |S and
| J{{a))"S are defined.

DEFINITION 2092. Completion of an interspace is its core part (see above for
a definition of core part) on the filtrator of interspace and complete interspace.

NoTE 2093. Apparently, not every space has a completion.

NoTE 2094. It is unrelated with Cachy-completion.
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CHAPTER 42

Kuratowski spaces

DEFINITION 2095. Kuratowski space is a complete idempotent (aoa = a) space.

Kuratowski spaces are a generalization of topological spaces.
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CHAPTER 43

Metric spaces

Let us call most general nonnegative real metrics (MGNRM) the semicategory
of all extended nonnegative (R} U {+00}) real functions (on some fixed set) of two
arguments and the “composition” operation

(0 op)(z,2) = inf (p(z,y) + 0(2,9))
yel
and most general nonnegative real metric an element of this semicategory.
REMARK 2096. The infimum exists because it’s nonnegative.
We need to prove it’s an associative operation.
PROOF.

(ro (00 m)(e2) =
inf ((oop)(z,y1) +7(Y1,2)) =

Y1 €0
inf ( inf =
Jnf ( Inf (p(2,y0) + o (yo, 1)) + 7(v1, 2))
inf  (p(z,90) + o (yo, y1) + 7(y1,2))-
Y0,Yy1 €0
Similarly
((roa)op)(z,2) =
inf _ (p(x,40) + o (y0,y1) + 71, 2))-
Y0,Yy1 €0
Thus 7o (cop)=(Tro0)o0np. O

DEFINITION 2097. We extend MGNRM to the set 0 by the formula:
X, Y)= inf .
pPEY) = inf  pzy)
REMARK 2098. This is well-defined thanks to MGNRM being nonnegative and
allowing the infinite value.

PROPOSITION 2099.
1°. p(TUJ,Y) = min{p(I,Y), p(J,Y)};
2°. p(X,1UJ) = min{p(X, 1), p(Y,])}.

Proor. We'll prove the first as the second is similar:
pIUTY) =

nf _
velUTyey p(z,y)

N " _
mm{ze}{lyey pla.y), inf (e, y)}
min{p(I,Y), p(J,Y)}.
O
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43. METRIC SPACES 439

Let a be a most general metric. I denote A, the funcoid determined by the
formula

X [AJ Y & pu(X,Y) =0.
(If a is a metric, then it’s the proximity induced by it.)
Let’s prove it really defines a funcoid:
PROOF. Not 0 [A,]" Y and not X [A,]" @ because

pal0,Y) = pa(X,0) = +o0.
By symmetry, it remains to prove

(TUD)[AJ Y ©T[A] YVJI[A] Y.
Really,
(TUJ)[AJ" Y &
p(IUJY)=0<
min{p,(1,Y), pa(J,Y)} =0 &
pa(1,Y) =0V pa(J,Y) =0«
I[A Y VJ[A] Y.
O

OsBvious 2100.
X[A] Y &
Ve>03dz € X,y €Y : |po(z,y)| <€
THEOREM 2101.

<Aa>X = |_| U B(l‘,ﬁ)

e>0zeX
(B(z,€) is the open ball of the radius € centered at z).

PROOF.

Y4 (A)X e X [A)]Y &
Ve>0dz e X,y €Y : pa(z,y) < e

Y # |—| U B,(z,€)

e>0zeX
Ve>0:Y # U B,(z,€) &
zeX
Ve >03r € X : Y % By(z,¢) &
Ve>0dz e X,y €Y : py(a,y) <e.
U

MGNRM are also interspaces: Define the order on metric spaces by the formula

pCoeV,y:p(x,y) Jo(z,y).

Define the action for a metric space a as the action (A,) of its induced proximity A,
(see above for a definition of proximity and more generally funcoid actions ()) and
composition of metrics p, o by the formula:

(00p)(z,2) = Inf(p(2,y) +o(2,)),

where U is the set of points of our metric space.
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LEMMA 2102. Apoq = Ap 0 Ag.
ProoOF. Let X, Y be arbitrary sets on a metric space.
A f\ <Aboa>X =4
Ve>0dz € X,z € Z:
inf (pa(2,y) + po(y, 2)) < €=
yel
Ve>0dr € X,y € U,z€ Z:

pa(x,y) + pp(y,2) <e &
Ve>0dx € X,y € U,z € Z:

(Pa(z,y) < €N pp(y,z) <e)

Z %\ <Ab © Aa>X = Z # <Ab><Aa>X And
(ADZ £ (A)X &

|_| U Bu(z,€) # |—| U By(z,¢) &

e>0zxeX e>0zeZ
Ve >0: U By (z,€) # U By(z,€) &
reX z2€Z

Ve > 03z € X,z € Z: By(z,€) % Bp(z,€) &
Ve>0dx € X,2€ Z,yeU:
(pa(w,2) < enpy(z,y) <e).
S0, Z # (Apoa) X & Z % (Apo Ag) X. O

Let’s prove it’s really an ordered semicategory action:

PROOF.

e It is an ordered semicategory, because (a)x = (Ay)x T (A,)y = (a)y for
filters = C y.
[

(boa) = (Apoa) =
<Ab o Aa> =

(b) is obvious;
C (a)y for all a € S is obvious.

FiXme: The above can be generalized for the values of the metric to be certain
ordered additive semigroups instead of nonnegative real numbers.

43.1. Functions as metrics

We want to consider functions in relations with MGNRM. So we we will consider
(not only functions but also) every morphism f of category Rel as an MGNRM by
the formulas py(z,y) =0 if x f y and py(x,y) = 400 if not x f y.

THEOREM 2103. If p is a MGNRM and f is a binary relation composable with
it, then:
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PRroor.
(o f)la,y) = nf(f(X,1) + p(Y,y))
but f(X,t) + p(Y,t) = +oo if not X [f]" {t} and f(X,t) + p(Y,t) = p(Y,t) if
X [fI" {t}. So

(po HIX,Y) =
inf  p(Y,1) =
te{ <ty }
f Yt
b ) =
p(Y,(f)"X)
The other item follows from symmetry. O

43.2. Contractions

What are (generalized) continuous functions between metric spaces?

Let f be a function, p and ¥ be MGNRMs. Provided that they are composable,
what does the formula of generalized continuity f o pu C v o f mean?

Transforming the formula equivalently, we get:

Va,z: (fop)(x,2) 2 (vo [z, 2);
Vo, z: p({a}, (f~ > B A v(f,2);
Vo, 2y € (F7) (e} - (o, y) Dol f =)

Yo,y y) v(fz, fy).

So generalized continuous functions for metric spaces is what is called contrac-
tions that is functions that decrease distance.

O
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CHAPTER 44

Postface

See this Web page for my research plans:
https://math.portonvictor.org/research-plans-in-algebraic-general-topology/

I deem that now the most important research topics in Algebraic General Topol-
ogy are:

to solve the open problems mentioned in this work;
research pointfree reloids (see below);

define and research compactness of funcoids;

research categories related with funcoids and reloids;
research multifuncoids and staroids in more details;
research generalized limit of compositions of functions;
research more on complete pointfree funcoids.

All my research of funcoids and reloids is presented at
https://math.portonvictor.org/algebraic-general-topology-and-math-
synthesis/
Please write to porton@narod.ru, if you discover anything new related with my
theory.

44.1. Pointfree reloids

Let us define something (let call it pointfree reloids) corresponding to pointfree
funcoids in the same way as reloids correspond to funcoids.

First note that RLD(A,B) are isomorphic to §Z(XX x #B). Then
note that P(FPA x FB) are isomorphic both to pFCD(ZA, #B) and to
atoms” 4 x atoms”?B.

But FCD(A, B) is isomorphic to pFCD(F(A), F(B)).

Thus both FpFCD(A,B) and F(atoms® x atoms®)  correspond  to
pFCD(F(A),§(B)) in the same way (replace XA — A, B — B) as RLD(A, B)
corresponds to FCD(A4, B).

So we can name either FpFCD(2l,B) or F(atoms® x atoms
reloids.

Yes another possible way is to define pointfree reloids as the set of filters on
the poset of Galois connections between two posets.

Note that there are three different definitions of pointfree reloids. They prob-
ably are not the same for arbitrary posets 2l and 5.

I have defined pointfree reloids, but have not yet started to research their
properties.

Research convergence for pointfree funcoids (should be easy).

) as pointfree

44.2. Formalizing this theory

Despite of all measures taken, it is possible that there are errors in this book.
While special cases, such as filters of powersets or funcoids, are most likely correct,
general cases (such as filters on posets or pointfree funcoids) may possibly contain
wrong theorem conditions.
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Thus it would be good to formalize the theory presented in this book in a proof
assistant' such as Coq.

If you want to work on formalizing this theory, please let me know.

See also https://coq.inria.fr/bugs/show bug.cgi?id=2957

1A proof assistant is a computer program which checks mathematical proofs written in a
formal language understandable by computer.


https://coq.inria.fr/bugs/show_bug.cgi?id=2957

CHAPTER 45

Please nominate me for prizes

Please nominate me for this book and other texts at my site https://
mathematics21.org for math prizes.

In particular, this page gives instructions how to nominate me for Abel Prize:

https://mathematics21.org/nominate-me-for-abel-prize/

I also need a recommendation letter from you to be nominated for the Break-
through Prize. Please write and send me (porton@narod.ru) a letter.

Nominate me for other prizes, too.
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CHAPTER 46

Story of the discovery

I was a Protestant. (Now I have a new religion.").

I deemed that I should openly proclaim my faith: (Luk. 9:26) “For whoever
shall be ashamed of me and of my words, of him shall the Son of man be ashamed,
when he shall come in his own glory, and in his Father’s, and of the holy angels.”
and Mrk. 8:38.

Moreover, I “reduced” my confession: “I am a sectarian”, “I am a religious
fanatic.” I considered the word “sectarian” as one of the Christ’s words, because
the Gospel, 2Cor. 6:17 contains the word “separate”, the root of which has the
same meaning as the roots of the words “sectarian” and “holy”. 1 considered the
word “fanatic” to be one of Christ’s words, because the Bible says (Rev. 3:19) “be
zealous” and “jealous” and “fanatic” are words with the root of a similar meaning.

My so-called “confession of faith” caused a sharply negative reaction of people
and led to religious discrimination, refusal to talk to me, insults, and often beatings.
Moreover, realizing the hopelessness of my situation, I did not even try to improve
my social status, since this was clearly impossible. In addition, with such my
position, new opportunities would mean new problems for me.

When I was a first year student at Perm State University, I became interested
in general topology and set a goal to discover algebraic general topology.

So I ended up on the street, without food. I began to eat grass and drink from
a puddle and wait for death from hunger (as you know, I still survived).

From nothing to do, I continued my mathematical thoughts and came up with
a definition of funcoid. The biggest math discovery in general topology since 1937
(when the filters were opened) was made by a hungry homeless on the street.

I wrote a term paper at my first year opening in the university.

Understanding that a religious fanatic cannot find a job and for me it is threat-
ening soon again starvation and death, I decided to show humility: become eco-
nomically weaker (abandon my economic goals and ambitions) in order to become
richer. To become economically weaker, I decided to leave the university in the 5th
year and filed a deduction.

My humility worked: T managed to get a second disability group that provided
the conditions for my survival. Besides other things, I told psychiatrists that I have
a strange object in my brain, a seraph (“genius” in Greek mythology). Consider
both options: if I have a foreign object in my brain then I'm a disabled person in
the psyche, if not then disabled in the psyche, too.

As you know, I wrote a doctoral dissertation in mathematics (you read it) and I
was not awarded the title of Doctor of Science for religious reasons as a punishment
for practicing my religion.

I sued, demanding compensation for the unpaid salary of a professor of mathe-
matics and other things, as well as 4 trillion dollars as compensation for not made
due to poverty scientific discoveries. (I valued this book along with amendments,

Ihttps:/ /www.smashwords.com/books/view /618525
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as well as my XML file processing method in 2 trillion dollars; well, how much is
the limit of the discontinuous function?)

It was not that court, and after that I filed a lawsuit in the Tverskoy court of
Moscow. This time without the requirement of 4 trillions and the title of hero of
Russia.

But when she saw the word “sectarian”, the chairman of the court, Olga Niko-
laevna Solopova, went crazy with laughter and shame and, deciding that humor
took precedence over the law, did not respond to my lawsuit. It is clear that
Solopova cannot answer, therefore I demanded that the qualification collegium of
judges recognize her as incompetent and insane as a result of exposure to her brain
with information about an abnormal sectarian and transfer the case to another
judge. Qualification board has not yet responded. Such should be the reaction of
a judge to a suit of a subhuman, in accordance with humor.

Note: I'm not going to actually bankrupt Russia.

About mathematical aspects of the story of my discoveries, see blog post:
https://portonmath.wordpress.com/?p=2992
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APPENDIX A

Using logic of generalizations

A.1. Logic of generalization

In mathematics it is often encountered that a smaller set S naturally bijectively
corresponds to a subset R of a larger set B. (In other words, there is specified an
injection from S to B.) It is a widespread practice to equate S with R.

REMARK 2104. I denote the first set S from the first letter of the word “small”
and the second set B from the first letter of the word “big”, because S is intuitively
considered as smaller than B. (However we do not require card S < card B.)

The set B is considered as a generalization of the set S, for example: whole
numbers generalizing natural numbers, rational numbers generalizing whole num-
bers, real numbers generalizing rational numbers, complex numbers generalizing
real numbers, etc.

But strictly speaking this equating may contradict to the axioms of ZF/ZFC
because we are not insured against S N B # ) incidents. Not wonderful, as it is
often labeled as “without proof”.

To work around of this (and formulate things exactly what could benefit com-
puter proof assistants) we will replace the set B with a new set B’ having a bijection
M : B — B’ such that S C B’. (I call this bijection M from the first letter of the
word “move” which signifies the move from the old set B to a new set B’).

The following is a formal but rather silly formalization of this situation in
ZF. (A more natural formalization may be done in a smarter formalistic, such as
dependent type theory.)

A.1.1. The formalistic. Let S and B be sets. Let E be an injection from S
to B. Let R=1im F.
Let t=2UUS.
E-'z ifz € R;

Let M(z) = { (t,z) ifod R
Recall that in standard ZF (t,z) = {t, {t,z}} by definition.

THEOREM 2105. (t,z) ¢ S.

PROOF. Suppose (t,z) € S. Then {t,{t,z}} € S. Consequently {t} € |JS;
{t} CUUS; {t} € ZUUS; {t} € t what contradicts to the axiom of foundation
(aka axiom of regularity). O

DEFINITION 2106. Let B’ = im M.

THEOREM 2107. S C B'.

PROOF. Let x € S. Then Ex € R; M(Ez) = E 'Ez=x;2 € imM =B. O
OBvVIOUS 2108. F is a bijection from S to R.

THEOREM 2109. M is a bijection from B to B’.

PROOF. Surjectivity of M is obvious. Let’s prove injectivity. Let a,b € B and
M(a) = M(b). Consider all cases: O
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a,b€ R. M(a) = E~ta; M(b) = E~'b; E-la = E~'b; thus a = b because E~! is
a bijection.

a€R,b¢ R M(a)=E ta; M(b) = (t,b); M(a) € S; M(b) ¢ S. Thus M(a) #
M (b).

a ¢ R,be R. Analogous.

a,b¢ R. M(a) = (t,a); M(b) = (t,b). Thus M(a) = M(b) implies a = b.

THEOREM 2110. M o F = idg.

PROOF. Let z € S. Then Ez € R; M(Ez) = E~1Ez = . O
OBvious 2111. E= M~ }s.

A.1.2. Existence of primary filtrator.

THEOREM 2112. For every poset 3 there exists a poset 20 O 3 such that (2, 3)
is a primary filtrator.

PrROOF. Take S = 3, B =73, E =1. By the above there exists an injection M
defined on § such that Mo 1= id3.

Take 2 = im M. Order (Z') elements of 2l in such a way that M : F(3) — A
become order isomorphism. If z € 3 then x =idyx = M T« € im M = 2. Thus
2D 3.

If z C y for elements x, y of 3, then 1z C1 y and thus M ? 2z T’ M 1 y that is
x Ty, so 3 is a subposet of 2, that is (2, 3) is a filtrator.

It remains to prove that M is an isomorphism between filtrators (F(3),) and
(2,3). That M is an order isomorphism from §(3) to 2 is already known. It
remains to prove that M maps ‘B to 3. We will instead prove that M ! maps 3
to B. Really, T © = M~z for every x € 3. O
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