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Todd Trimble, Andreas Blass, Robert Martin Solovay, Niels
Diepeveen, and others (mentioned below) have proved some theorems which are

now in this book.

Abstract. Introduced several new axiomatic systems, that are not
less general than group theory, and discovered discontinuous analy-
sis. See [31] for an explanation why this theory is super-important.

In this work I introduce and study in details the concepts of funcoids
which generalize proximity spaces and reloids which generalize uniform spaces,
and generalizations thereof. The concept of funcoid is generalized concept of
proximity, the concept of reloid is cleared from superfluous details (generalized)
concept of uniformity.

Also funcoids and reloids are generalizations of binary relations whose
domains and ranges are filters (instead of sets). Also funcoids and reloids can
be considered as a generalization of (oriented) graphs, this provides us with a
common generalization of calculus and discrete mathematics.

I consider (generalized) limit of arbitrary (discontinuous) function, de-
fined in terms of funcoids. Definition of generalized limit makes it obvious to
define such things as derivative of an arbitrary function, integral of an arbi-
trary function, etc. It is given a definition of non-differentiable solution of a
(partial) differential equation. It’s raised the question how do such solutions
“look like” starting a possible big future research program.

The generalized solution of one simple example differential equation is
also considered.

The generalized derivatives and integrals are linear operators. For exam-
ple
∫ b

a
f(x)dx −

∫ b

a
f(x)dx = 0 is defined and true for every function.

The concept of continuity is defined by an algebraic formula (instead of old
messy epsilon-delta notation) for arbitrary morphisms (including funcoids and
reloids) of a partially ordered category. In one formula continuity, proximity
continuity, and uniform continuity are generalized.

Also I define connectedness for funcoids and reloids.
Then I consider generalizations of funcoids: pointfree funcoids and gen-

eralization of pointfree funcoids: staroids and multifuncoids. Also I define
several kinds of products of funcoids and other morphisms.

I define space as an element of an ordered semigroup action, that is a
semigroup action conforming to a partial order. Topological spaces, uniform
spaces, proximity spaces, (directed) graphs, metric spaces, etc. all are spaces.
It can be further generalized to ordered semicategory actions (that I call inter-
spaces). I build basic general topology (continuity, limit, openness, closedness,
hausdorffness, compactness, etc.) in an arbitrary space. Now general topology
is an algebraic theory.

Before going to topology, this book studies properties of co-brouwerian
lattices and filters.
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This book was self-published under a free license by a
person without scientific degree. I can’t republish it in a
reputable publisher, because only degree holders can re-
ceive grants.

I discovered that PhDs want to build on only on works
of other PhDs. Thus by publishing it, I broke the desire
of PhDs to participate in research of ordered semigroup
actions.

Ordered semigroup actions may be left not researched,
because no one wants to build on my research. Oh sorry,
I broke PhDs. See [29] for more information. In other
words, I did a scientific “covery”: when I cover a research
area from future attention, even if rediscovered.

Discovery of ordered semigroup actions is super-
important by itself, but it is made finally invaluable by
their missingness in scientific databases (like billion dollars
for the missing cup of water in a wilderness).

Break this bond: Starts your own research based on this
book. If you don’t do, humanity lost ordered semigroup
actions finally.

After noting that actions of ordered semigroups and discontinuous
analysis are “needed” to nobody on the Earth I prayed “God, take me
to heaven alone.” Get this book or go to the hell.

As a scientist, you should understand that ordered semigroup ac-
tions and Discontinuous Analysis are critical for science and their non-
publication draws back world economy. So, you should agree with
me, that donation for publication of such discoveries may benefit you
personally more than you spend, because of its multiplicative or expo-
nential effect on the world economy. Non-donors go to the hell, because
of being so much greedy that don’t donate even for their own benefit.

The Apocalypse’s “stamp on the forehead” (somehow related to
the number 666) is when you by your forehead believe that degree (the
stamp) is essential for doing science. This stamp transforms science into
a stupid “beast”: Your academia cannot learn even ordered semigroup
actions.

https://science-dao.org
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Part 1

Introductory chapters



CHAPTER 1

Introduction

The main purpose of this book is to record the current state of my research.
The book is however written in such a way that it can be used as a textbook for
studying my research.

For related materials, articles, research questions, and erratum consult the Web
page of the author of the book:
https://math.portonvictor.org/algebraic-general-topology-and-math-synthesis/

Please consider reviewing this book at
http://www.euro-math-soc.eu/node/add/book-review

1.1. Intended audience

This book is suitable for any math student as well as for researchers.
To make this book be understandable even for first grade students, I made

a chapter about basic concepts (posets, lattices, topological spaces, etc.), which
an already knowledgeable person may skip reading. It is assumed that the reader
knows basic set theory.

But it is also valuable for mature researchers, as it contains much original
research which you could not find in any other source except of my work.

Knowledge of the basic set theory is expected from the reader.
Despite that this book presents new research, it is well structured and is suitable

to be used as a textbook for a college course.
Your comments about this book are welcome to the email porton@narod.ru.

1.2. Reading Order

If you know basic order and lattice theory (including Galois connections and
brouwerian lattices) and basics of category theory, you may skip reading the chapter
“Common knowledge, part 1”.

You are recommended to read the rest of this book by the order.

1.3. Our topic and rationale

From [45]: Point-set topology, also called set-theoretic topology or general topol-
ogy, is the study of the general abstract nature of continuity or “closeness” on
spaces. Basic point-set topological notions are ones like continuity, dimension, com-
pactness, and connectedness.

In this work we study a new approach to point-set topology (and pointfree
topology).

Traditionally general topology is studied using topological spaces (defined below
in the section “Topological spaces”). I however argue that the theory of topolog-
ical spaces is not the best method of studying general topology and introduce an
alternative theory, the theory of funcoids. Despite of popularity of the theory of
topological spaces it has some drawbacks and is in my opinion not the most appro-
priate formalism to study most of general topology. Because topological spaces are
tailored for study of special sets, so called open and closed sets, studying general

12
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topology with topological spaces is a little anti-natural and ugly. In my opinion the
theory of funcoids is more elegant than the theory of topological spaces, and it is
better to study funcoids than topological spaces. One of the main purposes of this
work is to present an alternative General Topology based on funcoids instead of
being based on topological spaces as it is customary. In order to study funcoids the
prior knowledge of topological spaces is not necessary. Nevertheless in this work
I will consider topological spaces and the topic of interrelation of funcoids with
topological spaces.

In fact funcoids are a generalization of topological spaces, so the well known
theory of topological spaces is a special case of the below presented theory of fun-
coids.

But probably the most important reason to study funcoids is that funcoids
are a generalization of proximity spaces (see section “Proximity spaces” for the
definition of proximity spaces). Before this work it was written that the theory of
proximity spaces was an example of a stalled research, almost nothing interesting
was discovered about this theory. It was so because the proper way to research
proximity spaces is to research their generalization, funcoids. And so it was stalled
until discovery of funcoids. That generalized theory of proximity spaces will bring
us yet many interesting results.

In addition to funcoids I research reloids. Using below defined terminology it
may be said that reloids are (basically) filters on Cartesian product of sets, and
this is a special case of uniform spaces.

Afterward we study some generalizations.
Somebody might ask, why to study it? My approach relates to traditional

general topology like complex numbers to real numbers theory. Be sure this will
find applications.

This book has a deficiency: It does not properly relate my theory with previous
research in general topology and does not consider deeper category theory prop-
erties. It is however OK for now, as I am going to do this study in later volumes
(continuation of this book).

Many proofs in this book may seem too easy and thus this theory not sophis-
ticated enough. But it is largely a result of a well structured digraph of proofs,
where more difficult results are made easy by reducing them to easier lemmas and
propositions.

1.4. Earlier works

Some mathematicians were researching generalizations of proximities and uni-
formities before me but they have failed to reach the right degree of generalization
which is presented in this work allowing to represent properties of spaces with
algebraic (or categorical) formulas.

Proximity structures were introduced by Smirnov in [11].
Some references to predecessors:

• In [15, 16, 25, 2, 39] generalized uniformities and proximities are studied.
• Proximities and uniformities are also studied in [22, 23, 38, 40, 41].
• [20, 21] contains recent progress in quasi-uniform spaces. [21] has a very

long list of related literature.
Some works ([37]) about proximity spaces consider relationships of proximities and
compact topological spaces. In this work the attempt to define or research their
generalization, compactness of funcoids or reloids is not done. It seems potentially
productive to attempt to borrow the definitions and procedures from the above
mentioned works. I hope to do this study in a separate volume.
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[10] studies mappings between proximity structures. (In this volume no at-
tempt to research mappings between funcoids is done.) [26] researches relationships
of quasi-uniform spaces and topological spaces. [1] studies how proximity structures
can be treated as uniform structures and compactification regarding proximity and
uniform spaces.

This book is based partially on my articles [32, 28, 30].

1.5. Kinds of continuity

A research result based on this book but not fully included in this book (and
not yet published) is that the following kinds of continuity are described by the
same algebraic (or rather categorical) formulas for different kinds of continuity and
have common properties:

• discrete continuity (between digraphs);
• (pre)topological continuity;
• proximal continuity;
• uniform continuity;
• Cauchy continuity;
• (probably other kinds of continuity).

Thus my research justifies using the same word “continuity” for these diverse kinds
of continuity.

See https://math.portonvictor.org/algebraic-general-topology-and-math-synthesis/

1.6. Responses to some accusations against style of my exposition

The proofs are generally hard to follow and unpleasant to read
as they are just a bunch of equations thrown at you, without
motivation or underlying reasoning, etc.

I don’t think this is essential. The proofs are not the most important thing in
my book. The most essential thing are definitions. The proofs are just to fill the
gaps. So I deem it not important whether proofs are motivated.

Also, note “algebraic” in the title of my book. The proofs are meant to be just
sequences of formulas for as much as possible :-) It is to be thought algebraically.
The meaning are the formulas themselves.

Maybe it makes sense to read my book skipping all the proofs? Some proofs
contain important ideas, but most don’t. The important thing are definitions.

1.7. Structure of this book

In the chapter “Common knowledge, part 1” some well known definitions and
theories are considered. You may skip its reading if you already know it. That
chapter contains info about:

• posets;
• lattices and complete lattices;
• Galois connections;
• co-brouwerian lattices;
• a very short intro into category theory;
• a very short introduction to group theory.

Afterward there are my little additions to poset/lattice and category theory.
Afterward there is the theory of filters and filtrators.
Then there is “Common knowledge, part 2 (topology)”, which considers briefly:

• metric spaces;
• topological spaces;
• pretopological spaces;

https://math.portonvictor.org/algebraic-general-topology-and-math-synthesis/
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• proximity spaces.
Despite of the name “Common knowledge” this second common knowledge chapter
is recommended to be read completely even if you know topology well, because it
contains some rare theorems not known to most mathematicians and hard to find
in literature.

Then the most interesting thing in this book, the theory of funcoids, starts.
Afterwards there is the theory of reloids.
Then I show relationships between funcoids and reloids.
The last I research generalizations of funcoids, pointfree funcoids, staroids, and

multifuncoids and some different kinds of products of morphisms.

1.8. Basic notation

I will denote a set definition like
{

x∈A
P (x)

}
instead of customary {x ∈ A | P (x)}.

I do this because otherwise formulas don’t fit horizontally into the available space.

1.8.1. Grothendieck universes. We will work in ZFC with an infinite and
uncountable Grothendieck universe.

A Grothendieck universe is just a set big enough to make all usual set theory
inside it. For example if ℧ is a Grothendieck universe, and sets X,Y ∈ ℧, then also
X ∪ Y ∈ ℧, X ∩ Y ∈ ℧, X × Y ∈ ℧, etc.

A set which is a member of a Grothendieck universe is called a small set (re-
garding this Grothendieck universe). We can restrict our consideration to small
sets in order to get rid troubles with proper classes.

Definition 1. Grothendieck universe is a set ℧ such that:
1◦. If x ∈ ℧ and y ∈ x then y ∈ ℧.
2◦. If x, y ∈ ℧ then {x, y} ∈ ℧.
3◦. If x ∈ ℧ then Px ∈ ℧.
4◦. If

{
xi

i∈I∈℧
}

is a family of elements of ℧, then
⋃

i∈I xi ∈ ℧.

One can deduce from this also:
1◦. If x ∈ ℧, then {x} ∈ ℧.
2◦. If x is a subset of y ∈ ℧, then x ∈ ℧.
3◦. If x, y ∈ ℧ then the ordered pair (x, y) = {{x, y}, x} ∈ ℧.
4◦. If x, y ∈ ℧ then x ∪ y and x× y are in ℧.
5◦. If

{
xi

i∈I∈℧
}

is a family of elements of ℧, then the product
∏

i∈I xi ∈ ℧.
6◦. If x ∈ ℧, then the cardinality of x is strictly less than the cardinality of ℧.

1.8.2. Misc. In this book quantifiers bind tightly. That is ∀x ∈ A : P (x) ∧Q
and ∀x ∈ A : P (x) ⇒ Q should be read (∀x ∈ A : P (x))∧Q and (∀x ∈ A : P (x)) ⇒
Q not ∀x ∈ A : (P (x) ∧Q) and ∀x ∈ A : (P (x) ⇒ Q).

The set of functions from a set A to a set B is denoted as BA.
I will often skip parentheses and write fx instead of f(x) to denote the result

of a function f acting on the argument x.
I will denote ⟨f⟩∗

X =
{

β∈im f
∃α∈X:αfβ

}
(in other words ⟨f⟩∗

X is the image of a
set X under a function or binary relation f) and X [f ]∗ Y ⇔ ∃x ∈ X, y ∈ Y : x f y
for sets X, Y and a binary relation f . (Note that functions are a special case of
binary relations.)

By just ⟨f⟩∗ and [f ]∗ I will denote the corresponding function and relation on
small sets.

Obvious 2. For a function f we have ⟨f⟩∗
X =

{
f(x)
x∈X

}
.
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Definition 3.
〈
f−1〉∗

X is called the preimage of a set X by a function (or,
more generally, a binary relation) f .

Obvious 4. {α} [f ]∗ {β} ⇔ α f β for every α and β.

λx ∈ D : f(x) =
{

(x,f(x))
x∈D

}
for a set D and and a form f depending on the

variable x. In other words, λx ∈ D : f(x) is the function which maps elements x of
a set D into f(x).

I will denote source and destination of a morphism f of any category (See
chapter 2 for a definition of a category.) as Src f and Dst f correspondingly. Note
that below defined domain and image of a funcoid are not the same as its source
and destination.

I will denote GR(A,B, f) = f for any morphism (A,B, f) of either Set or Rel.
(See definitions of Set and Rel below.)

1.9. Implicit arguments

Some notation such that ⊥A, ⊤A, ⊔A, ⊓A have indexes (in these examples A).
We will omit these indexes when they can be restored from the context. For

example, having a function f : A → B where A, B are posets with least elements,
we will concisely denote f⊥ = ⊥ for f⊥A = ⊥B. (See below for definitions of these
operations.)

Note 5. In the above formula f⊥ = ⊥ we have the first ⊥ and the second ⊥
denoting different objects.

We will assume (skipping this in actual proofs) that all omitted indexes can be
restored from context. (Note that so called dependent type theory computer proof
assistants do this like we implicitly.)

1.10. Unusual notation

In the chapter “Common knowledge, part 1” (which you may skip reading if
you are already knowledgeable) some non-standard notation is defined. I summarize
here this notation for the case if you choose to skip reading that chapter:

Partial order is denoted as ⊑.
Meets and joins are denoted as ⊓, ⊔,

d
, d.

I call element b substractive from an element a (of a distributive lattice A) when
the difference a \ b exists. I call b complementive to a when there exists c ∈ A such
that b ⊓ c = ⊥ and b ⊔ c = a. We will prove that b is complementive to a iff b is
substractive from a and b ⊑ a.

Definition 6. Call a and b of a poset A intersecting, denoted a ̸≍ b, when
there exists a non-least element c such that c ⊑ a ∧ c ⊑ b.

Definition 7. a ≍ b
def= ¬(a ̸≍ b).

Definition 8. I call elements a and b of a poset A joining and denote a ≡ b
when there are no non-greatest element c such that c ⊒ a ∧ c ⊒ b.

Definition 9. a ̸≡ b
def= ¬(a ≡ b).

Obvious 10. a ̸≍ b iff a ⊓ b is non-least, for every elements a, b of a meet-
semilattice.

Obvious 11. a ≡ b iff a ⊔ b is the greatest element, for every elements a, b of
a join-semilattice.
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I extend the definitions of pseudocomplement and dual pseudocomplement to
arbitrary posets (not just lattices as it is customary):

Definition 12. Let A be a poset. Pseudocomplement of a is

max
{
c ∈ A

c ≍ a

}
.

If z is the pseudocomplement of a we will denote z = a∗.

Definition 13. Let A be a poset. Dual pseudocomplement of a is

min
{
c ∈ A

c ≡ a

}
.

If z is the dual pseudocomplement of a we will denote z = a+.



CHAPTER 2

Common knowledge, part 1

In this chapter we will consider some well known mathematical theories. If you
already know them you may skip reading this chapter (or its parts).

2.1. Order theory

2.1.1. Posets.

Definition 14. The identity relation on a set A is idA =
{

(a,a)
a∈A

}
.

Definition 15. A preorder on a set A is a binary relation ⊑ on A which is:
• reflexive on A that is (⊑) ⊇ idA or what is the same ∀x ∈ A : x ⊑ x;
• transitive that is (⊑) ◦ (⊑) ⊆ (⊑) or what is the same

∀x, y, z : (x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z).

Definition 16. A partial order on a set A is a preorder on A which is anti-
symmetric that is (⊑) ∩ (⊑) ⊆ idA or what is the same

∀x, y ∈ A : (x ⊑ y ∧ y ⊑ x ⇒ x = y).

The reverse relation is denoted ⊒.

Definition 17. a is a subelement of b (or what is the same a is contained in
b or b contains a) iff a ⊑ b.

Obvious 18. The reverse of a partial order is also a partial order.

Definition 19. A set A together with a partial order on it is called a partially
ordered set (poset for short).

An example of a poset is the set R of real numbers with ⊑ = ≤.
Another example is the set PA of all subsets of an arbitrary fixed set A with

⊑ = ⊆. Note that this poset is (in general) not linear (see definition of linear poset
below.)

Definition 20. Strict partial order ⊏ corresponding to the partial order ⊑ on
a set A is defined by the formula (⊏) = (⊑) \ idA. In other words,

a ⊏ b ⇔ a ⊑ b ∧ a ̸= b.

An example of strict partial order is < on the set R of real numbers.

Definition 21. A partial order on a set A restricted to a set B ⊆ A is (⊑) ∩
(B ×B).

Obvious 22. A partial order on a set A restricted to a set B ⊆ A is a partial
order on B.

Definition 23.
• The least element ⊥ of a poset A is defined by the formula ∀a ∈ A : ⊥ ⊑ a.
• The greatest element ⊤ of a poset A is defined by the formula ∀a ∈ A :

⊤ ⊒ a.

18



2.1. ORDER THEORY 19

Proposition 24. There exist no more than one least element and no more
than one greatest element (for a given poset).

Proof. By antisymmetry. □

Definition 25. The dual order for ⊑ is ⊒.

Obvious 26. Dual of a partial order is a partial order.

Definition 27. The dual poset for a poset (A,⊑) is the poset (A,⊒).

I will denote dual of a poset A as (dualA) and dual of an element a ∈ A (that
is the same element in the dual poset) as (dual a).

Below we will sometimes use duality that is replacement of the partial order and
all related operations and relations with their duals. In other words, it is enough
to prove a theorem for an order ⊑ and the similar theorem for ⊒ follows by duality.

Definition 28. A subset P of a poset A is called bounded above if there exists
t ∈ A such that ∀x ∈ P : t ⊒ x. Bounded below is defined dually.

2.1.1.1. Intersecting and joining elements. Let A be a poset.

Definition 29. Call elements a and b of A intersecting, denoted a ̸≍ b, when
there exists a non-least element c such that c ⊑ a ∧ c ⊑ b.

Definition 30. a ≍ b
def= ¬(a ̸≍ b).

Obvious 31. a0 ̸≍ b0 ∧ a1 ⊒ a0 ∧ b1 ⊒ b0 ⇒ a1 ̸≍ b1.

Definition 32. I call elements a and b of A joining and denote a ≡ b when
there is no a non-greatest element c such that c ⊒ a ∧ c ⊒ b.

Definition 33. a ̸≡ b
def= ¬(a ≡ b).

Obvious 34. Intersecting is the dual of non-joining.

Obvious 35. a0 ≡ b0 ∧ a1 ⊒ a0 ∧ b1 ⊒ b0 ⇒ a1 ≡ b1.

2.1.2. Linear order.

Definition 36. A poset A is called linearly ordered set (or what is the same,
totally ordered set) if a ⊒ b ∨ b ⊒ a for every a, b ∈ A.

Example 37. The set of real numbers with the customary order is a linearly
ordered set.

Definition 38. A set X ∈ PA where A is a poset is called chain if A restricted
to X is a total order.

2.1.3. Meets and joins. Let A be a poset.

Definition 39. Given a set X ∈ PA the least element (also called minimum
and denoted minX) of X is such a ∈ X that ∀x ∈ X : a ⊑ x.

Least element does not necessarily exists. But if it exists:

Proposition 40. For a given X ∈ PA there exist no more than one least
element.

Proof. It follows from anti-symmetry. □

Greatest element is the dual of least element:

Definition 41. Given a set X ∈ PA the greatest element (also called maxi-
mum and denoted maxX) of X is such a ∈ X that ∀x ∈ X : a ⊒ x.
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Remark 42. Least and greatest elements of a set X is a trivial generalization
of the above defined least and greatest element for the entire poset.

Definition 43.
• A minimal element of a set X ∈ PA is such a ∈ A that ∄x ∈ X : a ⊐ x.
• A maximal element of a set X ∈ PA is such a ∈ A that ∄x ∈ X : a ⊏ x.

Remark 44. Minimal element is not the same as minimum, and maximal
element is not the same as maximum.

Obvious 45.
1◦. The least element (if it exists) is a minimal element.
2◦. The greatest element (if it exists) is a maximal element.

Exercise 46. Show that there may be more than one minimal and more than
one maximal element for some poset.

Definition 47. Upper bounds of a set X is the set
{

y∈A
∀x∈X:y⊒x

}
.

The dual notion:
Definition 48. Lower bounds of a set X is the set

{
y∈A

∀x∈X:y⊑x

}
.

Definition 49. Join dX (also called supremum and denoted “supX”) of a
set X is the least element of its upper bounds (if it exists).

Definition 50. Meet
d
X (also called infimum and denoted “inf X”) of a set

X is the greatest element of its lower bounds (if it exists).

We will also denote di∈X f(i) = d

{
f(i)
x∈X

}
and

d
i∈X f(i) =

d{ f(i)
x∈X

}
.

We will write b = dX when b ∈ A is the join of X or say that dX does not
exist if there are no such b ∈ A. (And dually for meets.)

Exercise 51. Provide an example of dX /∈ X for some set X on some poset.
Proposition 52.
1◦. If b is the greatest element of X then dX = b.
2◦. If b is the least element of X then

d
X = b.

Proof. We will prove only the first as the second is dual.
Let b be the greatest element of X. Then upper bounds of X are

{
y∈A
y⊒b

}
.

Obviously b is the least element of this set, that is the join. □

Definition 53. Binary joins and meets are defined by the formulas

x ⊔ y = l{x, y} and x ⊔ y =
l

{x, y}.

Obvious 54. ⊔ and ⊓ are symmetric operations (whenever these are defined
for given x and y).

Theorem 55.
1◦. If dX exists then y ⊒ dX ⇔ ∀x ∈ X : y ⊒ x.
2◦. If

d
X exists then y ⊑

d
X ⇔ ∀x ∈ X : y ⊑ x.

Proof. I will prove only the first as the second follows by duality.
y ⊒ dX ⇔ y is an upper bound for X ⇔ ∀x ∈ X : y ⊒ x. □

Corollary 56.
1◦. If a ⊔ b exists then y ⊒ a ⊔ b ⇔ y ⊒ a ∧ y ⊒ b.
2◦. If a ⊓ b exists then y ⊑ a ⊓ b ⇔ y ⊑ a ∧ y ⊑ b.

I will denote meets and joins for a specific poset A as
dA, d

A, ⊓A, ⊔A.
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2.1.4. Semilattices.

Definition 57.
1◦. A join-semilattice is a poset A such that a⊔ b is defined for every a, b ∈ A.
2◦. A meet-semilattice is a poset A such that a⊓b is defined for every a, b ∈ A.

Theorem 58.
1◦. The operation ⊔ is associative for any join-semilattice.
2◦. The operation ⊓ is associative for any meet-semilattice.

Proof. I will prove only the first as the second follows by duality.
We need to prove (a ⊔ b) ⊔ c = a ⊔ (b ⊔ c) for every a, b, c ∈ A.
Taking into account the definition of join, it is enough to prove that

x ⊒ (a ⊔ b) ⊔ c ⇔ x ⊒ a ⊔ (b ⊔ c)
for every x ∈ A. Really, this follows from the chain of equivalences:

x ⊒ (a ⊔ b) ⊔ c ⇔
x ⊒ a ⊔ b ∧ x ⊒ c ⇔

x ⊒ a ∧ x ⊒ b ∧ x ⊒ c ⇔
x ⊒ a ∧ x ⊒ b ⊔ c ⇔
x ⊒ a ⊔ (b ⊔ c).

□

Obvious 59. a ̸≍ b iff a ⊓ b is non-least, for every elements a, b of a meet-
semilattice.

Obvious 60. a ≡ b iff a ⊔ b is the greatest element, for every elements a, b of
a join-semilattice.

2.1.5. Lattices and complete lattices.

Definition 61. A bounded poset is a poset having both least and greatest
elements.

Definition 62. Lattice is a poset which is both join-semilattice and meet-
semilattice.

Definition 63. A complete lattice is a poset A such that for every X ∈ PA
both dX and

d
X exist.

Obvious 64. Every complete lattice is a lattice.

Proposition 65. Every complete lattice is a bounded poset.

Proof. d∅ is the least and
d

∅ is the greatest element. □

Theorem 66. Let A be a poset.
1◦. If dX is defined for every X ∈ PA, then A is a complete lattice.
2◦. If

d
X is defined for every X ∈ PA, then A is a complete lattice.

Proof. See [27] or any lattice theory reference. □

Obvious 67. If X ⊆ Y for some X,Y ∈ PA where A is a complete lattice,
then

1◦. dX ⊑ dY ;
2◦.

d
X ⊒

d
Y .

Proposition 68. If S ∈ PPA then for every complete lattice A
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1◦. d

⋃
S = dX∈S dX;

2◦.
d⋃

S =
d

X∈S

d
X.

Proof. We will prove only the first as the second is dual.
By definition of joins, it is enough to prove y ⊒ d

⋃
S ⇔ y ⊒ dX∈S dX.

Really,

y ⊒ l

⋃
S ⇔

∀x ∈
⋃
S : y ⊒ x ⇔

∀X ∈ S∀x ∈ X : y ⊒ x ⇔

∀X ∈ S : y ⊒ lX ⇔

y ⊒ l

X∈S

lX.

□

Definition 69. A sublattice of a lattice is it subset closed regarding ⊔ and ⊓.

Obvious 70. Sublattice with induced order is also a lattice.

2.1.6. Distributivity of lattices.

Definition 71. A distributive lattice is such lattice A that for every x, y, z ∈ A

1◦. x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z);
2◦. x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z).

Theorem 72. For a lattice to be distributive it is enough just one of the
conditions:

1◦. x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z);
2◦. x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z).

Proof.

(x ⊔ y) ⊓ (x ⊔ z) =
((x ⊔ y) ⊓ x) ⊔ ((x ⊔ y) ⊓ z) =

x ⊔ ((x ⊓ z) ⊔ (y ⊓ z)) =
(x ⊔ (x ⊓ z)) ⊔ (y ⊓ z) =

x ⊔ (y ⊓ z)

(applied x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z) twice). □

2.1.7. Difference and complement.

Definition 73. Let A be a distributive lattice with least element ⊥. The
difference (denoted a \ b) of elements a and b is such c ∈ A that b ⊓ c = ⊥ and
a ⊔ b = b ⊔ c. I will call b substractive from a when a \ b exists.

Theorem 74. If A is a distributive lattice with least element ⊥, there exists
no more than one difference of elements a, b.

Proof. Let c and d be both differences a \ b. Then b ⊓ c = b ⊓ d = ⊥ and
a ⊔ b = b ⊔ c = b ⊔ d. So

c = c ⊓ (b ⊔ c) = c ⊓ (b ⊔ d) = (c ⊓ b) ⊔ (c ⊓ d) = ⊥ ⊔ (c ⊓ d) = c ⊓ d.

Similarly d = d ⊓ c. Consequently c = c ⊓ d = d ⊓ c = d. □
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Definition 75. I will call b complementive to a iff there exists c ∈ A such that
b ⊓ c = ⊥ and b ⊔ c = a.

Proposition 76. b is complementive to a iff b is substractive from a and b ⊑ a.

Proof.
⇐. Obvious.
⇒. We deduce b ⊑ a from b ⊔ c = a. Thus a ⊔ b = a = b ⊔ c.

□

Proposition 77. If b is complementive to a then (a \ b) ⊔ b = a.

Proof. Because b ⊑ a by the previous proposition. □

Definition 78. Let A be a bounded distributive lattice. The complement
(denoted ā) of an element a ∈ A is such b ∈ A that a ⊓ b = ⊥ and a ⊔ b = ⊤.

Proposition 79. If A is a bounded distributive lattice then ā = ⊤ \ a.

Proof. b = ā ⇔ b⊓a = ⊥∧b⊔a = ⊤ ⇔ b⊓a = ⊥∧⊤⊔a = a⊔b ⇔ b = ⊤\a. □

Corollary 80. If A is a bounded distributive lattice then exists no more than
one complement of an element a ∈ A.

Definition 81. An element of bounded distributive lattice is called comple-
mented when its complement exists.

Definition 82. A distributive lattice is a complemented lattice iff every its
element is complemented.

Proposition 83. For a distributive lattice (a \ b) \ c = a \ (b ⊔ c) if a \ b and
(a \ b) \ c are defined.

Proof. ((a \ b) \ c) ⊓ c = ⊥; ((a \ b) \ c) ⊔ c = (a \ b) ⊔ c; (a \ b) ⊓ b = ⊥;
(a \ b) ⊔ b = a ⊔ b.

We need to prove ((a \ b) \ c) ⊓ (b⊔ c) = ⊥ and ((a \ b) \ c) ⊔ (b⊔ c) = a⊔ (b⊔ c).
In fact,

((a \ b) \ c) ⊓ (b ⊔ c) =
(((a \ b) \ c) ⊓ b) ⊔ (((a \ b) \ c) ⊓ c) =

(((a \ b) \ c) ⊓ b) ⊔ ⊥ =
((a \ b) \ c) ⊓ b ⊑

(a \ b) ⊓ b = ⊥,

so ((a \ b) \ c) ⊓ (b ⊔ c) = ⊥;

((a \ b) \ c) ⊔ (b ⊔ c) =
(((a \ b) \ c) ⊔ c) ⊔ b =

(a \ b) ⊔ c ⊔ b =
((a \ b) ⊔ b) ⊔ c =

a ⊔ b ⊔ c.

□
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2.1.8. Boolean lattices.

Definition 84. A boolean lattice is a complemented distributive lattice.

The most important example of a boolean lattice is PA where A is a set,
ordered by set inclusion.

Theorem 85. (De Morgan’s laws) For every elements a, b of a boolean lattice
1◦. a ⊔ b = ā ⊓ b̄;
2◦. a ⊓ b = ā ⊔ b.

Proof. We will prove only the first as the second is dual.
It is enough to prove that a ⊔ b is a complement of ā ⊓ b̄. Really:

(a ⊔ b) ⊓ (ā ⊓ b̄) ⊑ a ⊓ (ā ⊓ b̄) = (a ⊓ ā) ⊓ b̄ = ⊥ ⊓ b̄ = ⊥;
(a ⊔ b) ⊔ (ā ⊓ b̄) = ((a ⊔ b) ⊔ ā) ⊓ ((a ⊔ b) ⊔ b̄) ⊒ (a ⊔ ā) ⊓ (b ⊔ b̄) = ⊤ ⊓ ⊤ = ⊤.

Thus (a ⊔ b) ⊓ (ā ⊓ b̄) = ⊥ and (a ⊔ b) ⊔ (ā ⊓ b̄) = ⊤. □

Definition 86. A complete lattice A is join infinite distributive when x⊓ dS =

d⟨x⊓⟩∗
S; a complete lattice A is meet infinite distributive when x⊔

d
S =

d
⟨x⊔⟩∗

S
for all x ∈ A and S ∈ PA.

Definition 87. Infinite distributive complete lattice is a complete lattice which
is both join infinite distributive and meet infinite distributive.

Theorem 88. For every boolean lattice A, x ∈ A and S ∈ PA we have:
1◦. d⟨x⊓⟩∗

S is defined and x ⊓ dS = d⟨x⊓⟩∗
S whenever dS is defined.

2◦.
d

⟨x⊔⟩∗
S is defined and x ⊔

d
S =

d
⟨x⊔⟩∗

S whenever
d
S is defined.

Proof. We will prove only the first, as the other is dual.
We need to prove that x ⊓ dS is the least upper bound of ⟨x⊓⟩∗

S.
That x ⊓ dS is an upper bound of ⟨x⊓⟩∗

S is obvious.
Now let u be any upper bound of ⟨x⊓⟩∗

S, that is x⊓ y ⊑ u for all y ∈ S. Then
y = y ⊓ (x ⊔ x̄) = (y ⊓ x) ⊔ (y ⊓ x̄) ⊑ u ⊔ x̄,

and so dS ⊑ u ⊔ x̄. Thus

x ⊓ lS ⊑ x ⊓ (u ⊔ x̄) = (x ⊓ u) ⊔ (x ⊓ x̄) = (x ⊓ u) ⊔ ⊥ = x ⊓ u ⊑ u,

that is x ⊓ dS is the least upper bound of ⟨x⊓⟩∗
S. □

Corollary 89. Every complete boolean lattice is both join infinite distributive
and meet infinite distributive.

Theorem 90. (infinite De Morgan’s laws) For every subset S of a complete
boolean lattice

1◦. dS =
d

x∈S x̄;
2◦.

d
S = dx∈S x̄.

Proof. It’s enough to prove that dS is a complement of
d

x∈S x̄ (the second
follows from duality). Really, using the previous theorem:

lS ⊔
l

x∈S

x̄ =
l

x∈S

〈

lS⊔
〉∗
x̄ =

l{

dS ⊔ x̄

x ∈ S

}
⊒

l{
x ⊔ x̄

x ∈ S

}
= ⊤;

lS ⊓
l

x∈S

x̄ = l

y∈S

〈
l

x∈S

x̄⊓

〉∗

y = l

{d
x∈S x̄ ⊓ y

y ∈ S

}
⊑ l

{
ȳ ⊓ y

y ∈ S

}
= ⊥.

So dS ⊔
d

x∈S x̄ = ⊤ and dS ⊓
d

x∈S x̄ = ⊥. □
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2.1.9. Center of a lattice.

Definition 91. The center Z(A) of a bounded distributive lattice A is the set
of its complemented elements.

Remark 92. For a definition of center of non-distributive lattices see [5].

Remark 93. In [24] the word center and the notation Z(A) are used in a
different sense.

Definition 94. A sublattice K of a complete lattice L is a closed sublattice of
L if K contains the meet and the join of any its nonempty subset.

Theorem 95. Center of an infinitely distributive lattice is its closed sublattice.

Proof. See [17]. □

Remark 96. See [18] for a more strong result.

Theorem 97. The center of a bounded distributive lattice constitutes its sub-
lattice.

Proof. Let A be a bounded distributive lattice and Z(A) be its center. Let
a, b ∈ Z(A). Consequently ā, b̄ ∈ Z(A). Then ā ⊔ b̄ is the complement of a ⊓ b
because

(a ⊓ b) ⊓ (ā ⊔ b̄) = (a ⊓ b ⊓ ā) ⊔ (a ⊓ b ⊓ b̄) = ⊥ ⊔ ⊥ = ⊥ and
(a ⊓ b) ⊔ (ā ⊔ b̄) = (a ⊔ ā ⊔ b̄) ⊓ (b ⊔ ā ⊔ b̄) = ⊤ ⊓ ⊤ = ⊤.

So a ⊓ b is complemented. Similarly a ⊔ b is complemented. □

Theorem 98. The center of a bounded distributive lattice constitutes a
boolean lattice.

Proof. Because it is a distributive complemented lattice. □

2.1.10. Atoms of posets.

Definition 99. An atom of a poset is an element a such that (for every its
element x) x ⊏ a if and only if x is the least element.

Remark 100. This definition is valid even for posets without least element.

Proposition 101. Element a is an atom iff both:
1◦. x ⊏ a implies x is the least element;
2◦. a is non-least.

Proof.
⇒. Let a be an atom. 1◦ is obvious. If a is least then a ⊏ a what is impossible,

so 2◦.
⇐. Let 1◦ and 2◦ hold. We need to prove only that x is least implies that x ⊏ a

but this follows from a being non-least.
□

Example 102. Atoms of the boolean algebra PA (ordered by set inclusion)
are one-element sets.

I will denote atomsA a or just (atoms a) the set of atoms contained in an element
a of a poset A. I will denote atomsA the set of all atoms of a poset A.

Definition 103. A poset A is called atomic iff atoms a ̸= ∅ for every non-least
element a of the poset A.
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Definition 104. Atomistic poset is such a poset that a = datoms a for every
element a of this poset.

Obvious 105. Every atomistic poset is atomic.
Proposition 106. Let A be a poset. If a is an atom of A and B ∈ A then

a ∈ atomsB ⇔ a ⊑ B ⇔ a ̸≍ B.

Proof.
a ∈ atomsB ⇔ a ⊑ B. Obvious.
a ⊑ B ⇒ a ̸≍ B. a ⊑ B ⇒ a ⊑ a ∧ a ⊑ B, thus a ̸≍ B because a is not least.
a ⊑ B ⇐ a ̸≍ B. a ̸≍ B implies existence of non-least element x such that x ⊑ B

and x ⊑ a. Because a is an atom, we have x = a. So a ⊑ B.
□

Theorem 107. A poset is atomistic iff every its element can be represented as
join of atoms.

Proof.
⇒. Obvious.
⇐. Let a = dS where S is a set of atoms. We will prove that a is the least upper

bound of atoms a.
That a is an upper bound of atoms a is obvious. Let x is an upper

bound of atoms a. Then x ⊒ dS because S ⊆ atoms a. Thus x ⊒ a.
□

Theorem 108. atoms
d
S =

⋂
⟨atoms⟩∗

S whenever
d
S is defined for every

S ∈ PA where A is a poset.
Proof. For any atom

c ∈ atoms
l
S ⇔

c ⊑
l
S ⇔

∀a ∈ S : c ⊑ a ⇔
∀a ∈ S : c ∈ atoms a ⇔

c ∈
⋂

⟨atoms⟩∗
S.

□

Corollary 109. atoms(a ⊓ b) = atoms a ∩ atoms b for an arbitrary meet-
semilattice.

Theorem 110. A complete boolean lattice is atomic iff it is atomistic.
Proof.

⇐. Obvious.
⇒. Let A be an atomic boolean lattice. Let a ∈ A. Suppose b = datoms a ⊏ a. If

x ∈ atoms(a \ b) then x ⊑ a \ b and so x ⊑ a and hence x ⊑ b. But we
have x = x ⊓ b ⊑ (a \ b) ⊓ b = ⊥ what contradicts to our supposition.

□

2.1.11. Kuratowski’s lemma.
Theorem 111. (Kuratowski’s lemma) Any chain in a poset is contained in

a maximal chain (if we order chains by inclusion).
I will skip the proof of Kuratowski’s lemma as this proof can be found in

any set theory or order theory reference.
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2.1.12. Homomorphisms of posets and lattices.

Definition 112. A monotone function (also called order homomorphism) from
a poset A to a poset B is such a function f that x ⊑ y ⇒ fx ⊑ fy for every x, y ∈ A.

Definition 113. A antitone function (also called antitone order homomor-
phism) from a poset A to a poset B is such a function f that x ⊑ y ⇒ fx ⊒ fy for
every x, y ∈ A.

Definition 114. Order embedding is a function f from poset A to a poset B
such that x ⊑ y ⇔ fx ⊑ fy for every x, y ∈ A.

Proposition 115. Every order embedding is injective.

Proof. fx = fy implies x ⊑ y and y ⊑ x. □

Obvious 116. Every order embedding is an order homomorphism.

Definition 117. Antitone order embedding is a function f from poset A to a
poset B such that x ⊑ y ⇔ fx ⊒ fy for every x, y ∈ A.

Obvious 118. Antitone order embedding is an order embedding between a
poset and a dual of (another) poset.

Definition 119. Order isomorphism is a surjective order embedding.

Order isomorphism preserves properties of posets, such as order, joins and
meets, etc.

Definition 120. Antitone order isomorphism is a surjective antitone order
embedding.

Definition 121.
1◦. Join semilattice homomorphism is a function f from a join semilattice A

to a join semilattice B, such that f(x ⊔ y) = fx ⊔ fy for every x, y ∈ A.
2◦. Meet semilattice homomorphism is a function f from a meet semilattice A

to a meet semilattice B, such that f(x ⊓ y) = fx ⊓ fy for every x, y ∈ A.

Obvious 122.
1◦. Join semilattice homomorphisms are monotone.
2◦. Meet semilattice homomorphisms are monotone.

Definition 123. A lattice homomorphism is a function from a lattice to a
lattice, which is both join semilattice homomorphism and meet semilattice homo-
morphism.

Definition 124. Complete lattice homomorphism from a complete lattice A
to a complete lattice B is a function f from A to B which preserves all meets and
joins, that is f dS = d⟨f⟩∗

S and f
d
S =

d
⟨f⟩∗

S for every S ∈ PA.

2.1.13. Galois connections. See [3, 12] for more detailed treatment of Ga-
lois connections.

Definition 125. Let A and B be two posets. A Galois connection between A
and B is a pair of functions f = (f∗, f∗) with f∗ : A → B and f∗ : B → A such
that:

∀x ∈ A, y ∈ B : (f∗x ⊑ y ⇔ x ⊑ f∗y).
f∗ is called the upper adjoint of f∗ and f∗ is called the lower adjoint of f∗.

Theorem 126. A pair (f∗, f∗) of functions f∗ : A → B and f∗ : B → A is a
Galois connection iff both of the following:
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1◦. f∗ and f∗ are monotone.
2◦. x ⊑ f∗f

∗x and f∗f∗y ⊑ y for every x ∈ A and y ∈ B.

Proof.
⇒.

2◦. x ⊑ f∗f
∗x since f∗x ⊑ f∗x; f∗f∗y ⊑ y since f∗y ⊑ f∗y.

1◦. Let a, b ∈ A and a ⊑ b. Then a ⊑ b ⊑ f∗f
∗b. So by definition

f∗a ⊑ f∗b that is f∗ is monotone. Analogously f∗ is monotone.
⇐. f∗x ⊑ y ⇒ f∗f

∗x ⊑ f∗y ⇒ x ⊑ f∗y. The other direction is analogous.
□

Theorem 127.
1◦. f∗ ◦ f∗ ◦ f∗ = f∗.
2◦. f∗ ◦ f∗ ◦ f∗ = f∗.

Proof.
1◦. Let x ∈ A. We have x ⊑ f∗f

∗x; consequently f∗x ⊑ f∗f∗f
∗x. On the

other hand, f∗f∗f
∗x ⊑ f∗x. So f∗f∗f

∗x = f∗x.
2◦. Similar.

□

Definition 128. A function f is called idempotent iff f(f(X)) = f(X) for
every argument X.

Proposition 129. f∗ ◦ f∗ and f∗ ◦ f∗ are idempotent.

Proof. f∗◦f∗ is idempotent because f∗f∗f
∗f∗y = f∗f∗y. f∗◦f∗ is similar. □

Theorem 130. Each of two adjoints is uniquely determined by the other.

Proof. Let p and q be both upper adjoints of f . We have for all x ∈ A and
y ∈ B:

x ⊑ p(y) ⇔ f(x) ⊑ y ⇔ x ⊑ q(y).
For x = p(y) we obtain p(y) ⊑ q(y) and for x = q(y) we obtain q(y) ⊑ p(y). So

q(y) = p(y). □

Theorem 131. Let f be a function from a poset A to a poset B.
1◦. Both:

(a) If f is monotone and g(b) = max
{

x∈A
fx⊑b

}
is defined for every b ∈ B

then g is the upper adjoint of f .
(b) If g : B → A is the upper adjoint of f then g(b) = max

{
x∈A
fx⊑b

}
for

every b ∈ B.
2◦. Both:

(a) If f is monotone and g(b) = min
{

x∈A
fx⊒b

}
is defined for every b ∈ B

then g is the lower adjoint of f .
(b) If g : B → A is the lower adjoint of f then g(b) = min

{
x∈A
fx⊒b

}
for

every b ∈ B.

Proof. We will prove only the first as the second is its dual.

1◦a. Let g(b) = max
{

x∈A
fx⊑b

}
for every b ∈ B. Then

x ⊑ gy ⇔ x ⊑ max
{
x ∈ A

fx ⊑ y

}
⇒ fx ⊑ y
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(because f is monotone) and

x ⊑ gy ⇔ x ⊑ max
{
x ∈ A

fx ⊑ y

}
⇐ fx ⊑ y.

So fx ⊑ y ⇔ x ⊑ gy that is f is the lower adjoint of g.
1◦b. We have

g(b) = max
{
x ∈ A

fx ⊑ b

}
⇔ fgb ⊑ b ∧ ∀x ∈ A : (fx ⊑ b ⇒ x ⊑ gb).

what is true by properties of adjoints.
□

Theorem 132. Let f be a function from a poset A to a poset B.
1◦. If f is an upper adjoint, f preserves all existing infima in A.
2◦. If A is a complete lattice and f preserves all infima, then f is an upper

adjoint of a function B → A.
3◦. If f is a lower adjoint, f preserves all existing suprema in A.
4◦. If A is a complete lattice and f preserves all suprema, then f is a lower

adjoint of a function B → A.

Proof. We will prove only first two items because the rest items are similar.
1◦. Let S ∈ PA and

d
S exists. f

d
S is a lower bound for ⟨f⟩∗

S because
f is order-preserving. If a is a lower bound for ⟨f⟩∗

S then ∀x ∈ S : a ⊑ fx that
is ∀x ∈ S : ga ⊑ x where g is the lower adjoint of f . Thus ga ⊑

d
S and hence

f
d
S ⊒ a. So f

d
S is the greatest lower bound for ⟨f⟩∗

S.
2◦. Let A be a complete lattice and f preserves all infima. Let

g(a) =
l{

x ∈ A

fx ⊒ a

}
.

Since f preserves infima, we have

f(g(a)) =
l{

f(x)
x ∈ A, fx ⊒ a

}
⊒ a.

g(f(b)) =
d{

x∈A
fx⊒fb

}
⊑ b.

Obviously f is monotone and thus g is also monotone.
So f is the upper adjoint of g.

□

Corollary 133. Let f be a function from a complete lattice A to a poset B.
Then:

1◦. f is an upper adjoint of a function B → A iff f preserves all infima in A.
2◦. f is a lower adjoint of a function B → A iff f preserves all suprema in A.

2.1.13.1. Order and composition of Galois connections. Following [35] we will
denote the set of Galois connection between posets A and B as A ⊗ B.

Definition 134. I will order Galois connections by the formula: f ⊑ g ⇔
f∗ ⊑ g∗ (where f∗ ⊑ g∗ ⇔ ∀x ∈ A : f∗x ⊑ g∗x).

Obvious 135. Galois connections A⊗B between two given posets form a poset.

Proposition 136. f ⊑ g ⇔ f∗ ⊒ g∗.
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Proof. It is enough to prove f ⊑ g ⇒ f∗ ⊒ g∗ (the rest follows from the fact
that a Galois connection is determined by one adjoint).

Really, let f ⊑ g. Then f∗
0 ⊑ f∗

1 and thus:
f0∗(b) = max

{
x∈A

f∗
0 x⊑b

}
, f1∗(b) = max

{
x∈A

f∗
1 x⊑b

}
.

Thus f0∗(b) ⊒ f1∗(b) for every b ∈ B and so f0∗ ⊒ f1∗. □

Definition 137. Composition of Galois connections is defined by the formula:
g ◦ f = (g∗ ◦ f∗, f∗ ◦ g∗).

Proposition 138. Composition of Galois connections is a Galois connection.

Proof. g∗ ◦f∗ and f∗ ◦g∗ are monotone as composition of monotone functions;
(g∗ ◦ f∗)x ⊑ z ⇔ g∗f∗x ⊑ z ⇔ f∗x ⊑ g∗z ⇔ x ⊑ f∗g∗z ⇔ x ⊑ (f∗ ◦ g∗)z.

□

Obvious 139. Composition of Galois connections preserves order.

2.1.13.2. Antitone Galois connections.

Definition 140. An antitone Galois connection between posets A and B is a
Galois connection between A and dualB.

Obvious 141. An antitone Galois connection is a pair of antitone functions f :
A → B, g : B → A such that b ⊑ fa ⇔ a ⊑ gb for every a ∈ A, b ∈ B.

Such f and g are called polarities (between A and B).

Obvious 142. f dS =
d

⟨f⟩∗
S if f is a polarity between A and B and S ∈ PA.

Galois connections (particularly between boolean lattices) are studied in [35]
and [36].

2.1.14. Co-Brouwerian lattices.

Definition 143. Let A be a poset. Pseudocomplement of a ∈ A is

max
{
c ∈ A

c ≍ a

}
.

If z is the pseudocomplement of a we will denote z = a∗.

Definition 144. Let A be a poset. Dual pseudocomplement of a ∈ A is

min
{
c ∈ A

c ≡ a

}
.

If z is the dual pseudocomplement of a we will denote z = a+.

Proposition 145. If a is a complemented element of a bounded distributive
lattice, then ā is both pseudocomplement and dual pseudocomplement of a.

Proof. Because of duality it is enough to prove that ā is pseudocomplement
of a.

We need to prove c ≍ a ⇒ c ⊑ ā for every element c of our poset, and ā ≍ a.
The second is obvious. Let’s prove c ≍ a ⇒ c ⊑ ā.

Really, let c ≍ a. Then c⊓a = ⊥; ā⊔ (c⊓a) = ā; (ā⊔ c)⊓ (ā⊔a) = ā; ā⊔ c = ā;
c ⊑ ā. □

Definition 146. Let A be a join-semilattice. Let a, b ∈ A. Pseudodifference
of a and b is

min
{

z ∈ A

a ⊑ b ⊔ z

}
.

If z is a pseudodifference of a and b we will denote z = a \∗ b.
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Remark 147. I do not require that a∗ is undefined if there are no pseudocom-
plement of a and likewise for dual pseudocomplement and pseudodifference. In fact
below I will define quasicomplement, dual quasicomplement, and quasidifference
which generalize pseudo-* counterparts. I will denote a∗ the more general case of
quasicomplement than of pseudocomplement, and likewise for other notation.

Obvious 148. Dual pseudocomplement is the dual of pseudocomplement.
Theorem 149. Let A be a distributive lattice with least element. Let a, b ∈ A.

If a \ b exists, then a \∗ b also exists and a \∗ b = a \ b.
Proof. Because A be a distributive lattice with least element, the definition

of a \ b is correct.
Let x = a \ b and let S =

{
y∈A

a⊑b⊔y

}
.

We need to show
1◦. x ∈ S;
2◦. y ∈ S ⇒ x ⊑ y (for every y ∈ A).

Really,
1◦. Because b ⊔ x = a ⊔ b.
2◦.

y ∈ S

⇒ a ⊑ b ⊔ y (by definition of S)
⇒ a ⊔ b ⊑ b ⊔ y

⇒ x ⊔ b ⊑ b ⊔ y (since x ⊔ b = a ⊔ b)
⇒ x ⊓ (x ⊔ b) ⊑ x ⊓ (b ⊔ y)
⇒ (x ⊓ x) ⊔ (x ⊓ b) ⊑ (x ⊓ b) ⊔ (x ⊓ y) (by distributive law)
⇒ x ⊔ ⊥ ⊑ ⊥ ⊔ (x ⊓ y) (since x ⊓ b = ⊥)
⇒ x ⊑ x ⊓ y

⇒ x ⊑ y.

□

Definition 150. Co-brouwerian lattice is a lattice for which pseudodifference
of any two its elements is defined.

Proposition 151. Every non-empty co-brouwerian lattice A has least element.
Proof. Let a be an arbitrary lattice element. Then

a \∗ a = min
{

z ∈ A

a ⊑ a ⊔ z

}
= minA.

So minA exists. □

Definition 152. Co-Heyting lattice is co-brouwerian lattice with greatest ele-
ment.

Definition 153. A co-frame is the same as a complete co-brouwerian lattice.
Theorem 154. For a co-brouwerian lattice a⊔ − is an upper adjoint of − \∗ a

for every a ∈ A.

Proof. g(b) = min
{

x∈A
a⊔x⊒b

}
= b \∗ a exists for every b ∈ A and thus is the

lower adjoint of a ⊔ −. □

Corollary 155. ∀a, x, y ∈ A : (x \∗ a ⊑ y ⇔ x ⊑ a ⊔ y) for a co-brouwerian
lattice.
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Corollary 156. For a co-brouwerian lattice a ⊔
d
S =

d
⟨a⊔⟩∗

S wheneverd
S exists (for a being a lattice element and S being a set of lattice elements).

Definition 157. Let a, b ∈ A where A is a complete lattice. Quasidifference
a \∗ b is defined by the formula:

a \∗ b =
l{

z ∈ A

a ⊑ b ⊔ z

}
.

Remark 158. A more detailed theory of quasidifference (as well as quasicom-
plement and dual quasicomplement) will be considered below.

Lemma 159. (a \∗ b) ⊔ b = a⊔ b for elements a, b of a meet infinite distributive
complete lattice.

Proof.
(a \∗ b) ⊔ b =

l{
z ∈ A

a ⊑ b ⊔ z

}
⊔ b =

l{
z ⊔ b

z ∈ A, a ⊑ b ⊔ z

}
=

l{
t ∈ A

t ⊒ b, a ⊑ t

}
=

a ⊔ b.

□

Theorem 160. The following are equivalent for a complete lattice A:
1◦. A is a co-frame.
2◦. A is meet infinite distributive.
3◦. A is a co-brouwerian lattice.
4◦. A is a co-Heyting lattice.
5◦. a ⊔ − has lower adjoint for every a ∈ A.

Proof. □

1◦⇔3◦. Because it is complete.
3◦⇔4◦. Obvious (taking into account completeness of A).
5◦⇒2◦. Let − \∗ a be the lower adjoint of a ⊔ −. Let S ∈ PA. For every y ∈ S

we have y ⊒ (a⊔ y) \∗ a by properties of Galois connections; consequently
y ⊒

(d
⟨a⊔⟩∗

S
)

\∗ a;
d
S ⊒

(d
⟨a⊔⟩∗

S
)

\∗ a. So

a ⊔
l
S ⊒

((l
⟨a⊔⟩∗

S
)

\∗ a
)

⊔ a ⊒
l

⟨a⊔⟩∗
S.

But a ⊔
d
S ⊑

d
⟨a⊔⟩∗

S is obvious.
2◦⇒3◦. Let a \∗ b =

d{
z∈A

a⊑b⊔z

}
. To prove that A is a co-brouwerian lattice it is

enough to prove a ⊑ b ⊔ (a \∗ b). But it follows from the lemma.
3◦⇒5◦. a \∗ b = min

{
z∈A

a⊑b⊔z

}
. So a ⊔ − is the upper adjoint of − \∗ a.

2◦⇒5◦. Because a ⊔ − preserves all meets.

Corollary 161. Co-brouwerian lattices are distributive.

The following theorem is essentially borrowed from [19]:

Theorem 162. A lattice A with least element ⊥ is co-brouwerian with pseu-
dodifference \∗ iff \∗ is a binary operation on A satisfying the following identities:

1◦. a \∗ a = ⊥;
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2◦. a ⊔ (b \∗ a) = a ⊔ b;
3◦. b ⊔ (b \∗ a) = b;
4◦. (b ⊔ c) \∗ a = (b \∗ a) ⊔ (c \∗ a).

Proof.
⇐. We have

c ⊒ b \∗ a ⇒ c ⊔ a ⊒ a ⊔ (b \∗ a) = a ⊔ b ⊒ b;
c⊔ a ⊒ b ⇒ c = c⊔ (c \∗ a) ⊒ (a \∗ a) ⊔ (c \∗ a) = (a⊔ c) \∗ a ⊒ b \∗ a.
So c ⊒ b\∗ a ⇔ c⊔a ⊒ b that is a⊔− is an upper adjoint of −\∗ a. By

a theorem above our lattice is co-brouwerian. By another theorem above
\∗ is a pseudodifference.

⇒.
1◦. Obvious.
2◦.

a ⊔ (b \∗ a) =

a ⊔
l{

z ∈ A

b ⊑ a ⊔ z

}
=

l{
a ⊔ z

z ∈ A, b ⊑ a ⊔ z

}
=

a ⊔ b.

3◦. b ⊔ (b \∗ a) = b ⊔
d{

z∈A
b⊑a⊔z

}
=

d{
b⊔z

z∈A,b⊑a⊔z

}
= b.

4◦. Obviously (b ⊔ c) \∗ a ⊒ b \∗ a and (b ⊔ c) \∗ a ⊒ c \∗ a. Thus
(b ⊔ c) \∗ a ⊒ (b \∗ a) ⊔ (c \∗ a). We have

(b \∗ a) ⊔ (c \∗ a) ⊔ a =
((b \∗ a) ⊔ a) ⊔ ((c \∗ a) ⊔ a) =

(b ⊔ a) ⊔ (c ⊔ a) =
a ⊔ b ⊔ c ⊒

b ⊔ c.

From this by definition of adjoints: (b \∗ a) ⊔ (c \∗ a) ⊒ (b ⊔ c) \∗ a.
□

Theorem 163. ( dS) \∗ a = dx∈S(x \∗ a) for all a ∈ A and S ∈ PA where A
is a co-brouwerian lattice and dS is defined.

Proof. Because lower adjoint preserves all suprema. □

Theorem 164. (a \∗ b) \∗ c = a \∗ (b ⊔ c) for elements a, b, c of a co-frame.

Proof. a \∗ b =
d{

z∈A
a⊑b⊔z

}
.

(a \∗ b) \∗ c =
d{

z∈A
a\∗b⊑c⊔z

}
.

a \∗ (b ⊔ c) =
d{

z∈A
a⊑b⊔c⊔z

}
.

It is left to prove a \∗ b ⊑ c ⊔ z ⇔ a ⊑ b ⊔ c ⊔ z. But this follows from
corollary 155. □

Corollary 165. (((a0 \∗ a1) \∗ . . . ) \∗ an) = a0 \∗ (a1 ⊔ · · · ⊔ an).

Proof. By math induction. □
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2.1.15. Dual pseudocomplement on co-Heyting lattices.

Theorem 166. For co-Heyting algebras ⊤ \∗ b = b+.

Proof.

⊤ \∗ b = min
{

z ∈ A

⊤ ⊑ b ⊔ z

}
= min

{
z ∈ A

⊤ = b ⊔ z

}
= min

{
z ∈ A

b ≡ z

}
= b+.

□

Theorem 167. (a ⊓ b)+ = a+ ⊔ b+ for every elements a, b of a co-Heyting
algebra.

Proof. a ⊔ (a ⊓ b)+ ⊒ (a ⊓ b) ⊔ (a ⊓ b)+ ⊒ ⊤. So a ⊔ (a ⊓ b)+ ⊒ ⊤; (a ⊓ b)+ ⊒
⊤ \∗ a = a+.

We have (a ⊓ b)+ ⊒ a+. Similarly (a ⊓ b)+ ⊒ b+. Thus (a ⊓ b)+ ⊒ a+ ⊔ b+.
On the other hand, a+ ⊔ b+ ⊔ (a⊓ b) = (a+ ⊔ b+ ⊔a) ⊓ (a+ ⊔ b+ ⊔ b) . Obviously

a+ ⊔ b+ ⊔ a = a+ ⊔ b+ ⊔ b = ⊤. So a+ ⊔ b+ ⊔ (a ⊓ b) ⊒ ⊤ and thus a+ ⊔ b+ ⊒
⊤ \∗ (a ⊓ b) = (a ⊓ b)+.

So (a ⊓ b)+ = a+ ⊔ b+. □

2.2. Intro to category theory

This is a very basic introduction to category theory.

Definition 168. A directed multigraph (also known as quiver) is:
1◦. a set O (vertices);
2◦. a set M (edges);
3◦. functions Src and Dst (source and destination) from M to O.

Note that in category theory vertices are called objects and edges are called
morphisms.

Definition 169. A semicategory is a directed multigraph together with a par-
tial binary operation ◦ on the set M such that g ◦ f is defined iff Dst f = Src g (for
every morphisms f and g) such that

1◦. Src(g ◦ f) = Src f and Dst(g ◦ f) = Dst g whenever the composition g ◦ f
of morphisms f and g is defined.

2◦. (h◦g)◦f = h◦ (g ◦f) whenever compositions in this equation are defined.

Definition 170. The set Hom(A,B) (also denoted as HomC(A,B) or just
C(A,B), where C is our category) (morphisms from an object A to an object B)
is exactly morphisms which have A as the source and B as the destination.

Definition 171. Identity morphism is such a morphism e that e ◦ f = f and
g ◦ e = g whenever compositions in these formulas are defined.

Definition 172. A category is a semicategory with additional requirement
that for every object X there exists identity morphism 1X .

Proposition 173. For every object X there exist no more than one identity
morphism.

Proof. Let p and q be both identity morphisms for a object X. Then p =
p ◦ q = q. □

Definition 174. An isomorphism is such a morphism f of a category that there
exists a morphism f−1 (inverse of f) such that f ◦f−1 = 1Dst f and f−1 ◦f = 1Src f .

Proposition 175. An isomorphism has exactly one inverse.
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Proof. Let g and h be both inverses of f . Then h = h ◦ 1Dst f = h ◦ f ◦ g =
1Src f ◦ g = g. □

Definition 176. A groupoid is a category all of whose morphisms are isomor-
phisms.

Definition 177. A morphism whose source is the same as destination is called
endomorphism.

Definition 178. An involution or involutive morphism is an endomorphism f
that f ◦ f = 1Ob f . In other words, an involution is such a self-inverse (that is
conforming to the formula f = f−1) isomorphism.

Definition 179. Functor from category C to category D is a mapping F which
associates every object X of C with an object F (X) of D and every morphism f :
X → Y of C with morphism F (f) : F (X) → F (Y ) of D, such that:

1◦. F (g ◦ f) = F (g) ◦ F (f) for every composable morphisms f , g of C;
2◦. F (1C

X) = 1D
F X for every object X of C.

Definition 180. Opposite category Cop of category C is the category where
“all arrows are reversed” that is every morphism f is replaced with so called opposite
morphism fop such that Src fop = Dst f , Dst fop = Src f and gop ◦ fop = (f ◦ g)op

(composition taken in the “opposite order”).

Definition 181. A monomorphism (also called a monic morphism or a mono)
is a left-cancellative morphism. That is, an arrow f : X → Y such that for all
objects Z and all morphisms g1, g2 : Z → X,

f ◦ g1 = f ◦ g2 ⇒ g1 = g2.

Monomorphisms are a categorical generalization of injective functions (also
called “one-to-one functions”); in some categories the notions coincide, but
monomorphisms are more general.

Definition 182. The categorical dual of a monomorphism is an epimorphism,
i.e. a monomorphism in a category C is an epimorphism in the dual category Cop

that is it conforms to the formula
g1 ◦ f = g2 ◦ f ⇒ g1 = g2.

2.2.1. Some important examples of categories.

Exercise 183. Prove that the below examples of categories are really cate-
gories.

Definition 184. The category Set is:
• Objects are small sets.
• Morphisms from an object A to an object B are triples (A,B, f) where f

is a function from A to B.
• Composition of morphisms is defined by the formula: (B,C, g) ◦

(A,B, f) = (A,C, g ◦ f) where g ◦ f is function composition.

Definition 185. The category Rel is:
• Objects are small sets.
• Morphisms from an object A to an object B are triples (A,B, f) where f

is a binary relation between A and B.
• Composition of morphisms is defined by the formula: (B,C, g) ◦

(A,B, f) = (A,C, g ◦ f) where g ◦ f is relation composition.

I will denote GR(A,B, f) = f for any morphism (A,B, f) of either Set or Rel.
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Definition 186. A subcategory of a category C is a category whose set of
objects is a subset of the set of objects of C and whose set of morphisms is a subset
of the set of morphisms of C.

Definition 187. Wide subcategory of a category (O,M) is a category (O,M′)
where M ⊆ M′ and the composition on (O,M′) is a restriction of composition of
(O,M). (Similarly wide sub-semicategory can be defined.)

2.2.2. Commutative diagrams.
Definition 188. A finite path in directed multigraph is a tuple Je0, . . . , enK of

edges (where i ∈ N) such that Dst ei = Src ei+1 for every i = 0, . . . , n− 1.
Definition 189. The vertices of a finite path are Src e0, Dst e0 = Src e1,

Dst e1 = Src e2, . . . , Dst en.
Definition 190. Composition of finite paths Je0, . . . , enK and Jek, . . . , emK

(where Dst en = Src ek) is the path Je0, . . . , en, ek, . . . emK. (It is a path because
Dst en = Src ek.)

Definition 191. A cycle is a finite path whose first vertex is the same as the
last vertex (in other words Dst en = Src e0).

Definition 192. A diagram in C is a directed multigraph, whose vertices are
labeled with objects of C and whose edges are labeled with morphisms of C.

I will denote the morphism corresponding to a edge e as D(e).
Definition 193. A diagram in C is commutative when the composition of

morphisms corresponding to a finite path is always the same for finite paths from
a fixed vertex A to a fixed vertex B independently of the path choice.

We will say “commutative diagram” when commutativity of a diagram is im-
plied by the context.

Remark 194. See Wikipedia for more on definition and examples of commu-
tative diagrams.

The following is an example of a commutative diagram in Set (because x+ 5 −
3 = x+ 4 − 2):

N N

N N

+5

+4 −3
−2

We are especially interested in the special case of commutative diagrams every
morphism of which is an isomorphism. So, the below theorem.

Theorem 195. If morphisms corresponding to every edge ei of a cycle
Je0, . . . , enK are isomorphisms then the following are equivalent:

• The morphism induced by Je0, . . . , enK is identity.
• The morphism induced by Jen, e0, . . . , en−1K is identity.
• The morphism induced by Jen−1, en, e0, . . . , en−2K is identity.
• . . .
• The morphism induced by Je1, e2, . . . , en, e0K is identity.

In other words, the cycle being an identity does not depend on the choice of the
start edge in the cycle.

Proof. Each step in the proof is like:

D(n) ◦ · · · ◦D(e0) = 1Src D(e0) ⇔
D(n)−1 ◦D(n) ◦ · · · ◦D(e0) ◦D(n) = D(n)−1 ◦ 1Src D(e0) ◦D(n) ⇔

D(n− 1) ◦ · · · ◦D(e0) ◦D(n) = 1Src D(en).

https://en.wikipedia.org/wiki/Commutative_diagram
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□

Lemma 196. Let f , g, h be isomorphisms. Let g ◦ f = h−1. The diagram at
the figure 1 is commutative, every cycle in the diagram is an identity.

•

• •

f

h−1

h

g−1

f−1

g

Figure 1

Proof. We will prove by induction that every cycle of the length N in the
diagram is an identity.

For cycles of length 2 it holds by definition of isomorphism.
For cycles of length 3 it holds by theorem 195.
Consider a cycle of length above 3. It is easy to show that this cycle contains

a sub-cycle of length 3 or below. (Consider three first edges a e0→ b
e1→ c

e2→ d of the
path, by pigeonhole principle we have that there are equal elements among a, b,
c, d.) We can exclude the sub-cycle because it is identity. Thus we reduce to cycles
of lesser length. Applying math induction, we get that every cycle in the diagram
is an identity.

That the diagram is commutative follows from it (because for paths σ, τ we
have the paths σ ◦ τ−1 and τ ◦ σ−1 being identities). □

Lemma 197. Let f , g, h, t be isomorphisms. Let t ◦ h ◦ g ◦ f = 1Src f . The
diagram at the figure 2 is commutative, every cycle in the diagram is an identity.

(0,0) (0,1)

(1,0) (1,1)

f

t−1 g

f−1

t

h−1

h

g−1

Figure 2

Proof. Assign to every vertex (i, j) of the diagram morphism W (i, j) defined
by the table 1.

It is easy to verify by induction that the morphism corresponding to every
path in the diagram starting at the vertex (0, 0) and ending with a vertex (x, y) is
W (x, y).

Thus the morphism corresponding to every cycle starting at the vertex (0, 0) is
identity.

By symmetry, the morphism corresponding to every cycle is identity.
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Table 1

i j W (i, j)
0 0 1Src f

0 1 f
1 0 t−1

1 1 g ◦ f

That the diagram is commutative follows from it (because for paths σ, τ we
have the paths σ ◦ τ−1 and τ ◦ σ−1 being identities). □

2.3. Intro to group theory

Definition 198. A semigroup is a pair of a set G and an associative binary
operation on G.

Definition 199. A group is a pair of a set G and a binary operation · on G
such that:

1◦. (h · g) · f = h · (g · f) for every f, g, h ∈ G.
2◦. There exists an element e (identity) of G such that f · e = e · f = f for

every f ∈ G.
3◦. For every element f there exists an element f−1 (inverse of f) such that

f · f−1 = f−1 · f = e.

Obvious 200. Every group is a semigroup.

Proposition 201. In every group there exists exactly one identity element.

Proof. If p and q are both identities, then p = p · q = q. □

Proposition 202. Every group element has exactly one inverse.

Proof. Let p and q be both inverses of f ∈ G. Then f · p = p · f = e and
f · q = q · f = e. Then p = p · e = p · f · q = e · q = q. □

Proposition 203. (g · f)−1 = f−1 · g−1 for every group elements f and g.

Proof. (f−1 ·g−1) ·(g ·f) = f−1 ·g−1 ·g ·f = f−1 ·e ·f = f−1 ·f = e. Similarly
(g · f) · (f−1 · g−1) = e. So f−1 · g−1 is the inverse of g · f . □

Definition 204. A permutation group on a set D is a group whose elements
are functions on D and whose composition is function composition.

Obvious 205. Elements of a permutation group are bijections.

Definition 206. A transitive permutation group on a set D is such a per-
mutation group G on D that for every x, y ∈ D there exists r ∈ G such that
y = r(x).

A groupoid with single (arbitrarily chosen) object corresponds to every group.
The morphisms of this category are elements of the group and the composition of
morphisms is the group operation.



CHAPTER 3

More on order theory

3.1. Straight maps and separation subsets

3.1.1. Straight maps.

Definition 207. An order reflecting map from a poset A to a poset B is such
a function f that (for every x, y ∈ A)

fx ⊑ fy ⇒ x ⊑ y.

Obvious 208. Order embeddings are exactly the same as monotone and order
reflecting maps.

Definition 209. Let f be a monotone map from a meet-semilattice A to some
poset B. I call f a straight map when

∀a, b ∈ A : (fa ⊑ fb ⇒ fa = f(a ⊓ b)).

Proposition 210. The following statements are equivalent for a monotone
map f :

1◦. f is a straight map.
2◦. ∀a, b ∈ A : (fa ⊑ fb ⇒ fa ⊑ f(a ⊓ b)).
3◦. ∀a, b ∈ A : (fa ⊑ fb ⇒ fa ̸⊐ f(a ⊓ b)).
4◦. ∀a, b ∈ A : (fa ⊐ f(a ⊓ b) ⇒ fa ̸⊑ fb).

Proof.
1◦⇔2◦⇔3◦. Due fa ⊒ f(a ⊓ b).
3◦⇔4◦. Obvious.

□

Remark 211. The definition of straight map can be generalized for any poset
A by the formula

∀a, b ∈ A : (fa ⊑ fb ⇒ ∃c ∈ A : (c ⊑ a ∧ c ⊑ b ∧ fa = fc)).
This generalization is not yet researched however.

Proposition 212. Let f be a monotone map from a meet-semilattice A to a
meet-semilattice B. If

∀a, b ∈ A : f(a ⊓ b) = fa ⊓ fb

then f is a straight map.

Proof. Let fa ⊑ fb. Then f(a ⊓ b) = fa ⊓ fb = fa. □

Proposition 213. Let f be a monotone map from a meet-semilattice A to
some poset B. If f is order reflecting, then f is a straight map.

Proof. fa ⊑ fb ⇒ a ⊑ b ⇒ a = a ⊓ b ⇒ fa = f(a ⊓ b). □

The following theorem is the main reason of why we are interested in straight
maps:

39
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Theorem 214. If f is a straight monotone map from a meet-semilattice A then
the following statements are equivalent:

1◦. f is an injection.
2◦. f is order reflecting.
3◦. ∀a, b ∈ A : (a ⊏ b ⇒ fa ⊏ fb).
4◦. ∀a, b ∈ A : (a ⊏ b ⇒ fa ̸= fb).
5◦. ∀a, b ∈ A : (a ⊏ b ⇒ fa ̸⊒ fb).
6◦. ∀a, b ∈ A : (fa ⊑ fb ⇒ a ̸⊐ b).

Proof.
1◦⇒3◦. Let a, b ∈ A. Let fa = fb ⇒ a = b. Let a ⊏ b. fa ̸= fb because a ̸= b.

fa ⊑ fb because a ⊑ b. So fa ⊏ fb.
2◦⇒1◦. Let a, b ∈ A. Let fa ⊑ fb ⇒ a ⊑ b. Let fa = fb. Then a ⊑ b and b ⊑ a

and consequently a = b.
3◦⇒2◦. Let ∀a, b ∈ A : (a ⊏ b ⇒ fa ⊏ fb). Let a ̸⊑ b. Then a ⊐ a ⊓ b. So

fa ⊐ f(a ⊓ b). If fa ⊑ fb then fa ⊑ f(a ⊓ b) what is a contradiction.
3◦⇒5◦⇒4◦. Obvious.
4◦⇒3◦. Because a ⊏ b ⇒ a ⊑ b ⇒ fa ⊑ fb.
5◦⇔6◦. Obvious.

□

3.1.2. Separation subsets and full stars.

Definition 215. ∂Y a =
{

x∈Y
x ̸≍a

}
for an element a of a poset A and Y ∈ PA.

Definition 216. Full star of a ∈ A is ⋆a = ∂Aa.

Proposition 217. If A is a meet-semilattice, then ⋆ is a straight monotone
map.

Proof. Monotonicity is obvious. Let ⋆a ̸⊑ ⋆(a⊓b). Then it exists x ∈ ⋆a such
that x /∈ ⋆(a ⊓ b). So x ⊓ a /∈ ⋆b but x ⊓ a ∈ ⋆a and consequently ⋆a ̸⊑ ⋆b. □

Definition 218. A separation subset of a poset A is such its subset Y that
∀a, b ∈ A : (∂Y a = ∂Y b ⇒ a = b).

Definition 219. I call separable such poset that ⋆ is an injection.

Definition 220. I call strongly separable such poset that ⋆ is order reflecting.

Obvious 221. A poset is separable iff it has a separation subset.

Obvious 222. A poset is strongly separable iff ⋆ is order embedding.

Obvious 223. Strong separability implies separability.

Definition 224. A poset A has disjunction property of Wallman iff for any
a, b ∈ A either b ⊑ a or there exists a non-least element c ⊑ b such that a ≍ c.

Theorem 225. For a meet-semilattice with least element the following state-
ments are equivalent:

1◦. A is separable.
2◦. A is strongly separable.
3◦. ∀a, b ∈ A : (a ⊏ b ⇒ ⋆a ⊏ ⋆b).
4◦. ∀a, b ∈ A : (a ⊏ b ⇒ ⋆a ̸= ⋆b).
5◦. ∀a, b ∈ A : (a ⊏ b ⇒ ⋆a ̸⊒ ⋆b).
6◦. ∀a, b ∈ A : (⋆a ⊑ ⋆b ⇒ a ̸⊐ b).
7◦. A conforms to Wallman’s disjunction property.



3.1. STRAIGHT MAPS AND SEPARATION SUBSETS 41

8◦. ∀a, b ∈ A : (a ⊏ b ⇒ ∃c ∈ A \ {⊥} : (c ≍ a ∧ c ⊑ b)).

Proof.
1◦⇔2◦⇔3◦⇔4◦⇔5◦⇔6◦. By the above theorem.
8◦⇒4◦. Let property 8◦ hold. Let a ⊏ b. Then it exists element c ⊑ b such that

c ̸= ⊥ and c ⊓ a = ⊥. But c ⊓ b ̸= ⊥. So ⋆a ̸= ⋆b.
2◦⇒7◦. Let property 2◦ hold. Let a ̸⊑ b. Then ⋆a ̸⊑ ⋆b that is it there exists c ∈ ⋆a

such that c /∈ ⋆b, in other words c ⊓ a ̸= ⊥ and c ⊓ b = ⊥. Let d = c ⊓ a.
Then d ⊑ a and d ̸= ⊥ and d⊓b = ⊥. So disjunction property of Wallman
holds.

7◦⇒8◦. Obvious.
8◦⇒7◦. Let b ̸⊑ a. Then a ⊓ b ⊏ b that is a′ ⊏ b where a′ = a ⊓ b. Consequently

∃c ∈ A \ {⊥} : (c ≍ a′ ∧ c ⊑ b). We have c ⊓ a = c ⊓ b ⊓ a = c ⊓ a′ = ⊥.
So c ⊑ b and c ⊓ a = ⊥. Thus Wallman’s disjunction property holds.

□

Proposition 226. Every boolean lattice is strongly separable.

Proof. Let a, b ∈ A where A is a boolean lattice an a ̸= b. Then a⊓ b̄ ̸= ⊥ or
ā⊓ b ̸= ⊥ because otherwise a⊓ b̄ = ⊥ and a⊔ b̄ = ⊤ and thus a = b. Without loss
of generality assume a ⊓ b̄ ̸= ⊥. Then a ⊓ c ̸= ⊥ and b ⊓ c = ⊥ for c = a ⊓ b̄ ̸= ⊥,
that is our lattice is separable.

It is strongly separable by theorem 225. □

3.1.3. Atomically Separable Lattices.

Proposition 227. “atoms” is a straight monotone map (for any meet-
semilattice).

Proof. Monotonicity is obvious. The rest follows from the formula

atoms(a ⊓ b) = atoms a ∩ atoms b

(corollary 109). □

Definition 228. I will call atomically separable such a poset that “atoms” is
an injection.

Proposition 229. ∀a, b ∈ A : (a ⊏ b ⇒ atoms a ⊂ atoms b) iff A is atomically
separable for a poset A.

Proof.
⇐. Obvious.
⇒. Let a ̸= b for example a ̸⊑ b. Then a ⊓ b ⊏ a; atoms a ⊃ atoms(a ⊓ b) =

atoms a ∩ atoms b and thus atoms a ̸= atoms b.
□

Proposition 230. Any atomistic poset is atomically separable.

Proof. We need to prove that atoms a = atoms b ⇒ a = b. But it is obvious
because

a = latoms a and b = latoms b.

□

Theorem 231. A complete lattice is atomistic iff it is atomically separable.
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Proof. Direct implication is the above proposition. Let’s prove the reverse
implication.

Let “atoms” be injective. Consider an element a of our poset. Let b =

datoms a. Obviously b ⊑ a and thus atoms b ⊆ atoms a. But if x ∈ atoms a
then x ⊑ b and thus x ∈ atoms b. So atoms a = atoms b. By injectivity a = b that
is a = datoms a. □

Theorem 232. If a lattice with least element is atomic and separable then it
is atomistic.

Proof. Suppose the contrary that is a ⊐ datoms a. Then, because our lattice
is separable, there exists c ∈ A such that c ⊓ a ̸= ⊥ and c ⊓ datoms a = ⊥. There
exists atom d ⊑ c such that d ⊑ c ⊓ a. d ⊓ datoms a ⊑ c ⊓ datoms a = ⊥. But
d ∈ atoms a. Contradiction. □

Theorem 233. Let A be an atomic meet-semilattice with least element. Then
the following statements are equivalent:

1◦. A is separable.
2◦. A is strongly separable.
3◦. A is atomically separable.
4◦. A conforms to Wallman’s disjunction property.
5◦. ∀a, b ∈ A : (a ⊏ b ⇒ ∃c ∈ A \ {⊥} : (c ≍ a ∧ c ⊑ b)).

Proof.
1◦⇔2◦⇔4◦⇔5◦. Proved above.
3◦⇒5◦. Let our semilattice be atomically separable. Let a ⊏ b. Then atoms a ⊂

atoms b and there exists c ∈ atoms b such that c /∈ atoms a. c ̸= ⊥ and
c ⊑ b, from which (taking into account that c is an atom) c ⊑ b and
c ⊓ a = ⊥. So our semilattice conforms to the formula 5◦.

5◦⇒3◦. Let formula 5◦ hold. Then for any elements a ⊏ b there exists c ̸= ⊥ such
that c ⊑ b and c⊓a = ⊥. Because A is atomic there exists atom d ⊑ c. d ∈
atoms b and d /∈ atoms a. So atoms a ̸= atoms b and atoms a ⊆ atoms b.
Consequently atoms a ⊂ atoms b.

□

Theorem 234. Any atomistic poset is strongly separable.

Proof. ⋆x ⊑ ⋆y ⇒ atomsx ⊑ atoms y ⇒ x ⊑ y because atomsx = ⋆x ∩
atomsA. □

3.2. Quasidifference and Quasicomplement

I’ve got quasidifference and quasicomplement (and dual quasicomplement) re-
placing max and min in the definition of pseudodifference and pseudocomplement
(and dual pseudocomplement) with dand

d
. Thus quasidifference and (dual)

quasicomplement are generalizations of their pseudo- counterparts.

Remark 235. Pseudocomplements and pseudodifferences are standard termi-
nology. Quasi- counterparts are my neologisms.

Definition 236. Let A be a poset, a ∈ A. Quasicomplement of a is

a∗ = l

{
c ∈ A

c ≍ a

}
.

Definition 237. Let A be a poset, a ∈ A. Dual quasicomplement of a is

a+ =
l{

c ∈ A

c ≡ a

}
.
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I will denote quasicomplement and dual quasicomplement for a specific poset A
as a∗(A) and a+(A).

Definition 238. Let a, b ∈ A where A is a distributive lattice. Quasidifference
of a and b is

a \∗ b =
l{

z ∈ A

a ⊑ b ⊔ z

}
.

Definition 239. Let a, b ∈ A where A is a distributive lattice. Second quasid-
ifference of a and b is

a# b = l

{
z ∈ A

z ⊑ a ∧ z ≍ b

}
.

Theorem 240. a \∗ b =
d{

z∈A
z⊑a∧a⊑b⊔z

}
where A is a distributive lattice and

a, b ∈ A.

Proof. Obviously
{

z∈A
z⊑a∧a⊑b⊔z

}
⊆
{

z∈A
a⊑b⊔z

}
. Thus

d{
z∈A

z⊑a∧a⊑b⊔z

}
⊒ a \∗ b.

Let z ∈ A and z′ = z ⊓ a.
a ⊑ b⊔z ⇒ a ⊑ (b⊔z)⊓a ⇔ a ⊑ (b⊓a)⊔ (z⊓a) ⇔ a ⊑ (b⊓a)⊔z′ ⇒ a ⊑ b⊔z′

and a ⊑ b ⊔ z ⇐ a ⊑ b ⊔ z′. Thus a ⊑ b ⊔ z ⇔ a ⊑ b ⊔ z′.
If z ∈

{
z∈A

a⊑b⊔z

}
then a ⊑ b ⊔ z and thus

z′ ∈
{

z ∈ A

z ⊑ a ∧ a ⊑ b ⊔ z

}
.

But z′ ⊑ z thus having
d{

z∈A
z⊑a∧a⊑b⊔z

}
⊑

d{
z∈A

a⊑b⊔z

}
. □

Remark 241. If we drop the requirement that A is distributive, two formulas
for quasidifference (the definition and the last theorem) fork.

Obvious 242. Dual quasicomplement is the dual of quasicomplement.

Obvious 243.

• Every pseudocomplement is quasicomplement.
• Every dual pseudocomplement is dual quasicomplement.
• Every pseudodifference is quasidifference.

Below we will stick to the more general quasies than pseudos. If needed, one can
check that a quasicomplement a∗ is a pseudocomplement by the equation a∗ ≍ a
(and analogously with other quasies).

Next we will express quasidifference through quasicomplement.

Proposition 244.

1◦. a \∗ b = a \∗ (a ⊓ b) for any distributive lattice;
2◦. a# b = a#(a ⊓ b) for any distributive lattice with least element.

Proof.

1◦. a ⊑ (a⊓ b) ⊔ z ⇔ a ⊑ (a⊔ z) ⊓ (b⊔ z) ⇔ a ⊑ a⊔ z ∧ a ⊑ b⊔ z ⇔ a ⊑ b⊔ z.
Thus a \∗ (a ⊓ b) =

d{
z∈A

a⊑(a⊓b)⊔z

}
=

d{
z∈A

a⊑b⊔z

}
= a \∗ b.
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2◦.
a#(a ⊓ b) =

l

{
z ∈ A

z ⊑ a ∧ z ⊓ a ⊓ b = ⊥

}
=

l

{
z ∈ A

z ⊑ a ∧ (z ⊓ a) ⊓ a ⊓ b = ⊥

}
=

l

{
z ⊓ a

z ∈ A, z ⊓ a ⊓ b = ⊥

}
=

l

{
z ∈ A

z ⊑ a, z ⊓ b = ⊥

}
=

a# b.

□

I will denote Da the lattice
{

x∈A
x⊑a

}
.

Theorem 245. For a, b ∈ A where A is a distributive lattice
1◦. a \∗ b = (a ⊓ b)+(Da);
2◦. a# b = (a ⊓ b)∗(Da) if A has least element.

Proof.
1◦.

(a ⊓ b)+(Da) =
l{

c ∈ Da

c ⊔ (a ⊓ b) = a

}
=

l{
c ∈ Da

c ⊔ (a ⊓ b) ⊒ a

}
=

l{
c ∈ Da

(c ⊔ a) ⊓ (c ⊔ b) ⊒ a

}
=

l{
c ∈ A

c ⊑ a ∧ c ⊔ b ⊒ a

}
=

a \∗ b.

2◦.
(a ⊓ b)∗(Da) =

l

{
c ∈ Da

c ⊓ a ⊓ b = ⊥

}
=

l

{
c ∈ A

c ⊑ a ∧ c ⊓ a ⊓ b = ⊥

}
=

l

{
c ∈ A

c ⊑ a ∧ c ⊓ b = ⊥

}
=

a# b.

□

Proposition 246. (a ⊔ b) \∗ b ⊑ a for an arbitrary complete lattice.

Proof. (a ⊔ b) \∗ b =
d{

z∈A
a⊔b⊑b⊔z

}
.

But a ⊑ z ⇒ a ⊔ b ⊑ b ⊔ z. So
{

z∈A
a⊔b⊑b⊔z

}
⊇
{

z∈A
a⊑z

}
.

Consequently, (a ⊔ b) \∗ b ⊑
d{

z∈A
a⊑z

}
= a. □
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3.3. Several equal ways to express pseudodifference

Theorem 247. For an atomistic co-brouwerian lattice A and a, b ∈ A the
following expressions are always equal:

1◦. a \∗ b =
d{

z∈A
a⊑b⊔z

}
(quasidifference of a and b);

2◦. a# b = d

{
z∈A

z⊑a∧z⊓b=⊥

}
(second quasidifference of a and b);

3◦. d(atoms a \ atoms b).

Proof.
Proof of 1◦=3◦.

a \∗ b =(

latoms a
)

\∗ b = (theorem 163)

l

A∈atoms a

(A \∗ b) =

l

A∈atoms a

({
A if A /∈ atoms b
⊥ if A ∈ atoms b

)
=

l

{
A

A ∈ atoms a,A /∈ atoms b

}
=

l(atoms a \ atoms b).

Proof of 2◦=3◦. a \∗ b is defined because our lattice is co-brouwerian. Taking the
above into account, we have

a \∗ b =

l(atoms a \ atoms b) =

l

{
z ∈ atoms a
z ⊓ b = ⊥

}
.

So d

{
z∈atoms a

z⊓b=⊥
}

is defined.
If z ⊑ a ∧ z ⊓ b = ⊥ then z′ = d

{
x∈atoms z

x⊓b=⊥
}

is defined because
z′ = z \∗ b (atomisticity taken into account). z′ is a lower bound for{

z∈atoms a
x⊓b=⊥

}
.

Thus z′ ∈
{

z∈A
z⊑a∧z⊓b=⊥

}
and so d

{
z∈atoms a

z⊓b=⊥
}

is an upper bound of{
z∈A

z⊑a∧z⊓b=⊥

}
.

If y is above every z′ ∈
{

z∈A
z⊑a∧z⊓b=⊥

}
then y is above every z ∈

atoms a such that z ⊓ b = ⊥ and thus y is above d

{
z∈atoms a

z⊓b=⊥
}

.
Thus d

{
z∈atoms a

z⊓b=⊥
}

is least upper bound of{
z ∈ A

z ⊑ a ∧ z ⊓ b = ⊥

}
,

that is

l

{
z ∈ A

z ⊑ a ∧ z ⊓ b = ⊥

}
=

l

{
z ∈ atoms a
z ⊓ b = ⊥

}
=

l(atoms a \ atoms b).



3.4. PARTIALLY ORDERED CATEGORIES 46

□

3.4. Partially ordered categories

3.4.1. Definition.

Definition 248. I will call a partially ordered (pre)category a (pre)category
together with partial order ⊑ on each of its Mor-sets with the additional requirement
that

f1 ⊑ f2 ∧ g1 ⊑ g2 ⇒ g1 ◦ f1 ⊑ g2 ◦ f2

for every morphisms f1, g1, f2, g2 such that Src f1 = Src f2 and Dst f1 = Dst f2 =
Src g1 = Src g2 and Dst g1 = Dst g2.

I will denote lattice operations on a Hom-set C(A,B) of a category (or any
directed multigraph) like ⊔C instead of writing ⊔C(A,B) explicitly.

3.4.2. Dagger categories.

Definition 249. I will call a dagger semicategory a semicategory together with
an involutive contravariant identity-on-objects prefunctor x 7→ x†.

In other words, a dagger semicategory is a semicategory equipped with a func-
tion x 7→ x† on its set of morphisms which reverses the source and the destination
and is subject to the following identities for every morphisms f and g:

1◦. f†† = f ;
2◦. (g ◦ f)† = f† ◦ g†.

Definition 250. I will call a dagger category a category together with an
involutive contravariant identity-on-objects functor x 7→ x†.

In other words, a dagger category is a category equipped with a function x 7→ x†

on its set of morphisms which reverses the source and the destination and is subject
to the following identities for every morphisms f and g and object A:

1◦. f†† = f ;
2◦. (g ◦ f)† = f† ◦ g†;
3◦. (1A)† = 1A.

Theorem 251. If a category is a dagger semicategory then it is a dagger
category.

Proof. We need to prove only that (1A)† = 1A. Really,
(1A)† = (1A)† ◦ 1A = (1A)† ◦ (1A)†† = ((1A)† ◦ 1A)† = (1A)†† = 1A.

□

For a partially ordered dagger (pre)category I will additionally require (for
every morphisms f and g with the same source and destination)

f† ⊑ g† ⇔ f ⊑ g.

An example of dagger category is the category Rel whose objects are sets and
whose morphisms are binary relations between these sets with usual composition
of binary relations and with f† = f−1.

Definition 252. A morphism f of a dagger category is called unitary when it
is an isomorphism and f† = f−1.

Definition 253. Symmetric (endo)morphism of a dagger semicategory is such
a morphism f that f = f†.

Definition 254. Transitive (endo)morphism of a semicategory is such a mor-
phism f that f = f ◦ f .
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Theorem 255. The following conditions are equivalent for a morphism f of a
dagger semicategory:

1◦. f is symmetric and transitive.
2◦. f = f† ◦ f .

Proof.
1◦⇒2◦. If f is symmetric and transitive then f† ◦ f = f ◦ f = f .
2◦⇒1◦. f† = (f† ◦f)† = f† ◦f†† = f† ◦f = f , so f is symmetric. f = f† ◦f = f ◦f ,

so f is transitive.
□

3.4.2.1. Some special classes of morphisms.

Definition 256. For a partially ordered dagger category I will call monovalued
morphism such a morphism f that f ◦ f† ⊑ 1Dst f .

Definition 257. For a partially ordered dagger category I will call entirely
defined morphism such a morphism f that f† ◦ f ⊒ 1Src f .

Definition 258. For a partially ordered dagger category I will call injective
morphism such a morphism f that f† ◦ f ⊑ 1Src f .

Definition 259. For a partially ordered dagger category I will call surjective
morphism such a morphism f that f ◦ f† ⊒ 1Dst f .

Remark 260. It is easy to show that this is a generalization of monovalued,
entirely defined, injective, and surjective functions as morphisms of the category
Rel.

Obvious 261. “Injective morphism” is a dual of “monovalued morphism” and
“surjective morphism” is a dual of “entirely defined morphism”.

Definition 262. For a given partially ordered dagger category C the cate-
gory of monovalued (entirely defined, injective, surjective) morphisms of C is the
category with the same set of objects as of C and the set of morphisms being the
set of monovalued (entirely defined, injective, surjective) morphisms of C with the
composition of morphisms the same as in C.

We need to prove that these are really categories, that is that composition
of monovalued (entirely defined, injective, surjective) morphisms is monovalued
(entirely defined, injective, surjective) and that identity morphisms are monovalued,
entirely defined, injective, and surjective.

Proof. We will prove only for monovalued morphisms and entirely defined
morphisms, as injective and surjective morphisms are their duals.
Monovalued. Let f and g be monovalued morphisms, Dst f = Src g. Then

(g ◦ f) ◦ (g ◦ f)† =
g ◦ f ◦ f† ◦ g† ⊑

g ◦ 1Src g ◦ g† =
g ◦ g† ⊑
1Dst g = 1Dst(g◦f).

So g ◦ f is monovalued.
That identity morphisms are monovalued follows from the following:

1A ◦ (1A)† = 1A ◦ 1A = 1A = 1Dst 1A
⊑ 1Dst 1A

.
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Entirely defined. Let f and g be entirely defined morphisms, Dst f = Src g. Then
(g ◦ f)† ◦ (g ◦ f) =
f† ◦ g† ◦ g ◦ f ⊒

f† ◦ 1Src g ◦ f =
f† ◦ 1Dst f ◦ f =

f† ◦ f ⊒
1Src f = 1Src(g◦f).

So g ◦ f is entirely defined.
That identity morphisms are entirely defined follows from the follow-

ing:
(1A)† ◦ 1A = 1A ◦ 1A = 1A = 1Src 1A

⊒ 1Src 1A
.

□

Definition 263. I will call a bijective morphism a morphism which is entirely
defined, monovalued, injective, and surjective.

Proposition 264. If a morphism is bijective then it is an isomorphism.

Proof. Let f be bijective. Then f ◦f† ⊑ 1Dst f , f† ◦f ⊒ 1Src f , f† ◦f ⊑ 1Src f ,
f ◦ f† ⊒ 1Dst f . Thus f ◦ f† = 1Dst f and f† ◦ f = 1Src f that is f† is an inverse of
f . □

Let Hom-sets be complete lattices.

Definition 265. A morphism f of a partially ordered category is metamono-
valued when (

d
G) ◦ f =

d
g∈G(g ◦ f) whenever G is a set of morphisms with a

suitable source and destination.

Definition 266. A morphism f of a partially ordered category is metainjective
when f ◦ (

d
G) =

d
g∈G(f ◦ g) whenever G is a set of morphisms with a suitable

source and destination.

Obvious 267. Metamonovaluedness and metainjectivity are dual to each other.

Definition 268. A morphism f of a partially ordered category is metacomplete
when f ◦ ( dG) = dg∈G(f ◦ g) whenever G is a set of morphisms with a suitable
source and destination.

Definition 269. A morphism f of a partially ordered category is co-
metacomplete when ( dG) ◦ f = dg∈G(g ◦ f) whenever G is a set of morphisms
with a suitable source and destination.

Let now Hom-sets be meet-semilattices.

Definition 270. A morphism f of a partially ordered category is weakly meta-
monovalued when (g ⊓ h) ◦ f = (g ◦ f) ⊓ (h ◦ f) whenever g and h are morphisms
with a suitable source and destination.

Definition 271. A morphism f of a partially ordered category is weakly
metainjective when f ◦ (g ⊓ h) = (f ◦ g) ⊓ (f ◦ h) whenever g and h are morphisms
with a suitable source and destination.

Let now Hom-sets be join-semilattices.

Definition 272. A morphism f of a partially ordered category is weakly meta-
complete when f ◦ (g ⊔ h) = (f ◦ g) ⊔ (f ◦ h) whenever g and h are morphisms with
a suitable source and destination.
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Definition 273. A morphism f of a partially ordered category is weakly co-
metacomplete when (g ⊔ h) ◦ f = (g ◦ f) ⊔ (h ◦ f) whenever g and h are morphisms
with a suitable source and destination.

Obvious 274.

1◦. Metamonovalued morphisms are weakly metamonovalued.
2◦. Metainjective morphisms are weakly metainjective.
3◦. Metacomplete morphisms are weakly metacomplete.
4◦. Co-metacomplete morphisms are weakly co-metacomplete.

3.5. Partitioning

Definition 275. Let A be a complete lattice. Torning of an element a ∈ A is
a set S ∈ PA \ {⊥} such that

lS = a and ∀x, y ∈ S : (x ̸= y ⇒ x ≍ y).

Definition 276. Let A be a complete lattice. Weak partition of an element
a ∈ A is a set S ∈ PA \ {⊥} such that

lS = a and ∀x ∈ S : x ≍ l(S \ {x}).

Definition 277. Let A be a complete lattice. Strong partition of an element
a ∈ A is a set S ∈ PA \ {⊥} such that

lS = a and ∀A,B ∈ PS : (A ≍ B ⇒ lA ≍ lB).

Obvious 278.

1◦. Every strong partition is a weak partition.
2◦. Every weak partition is a torning.

Definition 279. Complete lattice generated by a set P (on a complete lattice)
is the set (obviously having the structure of complete lattice) P0 ∪ P1 ∪ . . . where
P0 = P and Pi+1 =

{

dK,
d

K
K∈PPi

}
.

Obvious 280. Complete lattice generated by a set is indeed a complete lattice.

Example 281. [S] ̸=
{

d

A X
X∈PS

}
, where [S] is the complete lattice generated by

a strong partition S of a filter on a set.

Proof. Consider any infinite set U and its strong partition S =
{

↑U {x}
x∈U

}
.

The set S consists only of principal filters. But [S] contains (exercise!) some
nonprincipal filters. □

By the way:

Proposition 282.
{

d

A X
X∈PS

}
is closed under binary meets, if S is a strong

partition of an element of a complete lattice.
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Proof. Let R =
{

d

A X
X∈PS

}
. Then for every X,Y ∈ PS

A

lX ⊓A
A

lY =
A

l((X ∩ Y ) ∪ (X \ Y )) ⊓A
A

lY =(
A

l(X ∩ Y ) ⊔A
A

l(X \ Y )
)

⊓A
A

lY =(
A

l(X ∩ Y ) ⊓A
A

lY

)
⊔A

(
A

l(X \ Y ) ⊓A
A

lY

)
=(

A

l(X ∩ Y ) ⊓A
A

lY

)
⊔A ⊥A =

A

l(X ∩ Y ) ⊓A
A

lY.

Applying the formula d

A
X ⊓A d

A
Y = d

A(X ∩ Y ) ⊓A d

A
Y twice we get

A

lX ⊓A
A

lY =
A

l(X ∩ Y ) ⊓A
A

l(Y ∩ (X ∩ Y )) =
A

l(X ∩ Y ) ⊓A
A

l(X ∩ Y ) =
A

l(X ∩ Y ).

But for any A,B ∈ R there exist X,Y ∈ PS such that A = d

A
X, B = d

A
Y .

So A ⊓A B = d

A
X ⊓ d

A
Y = d

A(X ∩ Y ) ∈ R. □

3.6. A proposition about binary relations

Proposition 283. Let f , g, h be binary relations. Then g ◦ f ̸≍ h ⇔ g ̸≍
h ◦ f−1.

Proof.
g ◦ f ̸≍ h ⇔

∃a, c : a ((g ◦ f) ∩ h) c ⇔
∃a, c : (a (g ◦ f) c ∧ a h c) ⇔

∃a, b, c : (a f b ∧ b g c ∧ a h c) ⇔
∃b, c : (b g c ∧ b (h ◦ f−1) c) ⇔

∃b, c : b (g ∩ (h ◦ f−1)) c ⇔
g ̸≍ h ◦ f−1.

□

3.7. Infinite associativity and ordinated product

3.7.1. Introduction. We will consider some function f which takes an arbi-
trary ordinal number of arguments. That is f can be taken for arbitrary (small,
if to be precise) ordinal number of arguments. More formally: Let x = xi∈n be a
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family indexed by an ordinal n. Then f(x) can be taken. The same function f can
take different number of arguments. (See below for the exact definition.)

Some of such functions f are associative in the sense defined below. If a function
is associative in the below defined sense, then the binary operation induced by this
function is associative in the usual meaning of the word “associativity” as defined
in basic algebra.

I also introduce and research an important example of infinitely associative
function, which I call ordinated product.

Note that my searching about infinite associativity and ordinals in Internet has
provided no useful results. As such there is a reason to assume that my research of
generalized associativity in terms of ordinals is novel.

3.7.2. Used notation. We identify natural numbers with finite Von Neu-
mann’s ordinals (further just ordinals or ordinal numbers).

For simplicity we will deal with small sets (members of a Grothendieck uni-
verse). We will denote the Grothendieck universe (aka universal set) as ℧.

I will denote a tuple of n elements like Ja0, . . . , an−1K. By definition
Ja0, . . . , an−1K = {(0, a0), . . . , (n− 1, an−1)}.

Note that an ordered pair (a, b) is not the same as the tuple Ja, bK of two
elements. (However, we will use them interchangeably.)

Definition 284. An anchored relation is a tuple Jn, rK where n is an index set
and r is an n-ary relation.

For an anchored relation arityJn, rK = n. The graph1 of Jn, rK is defined as
follows: GRJn, rK = r.

Definition 285. Pri f is a function defined by the formula

Pr
i
f =

{
xi

x ∈ f

}
for every small n-ary relation f where n is an ordinal number and i ∈ n. Particularly
for every n-ary relation f and i ∈ n where n ∈ N

Pr
i
f =

{
xi

Jx0, . . . , xn−1K ∈ f

}
.

Recall that Cartesian product is defined as follows:∏
a =

{
z ∈ (

⋃
im a)dom a

∀i ∈ dom a : z(i) ∈ ai

}
.

Obvious 286. If a is a small function, then
∏
a =

{
z∈℧dom a

∀i∈dom a:z(i)∈ai

}
.

3.7.2.1. Currying and uncurrying.
The customary definition. Let X, Y , Z be sets.
We will consider variables x ∈ X and y ∈ Y .
Let a function f ∈ ZX×Y . Then curry(f) ∈ (ZY )X is the function defined by

the formula (curry(f)x)y = f(x, y).
Let now f ∈ (ZY )X . Then uncurry(f) ∈ ZX×Y is the function defined by the

formula uncurry(f)(x, y) = (fx)y.

Obvious 287.
1◦. uncurry(curry(f)) = f for every f ∈ ZX×Y .
2◦. curry(uncurry(f)) = f for every f ∈ (ZY )X .

1It is unrelated with graph theory.



3.7. INFINITE ASSOCIATIVITY AND ORDINATED PRODUCT 52

Currying and uncurrying with a dependent variable. Let X, Z be sets and Y
be a function with the domain X. (Vaguely saying, Y is a variable dependent on
X.)

The disjoint union
∐
Y =

⋃
i∈dom Y ({i} × Yi) =

{
(i,x)

i∈dom Y,x∈Yi

}
.

We will consider variables x ∈ X and y ∈ Yx.
Let a function f ∈ Z

∐
i∈X

Yi (or equivalently f ∈ Z
∐

Y ). Then curry(f) ∈∏
i∈X ZYi is the function defined by the formula (curry(f)x)y = f(x, y).

Let now f ∈
∏

i∈X ZYi . Then uncurry(f) ∈ Z
∐

i∈X
Yi is the function defined

by the formula uncurry(f)(x, y) = (fx)y.

Obvious 288.
1◦. uncurry(curry(f)) = f for every f ∈ Z

∐
i∈X

Yi .
2◦. curry(uncurry(f)) = f for every f ∈

∏
i∈X ZYi .

3.7.2.2. Functions with ordinal numbers of arguments. Let Ord be the set of
small ordinal numbers.

If X and Y are sets and n is an ordinal number, the set of functions taking n
arguments on the set X and returning a value in Y is Y Xn .

The set of all small functions taking ordinal numbers of arguments is
Y
⋃

n∈Ord
Xn

.
I will denote OrdVar(X) = ℧

⋃
n∈Ord

Xn

and call it ordinal variadic. (“Var” in
this notation is taken from the word variadic in the collocation variadic function
used in computer science.)

3.7.3. On sums of ordinals. Let a be an ordinal-indexed family of ordinals.

Proposition 289.
∐
a with lexicographic order is a well-ordered set.

Proof. Let S be non-empty subset of
∐
a.

Take i0 = min Pr0 S and x0 = min
{

Pr1 y
y∈S,y(0)=i0

}
(these exist by properties of

ordinals). Then (i0, x0) is the least element of S. □

Definition 290.
∑
a is the unique ordinal order-isomorphic to

∐
a.

Exercise 291. Prove that for finite ordinals it is just a sum of natural numbers.

This ordinal exists and is unique because our set is well-ordered.

Remark 292. An infinite sum of ordinals is not customary defined.

The structured sum
⊕
a of a is an order isomorphism from lexicographically

ordered set
∐
a into

∑
a.

There exists (for a given a) exactly one structured sum, by properties of well-
ordered sets.

Obvious 293.
∑
a = im

⊕
a.

Theorem 294. (
⊕
a)(n, x) =

∑
i∈n ai + x.

Proof. We need to prove that it is an order isomorphism. Let’s prove it is an
injection that is m > n ⇒

∑
i∈m ai + x >

∑
i∈n ai + x and y > x ⇒

∑
i∈n ai + y >∑

i∈n ai + x.
Really, if m > n then

∑
i∈m ai +x ≥

∑
i∈n+1 ai +x >

∑
i∈n ai +x. The second

formula is true by properties of ordinals.
Let’s prove that it is a surjection. Let r ∈

∑
a. There exist n ∈ dom a and

x ∈ an such that r = (
⊕
a)(n, x). Thus r = (

⊕
a)(n, 0) +x =

∑
i∈n ai +x because

(
⊕
a)(n, 0) =

∑
i∈n ai since (n, 0) has

∑
i∈n ai predecessors. □
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3.7.4. Ordinated product.
3.7.4.1. Introduction. Ordinated product defined below is a variation of Carte-

sian product, but is associative unlike Cartesian product. However, ordinated prod-
uct unlike Cartesian product is defined not for arbitrary sets, but only for relations
having ordinal numbers of arguments.

Let F indexed by an ordinal number be a small family of anchored relations.
3.7.4.2. Concatenation.

Definition 295. Let z be an indexed by an ordinal number family of functions
each taking an ordinal number of arguments. The concatenation of z is

concat z = uncurry(z) ◦
(⊕

(dom ◦z)
)−1

.

Exercise 296. Prove, that if z is a finite family of finitary tuples, it is con-
catenation of dom z tuples in the usual sense (as it is commonly used in computer
science).

Proposition 297. If z ∈
∏

(GR ◦F ) then concat z = uncurry(z) ◦
(
⊕

(arity ◦F ))−1
.

Proof. If z ∈
∏

(GR ◦F ) then dom z(i) = dom(GR ◦F )i = arityFi for every
i ∈ domF . Thus dom ◦z = arity ◦F . □

Proposition 298. dom concat z =
∑

i∈dom z dom zi.

Proof. Because dom(
⊕

(dom ◦z))−1 =
∑

i∈dom f (dom ◦z), it is enough to
prove that

dom uncurry(z) = dom
⊕

(dom ◦z).

Really, ∑
i∈dom f

(dom ◦z) =

{
(i, x)

i ∈ dom(dom ◦z), x ∈ dom zi

}
={

(i, x)
i ∈ dom z, x ∈ dom zi

}
=∐

z

and dom uncurry(z) =
∐

i∈X zi =
∐
z. □

3.7.4.3. Finite example. If F is a finite family (indexed by a natural number
domF ) of anchored finitary relations, then by definition

GR
(ord)∏

=


Ja0,0, . . . , a0,arity F0−1, . . . , adom F −1,0, . . . , adom F −1,arity Fdom F −1−1K

Ja0,0, . . . , a0,arity F0−1K ∈ GRF0 ∧ . . .∧
Jadom F −1,arity Fdom F −1−1K ∈ GRFdom F −1


and

arity
(ord)∏

F = arityF0 + . . .+ arityFdom F −1.

The above formula can be shortened to

GR
(ord)∏

F =
{

concat z
z ∈

∏
(GR ◦F )

}
.
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3.7.4.4. The definition.

Definition 299. The anchored relation (which I call ordinated product)∏(ord)
F is defined by the formulas:

arity
(ord)∏

F =
∑

(arity ◦f);

GR
(ord)∏

F =
{

concat z
z ∈

∏
(GR ◦F )

}
.

Proposition 300.
∏(ord)

F is a properly defined anchored relation.

Proof. dom concat z =
∑

i∈dom F dom zi =
∑

i∈dom F arity fi =
∑

(arity ◦F ).
□

3.7.4.5. Definition with composition for every multiplier.

q(F )i
def=
(

curry
(⊕

(arity ◦F )
))
i.

Proposition 301.
∏(ord)

F =
{

L∈℧
∑

(arity ◦F )

∀i∈dom F :L◦q(F )i∈GR Fi

}
.

Proof. GR
∏(ord)

F =
{

concat z

z∈
∏

(GR ◦F )

}
;

GR
∏(ord)

F =
{

uncurry(z)◦(
⊕

(arity ◦f))−1

z∈
∏

i∈dom F
℧arity Fi ,∀i∈dom F :z(i)∈GR Fi

}
.

Let L = uncurry(z). Then z = curry(L).

GR
∏(ord)

F =
{

L◦(
⊕

(arity ◦f))−1

curry(L)∈
∏

i∈dom F
℧arity Fi ,∀i∈dom F :curry(L)i∈GR Fi

}
;

GR
∏(ord)

F =
{

L◦(
⊕

(arity ◦f))−1

L∈℧
∐

i∈dom F
arity Fi

,∀i∈dom F :curry(L)i∈GR Fi

}
;

GR
∏(ord)

F =
{

L∈℧
∑

(arity ◦f)

∀i∈dom F :curry(L◦
⊕

(arity ◦F ))i∈GR Fi

}
;

(curry(L ◦
⊕

(arity ◦F ))i)x = L((curry(
⊕

(arity ◦F ))i)x) = L(q(F )ix) = (L ◦
q(F )i)x;

curry(L ◦
⊕

(arity ◦F ))i = L ◦ q(F )i;∏(ord)
F =

{
L∈℧

∑
(arity ◦F )

∀i∈dom F :L◦q(F )i∈GR Fi

}
. □

Corollary 302.
∏(ord)

F =
{

L∈(
⋃

im(GR ◦F ))
∑

(arity ◦F )

∀i∈dom F :L◦q(F )i∈GR Fi

}
.

Corollary 303.
∏(ord)

F is small if F is small.

3.7.4.6. Definition with shifting arguments. Let F ′
i =

{
L◦Pr1 |{i}×arity Fi

L∈GR Fi

}
.

Proposition 304. F ′
i =

{
L◦Pr1 |{i}×℧

L∈GR Fi

}
.

Proof. If L ∈ GRFi then domL = arityFi. Thus

L ◦ Pr
1

|{i}×arity Fi
= L ◦ Pr

1
|{i}×dom L = L ◦ Pr

1
|{i}×℧.

□

Proposition 305. F ′
i is an ({i} × arityFi)-ary relation.
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Proof. We need to prove that dom
(
L ◦ Pr1 |{i}×arity Fi

)
= {i} × arityFi for

L ∈ GRFi, but that’s obvious. □

Obvious 306.
∐

(arity ◦F ) =
⋃

i∈dom F ({i} × arityFi) =
⋃

i∈dom F domF ′
i .

Lemma 307. P ∈
∏

i∈dom F F
′
i ⇔ curry(

⋃
imP ) ∈

∏
(GR ◦F ) for a (domF )-

indexed family P where Pi ∈ ℧{i}×arity Fi for every i ∈ domF , that is for P ∈∐
i∈dom F ℧{i}×arity Fi .

Proof. For every P ∈
∐

i∈dom F ℧{i}×arity Fi we have:

P ∈
∏

i∈dom F

F ′
i ⇔

P ∈
{

z ∈ ℧dom F

∀i ∈ domF : z(i) ∈ F ′
i

}
⇔

P ∈ ℧dom F ∧ ∀i ∈ domF : P (i) ∈ F ′
i ⇔

P ∈ ℧dom F ∧ ∀i ∈ domF∃L ∈ GRFi : Pi = L ◦ (Pr
1

|{i}×℧) ⇔

P ∈ ℧dom F ∧ ∀i ∈ domF∃L ∈ GRFi : (Pi ∈ ℧{i}×arity Fi ∧ ∀x ∈ arityFi : Pi(i, x) = Lx) ⇔

P ∈ ℧dom F ∧ ∀i ∈ domF∃L ∈ GRFi : (Pi ∈ ℧{i}×arity Fi ∧ curry(Pi)i = L) ⇔

P ∈ ℧dom F ∧ ∀i ∈ domF : (Pi ∈ ℧{i}×arity Fi ∧ curry(Pi)i ∈ GRFi) ⇔

∀i ∈ domF∃Qi ∈ (℧arity Fi){i} : (Pi = uncurry(Qi) ∧ (Qi)i ∈ ℧arity Fi ∧Qii ∈ GRFi) ⇔

∀i ∈ domF∃Qi ∈ (℧arity Fi){i} :
(
Pi = uncurry(Qi) ∧

( ⋃
i∈dom F

Qi

)
i ∈ GRFi

)
⇔

∀i ∈ domF∃Qi ∈ (℧arity Fi){i} :
(
Pi = uncurry(Qi) ∧

⋃
i∈dom F

Qi ∈
∏

(GR ◦F )
)

⇔

∀i ∈ domF :
⋃

i∈dom F

curry(Pi) ∈
∏

(GR ◦F ) ⇔

curry
( ⋃

i∈dom F

Pi

)
∈
∏

(GR ◦F ) ⇔

curry
(⋃

imP
)

∈
∏

(GR ◦F ).

□

Lemma 308.
{

curry(f)◦
⊕

(arity ◦F )

f∈GR
∏(ord)

F

}
=
∏

(GR ◦F ).

Proof. First GR
∏(ord)

F =
{

uncurry(z)◦(
⊕

(dom ◦z))−1

z∈
∏

(GR ◦F )

}
, that is{

f

f∈GR
∏(ord)

F

}
=
{

uncurry(z)◦(
⊕

(arity ◦F ))−1

z∈
∏

(GR ◦F )

}
.

Since
⊕

(arity ◦F ) is a bijection, we have{
f◦
⊕

(arity ◦F )

f∈GR
∏(ord)

F

}
=
{

uncurry(z)
z∈
∏

(GR ◦F )

}
what is equivalent to{

curry(f)◦
⊕

(arity ◦F )

f∈GR
∏(ord)

F

}
=
{

z

z∈
∏

(GR ◦F )

}
that is

{
curry(f)◦

⊕
(arity ◦F )

f∈GR
∏(ord)

F

}
=∏

(GR ◦F ). □

Lemma 309.
{ ⋃

im P

P ∈
∐

i∈dom F
℧{i}×arity Fi ∧curry(

⋃
im P )∈

∏
(GR ◦F )

}
={

L∈℧
∐

i∈dom F
arity Fi

curry(L)∈
∏

(GR ◦F )

}
.
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Proof. Let L′ ∈
{

L∈℧
∐

i∈dom F
arity Fi

curry(L)∈
∏

(GR ◦F )

}
. Then L′ ∈ ℧

∐
i∈dom F

arity Fi and

curry(L′) ∈
∏

(GR ◦F ).
Let P = λi ∈ domF : L′|{i}×arity Fi

. Then P ∈
∐

i∈dom F ℧{i}×arity Fi and⋃
imP = L′. So L′ ∈

{ ⋃
im P

P ∈
∐

i∈dom F
℧{i}×arity Fi ∧curry(

⋃
im P )∈

∏
(GR ◦F )

}
.

Let now L′ ∈
{ ⋃

im P

P ∈
∐

i∈dom F
℧{i}×arity Fi ∧curry(

⋃
im P )∈

∏
(GR ◦F )

}
. Then there ex-

ists P ∈
∐

i∈dom F ℧{i}×arity Fi such that L′ =
⋃

imP and curry(L′) ∈
∏

(GR ◦F ).

Evidently L′ ∈ ℧
∐

i∈dom F
arity Fi . So L′ ∈

{
L∈℧

∐
i∈dom F

arity Fi

curry(L)∈
∏

(GR ◦F )

}
. □

Lemma 310.
{

f◦
⊕

(arity ◦F )

f∈GR
∏(ord)

F

}
=
{ ⋃

im P

P ∈
∏

i∈dom F
F ′

i

}
.

Proof.

L ∈
{ ⋃

imP

P ∈
∏

i∈dom F F
′
i

}
⇔

L ∈
{ ⋃

imP

P ∈
∐

i∈dom F ℧{i}×arity Fi ∧ curry(
⋃

imP ) ∈
∏

(GR ◦F )

}
⇔

L ∈ ℧
∐

i∈dom F
arity Fi ∧ curry(L) ∈

∏
(GR ◦F ) ⇔

L ∈ ℧
∐

i∈dom F
arity Fi ∧ curry(L) ∈

{
curry(f) ◦

⊕
(arity ◦F )

f ∈ GR
∏(ord)

F

}
⇔

(because
⊕

(arity ◦F ) is a bijection)

curry(L) ◦
(⊕

(arity ◦F )
)−1

∈

{
curry(f)

f ∈ GR
∏(ord)

F

}
⇔

L ◦
(⊕

(arity ◦F )
)−1

∈

{
f

f ∈ GR
∏(ord)

F

}
⇔

(because
⊕

(arity ◦F ) is a bijection)

L ∈

{
f ◦
⊕

(arity ◦F )
f ∈ GR

∏(ord)
F

}
.

□

Theorem 311. GR
∏(ord)

F =
{

(
⋃

im P)◦(
⊕

(arity ◦F ))−1

P ∈
∏

i∈dom F
F ′

i

}
.

Proof. From the lemma, because
⊕

(arity ◦F ) is a bijection. □

Theorem 312. GR
∏(ord)

F =
{⋃

i∈dom F

(
Pi◦(

⊕
(arity ◦f))−1)

P ∈
∏

i∈dom F
F ′

i

}
.

Proof. From the previous theorem. □

Theorem 313. GR
∏(ord)

F =


⋃

im P

P ∈
∏

i∈dom F

{
f◦(
⊕

(arity ◦f))−1

f∈F ′
i

}
.

Proof. From the previous. □
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Remark 314. Note that the above formulas contain both
⋃

i∈dom F domF ′
i and⋃

i∈dom F F
′
i . These forms are similar but different.

3.7.4.7. Associativity of ordinated product. Let f be an ordinal variadic func-
tion.

Let S be an ordinal indexed family of functions of ordinal indexed families of
functions each taking an ordinal number of arguments in a set X.

I call f infinite associative when
1◦. f(f ◦ S) = f(concatS) for every S;
2◦. f(JxK) = x for x ∈ X.

Infinite associativity implies associativity.

Proposition 315. Let f be an infinitely associative function taking an ordinal
number of arguments in a set X. Define x ⋆ y = fJx, yK for x, y ∈ X. Then the
binary operation ⋆ is associative.

Proof. Let x, y, z ∈ X. Then (x ⋆ y) ⋆ z = fJfJx, yK, zK = f(fJx, yK, fJzK) =
fJx, y, zK. Similarly x ⋆ (y ⋆ z) = fJx, y, zK. So (x ⋆ y) ⋆ z = x ⋆ (y ⋆ z). □

Concatenation is associative. First we will prove some lemmas.
Let a and b be functions on a poset. Let a ∼ b iff there exist an order isomor-

phism f such that a = b ◦ f . Evidently ∼ is an equivalence relation.

Obvious 316. concat a = concat b ⇔ uncurry(a) ∼ uncurry(b) for every ordi-
nal indexed families a and b of functions taking an ordinal number of arguments.

Thank to the above, we can reduce properties of concat to properties of uncurry.

Lemma 317. a ∼ b ⇒ uncurry a ∼ uncurry b for every ordinal indexed families
a and b of functions taking an ordinal number of arguments.

Proof. There exists an order isomorphism f such that a = b ◦ f .

uncurry(a)(x, y) = (ax)y = (bfx)y =
uncurry(b)(fx, y) = uncurry(b)g(x, y)

where g(x, y) = (fx, y).
g is an order isomorphism because g(x0, y0) ≥ g(x1, y1) ⇔ (x0, y0) ≥ (x1, y1).

(Injectivity and surjectivity are obvious.) □

Lemma 318. Let ai ∼ bi for every i. Then uncurry a ∼ uncurry b for every
ordinal indexed families a and b of ordinal indexed families of functions taking an
ordinal number of arguments.

Proof. Let ai = bi ◦ fi where fi is an order isomorphism for every i.

uncurry(a)(i, y) = aiy = bifiy =
uncurry(b)(i, fiy) = uncurry(b)g(i, y) = (uncurry(b) ◦ g)(i, y)

where g(i, y) = (i, fiy).
g is an order isomorphism because g(i, y0) ≥ g(i, y1) ⇔ fiy0 ≥ fiy1 ⇔ y0 ≥ y1

and i0 > i1 ⇒ g(i, y0) > g(i, y1). (Injectivity and surjectivity are obvious.) □

Let now S be an ordinal indexed family of ordinal indexed families of functions
taking an ordinal number of arguments.

Lemma 319. uncurry(uncurry ◦S) ∼ uncurry(uncurryS).
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Proof. uncurry ◦S = λi ∈ S : uncurry(Si);
(uncurry(uncurry ◦S))((i, x), y) = (uncurrySi)(x, y) = (Six)y;
(uncurry(uncurryS))((i, x), y) = ((uncurryS)(i, x))y = (Six)y.
Thus (uncurry(uncurry ◦S))((i, x), y) = (uncurry(uncurryS))((i, x), y) and

thus evidently uncurry(uncurry ◦S) ∼ uncurry(uncurryS). □

Theorem 320. concat is an infinitely associative function.

Proof. concat(JxK) = x for a function x taking an ordinal number of argument
is obvious. It is remained to prove

concat(concat ◦S) = concat(concatS);

We have, using the lemmas,

concat(concat ◦S) ∼
uncurry(concat ◦S) ∼

(by lemma 318)
uncurry(uncurry ◦S) ∼
uncurry(uncurryS) ∼

uncurry(concatS) ∼
concat(concatS).

Consequently concat(concat ◦S) = concat(concatS). □

Corollary 321. Ordinated product is an infinitely associative function.

3.8. Galois surjections

Definition 322. Galois surjection is the special case of Galois connection such
that f∗ ◦ f∗ is identity.

Proposition 323. For Galois surjection A → B such that A is a join-
semilattice we have (for every y ∈ B)

f∗y = max
{

x ∈ A

f∗x = y

}
.

Proof. We need to prove (theorem 131)

max
{

x ∈ A

f∗x = y

}
= max

{
x ∈ A

f∗x ⊑ y

}
.

To prove it, it’s enough to show that for each f∗x ⊑ y there exists an x′ ⊒ x such
that f∗x′ = y.

Really, y = f∗f∗y. It’s enough to prove f∗(x ⊔ f∗y) = y.
Indeed (because lower adjoints preserve joins), f∗(x ⊔ f∗y) = f∗x ⊔ f∗f∗y =

f∗x ⊔ y = y. □

3.9. Some properties of frames

This section is based on a Todd Trimble’s proof. A shorter but less elemen-
tary proof (also by Todd Trimble) is available at
http://ncatlab.org/toddtrimble/published/topogeny

I will abbreviate join-semilattice with least element as JSWLE.

Obvious 324. JSWLEs are the same as finitely join-closed posets (with nullary
joins included).

http://ncatlab.org/toddtrimble/published/topogeny
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Definition 325. It is said that a function f from a poset A to a poset B

preserves finite joins, when for every finite set S ∈ PA such that d

A
S exists we

have d

B⟨f⟩∗
S = f d

A
S.

Obvious 326. A function between JSWLEs preserves finite joins iff it preserves
binary joins (f(x ⊔ y) = fx ⊔ fy) and nullary joins (f(⊥A) = ⊥B).

Definition 327. A fixed point of a function F is such x that F (x) = x. We
will denote Fix(F ) the set of all fixed points of a function F .

Definition 328. Let A be a JSWLE. A co-nucleus is a function F : A → A
such that for every p, q ∈ A we have:

1◦. F (p) ⊑ p;
2◦. F (F (p)) = F (p);
3◦. F (p ⊔ q) = F (p) ⊔ F (q).

Proposition 329. Every co-nucleus is a monotone function.

Proof. It follows from F (p ⊔ q) = F (p) ⊔ F (q). □

Lemma 330. d

Fix(F )
S = dS for every S ∈ P Fix(F ) for every co-nucleus F

on a complete lattice.

Proof. Obviously dS ⊒ x for every x ∈ S.
Suppose z ⊒ x for every x ∈ S for a z ∈ Fix(F ). Then z ⊒ dS.
F ( dS) ⊒ F (x) for every x ∈ S. Thus F ( dS) ⊒ dx∈S F (x) = dS. But

F ( dS) ⊑ dS. Thus F ( dS) = dS that is dS ∈ Fix(F ).
So d

Fix(F )
S = dS by the definition of join. □

Corollary 331. d

Fix(F )
S is defined for every S ∈ P Fix(F ).

Lemma 332.
dFix(F )

S = F (
d
S) for every S ∈ P Fix(F ) for every co-

nucleus F on a complete lattice.

Proof. Obviously F (
d
S) ⊑ x for every x ∈ S.

Suppose z ⊑ x for every x ∈ S for a z ∈ Fix(F ). Then z ⊑
d
S and thus

z ⊑ F (
d
S).

So
dFix(F )

S = F (
d
S) by the definition of meet. □

Corollary 333.
dFix(F )

S is defined for every S ∈ P Fix(F ).

Obvious 334. Fix(F ) with induced order is a complete lattice.

Lemma 335. If F is a co-nucleus on a co-frame A, then the poset Fix(F ) of
fixed points of F , with order inherited from A, is also a co-frame.
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Proof. Let b ∈ Fix(F ), S ∈ P Fix(F ). Then

b ⊔Fix(F )
Fix(F )l

S =

b ⊔Fix(F ) F
(l

S
)

=

F (b) ⊔ F
(l

S
)

=

F
(
b ⊔

l
S
)

=

F
(l

⟨b⊔⟩∗S
)

=
Fix(F )l

⟨b⊔⟩∗S =
Fix(F )l

⟨b⊔Fix(F )⟩∗S.

□

Definition 336. Denote Up(A) the set of upper sets on A ordered reverse to
set theoretic inclusion.

Definition 337. Denote ↑ a =
{

x∈A
x⊒a

}
∈ Up(A).

Lemma 338. The set Up(A) is closed under arbitrary meets and joins.

Proof. Let S ∈ P Up(A).
Let X ∈

⋃
S and Y ⊒ X for an Y ∈ A. Then there is P ∈ S such that X ∈ P

and thus Y ∈ P and so Y ∈
⋃
S. So

⋃
S ∈ Up(A).

Let now X ∈
⋂
S and Y ⊒ X for an Y ∈ A. Then ∀T ∈ S : X ∈ T and so

∀T ∈ S : Y ∈ T , thus Y ∈
⋂
S. So

⋂
S ∈ Up(A). □

Theorem 339. A poset A is a complete lattice iff there is a antitone map
s : Up(A) → A such that

1◦. s(↑ p) = p for every p ∈ A;
2◦. D ⊆↑ s(D) for every D ∈ Up(A).

Moreover, in this case s(D) =
d
D for every D ∈ Up(A).

Proof.
⇒. Take s(D) =

d
D.

⇐. ∀x ∈ D : x ⊒ s(D) from the second formula.
Let ∀x ∈ D : y ⊑ x. Then x ∈↑ y, D ⊆↑ y; because s is an antitone

map, thus follows s(D) ⊒ s(↑ y) = y. So ∀x ∈ D : y ⊑ s(D).
That s is the meet follows from the definition of meets.
It remains to prove that A is a complete lattice.
Take any subset S of A. Let D be the smallest upper set containing S.

(It exists because Up(A) is closed under arbitrary joins.) This is

D =
{

x ∈ A

∃s ∈ S : x ⊒ s

}
.

Any lower bound of D is clearly a lower bound of S since D ⊇ S. Con-
versely any lower bound of S is a lower bound of D. Thus S and D have
the same set of lower bounds, hence have the same greatest lower bound.

□
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Proposition 340. For any poset A the following are mutually reverse order
isomorphisms between upper sets F (ordered reverse to set-theoretic inclusion) on
A and order homomorphisms φ : Aop → 2 (here 2 is the partially ordered set of two
elements: 0 and 1 where 0 ⊑ 1), defined by the formulas

1◦. φ(a) =
{

1 if a ∈ F
0 if a /∈ F

for every a ∈ A;

2◦. F = φ−1(1).

Proof. Let X ∈ φ−1(1) and Y ⊒ X. Then φ(X) = 1 and thus φ(Y ) = 1.
Thus φ−1(1) is a upper set.

It is easy to show that φ defined by the formula 1◦ is an order homomorphism
Aop → 2 whenever F is a upper set.

Finally we need to prove that they are mutually inverse. Really: Let φ be de-
fined by the formula 1◦. Then take F ′ = φ−1(1) and define φ′(a) by the formula 1◦.
We have

φ′(a) =
{

1 if a ∈ φ−1(1)
0 if a /∈ φ−1(1) =

{
1 if φ(a) = 1
0 if φ(a) ̸= 1 = φ(a).

Let now F be defined by the formula 2◦. Then take φ′(a) =
{

1 if a ∈ F
0 if a /∈ F

as

defined by the formula 1◦ and define F ′ = φ′−1(1). Then

F ′ = φ′−1(1) = F.

□

Lemma 341. For a complete lattice A, the map
d

: Up(A) → A preserves
arbitrary meets.

Proof. Let S ∈ P Up(A) . We have
d
S ∈ Up(A).d d

S =
d d

X∈S X =
d

X∈S

d
X is what we needed to prove. □

Lemma 342. A complete lattice A is a co-frame iff
d

: Up(A) → A preserves
finite joins.

Proof.

⇒. Let A be a co-frame. Let D,D′ ∈ Up(A). Obviously
d

(D ⊔ D′) ⊒
d
D andd

(D ⊔D′) ⊒
d
D′, so

d
(D ⊔D′) ⊒

d
D ⊔

d
D′.

Also

l
D ⊔

l
D′ =

⋃
D ⊔

⋃
D′ = (because A is a co-frame) =⋃{ d ⊔ d′

d ∈ D, d′ ∈ D′

}
.

Obviously d ⊔ d′ ∈ D ∩ D′, thus
d
D ⊔

d
D′ ⊆

⋃
(D ∩ D′) =

d
(D ∩ D′)

that is
d
D ⊔

d
D′ ⊒

d
(D ∩ D′). So

d
(D ⊔ D′) =

d
D ⊔

d
D′ that isd

: Up(A) → A preserves binary joins.
It preserves nullary joins since

dUp(A) ⊥Up(A) =
dUp(A)

A = ⊥A.
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⇐. Suppose
d

: Up(A) → A preserves finite joins. Let b ∈ A, S ∈ PA. Let D be
the smallest upper set containing S (so D =

⋃
⟨↑⟩∗

S). Then

b ⊔
l
S =

l
↑ b ⊔

⋃l
⟨↑⟩∗

S =
l

↑ b ⊔
l⋃

⟨↑⟩∗
S = (since

l
preserves finite joins)

l(
↑ b ⊔

⋃
⟨↑⟩∗

S
)

=⋃(
↑ b ∩

⋃
⟨↑⟩∗

S
)

=
l ⋃

a∈S

(↑ b∩ ↑ a) =

l ⋃
a∈S

↑ (b ⊔ a) = (since
l

preserves all meets)⋃
a∈S

l
↑ (b ⊔ a) =⋃

a∈S

(b ⊔ a) =

l

a∈S

(b ⊔ a).

□

Corollary 343. If A is a co-frame, then the composition F =↑ ◦
d

: Up(A) →
Up(A) is a co-nucleus. The embedding ↑: A → Up(A) is an isomorphism of A onto
the co-frame Fix(F ).

Proof. D ⊒ F (D) follows from theorem 339.
We have F (F (D)) = F (D) for all D ∈ Up(A) since F (F (D)) =↑

d
↑

d
D =

(because
d

↑ s = s for any s) =↑
d
D = F (D).

And since both
d

: Up(A) → A and ↑ preserve finite joins, F preserves finite
joins. Thus F is a co-nucleus.

Finally, we have a ⊒ a′ if and only if ↑ a ⊆↑ a′, so that ↑: A → Up(A) maps
A isomorphically onto its image ⟨↑⟩∗

A. This image is Fix(F ) because if D is any
fixed point (i.e. if D =↑

d
D), then D clearly belongs to ⟨↑⟩∗

A; and conversely ↑ a
is always a fixed point of F =↑ ◦

d
since F (↑ a) =↑

d
↑ a =↑ a. □

Definition 344. If A, B are two JSWLEs, then Join(A,B) is the (ordered
pointwise) set of finite joins preserving maps A → B.

Obvious 345. Join(A,B) is a JSWLE, where f ⊔ g is given by the formula
(f ⊔ g)(p) = f(p) ⊔ g(p), ⊥Join(A,B) is given by the formula ⊥Join(A,B)(p) = ⊥B.

Definition 346. Let h : Q → R be a finite joins preserving map. Then
by definition Join(P, h) : Join(P,Q) → Join(P,R) takes f ∈ Join(P,Q) into the
composition h ◦ f ∈ Join(P,R).

Lemma 347. Above defined Join(P, h) is a finite joins preserving map.

Proof.

(h ◦ (f ⊔ f ′))x = h(f ⊔ f ′)x = h(fx ⊔ f ′x) =
hfx ⊔ hf ′x = (h ◦ f)x ⊔ (h ◦ f ′)x = ((h ◦ f) ⊔ (h ◦ f ′))x.
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Thus h ◦ (f ⊔ f ′) = (h ◦ f) ⊔ (h ◦ f ′).
(h ◦ ⊥Join(P,Q))x = h⊥Join(P,Q)x = h⊥Q = ⊥R. □

Proposition 348. If h, h′ : Q → R are finite join preserving maps and h ⊒ h′,
then Join(P, h) ⊒ Join(P, h′).

Proof. Join(P, h)(f)(x) = (h ◦ f)(x) = hfx ⊒ h′fx = (h′ ◦ f)(x) =
Join(P, h′)(f)(x). □

Lemma 349. If g : Q → R and h : R → S are finite joins preserving, then the
composition Join(P, h) ◦ Join(P, g) is equal to Join(P, h ◦ g). Also Join(P, idQ) for
identity map idQ on Q is the identity map idJoin(P,Q) on Join(P,Q).

Proof. Join(P, h) Join(P, g)f = Join(P, h)(g ◦ f) = h ◦ g ◦ f = Join(P, h ◦ g)f .
Join(P, idQ)f = idQ ◦f = f . □

Corollary 350. If Q is a JSWLE and F : Q → Q is a co-nucleus, then for
any JSWLE P we have that

Join(P, F ) : Join(P,Q) → Join(P,Q)

is also a co-nucleus.

Proof. From idQ ⊒ F (co-nucleus axiom 1◦) we have Join(P, idQ) ⊒
Join(P, F ) and since by the last lemma the left side is the identity on Join(P,Q),
we see that Join(P, F ) also satisfies co-nucleus axiom 1◦.

Join(P, F ) ◦ Join(P, F ) = Join(P, F ◦ F ) by the same lemma and thus
Join(P, F )◦Join(P, F ) = Join(P, F ) by the second co-nucleus axiom for F , showing
that Join(P, F ) satisfies the second co-nucleus axiom.

By an other lemma, we have that Join(P, F ) preserves binary joins, given that
F preserves binary joins, which is the third co-nucleus axiom. □

Lemma 351. Fix(Join(P, F )) = Join(P,Fix(F )) for every JSWLEs P , Q and
a join preserving function F : Q → Q.

Proof. a ∈ Fix(Join(P, F )) ⇔ a ∈ FP ∧ F ◦ a = a ⇔ a ∈ FP ∧ ∀x ∈ P :
F (a(x)) = a(x).

a ∈ Join(P,Fix(F )) ⇔ a ∈ Fix(F )P ⇔ a ∈ FP ∧ ∀x ∈ P : F (a(x)) = a(x).
Thus Fix(Join(P, F )) = Join(P,Fix(F )). That the order of the left and right

sides of the equality agrees is obvious. □

Definition 352. Pos(A,B) is the pointwise ordered poset of monotone maps
from a poset A to a poset B.

Lemma 353. If Q, R are JSWLEs and P is a poset, then Pos(P,R) is a JSWLE
and Pos(P, Join(Q,R)) is isomorphic to Join(Q,Pos(P,R)). If R is a co-frame,
then also Pos(P,R) is a co-frame.

Proof. Let f, g ∈ Pos(P,R). Then λx ∈ P : (fx⊔ gx) is obviously monotone
and then it is evident that f ⊔Pos(P,R) g = λx ∈ P : (fx⊔ gx). λx ∈ P : ⊥R is also
obviously monotone and it is evident that ⊥Pos(P,R) = λx ∈ P : ⊥R.

Obviously both Pos(P, Join(Q,R)) and Join(Q,Pos(P,R)) are sets of order
preserving maps.

Let f be a monotone map.
f ∈ Pos(P, Join(Q,R)) iff f ∈ Join(Q,R)P iff f ∈

{
g∈RQ

g preserves finite joins

}P

iff
f ∈ (RQ)P and every g = f(x) (for x ∈ P ) preserving finite joins. This is bijectively
equivalent (f 7→ f ′) to f ′ ∈ (RP )Q preserving finite joins.
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f ′ ∈ Join(Q,Pos(P,R)) iff f ′ preserves finite joins and f ′ ∈ Pos(P,R)Q iff
f ′ preserves finite joins and f ′ ∈

{
g∈(RP )Q

g(x) is monotone

}
iff f ′ preserves finite joins and

f ′ ∈ (RP )Q.
So we have proved that f 7→ f ′ is a bijection between Pos(P, Join(Q,R)) and

Join(Q,Pos(P,R)). That it preserves order is obvious.
It remains to prove that if R is a co-frame, then also Pos(P,R) is a co-frame.
First, we need to prove that Pos(P,R) is a complete lattice. But it is easy

to prove that for every set S ∈ PPos(P,R) we have λx ∈ P : df∈S f(x) and
λx ∈ P :

d
f∈S f(x) are monotone and thus are the joins and meets on Pos(P,R).

Next we need to prove that

b ⊔Pos(P,R)
Pos(P,R)l

S =
Pos(P,R)l 〈

b⊔Pos(P,R)
〉∗
S.

Really (for every x ∈ P ),

b ⊔Pos(P,R)
Pos(P,R)l

S

x = b(x) ⊔

Pos(P,R)l
S

x =

b(x) ⊔
l

f∈S

f(x) =
l

f∈S

(b(x) ⊔ f(x)) =
l

f∈S

(
b ⊔Pos(P,R) f

)
x =

Pos(P,R)l

f∈S

(
b ⊔Pos(P,R) f

)x.
Thus

b ⊔Pos(P,R)
Pos(P,R)l

S =
Pos(P,R)l

f∈S

(
b ⊔Pos(P,R) f

)
=

Pos(P,R)l 〈
b⊔Pos(P,R)

〉∗
S.

□

Definition 354. P ∼= Q means that posets P and Q are isomorphic.



CHAPTER 4

Typed sets and category Rel

4.1. Relational structures

Definition 355. A relational structure is a pair consisting of a set and a tuple
of relations on this set.

A poset (A,⊑) can be considered as a relational structure: (A, J⊑K).
A set can X be considered as a relational structure with zero relations: (X, JK).
This book is not about relational structures. So I will not introduce more

examples.
Think about relational structures as a common place for sets or posets, as far

as they are considered in this book.
We will denote x ∈ (A, R) iff x ∈ A for a relational structure (A, R).

4.2. Typed elements and typed sets

We sometimes want to differentiate between the same element of two different
sets. For example, we may want to consider different the natural number 3 and the
rational number 3. In order to describe this in a formal way we consider elements
of sets together with sets themselves. For example, we can consider the pairs (N, 3)
and (Q, 3).

Definition 356. A typed element is a pair (A, a) where A is a relational struc-
ture and a ∈ A.

I denote type(A, a) = A and GR(A, a) = a.

Definition 357. I will denote typed element (A, a) as @Aa or just @a when
A is clear from context.

Definition 358. A typed set is a typed element equal to (PU,A) where U is
a set and A is its subset.

Remark 359. Typed sets is an awkward formalization of type theory sets in
ZFC (U is meant to express the type of the set). This book could be better written
using type theory instead of ZFC, but I want my book to be understandable for
everyone knowing ZFC. (PU,A) should be understood as a set A of type U . For
an example, consider (PR, [0; 10]); it is the closed interval [0; 10] whose elements
are considered as real numbers.

Definition 360. TA =
{

(A,a)
a∈A

}
= {A} × A for every relational structure A.

Remark 361. TA is the set of typed elements of A.

Definition 362. If A is a poset, we introduce order on its typed elements
isomorphic to the order of the original poset: (A, a) ⊑ (A, b) ⇔ a ⊑ b.

Definition 363. I denote GR(A, a) = a for a typed element (A, a).

Definition 364. I will denote typed subsets of a typed poset (PU,A) as
P(PU,A) =

{
(PU,X)
X∈PA

}
= {PU} × PA.

65
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Obvious 365. P(PU,A) is also a set of typed sets.

Definition 366. I will denote T U = TPU .

Remark 367. This means that T U is the set of typed subsets of a set U .

Obvious 368. T U =
{

(PU,X)
X∈PU

}
= {PU} × PU = P(PU,U).

Obvious 369. T U is a complete atomistic boolean lattice. Particularly:
1◦. ⊥T U = (PU, ∅);
2◦. ⊤T U = (PU,U);
3◦. (PU,A) ⊔ (PU,B) = (PU,A ∪B);
4◦. (PU,A) ⊓ (PU,B) = (PU,A ∩B);
5◦. dA∈S(PU,A) = (PU,

⋃
A∈S A);

6◦.
d

A∈S(PU,A) =
(

PU,

{⋂
A∈S A if A ̸= ∅

U if A = ∅

)
;

7◦. (PU,A) = (PU,U \A);
8◦. atomic elements are (PU, {x}) where x ∈ U .

Typed sets are “better” than regular sets as (for example) for a set U and a typed
set X the following are defined by regular order theory:

• atomsX;
• X;
•

dT U ∅.
For regular (“non-typed”) sets these are not defined (except of atomsX which how-
ever needs a special definition instead of using the standard order-theory definition
of atoms).

Typed sets are convenient to be used together with filters on sets (see below),
because both typed sets and filters have a set PU as their type.

Another advantage of typed sets is that their binary product (as defined below)
is a Rel-morphism. This is especially convenient because below defined products
of filters are also morphisms of related categories.

Well, typed sets are also quite awkward, but the proper way of doing modern
mathematics is type theory not ZFC, what is however outside of the topic of this
book.

4.3. Category Rel

I remind that Rel is the category of (small) binary relations between sets, and
Set is its subcategory where only monovalued entirely defined morphisms (func-
tions) are considered.

Definition 370. Order on Rel(A,B) is defined by the formula f ⊑ g ⇔
GR f ⊆ GR g.

Obvious 371. This order is isomorphic to the natural order of subsets of the
set A×B.

Definition 372. X [f ]∗ Y ⇔ GRX [GR f ]∗ GR Y and ⟨f⟩∗
X =

(Dst f, ⟨GR f⟩∗ GRX) for a Rel-morphism f and typed sets X ∈ T Src f , Y ∈
T Dst f .

Definition 373. For category Rel there is defined reverse morphism:
(A,B, F )−1 = (B,A, F−1).

Obvious 374. (f−1)−1 = f for every Rel-morphism f .
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Obvious 375.
[
f−1]∗=[f ]∗−1 for every Rel-morphism f .

Obvious 376. (g ◦ f)−1 = f−1 ◦ g−1 for every composable Rel-morphisms f
and g.

Proposition 377. ⟨g ◦ f⟩∗ = ⟨g⟩∗ ◦ ⟨f⟩∗ for every composable Rel-morphisms
f and g.

Proof. Exercise. □

Proposition 378. The above definitions of monovalued morphisms of Rel
and of injective morphisms of Set coincide with how mathematicians usually define
monovalued functions (that is morphisms of Set) and injective functions.

Proof. Let f be a Rel-morphism A → B.
The following are equivalent:

• f is a monovalued relation;
• ∀x ∈ A, y0, y1 ∈ B : (x f y0 ∧ x f y1 ⇒ y0 = y1);
• ∀x ∈ A, y0, y1 ∈ B : (y0 ̸= y1 ⇒ ¬(x f y0) ∨ ¬(x f y1));
• ∀y0, y1 ∈ B∀x ∈ A : (y0 ̸= y1 ⇒ ¬(x f y0) ∨ ¬(x f y1));
• ∀y0, y1 ∈ B : (y0 ̸= y1 ⇒ ∀x ∈ A : (¬(x f y0) ∨ ¬(x f y1)));
• ∀y0, y1 ∈ B : (∃x ∈ A : (x f y0 ∧ x f y1) ⇒ y0 = y1);
• ∀y0, y1 ∈ B : y0 (f ◦ f−1) y1 ⇒ y0 = y1;
• f ◦ f−1 ⊑ 1B .

Let now f be a Set-morphism A → B.
The following are equivalent:

• f is an injective function;
• ∀y ∈ B, a, b ∈ A : (a f y ∧ b f y ⇒ a = b);
• ∀y ∈ B, a, b ∈ A : (a ̸= b ⇒ ¬(a f y) ∨ ¬(b f y));
• ∀y ∈ B : (a ̸= b ⇒ ∀a, b ∈ A : (¬(a f y) ∨ ¬(b f y)));
• ∀y ∈ B : (∃a, b ∈ A : (a f y ∧ b f y) ⇒ a = b);
• f−1 ◦ f ⊑ 1A.

□

Proposition 379. For a binary relation f we have:
1◦. ⟨f⟩∗⋃

S =
⋃〈

⟨f⟩∗〉∗
S for a set of sets S;

2◦.
⋃
S [f ]∗ Y ⇔ ∃X ∈ S : X [f ]∗ Y for a set of sets S;

3◦. X [f ]∗
⋃
T ⇔ ∃Y ∈ T : X [f ]∗ Y for a set of sets T ;

4◦.
⋃
S [f ]∗

⋃
T ⇔ ∃X ∈ S, Y ∈ T : X [f ]∗ Y for sets of sets S and T ;

5◦. X [f ]∗ Y ⇔ ∃α ∈ X,β ∈ Y : {α} [f ]∗ {β} for sets X and Y ;
6◦. ⟨f⟩∗

X =
⋃〈

⟨f⟩∗〉∗ atomsX for a set X (where atomsX =
{

{x}
x∈X

}
).

Proof.
1◦.

y ∈ ⟨f⟩∗⋃
S ⇔ ∃x ∈

⋃
S : x f y ⇔ ∃P ∈ S, x ∈ P : x f y ⇔

∃P ∈ S : y ∈ ⟨f⟩∗
P ⇔ ∃Q ∈

〈
⟨f⟩∗〉∗

S : y ∈ Q ⇔ y ∈
⋃〈

⟨f⟩∗〉∗
S.

2◦.⋃
S [f ]∗ Y ⇔ ∃x ∈

⋃
S, y ∈ Y : x f y ⇔

∃X ∈ S, x ∈ X, y ∈ Y : x f y ⇔ ∃X ∈ S : X [f ]∗ Y.
3◦. By symmetry.
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4◦. From two previous formulas.
5◦. X [f ]∗ Y ⇔ ∃α ∈ X,β ∈ Y : α f β ⇔ ∃α ∈ X,β ∈ Y : {α} [f ]∗ {β}.
6◦. Obvious.

□

Corollary 380. For a Rel-morphism f we have:
1◦. ⟨f⟩∗

dS = d

〈
⟨f⟩∗〉∗

S for S ∈ PT Src f ;
2◦. dS [f ]∗ Y ⇔ ∃X ∈ S : X [f ]∗ Y for S ∈ PT Src f ;
3◦. X [f ]∗ dT ⇔ ∃Y ∈ T : X [f ]∗ Y for T ∈ PT Dst f ;
4◦. dS [f ]∗ dT ⇔ ∃X ∈ S, Y ∈ T : X [f ]∗ Y for S ∈ PT Src f , T ∈

PT Dst f ;
5◦. X [f ]∗ Y ⇔ ∃x ∈ atomsX, y ∈ atomsY : x [f ]∗ y for X ∈ T Src f ,

Y ∈ T Dst f ;
6◦. ⟨f⟩∗

X = d

〈
⟨f⟩∗〉∗ atomsX for X ∈ T Src f .

Corollary 381. A Rel-morphism f can be restored knowing either ⟨f⟩∗
x for

atoms x ∈ T Src f or x [f ]∗ y for atoms x ∈ T Src f , y ∈ T Dst f .

Proposition 382. Let A, B be sets, R be a set of binary relations.
1◦. ⟨

⋃
R⟩∗

X =
⋃

f∈R⟨f⟩∗
X for every set X;

2◦. ⟨
⋂
R⟩∗{α} =

⋂
f∈R⟨f⟩∗{α} for every α, if R is nonempty;

3◦. X [
⋃
R]∗ Y ⇔ ∃f ∈ R : X [f ]∗ Y for every sets X, Y ;

4◦. α (
⋂
R) β ⇔ ∀f ∈ R : α f β for every α and β, if R is nonempty.

Proof.
1◦.

y ∈
〈⋃

R
〉∗
X ⇔ ∃x ∈ X : x

(⋃
R
)
y ⇔ ∃x ∈ X, f ∈ R : x f y ⇔

∃f ∈ R : y ∈ ⟨f⟩∗
X ⇔ y ∈

⋃
f∈R

⟨f⟩∗
X.

2◦.

y ∈
〈⋂

R
〉∗

{α} ⇔ ∀f ∈ R : α f y ⇔ ∀f ∈ R : y ∈ ⟨f⟩∗{α} ⇔ y ∈
⋂

f∈R

⟨f⟩∗{α}.

3◦.

X
[⋃

R
]∗
Y ⇔ ∃x ∈ X, y ∈ Y : x

(⋃
R
)
y ⇔

∃x ∈ X, y ∈ Y, f ∈ R : x f y ⇔ ∃f ∈ R : X [f ]∗ Y.

4◦. Obvious.
□

Corollary 383. Let A, B be sets, R ∈ PRel(A,B).
1◦. ⟨ dR⟩∗

X = df∈R⟨f⟩∗
X for X ∈ T A;

2◦. ⟨
d
R⟩∗

x =
d

f∈R⟨f⟩∗
x for atomic x ∈ T A;

3◦. X [ dR]∗ Y ⇔ ∃f ∈ R : X [f ]∗ Y for X ∈ T A, Y ∈ T B;
4◦. x [

d
R]∗ y ⇔ ∀f ∈ R : x [f ]∗ y for every atomic x ∈ T A, y ∈ T B.

Proposition 384. X [g ◦ f ]∗ Z ⇔ ∃β : (X [f ]∗ {β} ∧ {β} [g]∗ Z) for every
binary relation f and sets X and Y .
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Proof.

X [g ◦ f ]∗ Z ⇔ ∃x ∈ X, z ∈ Z : x (g ◦ f) z ⇔
∃x ∈ X, z ∈ Z, β : (x f β ∧ β g z) ⇔

∃β : (∃x ∈ X : x f β ∧ ∃y ∈ Y : β g z) ⇔ ∃β : (X [f ]∗ {β} ∧ {β} [g]∗ Z).

□

Corollary 385. X [g ◦ f ]∗ Z ⇔ ∃y ∈ atomsT B : (X [f ]∗ y ∧ y [g]∗ Z) for
f ∈ Rel(A,B), g ∈ Rel(B,C) (for sets A, B, C).

Proposition 386. f ◦
⋃
G =

⋃
g∈G(f ◦g) and

⋃
G◦f =

⋃
g∈G(g ◦f) for every

binary relation f and set G of binary relations.

Proof. We will prove only
⋃
G◦f =

⋃
g∈G(g ◦f) as the other formula follows

from duality. Really

(x, z) ∈
⋃
G ◦ f ⇔ ∃y : ((x, y) ∈ f ∧ (y, z) ∈

⋃
G) ⇔

∃y, g ∈ G : ((x, y) ∈ f ∧(y, z) ∈ g) ⇔ ∃g ∈ G : (x, z) ∈ g◦f ⇔ (x, z) ∈
⋃

g∈G

(g◦f).

□

Corollary 387. Every Rel-morphism is metacomplete and co-metacomplete.

Proposition 388. The following are equivalent for a Rel-morphism f :

1◦. f is monovalued.
2◦. f is metamonovalued.
3◦. f is weakly metamonovalued.
4◦. ⟨f⟩∗

a is either atomic or least whenever a ∈ atomsT Src f .
5◦.

〈
f−1〉∗(I ⊓ J) =

〈
f−1〉∗

I ⊓
〈
f−1〉∗

J for every I, J ∈ T Src f .
6◦.

〈
f−1〉∗ d

S =
d

Y ∈S

〈
f−1〉∗

Y for every S ∈ PT Src f .

Proof.

2◦⇒3◦. Obvious.
1◦⇒2◦. Take x ∈ atomsT Src f ; then fx ∈ atomsT Dst f ∪{⊥T Dst f } and thus

〈(l
G
)

◦ f
〉∗
x =

〈l
G
〉∗

⟨f⟩∗
x =

l

g∈G

⟨g⟩∗⟨f⟩∗
x =

l

g∈G

⟨g ◦ f⟩∗
x =

〈
l

g∈G

(g ◦ f)
〉∗

x;

so (
d
G) ◦ f =

d
g∈G(g ◦ f).

3◦⇒1◦. Take g = {(a, y)} and h = {(b, y)} for arbitrary a ̸= b and arbitrary y. We
have g∩h = ∅; thus (g ◦ f) ∩ (h ◦ f) = (g∩h) ◦ f = ⊥ and thus impossible
x f a∧x f b as otherwise (x, y) ∈ (g ◦ f) ∩ (h ◦ f). Thus f is monovalued.
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4◦⇒6◦. Let a ∈ atomsT Src f , ⟨f⟩∗
a = b. Then because b ∈

atomsT Dst f ∪{⊥T Dst f }
l
S ⊓ b ̸= ⊥ ⇔ ∀Y ∈ S : Y ⊓ b ̸= ⊥;

a [f ]∗
l
S ⇔ ∀Y ∈ S : a [f ]∗ Y ;

l
S
[
f−1]∗ a ⇔ ∀Y ∈ S : Y

[
f−1]∗ a;

a ̸≍
〈
f−1〉∗ l

S ⇔ ∀Y ∈ S : a ̸≍
〈
f−1〉∗

Y ;

a ̸≍
〈
f−1〉∗ l

S ⇔ a ̸≍
l

Y ∈S

〈
f−1〉∗

Y ;

〈
f−1〉∗ l

S =
l

X∈S

〈
f−1〉∗

X.

6◦⇒5◦. Obvious.
5◦⇒1◦.

〈
f−1〉∗

a⊓
〈
f−1〉∗

b =
〈
f−1〉∗(a⊓ b) =

〈
f−1〉∗⊥ = ⊥ for every two distinct

atoms a = {α}, b = {β} ∈ T Dst f . From this

α (f ◦ f−1) β ⇔ ∃y ∈ Dst f : (α f−1 y ∧ y f β) ⇔

∃y ∈ Dst f : (y ∈
〈
f−1〉∗

a ∧ y ∈
〈
f−1〉∗

b)

is impossible. Thus f ◦ f−1 ⊑ 1Rel
Dst f .

¬4◦⇒ ¬1◦. Suppose ⟨f⟩∗
a /∈ atomsT Dst f ∪{⊥T Dst f } for some a ∈ atomsT Src f .

Then there exist distinct points p, q such that p, q ∈ ⟨f⟩∗
a. Thus

p (f ◦ f−1) q and so f ◦ f−1 ̸⊑ 1Rel
Dst f .

□

4.4. Product of typed sets

Definition 389. Product of typed sets is defined by the formula
(PU,A) × (PW,B) = (U,W,A×B).

Proposition 390. Product of typed sets is a Rel-morphism.

Proof. We need to prove A×B ⊆ U ×W , but this is obvious. □

Obvious 391. Atoms of Rel(A,B) are exactly products a × b where a and b
are atoms correspondingly of T A and T B. Rel(A,B) is an atomistic poset.

Proposition 392. f ̸≍ A × B ⇔ A [f ]∗ B for every Rel-morphism f and
A ∈ T Src f , B ∈ T Dst f .

Proof.

A [f ]∗ B ⇔ ∃x ∈ atomsA, y ∈ atomsB : x [f ]∗ y ⇔

∃x ∈ atomsT Src f , y ∈ atomsT Dst f : (x× y ⊑ f ∧ x× y ⊑ A×B) ⇔ f ̸≍ A×B.

□

Definition 393. Image and domain of a Rel-morphism f are typed sets de-
fined by the formulas

dom(U,W, f) = (PU,dom f) and im(U,W, f) = (PW, im f).

Obvious 394. Image and domain of a Rel-morphism are really typed sets.

Definition 395. Restriction of a Rel-morphism to a typed set is defined by
the formula (U,W, f)|(PU,X) = (U,W, f |X).
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Obvious 396. Restriction of a Rel-morphism is Rel-morphism.

Obvious 397. f |A = f ⊓ (A × ⊤T Dst f ) for every Rel-morphism f and A ∈
T Src f .

Obvious 398. ⟨f⟩∗
X = ⟨f⟩∗(X⊓dom f) = im(f |X) for every Rel-morphism f

and X ∈ T Src f .

Obvious 399. f ⊑ A×B ⇔ dom f ⊑ A∧ im f ⊑ B for every Rel-morphism f
and A ∈ T Src f , B ∈ T Dst f .

Theorem 400. Let A, B be sets. If S ∈ P(T A× T B) then
l

(A,B)∈S

(A×B) =
l

domS ×
l

imS.

Proof. For every atomic x ∈ T A, y ∈ T B we have

x× y ⊑
l

(A,B)∈S

(A×B) ⇔ ∀(A,B) ∈ S : x× y ⊑ A×B ⇔

∀(A,B) ∈ S : (x ⊑ A ∧ y ⊑ B) ⇔ ∀A ∈ domS : x ⊑ A ∧ ∀B ∈ imS : y ⊑ B ⇔

x ⊑
l

domS ∧ y ⊑
l

imS ⇔ x× y ⊑
l

domS ×
l

imS.

□

Obvious 401. If U , W are sets and A ∈ T (U) then A× is a complete homo-
morphism from the lattice T (W ) to the lattice Rel(U,W ), if also A ̸= ⊥ then it
is an order embedding.



CHAPTER 5

Filters and filtrators

This chapter is based on my article [32].
This chapter is grouped in the following way:

• First it goes a short introduction in pedagogical order (first less general
stuff and examples, last the most general stuff):

– filters on a set;
– filters on a meet-semilattice;
– filters on a poset.

• Then it goes the formal part.

5.1. Implication tuples

Definition 402. An implications tuple is a tuple (P1, . . . , Pn) such that P1 ⇒
. . . ⇒ Pn.

Obvious 403. (P1, . . . , Pn) is an implications tuple iff Pi ⇒ Pj for every i < j
(where i, j ∈ {1, . . . , n}).

The following is an example of a theorem using an implication tuple:

Example 404. The following is an implications tuple:
1◦. A.
2◦. B.
3◦. C.

This example means just that A ⇒ B ⇒ C.
I prefer here a verbal description instead of symbolic implications A ⇒ B ⇒ C,

because A, B, C may be long English phrases and they may not fit into the formula
layout.

The main (intuitive) idea of the theorem is expressed by the implication P1 ⇒
Pn, the rest implications (P2 ⇒ Pn, P3 ⇒ Pn, ...) are purely technical, as they
express generalizations of the main idea.

For uniformity theorems in the section about filters and filtrators start with
the same P1: “(A,Z) is a powerset filtrator.” (defined below) That means that the
main idea of the theorem is about powerset filtrators, the rest implications (like
P2 ⇒ Pn, P3 ⇒ Pn, ...) are just technical generalizations.

5.2. Introduction to filters and filtrators

5.2.1. Filters on a set. We sometimes want to define something resembling
an infinitely small (or infinitely big) set, for example the infinitely small interval
near 0 on the real line. Of course there is no such set, just like as there is no natural
number which is the difference 2 − 3. To overcome this shortcoming we introduce
whole numbers, and 2−3 becomes well defined. In the same way to consider things
which are like infinitely small (or infinitely big) sets we introduce filters.

An example of a filter is the infinitely small interval near 0 on the real line. To
come to infinitely small, we consider all intervals ] − ϵ; ϵ[ for all ϵ > 0. This filter

72
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consists of all intervals ] − ϵ; ϵ[ for all ϵ > 0 and also all subsets of R containing
such intervals as subsets. Informally speaking, this is the greatest filter contained
in every interval ] − ϵ; ϵ[ for all ϵ > 0.

Definition 405. A filter on a set ℧ is a F ∈ PP℧ such that:
1◦. ∀A,B ∈ F : A ∩B ∈ F ;
2◦. ∀A,B ∈ P℧ : (A ∈ F ∧B ⊇ A ⇒ B ∈ F).

Exercise 406. Verify that the above introduced infinitely small interval near
0 on the real line is a filter on R.

Exercise 407. Describe “the neighborhood of positive infinity” filter on R.

Definition 408. A filter not containing empty set is called a proper filter.

Obvious 409. The non-proper filter is P℧.

Remark 410. Some other authors require that all filters are proper. This is a
stupid idea and we allow non-proper filters, in the same way as we allow to use the
number 0.

5.2.2. Intro to filters on a meet-semilattice. A trivial generalization of
the above:

Definition 411. A filter on a meet-semilattice Z is a F ∈ PZ such that:
1◦. ∀A,B ∈ F : A ⊓B ∈ F ;
2◦. ∀A,B ∈ Z : (A ∈ F ∧B ⊒ A ⇒ B ∈ F).

5.2.3. Intro to filters on a poset.

Definition 412. A filter on a poset Z is a F ∈ PZ such that:
1◦. ∀A,B ∈ F∃C ∈ F : C ⊑ A,B;
2◦. ∀A,B ∈ Z : (A ∈ F ∧B ⊒ A ⇒ B ∈ F).

It is easy to show (and there is a proof of it somewhere below) that this coincides
with the above definition in the case if Z is a meet-semilattice.

5.3. Filters on a poset

5.3.1. Filters on posets. Let Z be a poset.

Definition 413. Filter base is a nonempty subset F of Z such that
∀X,Y ∈ F∃Z ∈ F : (Z ⊑ X ∧ Z ⊑ Y ).

Definition 414. Ideal base is a nonempty subset F of Z such that
∀X,Y ∈ F∃Z ∈ F : (Z ⊒ X ∧ Z ⊒ Y ).

Obvious 415. Ideal base is the dual of filter base.

Obvious 416.
1◦. A poset with a lowest element is a filter base.
2◦. A poset with a greatest element is an ideal base.

Obvious 417.
1◦. A meet-semilattice is a filter base.
2◦. A join-semilattice is an ideal base.

Obvious 418. A nonempty chain is a filter base and an ideal base.

Definition 419. Filter is a subset of Z which is both a filter base and an upper
set.
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I will denote the set of filters (for a given or implied poset Z) as F and call F
the set of filters over the poset Z.

Proposition 420. If ⊤ is the maximal element of Z then ⊤ ∈ F for every
filter F .

Proof. If ⊤ /∈ F then ∀K ∈ Z : K /∈ F and so F is empty what is impossible.
□

Proposition 421. Let S be a filter base on a poset. If A0, . . . , An ∈ S (n ∈ N),
then

∃C ∈ S : (C ⊑ A0 ∧ . . . ∧ C ⊑ An).

Proof. It can be easily proved by induction. □

Definition 422. A function f from a poset A to a poset B preserves filtered
meets iff whenever

d
S is defined for a filter base S on A we have f

d
S =

d
⟨f⟩∗

S.

5.3.2. Filters on meet-semilattices.

Theorem 423. If Z is a meet-semilattice and F is a nonempty subset of Z then
the following conditions are equivalent:

1◦. F is a filter.
2◦. ∀X,Y ∈ F : X ⊓ Y ∈ F and F is an upper set.
3◦. ∀X,Y ∈ Z : (X,Y ∈ F ⇔ X ⊓ Y ∈ F ).

Proof.
1◦⇒2◦. Let F be a filter. Then F is an upper set. If X,Y ∈ F then Z ⊑ X∧Z ⊑ Y

for some Z ∈ F . Because F is an upper set and Z ⊑ X⊓Y then X⊓Y ∈ F .
2◦⇒1◦. Let ∀X,Y ∈ F : X ⊓Y ∈ F and F be an upper set. We need to prove that

F is a filter base. But it is obvious taking Z = X ⊓Y (we have also taken
into account that F ̸= ∅).

2◦⇒3◦. Let ∀X,Y ∈ F : X ⊓ Y ∈ F and F be an upper set. Then

∀X,Y ∈ Z : (X,Y ∈ F ⇒ X ⊓ Y ∈ F ).

Let X ⊓ Y ∈ F ; then X,Y ∈ F because F is an upper set.
3◦⇒2◦. Let

∀X,Y ∈ Z : (X,Y ∈ F ⇔ X ⊓ Y ∈ F ).
Then ∀X,Y ∈ F : X ⊓ Y ∈ F . Let X ∈ F and X ⊑ Y ∈ Z. Then

X ⊓ Y = X ∈ F . Consequently X,Y ∈ F . So F is an upper set.
□

Proposition 424. Let S be a filter base on a meet-semilattice. If A0, . . . , An ∈
S (n ∈ N), then

∃C ∈ S : C ⊑ A0 ⊓ · · · ⊓An.

Proof. It can be easily proved by induction. □

Proposition 425. If Z is a meet-semilattice and S is a filter base on it, A ∈ Z,
then ⟨A⊓⟩∗

S is also a filter base.

Proof. ⟨A⊓⟩∗
S ̸= ∅ because S ̸= ∅.

Let X,Y ∈ ⟨A⊓⟩∗
S. Then X = A⊓X ′ and Y = A⊓Y ′ where X ′, Y ′ ∈ S. There

exists Z ′ ∈ S such that Z ′ ⊑ X ′⊓Y ′ . SoX⊓Y = A⊓X ′⊓Y ′ ⊒ A⊓Z ′ ∈ ⟨A⊓⟩∗
S. □
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5.3.3. Order of filters. Principal filters. I will make the set of filters F
into a poset by the order defined by the formula: a ⊑ b ⇔ a ⊇ b.

Definition 426. The principal filter corresponding to an element a ∈ Z is

↑ a =
{
x ∈ Z

x ⊒ a

}
.

Elements of P = ⟨↑⟩∗
Z are called principal filters.

Obvious 427. Principal filters are filters.

Obvious 428. ↑ is an order embedding from Z to F.

Corollary 429. ↑ is an order isomorphism between Z and P.

We will equate principal filters with corresponding elements of the base poset
(in the same way as we equate for example nonnegative whole numbers and natural
numbers).

Proposition 430. ↑ K ⊒ A ⇔ K ∈ A.

Proof. ↑ K ⊒ A ⇔↑ K ⊆ A ⇔ K ∈ A. □

5.4. Filters on a Set

Consider filters on the poset Z = PU (where U is some fixed set) with the order
A ⊑ B ⇔ A ⊆ B (for A,B ∈ PA).

In fact, it is a complete atomistic boolean lattice with
d
S =

⋂
S, dS =

⋃
S,

A = U \A for every S ∈ PPU and A ∈ PU, atoms being one-element sets.

Definition 431. I will call a filter on the lattice of all subsets of a given set U
as a filter on set.

Definition 432. I will denote the set on which a filter F is defined as Base(F).

Obvious 433. Base(F) =
⋃

F .

Proposition 434. The following are equivalent for a non-empty set F ∈
PPU:

1◦. F is a filter.
2◦. ∀X,Y ∈ F : X ∩ Y ∈ F and F is an upper set.
3◦. ∀X,Y ∈ PU : (X,Y ∈ F ⇔ X ∩ Y ∈ F ).

Proof. By theorem 423. □

Obvious 435. The minimal filter on PU is PU.

Obvious 436. The maximal filter on PU is {U}.

I will denote ↑ A =↑U A =↑PU A. (The distinction between conflicting nota-
tions ↑U A and ↑PU A will be clear from the context.)

Proposition 437. Every filter on a finite set is principal.

Proof. Let F be a filter on a finite set. Then obviously F =
dZ up F and

thus F is principal. □
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5.5. Filtrators

(F,P) is a poset and its subset (with induced order on the subset). I call pairs
of a poset and its subset like this filtrators.

Definition 438. I will call a filtrator a pair (A,Z) of a poset A and its subset
Z ⊆ A. I call A the base of the filtrator and Z the core of the filtrator. I will also
say that (A,Z) is a filtrator over poset Z.

I will denote base(A,Z) = A, core(A,Z) = Z for a filtrator (A,Z).

While filters are customary and well known mathematical objects, the concept
of filtrators is probably first researched by me.

When speaking about filters, we will imply that we consider the filtrator (F,P)
or what is the same (as we equate principal filters with base elements) the filtrator
(F,Z).

Definition 439. I will call a lattice filtrator a pair (A,Z) of a lattice A and its
subset Z ⊆ A.

Definition 440. I will call a complete lattice filtrator a pair (A,Z) of a complete
lattice A and its subset Z ⊆ A.

Definition 441. I will call a central filtrator a filtrator (A, Z(A)) where Z(A)
is the center of a bounded lattice A.

Definition 442. I will call element of a filtrator an element of its base.

Definition 443. upZ a = up a =
{

c∈Z
c⊒a

}
for an element a of a filtrator.

Definition 444. downZ a = down a =
{

c∈Z
c⊑a

}
for an element a of a filtrator.

Obvious 445. “up” and “down” are dual.

Our main purpose here is knowing properties of the core of a filtrator to in-
fer properties of the base of the filtrator, specifically properties of up a for every
element a.

Definition 446. I call a filtrator with join-closed core such a filtrator (A,Z)
that d

Z
S = d

A
S whenever d

Z
S exists for S ∈ PZ.

Definition 447. I call a filtrator with meet-closed core such a filtrator (A,Z)
that

dZ
S =

dA
S whenever

dZ
S exists for S ∈ PZ.

Definition 448. I call a filtrator with binarily join-closed core such a filtrator
(A,Z) that a ⊔Z b = a ⊔A b whenever a ⊔Z b exists for a, b ∈ Z.

Definition 449. I call a filtrator with binarily meet-closed core such a filtrator
(A,Z) that a ⊓Z b = a ⊓A b whenever a ⊓Z b exists for a, b ∈ Z.

Definition 450. Prefiltered filtrator is a filtrator (A,Z) such that “up” is in-
jective.

Definition 451. Filtered filtrator is a filtrator (A,Z) such that

∀a, b ∈ A : (up a ⊇ up b ⇒ a ⊑ b).

Theorem 452. A filtrator (A,Z) is filtered iff ∀a ∈ A : a =
dA up a.

Proof.
⇐. up a ⊇ up b ⇒

dA up a ⊑
dA up b ⇒ a ⊑ b.
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⇒. a =
dA up a is equivalent to a is a greatest lower bound of up a. That is the
implication that b is lower bound of up a implies a ⊒ b.

b is lower bound of up a implies up b ⊇ up a. So as it is filtered a ⊒ b.
□

Obvious 453. Every filtered filtrator is prefiltered.
Obvious 454. “up” is a straight map from A to the dual of the poset PZ if

(A,Z) is a filtered filtrator.
Definition 455. An isomorphism between filtrators (A0,Z0) and (A1,Z1) is

an isomorphism between posets A0 and A1 such that it maps Z0 into Z1.
Obvious 456. Isomorphism isomorphically maps the order on Z0 into order

on Z1.
Definition 457. Two filtrators are isomorphic when there exists an isomor-

phism between them.
Definition 458. I will call primary filtrator a filtrator isomorphic to the fil-

trator consisting of the set of filters on a poset and the set of principal filters on
this poset.

Obvious 459. The order on a primary filtrator is defined by the formula a ⊑
b ⇔ up a ⊇ up b.

Definition 460. I will call a primary filtrator over a poset isomorphic to a
powerset as powerset filtrator.

Obvious 461. up F is a filter for every element F of a primary filtrator. Re-
versely, there exists a filter F if up F is a filter.

Theorem 462. For every poset Z there exists a poset A ⊇ Z such that (A,Z)
is a primary filtrator.

Proof. See appendix A. □

5.5.1. Filtrators with Separable Core.
Definition 463. Let (A,Z) be a filtrator. It is a filtrator with separable core

when
∀x, y ∈ A : (x ≍A y ⇒ ∃X ∈ upx : X ≍A y).

Proposition 464. Let (A,Z) be a filtrator. It is a filtrator with separable core
iff

∀x, y ∈ A : (x ≍A y ⇒ ∃X ∈ upx, Y ∈ up y : X ≍A Y ).
Proof.

⇒. Apply the definition twice.
⇐. Obvious.

□

Definition 465. Let (A,Z) be a filtrator. It is a filtrator with co-separable core
when

∀x, y ∈ A : (x ≡A y ⇒ ∃X ∈ down x : X ≡A y).
Obvious 466. Co-separability is the dual of separability.
Definition 467. Let (A,Z) be a filtrator. It is a filtrator with co-separable core

when
∀x, y ∈ A : (x ≡A y ⇒ ∃X ∈ down x, Y ∈ down y : X ≡A Y ).

Proof. By duality. □
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5.6. Alternative primary filtrators

5.6.1. Lemmas.

Lemma 468. A set F is a lower set iff F is an upper set.

Proof. X ∈ F ∧Z ⊒ X ⇒ Z ∈ F is equivalent to Z ∈ F ⇒ X ∈ F ∨Z ̸⊒ X is
equivalent Z ∈ F ⇒ (Z ⊒ X ⇒ X ∈ F ) is equivalent Z ∈ F∧X ⊑ Z ⇒ X ∈ F . □

Proposition 469. Let Z be a poset with least element ⊥. Then for upper
set F we have F ̸= PZ ⇔ ⊥ /∈ F .

Proof.
⇒. If ⊥ ∈ F then F = PZ because F is an upper set.
⇐. Obvious.

□

5.6.2. Informal introduction. We have already defined filters on a poset.
Now we will define three other sets which are order-isomorphic to the set of filters
on a poset: ideals (I), free stars (S), and mixers (M).

These four kinds of objects are related through commutative diagrams. First
we will paint an informal commutative diagram (it makes no formal sense because
it is not pointed the poset for which the filters are defined):

F I

M S

¬

⟨dual⟩∗

¬

⟨dual⟩∗

Then we can define ideals, free stars, and mixers as sets following certain for-
mulas. You can check that the intuition behind these formulas follows the above
commutative diagram. (That is transforming these formulas by the course of the
above diagram, you get formulas of the other objects in this list.)

After this, we will paint some formal commutative diagrams similar to the
above diagram but with particular posets at which filters, ideals, free stars, and
mixers are defined.

5.6.3. Definitions of ideals, free stars, and mixers. Filters and ideals
are well known concepts. The terms free stars and mixers are my new terminology.

Recall that filters are nonempty sets F with A,B ∈ F ⇔ ∃Z ∈ F : (Z ⊑
A ∧ Z ⊑ B) (for every A,B ∈ Z).

Definition 470. Ideals are nonempty sets F with A,B ∈ F ⇔ ∃Z ∈ F : (Z ⊒
A ∧ Z ⊒ B) (for every A,B ∈ Z).

Definition 471. Free stars are sets F not equal to PZ with A,B ∈ F ⇔
∃Z ∈ F : (Z ⊒ A ∧ Z ⊒ B) (for every A,B ∈ Z).

Definition 472. Mixers are sets F not equal to PZ with A,B ∈ F ⇔ ∃Z ∈
F : (Z ⊑ A ∧ Z ⊑ B) (for every A,B ∈ Z).

By duality and and an above theorem about filters, we have:

Proposition 473.
• Filters are nonempty upper sets F with A,B ∈ F ⇒ ∃Z ∈ F : (Z ⊑
A ∧ Z ⊑ B) (for every A,B ∈ Z).

• Ideals are nonempty lower sets F with A,B ∈ F ⇒ ∃Z ∈ F : (Z ⊒
A ∧ Z ⊒ B) (for every A,B ∈ Z).
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• Free stars are upper sets F not equal to PZ with A,B ∈ F ⇒ ∃Z ∈ F :
(Z ⊒ A ∧ Z ⊒ B) (for every A,B ∈ Z).

• Mixers are lower sets F not equal to PZ with A,B ∈ F ⇒ ∃Z ∈ F : (Z ⊑
A ∧ Z ⊑ B) (for every A,B ∈ Z).

Proposition 474. The following are equivalent:
1◦. F is a free star.
2◦. ∀Z ∈ Z : (Z ⊒ A∧Z ⊒ B ⇒ Z ∈ F ) ⇔ A ∈ F ∨B ∈ F for every A,B ∈ Z

and F ̸= PZ.
3◦. ∀Z ∈ Z : (Z ⊒ A∧Z ⊒ B ⇒ Z ∈ F ) ⇒ A ∈ F ∨B ∈ F for every A,B ∈ Z

and F is an upper set and F ̸= PZ.

Proof.
1◦⇔2◦. The following is a chain of equivalencies:

∃Z ∈ F : (Z ⊒ A ∧ Z ⊒ B) ⇔ A /∈ F ∧B /∈ F ;
∀Z ∈ F : ¬(Z ⊒ A ∧ Z ⊒ B) ⇔ A ∈ F ∨B ∈ F ;

∀Z ∈ Z : (Z /∈ F ⇒ ¬(Z ⊒ A ∧ Z ⊒ B)) ⇔ A ∈ F ∨B ∈ F ;
∀Z ∈ Z : (Z ⊒ A ∧ Z ⊒ B ⇒ Z ∈ F ) ⇔ A ∈ F ∨B ∈ F.

2◦⇒3◦. Let A = B ∈ F . Then A ∈ F ∨ B ∈ F . So ∀Z ∈ Z : (Z ⊒ A ∧ Z ⊒ B ⇒
Z ∈ F ) that is ∀Z ∈ Z : (Z ⊒ A ⇒ Z ∈ F ) that is F is an upper set.

3◦⇒2◦. We need to prove that F is an upper set. let A ∈ F and A ⊑ B ∈ Z. Then
A ∈ F ∨ B ∈ F and thus ∀Z ∈ Z : (Z ⊒ A ∧ Z ⊒ B ⇒ Z ∈ F ) that is
∀Z ∈ Z : (Z ⊒ B ⇒ Z ∈ F ) and so B ∈ F .

□

Corollary 475. The following are equivalent:
1◦. F is a mixer.
2◦. ∀Z ∈ Z : (Z ⊑ A∧Z ⊑ B ⇒ Z ∈ F ) ⇔ A ∈ F ∨B ∈ F for every A,B ∈ Z

and F ̸= PZ.
3◦. ∀Z ∈ Z : (Z ⊑ A∧Z ⊑ B ⇒ Z ∈ F ) ⇒ A ∈ F ∨B ∈ F for every A,B ∈ Z

and F is an lower set and F ̸= PZ.

Obvious 476.
1◦. A free star cannot contain the least element of the poset.
2◦. A mixer cannot contain the greatest element of the poset.

5.6.4. Filters, ideals, free stars, and mixers on semilattices.

Proposition 477.
• Free stars are sets F not equal to PZ with A ∈ F ∨B ∈ F ⇔ ¬∃Z ∈ F :

(Z ⊒ A ∧ Z ⊒ B) (for every A,B ∈ Z).
• Free stars are upper sets F not equal to PZ with A ∈ F ∨ B ∈ F ⇐

¬∃Z ∈ F : (Z ⊒ A ∧ Z ⊒ B) (for every A,B ∈ Z).
• Mixers are sets F not equal to PZ with A ∈ F ∨ B ∈ F ⇔ ¬∃Z ∈ F :

(Z ⊑ A ∧ Z ⊑ B) (for every A,B ∈ Z).
• Mixers are lower sets F not equal to PZ with A ∈ F ∨B ∈ F ⇐ ¬∃Z ∈
F : (Z ⊑ A ∧ Z ⊑ B) (for every A,B ∈ Z).

Proof. By duality. □

By duality and and an above theorem about filters, we have:

Proposition 478.



5.6. ALTERNATIVE PRIMARY FILTRATORS 80

• Filters are nonempty sets F with A⊓B ∈ F ⇔ A ∈ F ∧B ∈ F (for every
A,B ∈ Z), whenever Z is a meet-semilattice.

• Ideals are nonempty sets F with A ⊔B ∈ F ⇔ A ∈ F ∧B ∈ F (for every
A,B ∈ Z), whenever Z is a join-semilattice.

• Free stars are sets F not equal to PZ with A⊔B ∈ F ⇔ A ∈ F ∨B ∈ F
(for every A,B ∈ Z), whenever Z is a join-semilattice.

• Mixers are sets F not equal to PZ with A ⊓ B ∈ F ⇔ A ∈ F ∨ B ∈ F
(for every A,B ∈ Z), whenever Z is a meet-semilattice.

By duality and and an above theorem about filters, we have:

Proposition 479.
• Filters are nonempty upper sets F with A⊓B ∈ F ⇐ A ∈ F ∧B ∈ F (for

every A,B ∈ Z), whenever Z is a meet-semilattice.
• Ideals are nonempty lower sets F with A ⊔B ∈ F ⇐ A ∈ F ∧B ∈ F (for

every A,B ∈ Z), whenever Z is a join-semilattice.
• Free stars are upper sets F not equal to PZ with A ⊔ B ∈ F ⇒ A ∈
F ∨B ∈ F (for every A,B ∈ Z), whenever Z is a join-semilattice.

• Mixers are lower sets F not equal to PZ with A⊓B ∈ F ⇒ A ∈ F∨B ∈ F
(for every A,B ∈ Z), whenever Z is a meet-semilattice.

5.6.5. The general diagram. Let A and B be two posets connected by an
order reversing isomorphism θ : A → B. We have commutative diagram on the
figure 3 in the category Set:

PA PB

PA PB

¬

⟨θ⟩∗

⟨θ−1⟩∗

¬

⟨θ⟩∗

⟨θ−1⟩∗

Figure 3

Theorem 480. This diagram is commutative, every arrow of this diagram is
an isomorphism, every cycle in this diagrams is an identity (therefore “parallel”
arrows are mutually inverse).

Proof. That every arrow is an isomorphism is obvious.
Show that ⟨θ⟩∗¬X = ¬⟨θ⟩∗

X for every set X ∈ PA.
Really,

p ∈ ⟨θ⟩∗¬X ⇔ ∃q ∈ ¬X : p = θq ⇔ ∃q ∈ ¬X : θ−1p = q ⇔ θ−1p ∈ ¬X ⇔
∄q ∈ X : q = θ−1p ⇔ ∄q ∈ X : θq = p ⇔ p /∈ ⟨θ⟩∗

X ⇔ p ∈ ¬⟨θ⟩∗
X.

Thus the theorem follows from lemma 197. □

This diagram can be restricted to filters, ideals, free stars, and mixers, see
figure 4:

Theorem 481. It is a restriction of the above diagram. Every arrow of this
diagram is an isomorphism, every cycle in these diagrams is an identity. (To prove
that, is an easy application of duality and the above lemma.)
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F(A) I(B)

M(A) S(B)

¬

⟨θ⟩∗

⟨θ−1⟩∗

¬

⟨θ⟩∗

⟨θ−1⟩∗

Figure 4

5.6.6. Special diagrams. Here are two important special cases of the above
diagram:

F(A) I(dualA)

M(A) S(dualA)

¬

⟨dual⟩∗

¬

⟨dual⟩∗

and
F(A) I(A)

M(A) S(A)

¬

⟨¬⟩∗

¬

⟨¬⟩∗

(1)

(the second diagram is defined for a boolean lattice A).

5.6.7. Order of ideals, free stars, mixers. Define order of ideals, free
stars, mixers in such a way that the above diagrams isomorphically preserve order
of filters:

• A ⊑ B ⇔ A ⊇ B for filters and ideals;
• A ⊑ B ⇔ A ⊆ B for free stars and mixers.

5.6.8. Principal ideals, free stars, mixers.

Definition 482. Principal ideal generated by an element a of poset A is ↓ a ={
x∈A
x⊑a

}
.

Definition 483. An ideal is principal iff it is generated by some poset element.

Definition 484. The filtrator of ideals on a given poset is the pair consisting
of the set of ideals and the set of principal ideals.

The above poset isomorphism maps principal filters into principal ideals and
thus is an isomorphism between the filtrator of filters on a poset and the filtrator
of ideals on the dual poset.

Exercise 485. Define principal free stars and mixers, filtrators of free stars and
mixers and isomorphisms of these with the filtrator of filters (these isomorphisms
exist because the posets of free stars and mixers are isomorphic to the poset of
filters).

Obvious 486. The following filtrators are primary:
• filtrators of filters;
• filtrators of ideals;
• filtrators of free stars;
• filtrators of mixers.

5.6.8.1. Principal free stars.

Proposition 487. An upper set F ∈ PZ is a principal filter iff ∃Z ∈ F∀P ∈
F : Z ⊑ P .

Proof.
⇒. Obvious.
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⇐. Let Z ∈ F and ∀P ∈ F : Z ⊑ P . F is nonempty because Z ∈ F . It remains
to prove that Z ⊑ P ⇔ P ∈ F . The reverse implication follows from
∀P ∈ F : Z ⊑ P . The direct implication follows from that F is an upper
set.

□

Lemma 488. If S ∈ PZ is not the complement of empty set and for every
T ∈ PZ

∀Z ∈ Z : (∀X ∈ T : Z ⊒ X ⇒ Z ∈ S) ⇔ T ∩ S ̸= ∅,
then S is a free star.

Proof. Take T = {A,B}. Then ∀Z ∈ Z : (Z ⊒ A ∧ Z ⊒ B ⇒ Z ∈ S) ⇔ A ∈
S ∨B ∈ S. So S is a free star. □

Proposition 489. A set S ∈ PZ is a principal free star iff S is not the
complement of empty set and for every T ∈ PZ

∀Z ∈ Z : (∀X ∈ T : Z ⊒ X ⇒ Z ∈ S) ⇔ T ∩ S ̸= ∅.

Proof. Let S = ⟨dual⟩∗F . We need to prove that F is a principal filter iff the
above formula holds. Really, we have the following chain of equivalencies:

∀Z ∈ Z : (∀X ∈ T : Z ⊒ X ⇒ Z ∈ S) ⇔ T ∩ S ̸= ∅;
∀Z ∈ Z : (∀X ∈ T : Z ⊒ X ⇒ Z /∈ ⟨dual⟩∗F ) ⇔ T ∩ ⟨dual⟩∗F ̸= ∅;
∀Z ∈ dualZ : (∀X ∈ T : Z ⊑ X ⇒ Z /∈ F ) ⇔ T ∩ F ̸= ∅;
∀Z ∈ dualZ : (∀X ∈ T : Z ⊑ X ⇒ Z /∈ F ) ⇔ T ⊈ F ;
T ⊆ F ⇔ ¬∀Z ∈ dualZ : (Z ∈ F ⇒ ¬∀X ∈ T : Z ⊑ X);
T ⊆ F ⇔ ¬∀Z ∈ dualZ : (Z /∈ F ∨ ¬∀X ∈ T : Z ⊑ X);
T ⊆ F ⇔ ∃Z ∈ dualZ : (Z ∈ F ∧ ∀X ∈ T : Z ⊑ X);
T ⊆ F ⇔ ∃Z ∈ F∀X ∈ T : Z ⊑ X;
∃Z ∈ F∀X ∈ F : Z ⊑ X that is F is a principal filter (S is an upper set

because by the lemma it is a free star; thus F is also an upper set). □

Proposition 490. S ∈ PZ where Z is a poset is a principal free star iff all
the following:

1◦. The least element (if it exists) is not in S.
2◦. ∀Z ∈ Z : (∀X ∈ T : Z ⊒ X ⇒ Z ∈ S) ⇒ T ∩ S ̸= ∅ for every T ∈ PZ.
3◦. S is an upper set.

Proof.
⇒. 1◦ and 2◦ are obvious. S is an upper set because S is a free star.
⇐. We need to prove that

∀Z ∈ Z : (∀X ∈ T : Z ⊒ X ⇒ Z ∈ S) ⇐ T ∩ S ̸= ∅.

Let X ′ ∈ T ∩ S. Then ∀X ∈ T : Z ⊒ X ⇒ Z ⊒ X ′ ⇒ Z ∈ S because S is
an upper set.

□

Proposition 491. Let Z be a complete lattice. S ∈ PZ is a principal free star
iff all the following:

1◦. The least element is not in S.
2◦. dT ∈ S ⇒ T ∩ S ̸= ∅ for every T ∈ PZ.
3◦. S is an upper set.

Proof.
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⇒. We need to prove only dT ∈ S ⇒ T ∩ S ̸= ∅. Let dT ∈ S. Because S is
an upper set, we have ∀X ∈ T : Z ⊒ X ⇒ Z ⊒ dT ⇒ Z ∈ S for every
Z ∈ Z; from which we conclude T ∩ S ̸= ∅.

⇐. We need to prove only ∀Z ∈ Z : (∀X ∈ T : Z ⊒ X ⇒ Z ∈ S) ⇒ T ∩ S ̸= ∅.
Really, if ∀Z ∈ Z : (∀X ∈ T : Z ⊒ X ⇒ Z ∈ S) then dT ∈ S and

thus dT ∈ S ⇒ T ∩ S ̸= ∅.
□

Proposition 492. Let Z be a complete lattice. S ∈ PZ is a principal free star
iff the least element is not in S and for every T ∈ PZ

lT ∈ S ⇔ T ∩ S ̸= ∅.

Proof.
⇒. We need to prove only dT ∈ S ⇐ T ∩ S ̸= ∅ what follows from that S is an

upper set.
⇐. We need to prove only that S is an upper set. To prove this we can use the

fact that S is a free star.
□

Exercise 493. Write down similar formulas for mixers.

5.6.9. Starrish posets.

Definition 494. I will call a poset starrish when the full star ⋆a is a free star
for every element a of this poset.

Proposition 495. Every distributive lattice is starrish.

Proof. Let A be a distributive lattice, a ∈ A. Obviously ⊥ /∈ ⋆a (if ⊥ exists);
obviously ⋆a is an upper set. If x ⊔ y ∈ ⋆a, then (x ⊔ y) ⊓ a is non-least that is
(x ⊓ a) ⊔ (y ⊓ a) is non-least what is equivalent to x ⊓ a or y ⊓ a being non-least
that is x ∈ ⋆a ∨ y ∈ ⋆a. □

Theorem 496. If A is a starrish join-semilattice lattice then
atoms(a ⊔ b) = atoms a ∪ atoms b

for every a, b ∈ A.

Proof. For every atom c we have:
c ∈ atoms(a ⊔ b) ⇔

c ̸≍ a ⊔ b ⇔
a ⊔ b ∈ ⋆c ⇔

a ∈ ⋆c ∨ b ∈ ⋆c ⇔
c ̸≍ a ∨ c ̸≍ b ⇔

c ∈ atoms a ∨ c ∈ atoms b.
□

5.6.9.1. Completely starrish posets.

Definition 497. I will call a poset completely starrish when the full star ⋆a is
a principal free star for every element a of this poset.

Obvious 498. Every completely starrish poset is starrish.

Proposition 499. Every complete join infinite distributive lattice is com-
pletely starrish.
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Proof. Let A be a join infinite distributive lattice, a ∈ A. Obviously ⊥ /∈ ⋆a
(if ⊥ exists); obviously ⋆a is an upper set. If dT ∈ ⋆a, then ( dT ) ⊓ a is non-least
that is d⟨a⊓⟩∗

T is non-least what is equivalent to a ⊓ x being non-least for some
x ∈ T that is x ∈ ⋆a. □

Theorem 500. If A is a completely starrish complete lattice lattice then

atoms lT =
⋃

⟨atoms⟩∗
T.

for every T ∈ PA.

Proof. For every atom c we have:

c ∈ atoms lT ⇔ c ̸≍ lT ⇔ lT ∈ ⋆c ⇔ ∃X ∈ T : X ∈ ⋆c ⇔

∃X ∈ T : X ̸≍ c ⇔ ∃X ∈ T : c ∈ atomsX ⇔ c ∈
⋃

⟨atoms⟩∗
T.

□

5.7. Basic properties of filters

Proposition 501. up A = A for every filter A (provided that we equate ele-
ments of the base poset Z with corresponding principal filters.

Proof. A ∈ up A ⇔ A ⊒ A ⇔↑ A ⊒ A ⇔↑ A ⊆ A ⇔ A ∈ A. □

5.7.1. Minimal and maximal filters.

Obvious 502. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. ⊥A (equal to the principal filter for the least element of Z if it exists)

defined by the formula up ⊥A = Z is the least element of A.

Proposition 503. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator with greatest element.
3◦. ⊤A defined by the formula up ⊤A = {⊤Z} is the greatest element of A.

Proof. Take into account that filters are nonempty. □

5.7.2. Alignment.

Definition 504. I call down-aligned filtrator such a filtrator (A,Z) that A and
Z have common least element. (Let’s denote it ⊥.)

Definition 505. I call up-aligned filtrator such a filtrator (A,Z) that A and Z
have common greatest element. (Let’s denote it ⊤.)

Obvious 506.
1◦. If Z has least element, the primary filtrator is down-aligned.
2◦. If Z has greatest element, the primary filtrator is up-aligned.

Corollary 507. Every powerset filtrator is both up and down-aligned.

We can also define (without requirement of having least and greatest elements,
but coinciding with the above definitions if least/greatest elements are present):

Definition 508. I call weakly down-aligned filtrator such a filtrator (A,Z) that
whenever ⊥Z exists, ⊥A also exists and ⊥Z = ⊥A.

Definition 509. I call weakly up-aligned filtrator such a filtrator (A,Z) that
whenever ⊤Z exists, ⊤A also exists and ⊤Z = ⊤A.
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Obvious 510.
1◦. Every up-aligned filtrator is weakly up-aligned.
2◦. Every down-aligned filtrator is weakly down-aligned.

Obvious 511.
1◦. Every primary filtrator is weakly down-aligned.
2◦. Every primary filtrator is weakly up-aligned.

5.8. More advanced properties of filters

5.8.1. Formulas for Meets and Joins of Filters.

Lemma 512. If f is an order embedding from a poset A to a complete lattice B

and S ∈ PA and there exists such F ∈ A that fF = d

B⟨f⟩∗
S, then d

A
S exists

and f d

A
S = d

B⟨f⟩∗
S.

Proof. f is an order isomorphism from A to B|⟨f⟩∗A. fF ∈ B|⟨f⟩∗A.
Consequently, d

B⟨f⟩∗
S ∈ B|⟨f⟩∗A and d

B|⟨f⟩∗A⟨f⟩∗
S = d

B⟨f⟩∗
S.

f d

A
S = d

B|⟨f⟩∗A⟨f⟩∗
S because f is an order isomorphism.

Combining, f d

A
S = d

B⟨f⟩∗
S. □

Corollary 513. If B is a complete lattice and A is its subset and S ∈ PA

and d

B
S ∈ A, then d

A
S exists and d

A
S = d

B
S.

Exercise 514. The below theorem does not work for S = ∅. Formulate the
general case.

Theorem 515.
1◦. If Z is a meet-semilattice, then d

F(Z)
S exists and d

F(Z)
S =

⋂
S for every

bounded above set S ∈ PF(Z) \ {∅}.
2◦. If Z is a join-semilattice, then

dI(Z)
S exists and

dI(Z)
S =

⋂
S for for

every bounded below set S ∈ PI(Z) \ {∅}.

Proof.
1◦. Taking into account the lemma, it is enough to prove that

⋂
S is a filter.

Let’s prove that
⋂
S is nonempty. There is an upper bound T of S. Take arbitrary

T ∈ T . We have T ∈ X for every X ∈ S. Thus S is nonempty.
For every A,B ∈ Z we have:

A,B ∈
⋂
S ⇔ ∀P ∈ S : A,B ∈ P ⇔ ∀P ∈ S : A ⊓B ∈ P ⇔ A ⊓B ∈

⋂
S.

So
⋂
S is a filter.

2◦. By duality.
□

Theorem 516.
1◦. If Z is a meet-semilattice with greatest element, then d

F(Z)
S exists and

d

F(Z)
S =

⋂
S for every S ∈ PF(Z) \ {∅}.

2◦. If Z is a join-semilattice with least element, then
dI(Z)

S exists anddI(Z)
S =

⋂
S for every S ∈ PI(Z) \ {∅}.

3◦. If Z is a join-semilattice with least element, then d

S(Z)
S exists and

d

S(Z)
S =

⋃
S for every S ∈ PS(Z).

4◦. If Z is a meet-semilattice with greatest element, then
dM(Z)

S exists anddM(Z)
S =

⋃
S for every S ∈ PM(Z).

Proof.
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1◦. From the previous theorem.
2◦. By duality.
3◦. Taking into account the lemma, it is enough to prove that

⋃
S is a free

star.
⋃
S is not the complement of empty set because ⊥ /∈

⋃
S. For every A,B ∈ Z

we have:

A ∈
⋃
S ∨B ∈

⋃
S ⇔ ∃P ∈ S : (A ∈ P ∨B ∈ P ) ⇔

∃P ∈ S : A ⊔B ∈ P ⇔ A ⊔B ∈
⋃
S.

4◦. By duality.
□

Corollary 517. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice with greatest ele-

ment ⊤.
3◦. d

A
S exists and up d

A
S =

⋂
⟨up⟩∗

S for every S ∈ PA \ {∅}.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. By the theorem.

□

Corollary 518. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice with greatest ele-

ment ⊤.
3◦. A is a complete lattice.

We will denote meets and joins on the lattice of filters just as ⊓ and ⊔.

Proposition 519. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over an ideal base.
3◦. A is a join-semilattice and for any A,B ∈ A

up(A ⊔A B) = up A ∩ up B.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Taking in account the lemma it is enough to prove thatR = up A∩up B

is a filter.
R is nonempty because we can take X ∈ up A and Y ∈ up B and Z ⊒ X∧Z ⊒ Y

and then R ∋ Z.
Let A,B ∈ R. Then A,B ∈ up A; so exists C ∈ up A such that C ⊑ A∧C ⊑ B.

Analogously exists D ∈ up B such that D ⊑ A ∧ D ⊑ B. Take E ⊒ C ∧ E ⊒ D.
Then E ∈ up A and E ∈ up B; E ∈ R and E ⊑ A ∧ E ⊑ B. So R is a filter base.

That R is an upper set is obvious.
□

Theorem 520. Let Z be a distributive lattice. Then

1◦.
dF(Z)

S =
{

K0⊓Z···⊓ZKn

Ki∈
⋃

S where i=0,...,n for n∈N

}
for S ∈ PF(Z) \ {∅};

2◦. d

I(Z)
S =

{
K0⊔Z···⊔ZKn

Ki∈
⋃

S where i=0,...,n for n∈N

}
for S ∈ PI(Z) \ {∅}.
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Proof. We will prove only the first, as the second is dual.
Let’s denote the right part of the equality to be proven as R. First we will

prove that R is a filter. R is nonempty because S is nonempty.
Let A,B ∈ R. Then A = X0⊓Z· · ·⊓ZXk, B = Y0⊓Z· · ·⊓ZYl whereXi, Yj ∈

⋃
S.

So
A ⊓Z B = X0 ⊓Z · · · ⊓Z Xk ⊓Z Y0 ⊓Z · · · ⊓Z Yl ∈ R.

Let element C ⊒ A ∈ R. Consequently (distributivity used)
C = C ⊔Z A = (C ⊔Z X0) ⊓Z · · · ⊓Z (C ⊔Z Xk).

Xi ∈ Pi for some Pi ∈ S; C ⊔Z Xi ∈ Pi; C ⊔Z Xi ∈
⋃
S; consequently C ∈ R.

We have proved that that R is a filter base and an upper set. So R is a filter.
Let A ∈ S. Then A ⊆

⋃
S;

R ⊇
{

K0 ⊓Z · · · ⊓Z Kn

Ki ∈ A where i = 0, . . . , n for n ∈ N

}
= A.

Consequently A ⊒ R.
Let now B ∈ A and ∀A ∈ S : A ⊒ B. Then ∀A ∈ S : A ⊆ B; B ⊇

⋃
S. Thus

B ⊇ T for every finite set T ⊆
⋃
S. Consequently up B ∋

dZ
T . Thus B ⊇ R;

B ⊑ R.
Comparing we get

dF(Z)
S = R.

□

Corollary 521. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice.

3◦. up
dA

S =
{

K0⊓Z···⊓ZKn

Ki∈
⋃

⟨up⟩∗S where i=0,...,n for n∈N

}
for S ∈ PA \ {∅}.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. By the theorem.

□

Theorem 522. Let Z be a distributive lattice. Then:
1◦. F0 ⊓F(Z) · · ·⊓F(Z) Fm =

{
K0⊓Z···⊓ZKm

Ki∈Fi where i=0,...,m

}
for any F0, . . . ,Fm ∈ F(Z);

2◦. F0 ⊔I(Z) · · ·⊔I(Z) Fm =
{

K0⊔Z···⊔ZKm

Ki∈Fi where i=0,...,m

}
for any F0, . . . ,Fm ∈ I(Z).

Proof. We will prove only the first as the second is dual.
Let’s denote the right part of the equality to be proven as R. First we will

prove that R is a filter. Obviously R is nonempty.
Let A,B ∈ R. Then A = X0 ⊓Z · · · ⊓Z Xm, B = Y0 ⊓Z · · · ⊓Z Ym where

Xi, Yi ∈ Fi.
A ⊓Z B = (X0 ⊓Z Y0) ⊓Z · · · ⊓Z (Xm ⊓Z Ym),

consequently A ⊓Z B ∈ R.
Let filter C ⊒ A ∈ R

C = A ⊔Z C = (X0 ⊔Z C) ⊓Z · · · ⊓Z (Xm ⊔Z C) ∈ R.

So R is a filter.
Let Pi ∈ Fi. Then Pi ∈ R because Pi = (Pi ⊔Z P0) ⊓Z · · · ⊓Z (Pi ⊔Z Pm). So

Fi ⊆ R; Fi ⊒ R.
Let now B ∈ A and ∀i ∈ {0, . . . ,m} : Fi ⊒ B. Then ∀i ∈ {0, . . . ,m} : Fi ⊆ B.
Let Li ∈ B for every Li ∈ Fi. L0 ⊓Z · · · ⊓Z Lm ∈ B. So B ⊇ R; B ⊑ R.
So F0 ⊓F(Z) · · · ⊓F(Z) Fm = R. □
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Corollary 523. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice.
3◦. up(F0 ⊓A · · · ⊓A Fm) =

{
K0⊓Z···⊓ZKm

Ki∈up Fi where i=0,...,m

}
for any F0, . . . ,Fm ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. By the theorem.

□

More general case of semilattices follows:

Theorem 524.

1◦.
dF(Z)

S =
⋃{ ↑(K0⊓Z···⊓ZKn)

Ki∈
⋃

S where i=0,...,n for n∈N

}
for S ∈ PF(Z) \ {∅} if Z is a

meet-semilattice;

2◦. d

I(Z)
S =

⋃{ ↑(K0⊔Z···⊔ZKn)
Ki∈
⋃

S where i=0,...,n for n∈N

}
for S ∈ PI(Z) \ {∅} if Z is a

join-semilattice.

Proof. We will prove only the first as the second is dual.
It follows from the fact that

F(Z)l
S =

F(Z)l {
K0 ⊓Z · · · ⊓Z Kn

Ki ∈
⋃
S where i = 0, . . . , n for n ∈ N

}
and that

{
K0⊓Z···⊓ZKn

Ki∈
⋃

S where i=0,...,n for n∈N

}
is a filter base. □

Corollary 525. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice.

3◦. up
d
S =

⋃{ up(K0⊓Z···⊓ZKn)
Ki∈
⋃

⟨up⟩∗S where i=0,...,n for n∈N

}
for every S ∈ PA \ {∅}.

Theorem 526.
1◦. F0 ⊓F(Z) · · · ⊓F(Z) Fm =

⋃{ ↑(K0⊓Z···⊓ZKm)
Ki∈Fi where i=0,...,m

}
for S ∈ PF(Z) \ {∅} if

Z is a meet-semilattice;
2◦. F0 ⊔I(Z) · · · ⊔I(Z) Fm =

⋃{ ↑(K0⊔Z···⊔ZKm)
Ki∈Fi where i=0,...,m

}
for S ∈ PI(Z) \ {∅} if Z

is a join-semilattice.

Proof. We will prove only the first as the second is dual.
It follows from the fact that

F0 ⊓F(Z) · · · ⊓F(Z) Fm =
F(Z)l {

K0 ⊓Z · · · ⊓Z Km

Ki ∈ Fi where i = 0, . . . ,m

}
and that

{
K0⊓Z···⊓ZKm

Ki∈Fi where i=0,...,m

}
is a filter base. □

Corollary 527. up(F0 ⊓F(Z) · · · ⊓F(Z) Fm) =
⋃{ up(K0⊓Z···⊓ZKm)

Ki∈Fi where i=0,...,m

}
if Z is

a meet-semilattice.

Lemma 528. If (A,Z) is a primary filtrator and Z is a meet-semilattice and an
ideal base, then A is a lattice.

Proof. It is a join-semilattice by proposition 519. It is a meet-semilattice by
theorem 524. □
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Corollary 529. If (A,Z) is a primary filtrator and Z is a lattice, then A is a
lattice.

5.8.2. Distributivity of the Lattice of Filters.

Theorem 530. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice.
3◦. A ⊔A

dA
S =

dA〈A⊔A
〉∗
S for S ∈ PA and A ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Taking into account the previous section, we have:

up
(

A ⊔A
Al
S

)
=

up A ∩ up
Al
S =

up A ∩
{

K0 ⊓Z · · · ⊓Z Kn

Ki ∈
⋃

⟨up⟩∗
S where i = 0, . . . , n for n ∈ N

}
={

K0 ⊓Z · · · ⊓Z Kn

K0 ⊓Z · · · ⊓Z Kn ∈ up A,Ki ∈
⋃

⟨up⟩∗
S where i = 0, . . . , n for n ∈ N

}
={

K0 ⊓Z · · · ⊓Z Kn

Ki ∈ up A,Ki ∈
⋃

⟨up⟩∗
S where i = 0, . . . , n for n ∈ N

}
={

K0 ⊓Z · · · ⊓Z Kn

Ki ∈ up A ∩
⋃

⟨up⟩∗
S where i = 0, . . . , n for n ∈ N

}
={

K0 ⊓Z · · · ⊓Z Kn

Ki ∈
⋃

⟨up A∩⟩∗⟨up⟩∗
S where i = 0, . . . , n for n ∈ N

}
= K0 ⊓Z · · · ⊓Z Kn

Ki ∈
⋃{up A∩up X

X ∈S

}
where i = 0, . . . , n for n ∈ N

 =

 K0 ⊓Z · · · ⊓Z Kn

Ki ∈
⋃{up(A⊔AX )

X ∈S

}
where i = 0, . . . , n for n ∈ N

 =

up
Al{

A ⊔A X
X ∈ S

}
=

up
Al〈

A⊔A
〉∗
S.

□

Corollary 531. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice which is an ideal

base.
3◦. A is a distributive and co-brouwerian lattice.

Corollary 532. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice with greatest ele-

ment.
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3◦. A is a co-frame.

The below theorem uses the notation and results from section 3.9.

Theorem 533. If A is a co-frame and L is a bounded distributive lattice which,
then Join(L,A) is also a co-frame.

Proof. Let F =↑ ◦
d

: Up(A) → Up(A); F is a co-nucleus by above.
Since Up(A) ∼= Pos(A, 2) by proposition 340, we may regard F as a co-nucleus

on Pos(A, 2).
Join(L,A) ∼= Join(L,Fix(F )) by corollary 343.
Join(L,Fix(F )) ∼= Fix(Join(L,F )) by lemma 351.
By corollary 350 the function Join(L,F ) is a co-nucleus on Join(L,Pos(A, 2)).

Join(L,Pos(A, 2)) ∼= (by lemma 353)
Pos(A, Join(L, 2)) ∼=

Pos(A,F(X)).

F(X) is a co-frame by corollary 532. Thus Pos(A,F(X)) is a co-frame by
lemma 353.

Thus Join(L,A) is isomorphic to a poset of fixed points of a co-nucleus on the
co-frame Pos(A,F(X)). By lemma 335 Join(L,A) is also a co-frame. □

5.9. Misc filtrator properties

Theorem 534. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. (A,Z) is a filtered filtrator.
4◦. (A,Z) is a filtrator with join-closed core.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. The formula ∀a, b ∈ A : (up a ⊇ up b ⇒ a ⊑ b) is obvious for primary

filtrators.
3◦⇒4◦. Let (A,Z) be a filtered filtrator. Let S ∈ PZ and d

Z
S be defined. We

need to prove d

A
S = d

Z
S. That d

Z
S is an upper bound for S is

obvious. Let a ∈ A be an upper bound for S. It’s enough to prove that

d

Z
S ⊑ a. Really,

c ∈ up a ⇒ c ⊒ a ⇒ ∀x ∈ S : c ⊒ x ⇒ c ⊒
Z

lS ⇒ c ∈ up
Z

lS;

so up a ⊆ up d

Z
S and thus a ⊒ d

Z
S because it is filtered.

□

5.10. Characterization of Binarily Meet-Closed Filtrators

Theorem 535. The following are equivalent for a filtrator (A,Z) whose core is
a meet semilattice such that ∀a ∈ A : up a ̸= ∅:

1◦. The filtrator is with binarily meet-closed core.
2◦. up a is a filter for every a ∈ A.

Proof.
1◦⇒2◦. Let X,Y ∈ up a. Then X ⊓Z Y = X ⊓A Y ⊒ a. That up a is an upper set

is obvious. So taking into account that up a ̸= ∅, up a is a filter.
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2◦⇒1◦. It is enough to prove that a ⊑ A,B ⇒ a ⊑ A ⊓Z B for every A,B ∈ A.
Really:

a ⊑ A,B ⇒ A,B ∈ up a ⇒ A ⊓Z B ∈ up a ⇒ a ⊑ A ⊓Z B.

□

Corollary 536. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet semilattice.
3◦. (A,Z) is with binarily meet-closed core.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. From the theorem.

□

5.10.1. Separability of Core for Primary Filtrators.

Theorem 537. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet semilattice with least element.
3◦. (A,Z) is with separable core.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Let A ≍A B where A,B ∈ A.

up(A ⊓A B) =
⋃{ up(A ⊓Z B)

A ∈ up A, B ∈ up B

}
.

So
⊥ ∈ up(A ⊓A B) ⇔

∃A ∈ up A, B ∈ up B : ⊥ ∈ up(A ⊓Z B) ⇔
∃A ∈ up A, B ∈ up B : A ⊓Z B = ⊥ ⇔

∃A ∈ up A, B ∈ up B : A ⊓A B = ⊥A

(used proposition 536).
□

5.11. Core Part

Let (A,Z) be a filtrator.

Definition 538. The core part of an element a ∈ A is Cor a =
dZ up a.

Definition 539. The dual core part of an element a ∈ A is Cor′ a = d

Z down a.

Obvious 540. Cor′ is dual of Cor.

Obvious 541. Cor a = Cor′ a = a for every element a of the core of a filtrator.

Theorem 542. The following is an implications tuple:
1◦. a is a filter on a set.
2◦. a is a filter on a complete lattice.
3◦. a is an element of a filtered filtrator and Cor a exists.
4◦. Cor a ⊑ a and Cor a ∈ down a.

Proof.
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1◦⇒2◦. Obvious.
2◦⇒3◦. Theorem 534.
3◦⇒4◦. Cor a =

dZ up a ⊑
dA up a = a. Then obviously Cor a ∈ down a.

□

Theorem 543. The following is an implications tuple:
1◦. a is a filter on a set.
2◦. a is a filter on a complete lattice.
3◦. a is an element a of a filtrator with join-closed core and Cor′ a exists.
4◦. Cor′ a ⊑ a and Cor′ a ∈ down a and Cor′ a = max down a.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is join closed by 534. Cor′ a exists because our filtrator is join-closed.
3◦⇒4◦. Cor′ a = d

Z down a = d

A down a ⊑ a. Now Cor′ a ∈ down a is obvious.
Thus Cor′ a = max down a.

□

Proposition 544. Cor′ a ⊑ Cor a whenever both Cor a and Cor′ a exist for
any element a of a filtrator with join-closed core.

Proof. Cor a =
dZ up a ⊒ Cor′ a because ∀A ∈ up a : Cor′ a ⊑ A. □

Theorem 545. The following is an implications tuple:
1◦. a is a filter on a set.
2◦. a is a filter on a complete lattice.
3◦. a is an element of a filtered filtrator and both Cor a and Cor′ a exist.
4◦. Cor′ a = Cor a.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. By theorem 534.
3◦⇒4◦. It is with join-closed core because it is filtered. So Cor′ a ⊑ Cor a. Cor a ∈

down a. So Cor a ⊑ d

Z down a = Cor′ a.
□

Corollary 546. Cor′ a = Cor a =
⋂
a for every filter a on a set.

5.12. Intersection and Joining with an Element of the Core

Definition 547. A filtrator (A;Z) is with correct intersection iff ∀a, b ∈ Z :
(a ̸≍Z b ⇔ a ̸≍A b).

Definition 548. A filtrator (A;Z) is with correct joining iff ∀a, b ∈ Z : (a ≡Z

b ⇔ a ≡A b).

Proposition 549. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice.
3◦. (A,Z) is with binarily meet-closed core, weakly down-aligned filtrator,

and Z is a meet-semilattice.
4◦. (A,Z) is with correct intersection.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Corollary 536.
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3◦⇒4◦. a ̸≍Z b ⇒ a ̸≍A b is obvious. Let a ≍Z b. Then a ⊓Z b exists; so ⊥Z exists
and a⊓Z b = ⊥Z (as otherwise a⊓Z b is non-least). So ⊥Z = ⊥A. We have
a ⊓A b = ⊥A. Thus a ≍A b.

□

Proposition 550. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a join-semilattice.
3◦. (A,Z) is with binarily join-closed core, weakly up-aligned filtrator, and Z

is a join-semilattice.
4◦. (A,Z) is with correct joining.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Corollary 534.
3◦⇒4◦. Dual of the previous proposition.

□

Lemma 551. For a filtrator (A,Z) where Z is a boolean lattice, for every B ∈ Z,
A ∈ A:

1◦. B ≍A A ⇔ B ⊒ A if it is with separable core and with correct intersection;
2◦. B ≡A A ⇔ B ⊑ A if it is with co-separable core and with correct joining.

Proof. We will prove only the first as the second is dual.

B ≍A A ⇔
∃A ∈ up A : B ≍A A ⇔
∃A ∈ up A : B ≍Z A ⇔
∃A ∈ up A : B ⊒ A ⇔

B ∈ up A ⇔
B ⊒ A.

□

5.13. Stars of Elements of Filtrators

Definition 552. Let (A,Z) be a filtrator. Core star of an element a of the
filtrator is

∂a =
{
x ∈ Z

x ̸≍A a

}
.

Proposition 553. up a ⊆ ∂a for any non-least element a of a filtrator.

Proof. For any element X ∈ Z

X ∈ up a ⇒ a ⊑ X ∧ a ⊑ a ⇒ X ̸≍A a ⇒ X ∈ ∂a.

□

Theorem 554. Let (A,Z) be a distributive lattice filtrator with least element
and binarily join-closed core which is a join-semilattice. Then ∂a is a free star for
each a ∈ A.
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Proof. For every A,B ∈ Z

A ⊔Z B ∈ ∂a ⇔
A ⊔A B ∈ ∂a ⇔

(A ⊔A B) ⊓A a ̸= ⊥A ⇔
(A ⊓A a) ⊔A (B ⊓A a) ̸= ⊥A ⇔
A ⊓A a ̸= ⊥A ∨B ⊓A a ̸= ⊥A ⇔

A ∈ ∂a ∨B ∈ ∂a.

That ∂a doesn’t contain ⊥A is obvious. □

Definition 555. I call a filtrator star-separable when its core is a separation
subset of its base.

5.14. Atomic Elements of a Filtrator

See [4, 9] for more detailed treatment of ultrafilters and prime filters.

Proposition 556. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice with greatest element.
3◦. A is a complete lattice.
4◦. atoms

d
S =

⋂
⟨atoms⟩∗

S for every S ∈ PA.
5◦. atoms(a ⊓ b) = atoms a ∩ atoms b for a, b ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Corollary 518.
3◦⇒4◦. Theorem 108.
4◦⇒5◦. Obvious.

□

Proposition 557. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice which is and ideal

base.
3◦. A is a starrish join-semilattice.
4◦. atoms(a ⊔ b) = atoms a ∪ atoms b for a, b ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Corollary 531.
3◦⇒4◦. Corollary 496.

□

Theorem 558. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice.
3◦. (A,Z) is a filtered weakly down-aligned filtrator with binarily meet-closed

core Z which is a meet-semilattice.
4◦. a is an atom of Z iff a ∈ Z and a is an atom of A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is filtered by the theorem 534, binarily meet-closed by corollary 536.
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3◦⇒4◦.
⇐. Let a be an atom of A and a ∈ Z. Then either a is an atom of Z or

a is the least element of Z. But if a is the least element of Z then a
is also least element of A and thus is not an atom of A. So the only
possible outcome is that a is an atom of Z.

⇒. We need to prove that if a is an atom of Z then a is an atom of A.
Suppose the contrary that a is not an atom of A. Then there exists
x ∈ A such that x ⊏ a and x is not least element of A. Because “up”
is a straight monotone map to the dual of the poset PZ (obvious
454), up a ⊂ upx. So there exists K ∈ upx such that K /∈ up a.
Also a ∈ upx. We have K ⊓Z a = K ⊓A a ∈ upx; K ⊓Z a is not least
of Z (Suppose for the contrary that K ⊓Z a = ⊥Z, then K ⊓Z a =
⊥A /∈ upx.) and K ⊓Z a ⊏ a. So a is not an atom of Z.

□

Theorem 559. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. (A,Z) is a filtered filtrator.
4◦. a ∈ A is an atom of A iff up a = ∂a.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. By the theorem 534.
3◦⇒4◦.

⇒. For any K ∈ A

K ∈ up a ⇔ K ⊒ a ⇔ K ̸≍A a ⇔ K ∈ ∂a.

⇐. Let up a = ∂a. Then a is not least element of A. Consequently for
every x ∈ A if x is not the least element of A we have

x ⊏ a ⇒
x ̸≍A a ⇒

∀K ∈ upx : K ∈ ∂a ⇒
∀K ∈ upx : K ∈ up a ⇒

upx ⊆ up a ⇒
x ⊒ a.

So a is an atom of A.
□

Proposition 560. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. Coatoms of A are exactly coatoms of Z.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Suppose a is a coatom of Z. Then a is the only non-greatest element in

up a. Suppose b ⊐ a for some b ∈ A. Then a cannot be in up b and thus
the only possible element of up b is the greatest element of Z (if it exists)
from what follows b = ⊤A. So a is a coatom of A.
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Suppose now that a is a coatom of A. To finish the proof it is enough
to show that a is principal. (Then a is non-greatest and thus is a coatom
of Z.)

Suppose a is non-principal. Then obviously exist two distinct elements
x and y of the core such that x, y ∈ up a. Thus a is not an atom of A.

□

Corollary 561. Coatoms of the set of filters on a set U are exactly sets U\{x}
where x ∈ U .

Proposition 562. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a coatomic poset.
3◦. A is coatomic.

Proof.
1◦⇒2◦. Obvious.
2◦⇒2◦. Suppose A ∈ A and A ≠ ⊤A. Then there exists A ∈ up A such that

A is not greatest element of Z. Consequently there exists a coatom a ∈ Z such that
a ⊒ A. Thus a ∈ up A and a is not greatest.

□

5.15. Prime Filtrator Elements

Definition 563. Let (A,Z) be a filtrator. Prime filtrator elements are such
a ∈ A that up a is a free star (in lattice Z).

Proposition 564. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice which is an ideal

base.
3◦. (A,Z) is a filtrator with binarily join-closed core, where A is a starrish

join-semilattice and Z is a join-semilattice.
4◦. Atomic elements of this filtrator are prime.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. (A,Z) is with binarily join-closed core by the theorem 534, A is a distribu-

tive lattice by theorem 531.
3◦⇒4◦. Let a be an atom of the lattice A. We have for every X,Y ∈ Z

X ⊔Z Y ∈ up a ⇔
X ⊔A Y ∈ up a ⇔
X ⊔A Y ⊒ a ⇔
X ⊔A Y ̸≍A a ⇔

X ̸≍A a ∨ Y ̸≍A a ⇔
X ⊒ a ∨ Y ⊒ a ⇔

X ∈ up a ∨ Y ∈ up a.
□

The following theorem is essentially borrowed from [19]:

Theorem 565. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
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2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. Let a ∈ A. Then the following are equivalent:

(a) a is prime.
(b) For every A ∈ Z exactly one of {A,A} is in up a.
(c) a is an atom of A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦.

3◦a⇒3◦b. Let a be prime. Then A ⊔Z A = ⊤A ∈ up a. Therefore A ∈
up a∨A ∈ up a. But since A⊓ZA = ⊥Z it is impossible A ∈ up a∧A ∈
up a.

3◦b⇒3◦c. Obviously a ̸= ⊥A.
Let a filter b ⊏ a. Take X ∈ up b such that X /∈ up a. Then X ∈ up a
because a is prime and thus X ∈ up b. So ⊥Z = X ⊓Z X ∈ up b and
thus b = ⊥A. So a is atomic.

3◦c⇒3◦a. By the previous proposition.
□

5.16. Stars for filters

Theorem 566. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice which is an ideal

base and has least element.
3◦. ∂a is a free star for each a ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. A is a distributive lattice by the corollary 531. The filtrator (A,Z) is

binarily join-closed by corollary 534. So we can apply the theorem 554.
□

5.16.1. Stars of Filters on Boolean Lattices. In this section we will con-
sider the set of filters A on a boolean lattice Z.

Theorem 567. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. ∂A = ¬⟨¬⟩∗ up A = ⟨¬⟩∗¬ up A and up A = ¬⟨¬⟩∗

∂A = ⟨¬⟩∗¬∂A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Because of properties of diagram (1), it is enough to prove just ∂A =

¬⟨¬⟩∗ up A. Really,
X ∈ up A ⇔ X ⊒ A ⇔ X ≍A A ⇔ X /∈ ∂A

for any X ∈ Z (taking into account theorems 535, 537, and lemma 551).
□

Corollary 568. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. ∂ is an order isomorphism from A to S(Z).

Proof. By properties of the diagram (1). □
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Corollary 569. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. ∂ d

A
S =

⋃
⟨∂⟩∗

S for every S ∈ PA.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. ∂ d

A
S = d

S(Z)⟨∂⟩∗
S =

⋃
⟨∂⟩∗

S.
□

5.17. Generalized Filter Base

Definition 570. Generalized filter base is a filter base on the set A where
(A,Z) is a primary filtrator.

Definition 571. If S is a generalized filter base and A =
dA

S for some A ∈ A,
then we call S a generalized filter base of A.

Theorem 572. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice.
3◦. For a generalized filter base S of F ∈ A and K ∈ Z we have

K ∈ up F ⇔ ∃L ∈ S : K ∈ up L.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦.

⇐. Because F =
dA

S.
⇒. Let K ∈ up F . Then (taken into account corollary 525 and that

S is nonempty) there exist X1, . . . , Xn ∈
⋃

⟨up⟩∗
S such that K ∈

up(X1 ⊓Z · · · ⊓Z Xn) that is K ∈ up(↑ X1 ⊓Z · · · ⊓Z ↑ Xn). Conse-
quently (by theorem 535) K ∈ up(↑ X1 ⊓A · · · ⊓A ↑ Xn). Replacing
every ↑ Xi with such Xi ∈ S that Xi ∈ up Xi (this is obviously possi-
ble to do), we get a finite set T0 ⊆ S such that K ∈ up

dA
T0. From

this there exists C ∈ S such that C ⊑
dA

T0 and so K ∈ up C.
□

Corollary 573. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice with least element.
3◦. For a generalized filter base S of a F ∈ A we have

⊥A ∈ S ⇔ F = ⊥A.

Proof. Substitute ⊥A as K. □

Theorem 574. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice with least element.
3◦. Let F0⊓A · · ·⊓AFn ̸= ⊥A for every F0, . . . ,Fn ∈ S, where S is a nonempty

set of elements of A. Then
dA

S ̸= ⊥A.

Proof. Consider the set

S′ =
{

F0 ⊓A · · · ⊓A Fn

F0, . . . ,Fn ∈ S

}
.
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Obviously S′ is nonempty and binarily meet-closed. So S′ is a generalized filter
base. Obviously ⊥A /∈ S. So by properties of generalized filter bases

dA
S′ ̸= ⊥A.

But obviously
dA

S =
dA

S′. So
dA

S ̸= ⊥A. □

Corollary 575. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice with least element.
3◦. Let S ∈ PZ such that S ̸= ∅ and A0 ⊓Z · · · ⊓Z An ̸= ⊥Z for every

A0, . . . , An ∈ S. Then
dA

S ̸= ⊥A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Because (A,Z) is binarily meet-closed (by the theorem 535).

□

Theorem 576. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a bounded meet-semilattice.
3◦. A is an atomic lattice.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Let F ∈ A. Let choose (by Kuratowski’s lemma) a maximal chain S

from ⊥A to F . Let S′ = S \ {⊥A}. a =
dA

S′ ̸= ⊥A by properties of
generalized filter bases (the corollary 573 which uses the fact that Z is a
meet-semilattice with least element). If a /∈ S then the chain S can be
extended adding there element a because ⊥A ⊏ a ⊑ X for any X ∈ S′

what contradicts to maximality of the chain. So a ∈ S and consequently
a ∈ S′. Obviously a is the minimal element of S′. Consequently (taking
into account maximality of the chain) there is no Y ∈ A such that ⊥A ⊏
Y ⊏ a. So a is an atomic filter. Obviously a ⊑ F .

□

Definition 577. A complete lattice is co-compact iff
d
S = ⊥ for a set S

of elements of this lattice implies that there is its finite subset T ⊆ S such thatd
T = ⊥.

Theorem 578. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a bounded meet-semilattice.
3◦. A is co-compact.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Poset A is complete by corollary 518.

If ⊥ ∈ up
dA

S then there are Ki ∈ up
⋃
S such that ⊥ ∈ up(K0 ⊓Z

. . . ⊓Z Kn) that is K0 ⊓Z . . . ⊓Z Kn = ⊥ from which easily follows F0 ⊓A

. . . ⊓A Fn = ⊥ for some Fi ∈ S.
□

5.18. Separability of filters

Proposition 579. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
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3◦. A is strongly separable.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. By properties of stars of filters.

□

Remark 580. [14] seems to show that the above theorem cannot be generalized
for a wider class of lattices.

Theorem 581. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. A is an atomistic poset.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Because (used theorem 232) A is atomic (theorem 576) and separable.

□

Corollary 582. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. A is atomically separable.

Proof. By theorem 230. □

5.19. Some Criteria

Theorem 583. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
3◦. (A,Z) is a down-aligned, with join-closed, binarily meet-closed and sepa-

rable core which is a complete boolean lattice.
4◦. The following conditions are equivalent for any F ∈ A:

(a) F ∈ Z;
(b) ∀S ∈ PA :

(
F ⊓A d

A
S ̸= ⊥ ⇒ ∃K ∈ S : F ⊓A K ̸= ⊥

)
;

(c) ∀S ∈ PZ :
(

F ⊓A d

A
S ̸= ⊥ ⇒ ∃K ∈ S : F ⊓A K ̸= ⊥

)
.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. The filtrator (A,Z) is with with join-closed core by theorem 534, binarily

meet-closed core by corollary 536, with separable core by theorem 537.
3◦⇒4◦.

4◦a⇒4◦b. Let F ∈ Z. Then (taking into account the lemma 551)

F ⊓A
A

lS ̸= ⊥ ⇔ F ̸⊒
A

lS ⇒ ∃K ∈ S : F ̸⊒ K ⇔ ∃K ∈ S : F ⊓A K ̸= ⊥.

4◦b⇒4◦c. Obvious.
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4◦c⇒4◦a.

∀S ∈ PZ :
(

F ⊓A
A

lS ̸= ⊥ ⇒ ∃K ∈ S : F ⊓A K ̸= ⊥

)
⇔

∀S ∈ PZ :
(

F ̸≍A
Z

lS ⇒ ∃K ∈ S : F ̸≍A K

)
⇔ (lemma 551)

∀S ∈ PZ :

 Z

lS ̸⊒ F ⇒ ∃K ∈ S : K ̸⊒ F

 ⇔

∀S ∈ PZ :

∀K ∈ S : K ⊒ F ⇒
Z

lS ⊒ F

 ⇔

∀S ∈ PZ :
(

∀K ∈ S : K ⊒ F ⇒
Zl

⟨¬⟩∗
S ⊒ F

)
⇔

∀S ∈ PZ :
(

∀K ∈ S : K ⊒ F ⇒
Zl
S ⊒ F

)
⇒

Zl
up F ⊒ F ⇔

Zl
up F ∈ up F ⇒

F ∈ Z.

□

Remark 584. The above theorem strengthens theorem 53 in [32]. Both the
formulation of the theorem and the proof are considerably simplified.

Definition 585. Let S be a subset of a meet-semilattice. The filter base
generated by S is the set

[S]⊓ =
{

a0 ⊓ · · · ⊓ an

ai ∈ S, n = 0, 1, . . .

}
.

Lemma 586. The set of all finite subsets of an infinite set A has the same
cardinality as A.

Proof. Let denote the number of n-element subsets of A as sn. Obviously
sn ≤ cardAn = cardA. Then the number S of all finite subsets of A is equal to

s0 + s1 + · · · ≤ cardA+ cardA+ · · · = cardA.
That S ≥ cardA is obvious. So S = cardA. □

Lemma 587. A filter base generated by an infinite set has the same cardinality
as that set.

Proof. From the previous lemma. □

Definition 588. Let A be a complete lattice. A set S ∈ PA is filter-closed
when for every filter base T ∈ PS we have

d
T ∈ S.

Theorem 589. A subset S of a complete lattice is filter-closed iff for every
nonempty chain T ∈ PS we have

d
T ∈ S.

Proof. (proof sketch by Joel David Hamkins)
⇒. Because every nonempty chain is a filter base.
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⇐. We will assume that cardinality of a set is an ordinal defined by von Neumann
cardinal assignment (what is a standard practice in ZFC). Recall that
α < β ⇔ α ∈ β for ordinals α, β.

We will take it as given that for every nonempty chain T ∈ PS we
have

d
T ∈ S.

We will prove the following statement: If cardS = n then S is filter
closed, for any cardinal n.

Instead we will prove it not only for cardinals but for wider class of
ordinals: If cardS = n then S is filter-closed, for any ordinal n.

We will prove it using transfinite induction by n.
For finite n we have

d
T ∈ S because T ⊆ S has minimal element.

Let cardT = n be an infinite ordinal.
Let the assumption hold for every m ∈ cardT .
We can assign T =

{
aα

α∈card T

}
for some aα because card cardT =

cardT .
Consider β ∈ cardT .
Let Pβ =

{
aα

α∈β

}
. Let bβ =

d
Pβ . Obviously bβ =

d
[Pβ ]⊓. We have

card[Pβ ]⊓ = cardPβ = cardβ < cardT

(used the lemma and von Neumann cardinal assignment). By the assump-
tion of induction bβ ∈ S.

∀β ∈ cardT : Pβ ⊆ T and thus bβ ⊒
d
T .

It is easy to see that the set
{

Pβ

β∈card T

}
is a chain. Consequently{

bβ

β∈card T

}
is a chain.

By the theorem conditions b =
d

β∈card T bβ ∈ S (taken into account
that bβ ∈ S by the assumption of induction).

Obviously b ⊒
d
T .

b ⊑ bβ and so ∀β ∈ cardT, α ∈ β : b ⊑ aα. Let α ∈ cardT . Then
(because cardT is a limit ordinal, see [47]) there exists β ∈ cardT such
that α ∈ β ∈ cardT . So b ⊑ aα for every α ∈ cardT . Thus b ⊑

d
T .

Finally
d
T = b ∈ S.

□

5.20. Co-Separability of Core

Theorem 590. The following is an implications tuple.

1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet infinite distributive complete

lattice.
3◦. (A,Z) is an up-aligned filtered filtrator whose core is a meet infinite dis-

tributive complete lattice.
4◦. This filtrator is with co-separable core.

Proof.

1◦⇒2◦. Obvious.
2◦⇒3◦. It is obviously up-aligned, and filtered by theorem 534.
3◦⇒4◦. Our filtrator is with join-closed core (theorem 534).

Let a, b ∈ A. Cor a and Cor b exist since Z is a complete lattice.
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Cor a ∈ down a and Cor b ∈ down b by the theorem 542 since our
filtrator is filtered. So we have

∃x ∈ down a, y ∈ down b : x ⊔A y = ⊤ ⇐
Cor a ⊔A Cor b = ⊤ ⇔ (by finite join-closedness of the core)
Cor a ⊔Z Cor b = ⊤ ⇔

Zl
up a ⊔Z

Zl
up b = ⊤ ⇔ (by infinite distributivity)

Zl{
x ⊔Z y

x ∈ up a, y ∈ up b

}
= ⊤ ⇐

∀x ∈ up a, y ∈ up b : x ⊔Z y = ⊤ ⇔ (by binary join-closedness of the core)
∀x ∈ up a, y ∈ up b : x ⊔A y = ⊤ ⇐

a ⊔A b = ⊤.
□

5.21. Complements and Core Parts

Lemma 591. If (A,Z) is a filtered, up-aligned filtrator with co-separable core
which is a complete lattice, then for any a, c ∈ A

c ≡A a ⇔ c ≡A Cor a.

Proof.
⇒. If c ≡A a then by co-separability of the core exists K ∈ down a such that

c ≡A K. To finish the proof we will show that K ⊑ Cor a. To show this
is enough to show that ∀X ∈ up a : K ⊑ X what is obvious.

⇐. Cor a ⊑ a (by theorem 542 using that our filtrator is filtered).
□

Theorem 592. If (A,Z) is a filtered up-aligned complete lattice filtrator with
co-separable core which is a complete boolean lattice, then a+ = Cor a for every
a ∈ A.

Proof. Our filtrator is with join-closed core (theorem 534).
a+ =

Al{
c ∈ A

c ⊔A a = ⊤A

}
=

Al{
c ∈ A

c ⊔A Cor a = ⊤A

}
=

Al{
c ∈ A

c ⊒ Cor a

}
=

Cor a
(used the lemma above and lemma 551). □

Corollary 593. If (A,Z) is a filtered up-aligned complete lattice filtrator with
co-separable core which is a complete boolean lattice, then a+ ∈ Z for every a ∈ A.

Theorem 594.
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
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3◦. (A,Z) is a filtered complete lattice filtrator with down-aligned, binarily
meet-closed, separable core which is a complete boolean lattice.

4◦. a∗ = Cor a = Cor′ a for every a ∈ A.

Proof.
1◦⇒2◦ Obvious.
2◦⇒3◦ It is filtered by theorem 534. It is complete lattice filtrator by 518. It is

with binarily meet-closed core (proposition 536), with separable core (theorem 537).
3◦⇒4◦ Our filtrator is with join-closed core (theorem 534).

a∗ =
A

l

{
c ∈ A

c ⊓A a = ⊥A

}
.

But
c ⊓A a = ⊥A ⇒ ∃C ∈ up c : C ⊓A a = ⊥A.

So
a∗ =

A

l

{
C ∈ Z

C ⊓A a = ⊥A

}
=

A

l

{
C ∈ Z

a ⊑ C

}
=

A

l

{
C

C ∈ Z, a ⊑ C

}
=

A
l

{
C

C ∈ up a

}
=

Z

l

{
C

C ∈ up a

}
=

Zl{
C

C ∈ up a

}
=

Zl
up a =

Cor a
(used lemma 551).

Cor a = Cor′ a by theorem 545. □

Theorem 595. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
3◦. (A,Z) is a filtered down-aligned and up-aligned complete lattice filtra-

tor with binarily meet-closed, separable and co-separable core which is a
complete boolean lattice.

4◦. a∗ = a+ = Cor a = Cor′ a ∈ Z for every a ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. The filtrator (A,Z) is filtered by the theorem 534. A is a complete lat-

tice by corollary 518. (A,Z) is with co-separable core by theorem 590.
(A,Z) is binarily meet-closed by proposition 536, with separable core by
theorem 537.
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3◦⇒4◦. Comparing two last theorems.
□

Theorem 596. The following is an implications tuple:
1◦. (A,Z) is a primary filtrator over a complete lattice.
2◦. (A,Z) is a complete lattice filtrator with join-closed separable core which

is a complete lattice.
3◦. a∗ ∈ Z for every a ∈ A.

Proof.
1◦⇒2◦. A is a complete lattice by corollary 518. (A,Z) is a filtrator with join-

closed core by theorem 534. (A,Z) is a filtrator with separable core by
theorem 537.

2◦⇒3◦.
{

c∈A
c⊓Aa=⊥A

}
⊇
{

A∈Z
A⊓Aa=⊥A

}
; consequently a∗ ⊒ d

A{ A∈Z
A⊓Aa=⊥A

}
.

But if c ∈
{

c∈A
c⊓Aa=⊥A

}
then there exists A ∈ Z such that A ⊒ c

and A ⊓A a = ⊥A that is A ∈
{

A∈Z
A⊓Aa=⊥A

}
. Consequently a∗ ⊑

d

A{ A∈Z
A⊓Aa=⊥A

}
.

We have a∗ = d

A{ A∈Z
A⊓Aa=⊥A

}
= d

Z{ A∈Z
A⊓Aa=⊥A

}
∈ Z.

□

Theorem 597. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
3◦. (A,Z) is an up-aligned filtered complete lattice filtrator with co-separable

core which is a complete boolean lattice.
4◦. a+ is dual pseudocomplement of a, that is

a+ = min
{

c ∈ A

c ⊔A a = ⊤A

}
for every a ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. (A,Z) is filtered by the theorem 534. It is with co-separable core by theo-

rem 590. A is a complete lattice by corollary 518.
3◦⇒4◦. Our filtrator is with join-closed core (theorem 534). It’s enough to prove

that a+ ⊔A a = ⊤A. But a+ ⊔A a = Cor a ⊔A a ⊒ Cor a ⊔A Cor a =
Cor a⊔Z Cor a = ⊤A (used the theorem 542 and the fact that our filtrator
is filtered).

□

Definition 598. The edge part of an element a ∈ A is Edg a = a \ Cor a, the
dual edge part is Edg′ a = a \ Cor′ a.

Knowing core part and edge part or dual core part and dual edge part of an
element of a filtrator, the filter can be restored by the formulas:

a = Cor a ⊔A Edg a and a = Cor′ a ⊔A Edg′ a.

5.22. Core Part and Atomic Elements

Proposition 599. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over an atomistic lattice.
3◦. (A,Z) is a filtrator with join-closed core and Z be an atomistic lattice.
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4◦. Cor′ a = d

Z
{

x
x is an atom of Z,x⊑a

}
for every a ∈ A such that Cor′ a exists.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. (A,Z) is with join-closed core by corollary 534.
3◦⇒4◦.

Cor′ a =
Z

l

{
A ∈ Z

A ⊑ a

}
=

Z

l

{

d

Z atomsZA
A ∈ Z, A ⊑ a

}
=

Z

l

⋃{ atomsZA
A ∈ Z, A ⊑ a

}
=

Z

l

{
x

x is an atom of Z, x ⊑ a

}
.

□

Corollary 600. Cor a =↑
{

p∈U
↑{p}⊑a

}
and

⋂
a =

{
p∈U

↑{p}⊑a

}
for every filter a

on a set U.

Proof. By proposition 546. □

5.23. Distributivity of Core Part over Lattice Operations

Theorem 601. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete lattice.
3◦. (A,Z) is a join-closed filtrator and A is a meet-semilattice and Z is a

meet-semilattice.
4◦. Cor′(a ⊓A b) = Cor′ a ⊓Z Cor′ b for every a, b ∈ A. whenever Cor′(a ⊓A b),

Cor′ a, and Cor′ b exist

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. (A,Z) is with join-closed core by corollary 534. A is a meet-semilattice by

corollary 518.
3◦⇒4◦. We have Cor′ p ⊑ p for every p ∈ A whenever Cor′ p exists, because our

filtrator is with join-closed core (theorem 543).
Obviously Cor′(a ⊓A b) ⊑ Cor′ a and Cor′(a ⊓A b) ⊑ Cor′ b.
If x ⊑ Cor′ a and x ⊑ Cor′ b for some x ∈ Z then x ⊑ a and x ⊑ b,

thus x ⊑ a ⊓A b and x ⊑ Cor′(a ⊓A b).
□

Theorem 602. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete lattice.
3◦. (A,Z) is a join-closed filtrator.
4◦. Cor′ dA

S =
dZ〈Cor′〉∗

S for every S ∈ PA whenever both sides of the
equality are defined. Also Cor′ dA

T =
dZ

T for every T ∈ PZ whenever
both sides of the equality are defined.
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Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is with join-closed core by theorem 534. A is a complete lattice by

corollary 518.
3◦⇒4◦. We have Cor′ p ⊑ p for every p ∈ A because our filtrator is with join-closed

core (theorem 543).
Obviously Cor′ dA

S ⊑ Cor′ a for every a ∈ S.
If x ⊑ Cor′ a for every a ∈ S for some x ∈ Z then x ⊑ a, thus

x ⊑
dA

S and x ⊑ Cor′ dA
S.

So Cor′ dA
S =

dZ〈Cor′〉∗
S. Cor′ dA

T =
dZ

T trivially follows
from this.

□

Theorem 603. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete atomistic distributive lattice.
3◦. (A,Z) is a filtered down-aligned filtrator with binarily meet-closed core Z

which is a complete atomistic lattice and A is a complete starrish lattice.
4◦. Cor′(a ⊔A b) = Cor′ a ⊔Z Cor′ b for every a, b ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. (A,Z) is filtered by theorem 534. It is with binarily meet-close core by

corollary 536. A is starrish by corollary 531. A is complete by corol-
lary 518.

3◦⇒4◦. From theorem conditions it follows that Cor′(a ⊔A b) exists.
Cor′(a ⊔A b) = d

Z
{

x
x is an atom of Z,x⊑a⊔Ab

}
(used proposition 599).

By theorem 558 we have

Cor′(a ⊔A b) =
Z

l((atomsA(a ⊔A b)) ∩ Z) =
Z

l((atomsA a ∪ atomsA b) ∩ Z) =
Z

l((atomsA a ∩ Z) ∪ (atomsA b ∩ Z)) =
Z

l(atomsA a ∩ Z) ⊔Z
Z

l(atomsA b ∩ Z)

(used the theorem 496). Again using theorem 558, we get

Cor′(a ⊔A b) =
Z

l

{
x

x is an atom of Z, x ⊑ a

}
⊔Z

Z

l

{
x

x is an atom of Z, x ⊑ b

}
=

Cor′ a ⊔Z Cor′ b

(again used proposition 599).
□

See also theorem 167 above.
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5.24. Separability criteria

Theorem 604. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. (A,Z) is a filtrator with correct intersection, with binarily meet-closed and

separable core.
4◦. B ≍A A ⇔ B ⊒ A for every B ∈ Z, A ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Using proposition 549, corollary 536, theorem 537.
3◦⇒4◦. By the lemma 551.

□

Theorem 605. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
3◦. (A,Z) is a filtrator over a boolean lattice with correct joining and co-

separable core.
4◦. B ≡A A ⇔ B ⊑ A for every B ∈ Z, A ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Using obvious 550, theorem 590.
3◦⇒4◦. By the lemma 551.

□

5.25. Filtrators over Boolean Lattices

Proposition 606. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. (A,Z) is a down-aligned and up-aligned binarily meet-closed and binarily

join-closed distributive lattice filtrator and Z is a boolean lattice.
4◦. a \ AB = a ⊓A B for every a ∈ A, B ∈ Z.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. A is a distributive lattice by corollary 531. Our filtrator is binarily meet-

closed by the corollary 536 and with join-closed core by the theorem 534.
It is also up and down aligned.

3◦⇒4◦.
(a ⊓A B) ⊔A B = (a ⊔A B) ⊓A (B ⊔A B) =

(a ⊔A B) ⊓A (B ⊔Z B) = (a ⊔A B) ⊓A ⊤ = a ⊔A B.

(a ⊓A B) ⊓A B = a ⊓A (B ⊓A B) = a ⊓A (B ⊓Z B) = a ⊓A ⊥ = ⊥.

So a ⊓A B is the difference of a and B.
□

Proposition 607. For a primary filtrator over a complete boolean lattice both
edge part and dual edge part are always defined.

Proof. Core part and dual core part are defined because the core is a complete
lattice. Using the theorem 606. □
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Theorem 608. The following is an implications tuple:
1◦. (A,Z) is a primary filtrator over a boolean lattice.
2◦. (A,Z) is a complete co-brouwerian atomistic down-aligned lattice filtrator

with binarily meet-closed and separable boolean core.
3◦. The three expressions of pseudodifference of a and b in theorem 247 are

also equal to d

{
a⊓B

B∈up b

}
.

Proof.
1◦⇒2◦. The filtrator of filters on a boolean lattice is:

• complete by corollary 518;
• atomistic by theorem 581;
• co-brouwerian by corollary 531;
• with separable core by theorem 537;
• with binarily meet-closed core by corollary 536.

2◦⇒3◦. d

{
z∈F

z⊑a∧z⊓b=⊥

}
⊑ d

{
a⊓B

B∈up b

}
because

z ∈
{

z ∈ F

z ⊑ a ∧ z ⊓ b = ⊥

}
⇔ z ⊑ a ∧ z ⊓ b = ⊥ ⇔ (separability)

z ⊑ a ∧ ∃B ∈ up b : z ⊓B = ⊥ ⇔ (theorem 604) ⇔ z ⊑ a ∧ ∃B ∈ up b : z ⊑ B ⇔
∃B ∈ up b :

(
z ⊑ a ∧ z ⊑ B

)
⇔ ∃B ∈ up b : z ⊑ a ⊓B ⇒

z ⊑ l

{
a ⊓B

B ∈ up b

}
.

But a ⊓B ∈
{

z∈F
z⊑a∧z⊓b=⊥

}
because(

a ⊓B
)

⊓ b = a ⊓
(
B ⊓ b

)
⊑ a ⊓

(
B ⊓A B

)
= a ⊓

(
B ⊓Z B

)
= a ⊓ ⊥ = ⊥

and thus

a ⊓B ⊑ l

{
z ∈ F

z ⊑ a ∧ z ⊓ b = ⊥

}
so d

{
z∈F

z⊑a∧z⊓b=⊥

}
⊒ d

{
a⊓B

B∈up b

}
.

□

5.26. Distributivity for an Element of Boolean Core

Lemma 609. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. (A,Z) is an up-aligned binarily join-closed and binarily meet-closed dis-

tributive lattice filtrator over a boolean lattice.
4◦. A⊓A is a lower adjoint of A⊔A for every A ∈ Z.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is binarily join closed by theorem 534. It is binarily meet-closed by

corollary 536. It is distributive by corollary 531.
3◦⇒4◦. We will use the theorem 126.

That A⊓A and A⊔A are monotone is obvious.
We need to prove (for every x, y ∈ A) that

x ⊑ A ⊔A (A ⊓A x) and A ⊓A (A ⊔A y) ⊑ y.
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Really,

A ⊔A (A ⊓A x) = (A ⊔A A) ⊓A (A ⊔A x) =
(A ⊔Z A) ⊓A (A ⊔A x) = ⊤ ⊓A (A ⊔A x) = A ⊔A x ⊒ x

and

A ⊓A (A ⊔A y) = (A ⊓A A) ⊔A (A ⊓A y) = (A ⊓Z A) ⊔A (A ⊓A y) =
⊥ ⊔A (A ⊓A y) = A ⊓A y ⊑ y.

□

Theorem 610. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. (A,Z) is an up-aligned binarily join-closed and binarily meet-closed dis-

tributive lattice filtrator over a boolean lattice.
4◦. A ⊓A d

A
S = d

A〈
A⊓A

〉∗
S for every A ∈ Z and every set S ∈ PA.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is binarily join-closed by theorem 534. It is binarily meet-closed by

corollary 536. It is distributive by corollary 531.
3◦⇒4◦. Direct consequence of the lemma.

□

5.27. More about the Lattice of Filters

Definition 611. Atoms of F are called ultrafilters.

Definition 612. Principal ultrafilters are also called trivial ultrafilters.

Theorem 613. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. The filtrator (A,Z) is central.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. We can conclude that A is atomically separable (the corollary 582), with

separable core (the theorem 537), and with join-closed core (theorem 534),
binarily meet-closed by corollary 536.

We need to prove Z(A) = Z.
Let X ∈ Z(A). Then there exists Y ∈ Z(A) such that X ⊓A Y =

⊥A and X ⊔A Y = ⊤A. Consequently there is X ∈ up X such that
X ⊓A Y = ⊥A; we also have X ⊔A Y = ⊤A. Suppose X ⊐ X . Then
there exists a ∈ atomsAX such that a /∈ atomsA X . We can conclude also
a /∈ atomsA Y (otherwise X ⊓A Y ̸= ⊥A). Thus a /∈ atoms(X ⊔A Y) and
consequently X ⊔A Y ≠ ⊤A what is a contradiction. We have X = X ∈ Z.

Let now X ∈ Z. Let Y = X. We have X⊓ZY = ⊥A and X⊔ZY = ⊤A.
Thus X ⊓A Y =

dA{X ⊓Z Y } = ⊥A; X ⊓A Y = X ⊓Z Y = ⊤A. We have
shown that X ∈ Z(A).

□
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5.28. More Criteria

Theorem 614. The following is an implications tuple:

1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. For every S ∈ PA the condition ∃F ∈ A : S = ⋆F is equivalent to

conjunction of the following items:
(a) S is a free star on A;
(b) S is filter-closed.

Proof.

1◦⇒2◦. Obvious.
2◦⇒3◦.

⇒.
3◦a. That ⊥A /∈ ⋆F is obvious. For every a, b ∈ A

a ⊔A b ∈ ⋆F ⇔
(a ⊔A b) ⊓A F ̸= ⊥A ⇔

(a ⊓A F) ⊔A (b ⊓A F) ̸= ⊥A ⇔
a ⊓A F ̸= ⊥A ∨ b ⊓A F ̸= ⊥A ⇔

a ∈ ⋆F∨ ∈ ⋆F

(taken into account corollary 531). So ⋆F is a free star on A.
3◦b. We have a filter base T ⊆ S and need to prove thatdA
T ⊓ F ̸= ⊥A. Because

〈
F⊓A

〉∗
T is a generalized filter base,

⊥A ∈
〈
F⊓A

〉∗
T ⇔

dA〈F⊓A
〉∗
T = ⊥A ⇔

dA
T ⊓A F ̸= ⊥A. So it is

left to prove ⊥A /∈
〈
F⊓A

〉∗
T what follows from T ⊆ S.

⇐. Let S be a free star on A. Then for every A,B ∈ Z

A,B ∈ S ∩ Z ⇔
A,B ∈ S ⇔

A ⊔A B ∈ S ⇔
A ⊔Z B ∈ S ⇔

A ⊔Z B ∈ S ∩ Z

(taken into account the theorem 534). So S ∩ Z is a free star on Z.
Thus there exists F ∈ A such that ∂F = S ∩ Z. We have up X ⊆
S ⇔ X ∈ S (because S is filter-closed) for every X ∈ A; then (taking



5.29. FILTERS AND A SPECIAL SUBLATTICE 112

into account properties of generalized filter bases)
X ∈ S ⇔

up X ⊆ S ⇔
up X ⊆ ∂F ⇔

∀X ∈ up X : X ⊓A F ̸= ⊥A ⇔

⊥A /∈
〈
F⊓A

〉∗ up X ⇔
Al〈

F⊓A
〉∗ up X ̸= ⊥A ⇔

F ⊓A
Al

up X ̸= ⊥A ⇔

F ⊓A X ̸= ⊥A ⇔
X ∈ ⋆F .

□

5.29. Filters and a Special Sublattice

Remind that Z(X) is the center of lattice X and Da is the lattice
{

x∈A
x⊑a

}
.

Theorem 615. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. Let A ∈ A. Then for each X ∈ A

X ∈ Z(DA) ⇔ ∃X ∈ Z : X = X ⊓A A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦.

⇐. Let X = X ⊓A A where X ∈ Z. Let also Y = X ⊓A A. Then
X ⊓A Y = X ⊓A X ⊓A A = (X ⊓Z X) ⊓A A = ⊥A ⊓A A = ⊥A

(used corollary 536) and

X ⊔A Y = (X ⊔A X) ⊓A A = (X ⊔Z X) ⊓A A = ⊤A ⊓A A = A
(used theorem 534 and corollary 531). So X ∈ Z(DA).

⇒. Let X ∈ Z(DA). Then there exists Y ∈ Z(DA) such that X ⊓A Y =
⊥A and X ⊔AY = A. Then (used theorem 537) there exists X ∈ up X
such that X ⊓A Y = ⊥A. We have

X = X ⊔ (X ⊓A Y) = X ⊓A (X ⊔A Y) = X ⊓A A.
□

Theorem 616. The following is an implication tuple:
1◦. (A;Z) is a powerset filtrator.
2◦. (A;Z) is a primary filtrator over a boolean lattice.
3◦. F(Z(DA)) is order-isomorphic to DA by the formulas

• Y =
d

X for every X ∈ F(Z(DA));
• X =

{
F∈Z(DA)

F⊒Y

}
for every Y ∈ DA.

Proof.
1◦⇒2◦. Obvious.
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2◦⇒3◦. We need to prove that the above formulas define a bijection, then it
becomes evident that it’s an order isomorphism (take into account that the order
of filters is reverse to set inclusion).

First prove that these formulas describe correspondences between F(Z(DA))
and DA.

Let X ∈ F(Z(DA)). Consider Y =
d

X . Every element of X is below A,
consequently Y ∈ DA.

Let now Y ∈ DA. Then
{

F∈Z(DA)
F⊒Y

}
is a filter.

It remains to prove that these correspondences are mutually inverse.
Let X =

{
F∈Z(DA)

F⊒Y0

}
and Y1 =

d
X for some Y0 ∈ DA.

Y1 ⊒ Y0 is obvious. By theorem 615 and the condition 2◦ we have Y1 =
d

X ⊑
dA
{

F ⊓A
F ∈up Y0

}
=

dA
{

F
F ∈up Y0

}
⊓ A = Y0 ⊓ A = Y0. So Y1 = Y0.

Let now Y =
d

X0 and X1 =
{

F∈Z(DA)
F⊒Y

}
for some X0 ∈ F(Z(DA)).

X1 =
{

F∈Z(DA)
F⊒

d
X0

}
= (by generalized filter bases) =

{
F∈Z(DA)

∃X∈X0:F⊒X

}
={

F∈Z(DA)
F∈X0

}
= X0 because F ∈ X0 ⇔ ∃X ∈ X0 : F ⊒ X if F ∈ Z(DA).

□

5.30. Distributivity of quasicomplements

Theorem 617. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
3◦. (A,Z) is a filtered down-aligned and up-aligned complete lattice filtra-

tor with binarily meet-closed, separable and co-separable core which is a
complete boolean lattice.

4◦. (a ⊓A b)∗ = (a ⊓A b)+ = a∗ ⊔A b∗ = a+ ⊔A b+ for every a, b ∈ A.
Proof.

1◦⇒2◦. Obvious.
2◦⇒3◦. The filtrator (A,Z) is filtered by the theorem 534. A is a complete lat-

tice by corollary 518. (A,Z) is with co-separable core by theorem 590.
(A,Z) is binarily meet-closed by proposition 536, with separable core by
theorem 537.

3◦⇒4◦. Theorem 595 apply. Also theorem 601 apply because every filtered filtrator
is join-closed. So

(a ⊓A b)∗ = (a ⊓A b)+ = Cor(a ⊓A b) =

Cor a ⊓Z Cor b = Cor a ⊔A Cor b = a+ ⊔A b+ = a∗ ⊔A b∗.

□

Theorem 618. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a filtered starrish down-aligned and up-aligned complete lattice

filtrator with binarily meet-closed, separable and co-separable core which
is a complete atomistic boolean lattice.

3◦. (a ⊔A b)∗ = (a ⊔A b)+ = a∗ ⊓A b∗ = a+ ⊓A b+ for every a, b ∈ A.
Proof.

1◦⇒2◦. (A,Z) is a filtered (theorem 534), distributive (corollary 531) complete lat-
tice filtrator (corollary 518), with binarily meet-closed core (corollary 536),
with separable core (theorem 537), with co-separable core (theorem 590).
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2◦⇒3◦. (a⊔Ab)+ = (a⊔Ab)∗ = Cor′(a ⊔A b) = Cor′ a ⊔Z Cor′ b = Cor′ a⊓ZCor′ b =
a∗ ⊓Z b∗ = a∗ ⊓A b∗ = a+ ⊓A b+ (used theorems 594, 603, 595).

□

Theorem 619. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
3◦. (A,Z) is a filtered complete lattice filtrator with down-aligned, binarily

meet-closed, separable core which is a complete boolean lattice.
4◦. (a ⊓A b)∗ = a∗ ⊔A b∗ for every a, b ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is filtered by theorem 534. It is complete lattice filtrator by 518. It is

with binarily meet-closed core (corollary 536), with separable core (theo-
rem 537).

3◦⇒4◦. It is join closed because it is filtered.

(a ⊓A b)∗ = Cor′(a ⊓A b) = Cor′ a ⊓Z Cor′ b =

Cor′ a ⊔Z Cor′ b = a∗ ⊔Z b∗ = a∗ ⊔A b∗

(theorems 601, 594).
□

Theorem 620. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a filtered starrish down-aligned complete lattice filtrator with

binarily meet-closed, separable core which is a complete atomistic boolean
lattice.

3◦. (a ⊔A b)∗ = a∗ ⊓A b∗ for every a, b ∈ A.

Proof.
1◦⇒2◦. (A,Z) is a filtered (theorem 534), distributive (corollary 531) complete lat-

tice filtrator (corollary 518), with binarily meet-closed core (corollary 536),
with separable core (theorem 537).

2◦⇒3◦.

(a ⊔A b)∗ = Cor′(a ⊔A b) = Cor′ a ⊔Z Cor′ b =

Cor′ a ⊓Z Cor′ b = a∗ ⊓Z b∗ = a∗ ⊓A b∗

(used theorems 594, 603).
□

Theorem 621. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
3◦. (A,Z) is a filtered up-aligned complete lattice filtrator with co-separable

core which is a complete boolean lattice.
4◦. (a ⊓A b)+ = a+ ⊔A b+ for every a, b ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is filtered by theorem 534, is a complete lattice by corollary 518, is with

co-separable core by theorem 590.
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3◦⇒4◦.

(a ⊓A b)+ = Cor(a ⊓A b) = Cor′(a ⊓A b) = Cor′ a ⊓Z Cor′ b =

Cor′ a ⊔Z Cor′ b = Cor′ a ⊔A Cor′ b = a+ ⊔A b+

using theorems 592, 545, 601 and the fact that filtered filtrator is join-
closed.

□

Theorem 622. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a filtered down-aligned and up-aligned filtrator with binarily

meet-closed core, with co-separable core Z which is a complete atomistic
boolean lattice and A is a complete starrish lattice.

3◦. (a ⊔A b)+ = a+ ⊓A b+ for every a, b ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦.

(a ⊔A b)+ = Cor(a ⊔A b) = Cor′(a ⊔A b) = Cor′ a ⊔Z Cor′ b =

Cor′ a ⊓Z Cor′ b = Cor a ⊓A Cor b = a+ ⊓A b+

using theorems 592, 545, 603.
□

5.31. Complementive Filters and Factoring by a Filter

Definition 623. Let A be a meet-semilattice and A ∈ A. The relation ∼ on A
is defined by the formula

∀X,Y ∈ A :(X ∼ Y ⇔ X ⊓A A = Y ⊓A A).

Proposition 624. The relation ∼ is an equivalence relation.

Proof.
Reflexivity. Obvious.
Symmetry. Obvious.
Transitivity. Obvious.

□

Definition 625. When X,Y ∈ Z and A ∈ A we define X ∼ Y ⇔↑ X ∼↑ Y .

Theorem 626. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice.
3◦. For every A ∈ A and X,Y ∈ Z we have

X ∼ Y ⇔ ∃A ∈ up A : X ⊓Z A = Y ⊓Z A.

Proof.
1◦⇒2◦. Obvious.
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2◦⇒3◦.
∃A ∈ up A : X ⊓Z A = Y ⊓Z A ⇔ (corollary 536)

∃A ∈ up A :↑ X⊓A ↑ A =↑ Y ⊓A ↑ A ⇒
∃A ∈ up A :↑ X⊓A ↑ A ⊓A A =↑ Y ⊓A ↑ A ⊓A A ⇔

∃A ∈ up A :↑ X ⊓A A =↑ Y ⊓A A ⇔
↑ X ⊓A A =↑ Y ⊓A A ⇔

↑ X ∼↑ Y ⇔
X ∼ Y.

On the other hand,
↑ X ⊓A A =↑ Y ⊓A A ⇔{

X ⊓Z A0

A0 ∈ A

}
=
{
Y ⊓Z A1

A1 ∈ A

}
⇒

∃A0, A1 ∈ up A : X ⊓Z A0 = Y ⊓Z A1 ⇒
∃A0, A1 ∈ up A : X ⊓Z A0 ⊓Z A1 = Y ⊓Z A0 ⊓Z A1 ⇒

∃A ∈ up A : Y ⊓Z A = X ⊓Z A.

□

Proposition 627. The relation ∼ is a congruence1 for each of the following:
1◦. a meet-semilattice A;
2◦. a distributive lattice A.

Proof. Let a0, a1, b0, b1 ∈ A and a0 ∼ a1 and b0 ∼ b1.
1◦. a0 ⊓ b0 ∼ a1 ⊓ b1because (a0 ⊓ b0) ⊓ A = a0 ⊓ (b0 ⊓ A) = a0 ⊓ (b1 ⊓ A) =

b1 ⊓ (a0 ⊓ A) = b1 ⊓ (a1 ⊓ A) = (a1 ⊓ b1) ⊓ A.
2◦. Taking the above into account, we need to prove only a0 ⊔ b0 ∼ a1 ⊔ b1.

We have
(a0 ⊔ b0) ⊓ A = (a0 ⊓ A) ⊔ (b0 ⊓ A) = (a1 ⊓ A) ⊔ (b1 ⊓ A) = (a1 ⊔ b1) ⊓ A.

□

Definition 628. We will denote A/(∼) = A/((∼) ∩ A × A) for a set A and
an equivalence relation ∼ on a set B ⊇ A. I will call ∼ a congruence on A when
(∼) ∩ (A×A) is a congruence on A.

Theorem 629. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. Let A ∈ A. Consider the function γ : Z(DA) → Z/∼ defined by the

formula (for every p ∈ Z(DA))

γp =
{

X ∈ Z

X ⊓A A = p

}
.

Then:
(a) γ is a lattice isomorphism.
(b) ∀Q ∈ q : γ−1q = Q ⊓A A for every q ∈ Z/∼.

Proof.
1◦⇒2◦. Obvious.

1See Wikipedia for a definition of congruence.
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2◦⇒3◦. ∀p ∈ Z(DA) : γp ̸= ∅ because of theorem 615. Thus it is easy to see that
γp ∈ Z/∼ and that γ is an injection.

Let’s prove that γ is a lattice homomorphism:
γ(p0 ⊓A p1) =

{
X∈Z

X⊓AA=p0⊓Ap1

}
;

γp0 ⊓Z/∼ γp1 ={
X0 ∈ Z

X0 ⊓A A = p0

}
⊓Z/∼

{
X1 ∈ Z

X1 ⊓A A = p1

}
={

X0 ⊓A X1

X0, X1 ∈ Z, X0 ⊓A A = p0 ∧X1 ⊓A A = p1

}
⊆{

X ′ ∈ Z

X ′ ⊓A A = p0 ⊓A p1

}
=

γ(p0 ⊓A p1).

Because γp0 ⊓Z/∼ γp1 and γ(p0 ⊓A p1) are equivalence classes, thus
follows γp0 ⊓Z/∼ γp1 = γ(p0 ⊓A p1).

To finish the proof it is enough to show that ∀Q ∈ q : q = γ(Q ⊓A A)
for every q ∈ Z/∼. (From this it follows that γ is surjective because q is
not empty and thus ∃Q ∈ q : q = γ(Q ⊓A A).) Really,

γ(Q ⊓A A) =
{

X ∈ Z

X ⊓A A = Q ⊓A A

}
= [Q] = q.

□

This isomorphism is useful in both directions to reveal properties of both lattices
Z(DA) and q ∈ Z/∼.

Corollary 630. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. Z/∼ is a boolean lattice

Proof. Because Z(DA) is a boolean lattice (theorem 98). □

5.32. Pseudodifference of filters

Proposition 631. The following is an implications tuple:
1◦. A is a lattice of filters on a set.
2◦. A is a lattice of filters over a boolean lattice.
3◦. A is an atomistic co-brouwerian lattice.
4◦. For every a, b ∈ A the following expressions are always equal:

(a) a \∗ b =
d{

z∈A
a⊑b⊔z

}
(quasidifference of a and b);

(b) a# b = d

{
z∈A

z⊑a∧z⊓b=⊥

}
(second quasidifference of a and b);

(c) d(atoms a \ atoms b).

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. By corollary 531 and theorem 581.
3◦⇒4◦. Theorem 247.

Conjecture 632. a \∗ b = a# b for arbitrary filters a, b on powersets is not
provable in ZF (without axiom of choice).

□
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5.33. Function spaces of posets

Definition 633. Let Ai be a family of posets indexed by some set domA. We
will define order of indexed families of elements of posets by the formula

a ⊑ b ⇔ ∀i ∈ domA : ai ⊑ bi.

I will call this new poset
∏

A the function space of posets and the above order
product order.

Proposition 634. The function space for posets is also a poset.

Proof.
Reflexivity. Obvious.
Antisymmetry. Obvious.
Transitivity. Obvious.

□

Obvious 635. A has least element iff each Ai has a least element. In this case

⊥
∏

A =
∏

i∈dom A

⊥Ai .

Proposition 636. a ̸≍ b ⇔ ∃i ∈ domA : ai ̸≍ bi for every a, b ∈
∏

A if every
Ai has least element.

Proof. If domA = ∅, then a = b = ⊥, a ≍ b and thus the theorem statement
holds. Assume domA ̸= ∅.

a ̸≍ b ⇔

∃c ∈
∏

A \ {⊥
∏

A} : (c ⊑ a ∧ c ⊑ b) ⇔

∃c ∈
∏

A \ {⊥
∏

A}∀i ∈ domA : (ci ⊑ ai ∧ ci ⊑ bi) ⇔

(for the reverse implication take cj = ⊥Aj for i ̸= j)
∃i ∈ domA, c ∈ Ai \ {⊥Ai} : (c ⊑ ai ∧ c ⊑ bi) ⇔

∃i ∈ domA : ai ̸≍ bi.

□

Proposition 637.
1◦. If Ai are join-semilattices then A is a join-semilattice and

A ⊔B = λi ∈ domA : Ai ⊔Bi. (2)
2◦. If Ai are meet-semilattices then A is a meet-semilattice and

A ⊓B = λi ∈ domA : Ai ⊓Bi.

Proof. It is enough to prove the formula (2).
It’s obvious that λi ∈ domA : Ai ⊔Bi ⊒ A,B.
Let C ⊒ A,B. Then (for every i ∈ domA) Ci ⊒ Ai and Ci ⊒ Bi. Thus

Ci ⊒ Ai ⊔Bi that is C ⊒ λi ∈ domA : Ai ⊔Bi. □

Corollary 638. If Ai are lattices then
∏

A is a lattice.

Obvious 639. If Ai are distributive lattices then
∏

A is a distributive lattice.

Proposition 640. If Ai are boolean lattices then
∏

A is a boolean lattice.

Proof. We need to prove only that every element a ∈
∏

A has a complement.
But this complement is evidently λi ∈ dom a : ai. □
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Proposition 641. If every Ai is a poset then for every S ∈ P
∏

A

1◦. dS = λi ∈ domA : dx∈S xi whenever every dx∈S xi exists;
2◦.

d
S = λi ∈ domA :

d
x∈S xi whenever every

d
x∈S xi exists.

Proof. It’s enough to prove the first formula.(
λi ∈ domA : dx∈S xi

)
i

= dx∈S xi ⊒ xi for every x ∈ S and i ∈ domA.
Let y ⊒ x for every x ∈ S. Then yi ⊒ xi for every i ∈ domA and thus

yi ⊒ dx∈S xi =
(
λi ∈ domA : dx∈S xi

)
i

that is y ⊒ λi ∈ domA : dx∈S xi.
Thus dS = λi ∈ domA : dx∈S xi by the definition of join. □

Corollary 642. If Ai are posets then for every S ∈ P
∏

A

1◦. dS = λi ∈ domA : dx∈S xi whenever dS exists;
2◦.

d
S = λi ∈ domA :

d
x∈S xi whenever

d
S exists.

Proof. It is enough to prove that (for every i) dx∈S xi exists whenever dS
exists.

Fix i ∈ domA.
Take yi = ( dS)i and let prove that yi is the least upper bound of

{
xi

x∈S

}
.

yi is it’s upper bound because dS ⊒ x and thus ( dS)i ⊒ xi for every x ∈ S.
Let x ∈ S and for some t ∈ Ai

T (t) = λj ∈ domA :
{
t if i = j

xj if i ̸= j.

Let t ⊒ xi. Then T (t) ⊒ x for every x ∈ S. So T (t) ⊒ dS and consequently
t = T (t)i ⊒ yi.

So yi is the least upper bound of
{

xi

x∈S

}
. □

Corollary 643. If Ai are complete lattices then A is a complete lattice.

Obvious 644. If Ai are complete (co-)brouwerian lattices then A is a (co-
)brouwerian lattice.

Proposition 645. If each Ai is a separable poset with least element (for some
index set n) then

∏
A is a separable poset.

Proof. Let a ̸= b. Then ∃i ∈ domA : ai ̸= bi. So ∃x ∈ Ai : (x ̸≍ ai ∧ x ≍ bi)
(or vice versa).

Take y = λj ∈ domA :
{
x if j = i;
⊥Aj if j ̸= i.

Then y ̸≍ a and y ≍ b. □

Obvious 646. If every Ai is a poset with least element, then the set of atoms
of
∏

A is 
λi ∈ domA :

({
a if i = k;
⊥Ai if i ̸= k

)
k ∈ domA, a ∈ atomsAk

.
Proposition 647. If every Ai is an atomistic poset with least element, then∏

A is an atomistic poset.
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Proof. xi = datomsxi for every xi ∈ Ai. Thus

x = λi ∈ dom x : xi = λi ∈ dom x : latomsxi =

l

i∈dom x

λj ∈ dom x :
{
xi if j = i

⊥Aj if j ̸= i
=

l

i∈dom x

λj ∈ dom x :
{

datomsxi if j = i

⊥Aj if j ̸= i
=

l

i∈dom x

l

q∈atoms xi

λj ∈ dom x :
{
q if j = i

⊥Aj if j ̸= i
.

Thus x is a join of atoms of
∏

A. □

Corollary 648. If Ai are atomistic posets with least elements, then
∏

A is
atomically separable.

Proof. Proposition 230. □

Proposition 649. Let (Ai∈n,Zi∈n) be a family of filtrators. Then (
∏

A,
∏

Z)
is a filtrator.

Proof. We need to prove that
∏

Z is a sub-poset of
∏

A. First
∏

Z ⊆
∏

A
because Zi ⊆ Ai for each i ∈ n.

Let A,B ∈
∏

Z and A ⊑
∏

Z B. Then ∀i ∈ n : Ai ⊑Zi Bi; consequently
∀i ∈ n : Ai ⊑Ai Bi that is A ⊑

∏
A B. □

Proposition 650. Let (Ai∈n,Zi∈n) be a family of filtrators.
1◦. The filtrator (

∏
A,
∏

Z) is (binarily) join-closed if every (Ai,Zi) is (bina-
rily) join-closed.

2◦. The filtrator (
∏

A,
∏

Z) is (binarily) meet-closed if every (Ai,Zi) is (bi-
narily) meet-closed.

Proof. Let every (Ai,Zi) be binarily join-closed. Let A,B ∈
∏

Z and A⊔
∏

Z

B exist. Then (by corollary 642)

A ⊔
∏

Z B = λi ∈ n : Ai ⊔Zi Bi = λi ∈ n : Ai ⊔Ai Bi = A ⊔
∏

A B.

Let now every (Ai,Zi) be join-closed. Let S ∈ P
∏

Z and d

∏
Z
S exist. Then

(by corollary 642)∏
Z

lS = λi ∈ domA :
Zi

l

{ xi

x ∈ S

}
= λi ∈ domA :

Ai

l

{ xi

x ∈ S

}
=

∏
A

lS.

The rest follows from symmetry. □

Proposition 651. If each (Ai,Zi) where i ∈ n (for some index set n) is a
down-aligned filtrator with separable core then (

∏
A,
∏

Z) is with separable core.

Proof. Let a ̸= b. Then ∃i ∈ n : ai ̸= bi. So ∃x ∈ Zi : (x ̸≍ ai ∧ x ≍ bi) (or
vice versa).

Take y = λj ∈ n :
{
x if j = i

⊥Aj if j ̸= i
. Then we have y ̸≍ a and y ≍ b and

y ∈ Z. □

Proposition 652. Let every Ai be a bounded lattice. Every (Ai,Zi) is a
central filtrator iff (

∏
A,
∏

Z) is a central filtrator.
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Proof.

x ∈ Z
(∏

A
)

⇔

∃y ∈
∏

A : (x ⊓ y = ⊥
∏

A ∧ x ⊔ y = ⊤
∏

A) ⇔

∃y ∈
∏

A∀i ∈ domA : (xi ⊓ yi = ⊥Ai ∧ xi ⊔ yi = ⊤Ai) ⇔

∀i ∈ domA∃y ∈ Ai : (xi ⊓ y = ⊥Ai ∧ xi ⊔ y = ⊤Ai) ⇔
∀i ∈ domA : xi ∈ Z(Ai).

So

Z
(∏

A
)

=
∏

Z ⇔
∏

i∈dom A

Z(Ai) =
∏

Z ⇔

(because every Zi is nonempty) ⇔ ∀i ∈ domA : Z(Ai) = Zi.

□

Proposition 653. For every element a of a product filtrator (
∏

A,
∏

Z):

1◦. up a =
∏

i∈dom a up ai;
2◦. down a =

∏
i∈dom a down ai.

Proof. We will prove only the first as the second is dual.

up a =
{
c ∈

∏
Z

c ⊒ a

}
=
{

c ∈
∏

Z

∀i ∈ dom a : ci ⊒ ai

}
={
c ∈

∏
Z

∀i ∈ dom a : ci ∈ up ai

}
=

∏
i∈dom a

up ai.

□

Proposition 654. If every (Ai∈n,Zi∈n) is a prefiltered filtrator, then
(
∏

A,
∏

Z) is a prefiltered filtrator.

Proof. Let a, b ∈
∏

A and a ̸= b. Then there exists i ∈ n such that ai ̸= bi

and so up ai ̸= up bi. Consequently
∏

i∈dom a up ai ̸=
∏

i∈dom a up bi that is up a ̸=
up b. □

Proposition 655. Let every (Ai∈n,Zi∈n) be a filtered filtrator with upx ̸= ∅
for every x ∈ Ai (for every i ∈ n). Then (

∏
A,
∏

Z) is a filtered filtrator.

Proof. Let every (Ai,Zi) be a filtered filtrator. Let up a ⊇ up b for some
a, b ∈

∏
A. Then

∏
i∈dom a up ai ⊇

∏
i∈dom a up bi and consequently (taking into

account that upx ̸= ∅ for every x ∈ Ai) up ai ⊇ up bi for every i ∈ n. Then
∀i ∈ n : ai ⊑ bi that is a ⊑ b. □

Proposition 656. Let (Ai,Zi) be filtrators and each Zi be a complete lattice
with upx ̸= ∅ for every x ∈ Ai (for every i ∈ n). For a ∈

∏
A:

1◦. Cor a = λi ∈ dom a : Cor ai;
2◦. Cor′ a = λi ∈ dom a : Cor′ ai.
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Proof. We will prove only the first, because the second is dual.

Cor a =∏
Zl

up a =

λi ∈ dom a :
Zil{

xi

x ∈ up a

}
= (upx ̸= ∅ taken into account)

λi ∈ dom a :
Zil{

x

x ∈ up ai

}
=

λi ∈ dom a :
Zil

up ai =
λi ∈ dom a : Cor ai.

□

Proposition 657. If each (Ai,Zi) is a filtrator with (co)separable core and each
Ai has a least (greatest) element, then (

∏
A,
∏

Z) is a filtrator with (co)separable
core.

Proof. We will prove only for separable core, as co-separable core is dual.

x ≍
∏

A y ⇔
(used the fact that Ai has a least element)

∀i ∈ domA : xi ≍Ai yi ⇒
∀i ∈ domA∃X ∈ upxi : X ≍Ai yi ⇔
∃X ∈ upx∀i ∈ domA : Xi ≍Ai yi ⇔

∃X ∈ upx : X ≍
∏

A y

for every x, y ∈
∏

A. □

Obvious 658.
1◦. If each (Ai,Zi) is a down-aligned filtrator, then (

∏
A,
∏

Z) is a down-
aligned filtrator.

2◦. If each (Ai,Zi) is an up-aligned filtrator, then (
∏

A,
∏

Z) is an up-aligned
filtrator.

Obvious 659.
1◦. If each (Ai,Zi) is a weakly down-aligned filtrator, then (

∏
A,
∏

Z) is a
weakly down-aligned filtrator.

2◦. If each (Ai,Zi) is a weakly up-aligned filtrator, then (
∏

A,
∏

Z) is a weakly
up-aligned filtrator.

Proposition 660. If every bi is substractive from ai where a and b are n-
indexed families of elements of distributive lattices with least elements (where n is
an index set), then a \ b = λi ∈ n : ai \ bi.

Proof. We need to prove (λi ∈ n : ai\bi)⊓b = ⊥ and a⊔b = b⊔(λi ∈ n : ai\bi).
Really

(λi ∈ n : ai \ bi) ⊓ b = λi ∈ n : (ai \ bi) ⊓ bi = ⊥;
b ⊔ (λi ∈ n : ai \ bi) = λi ∈ n : bi ⊔ (ai \ bi) = λi ∈ n : bi ⊔ ai = a ⊔ b.

□
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Proposition 661. If every Ai is a distributive lattice, then a \∗ b = λi ∈
domA : ai \∗ bi for every a, b ∈

∏
A whenever every ai \∗ bi is defined.

Proof. We need to prove that λi ∈ domA : ai \∗ bi =
d
{

z∈
∏

A

a⊑b⊔z

}
.

To prove it is enough to show ai \∗ bi =
d
{

zi

z∈
∏

A,a⊑b⊔z

}
that is ai \∗ bi =

d{ z∈Ai

ai⊑bi⊔z

}
because z′ ∈

{
zi

z∈
∏

A,a⊑b⊔z

}
⇔ z′ ∈

{
z∈Ai

ai⊑bi⊔z

}
(for the reverse

implication take zj = ai for j ̸= i), but ai \∗ bi =
d{ z∈Ai

ai⊑bi⊔z

}
is true by definition.

□

Proposition 662. If every Ai is a distributive lattice with least element, then
a# b = λi ∈ domA : ai # bi for every a, b ∈

∏
A whenever every ai # bi is defined.

Proof. We need to prove that λi ∈ domA : ai # bi = d

{
z∈
∏

A

z⊑a∧z≍b

}
.

To prove it is enough to show ai # bi = d

{
zi

z∈
∏

A,z⊑a∧z≍b

}
that is ai # bi =

d

{
zi

z∈
∏

A,zi⊑ai∧∀j∈dom A:zj≍bj

}
that is ai # bi = d

{
z∈Ai

z⊑ai∧z≍bi

}
(take zj = ⊥Aj

for j ̸= i) what is true by definition. □

Proposition 663. Let every Ai be a poset with least element and a∗
i is defined.

Then a∗ = λi ∈ domA : a∗
i .

Proof. We need to prove that λi ∈ domA : a∗
i = d

{
c∈
∏

A

c≍a

}
. To prove this it

is enough to show that a∗
i = d

{
ci

c∈
∏

A,c≍a

}
that is a∗

i = d

{
ci

c∈
∏

A,∀j∈dom A:cj≍aj

}
that is a∗

i = d

{
ci

c∈
∏

A,ci≍ai

}
(take cj = ⊥Aj for j ̸= i) that is a∗

i = d

{
c∈Ai

c≍ai

}
what is true by definition. □

Corollary 664. Let every Ai be a poset with greatest element and a+
i is

defined. Then a+ = λi ∈ domA : a+
i .

Proof. By duality. □

5.34. Filters on a Set

In this section we will fix a powerset filtrator (A,Z) = (A,PU) for some set U.
The consideration below is about filters on a set U, but this can be general-

ized for filters on complete atomic boolean algebras due complete atomic boolean
algebras are isomorphic to algebras of sets on some set U.

5.34.1. Fréchet Filter.

Definition 665. Ω =
{

U\X
X is a finite subset of U

}
is called either Fréchet filter or

cofinite filter.

It is trivial that Fréchet filter is a filter.

Proposition 666. Cor Ω = ⊥Z;
⋂

Ω = ∅.

Proof. This can be deduced from the formula ∀α ∈ U∃X ∈ Ω : α /∈ X. □

Theorem 667. max
{ X ∈A

Cor X =⊥Z

}
= max

{
X ∈A⋂

X =∅

}
= Ω.
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Proof. Due the last proposition, it is enough to show that Cor X = ⊥Z ⇒
X ⊑ Ω for every filter X .

Let Cor X = ⊥Z for some filter X . Let X ∈ Ω. We need to prove that X ∈ X .
X = U \ {α0, . . . , αn}. U \ {αi} ∈ X because otherwise αi ∈↑−1 Cor X . So

X ∈ X . □

Theorem 668. Ω = d

A{ x
x is a non-trivial ultrafilter

}
.

Proof. It follows from the facts that Corx = ⊥Z for every non-trivial ultra-
filter x, that A is an atomistic lattice, and the previous theorem. □

Theorem 669. Cor is the lower adjoint of Ω ⊔A −.

Proof. Because both Cor and Ω⊔A− are monotone, it is enough (theorem 126)
to prove (for every filters X and Y)

X ⊑ Ω ⊔A Cor X and Cor(Ω ⊔A Y) ⊑ Y.

Cor(Ω ⊔A Y) = Cor Ω ⊔Z Cor Y = ⊥Z ⊔Z Cor Y = Cor Y ⊑ Y.
Ω ⊔A Cor X ⊒ Edg X ⊔A Cor X = X . □

Corollary 670. Cor X = X \∗ Ω for every filter on a set.

Proof. By theorem 154. □

Corollary 671. Cor d

A
S = d

A⟨Cor⟩∗
S for any set S of filters on a powerset.

This corollary can be rewritten in elementary terms and proved elementarily:

Proposition 672.
⋂⋂

S =
⋃

F ∈S

⋂
F for a set S of filters on some set.

Proof. (by Andreas Blass) The ⊇ direction is rather formal. Consider any
one of the sets being intersected on the left side, i.e., any set X that is in all the
filters in S, and consider any of the sets being unioned (that’s not a word, but you
know what I mean) on the right, i.e.,

⋂
F for some F ∈ S. Then, since X ∈ F ,

we have
⋂
F ⊆ X. Taking the union over all F ∈ S (while keeping X fixed), we

get that the right side of your equation is ⊆ X. Since that’s true for all X ∈
⋂
S,

we infer that the right side is a subset of the left side. (This argument seems to
work in much greater generality; you just need that the relevant infima (in place of
intersections) exist in your poset.)

For the ⊆ direction, consider any element x ∈
⋂⋂

S, and suppose, toward
a contradiction, that it is not an element of the union on the right side of your
equation. So, for each F ∈ S, we have x /∈

⋂
F , and therefore we can find a set

AF ∈ F with x /∈ AF . Let B =
⋃

F ∈S AF and notice that B ∈ F for every F ∈ S
(because B ⊇ AF ). So B ∈

⋂
S. But, by choice of the AF ’s, we have x /∈ B,

contrary to the assumption that x ∈
⋂⋂

S. □

Proposition 673. ∂Ω(U) is the set of infinite subsets of U .

Proof. ∂Ω(U) = ¬⟨¬⟩∗Ω(U).
⟨¬⟩∗Ω is the set of finite subsets of U . Thus ¬⟨¬⟩∗Ω(U) is the set of infinite

subsets of U . □

5.34.2. Number of Filters on a Set.

Definition 674. A collection Y of sets has finite intersection property iff in-
tersection of any finite subcollection of Y is non-empty.

The following was borrowed from [7]. Thanks to Andreas Blass for email
support about his proof.
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Lemma 675. (by Hausdorff) For an infinite set X there is a family F of
2card X many subsets of X such that given any disjoint finite subfamilies A, B, the
intersection of sets in A and complements of sets in B is nonempty.

Proof. Let

X ′ =
{

(P,Q)
P ∈ PX is finite, Q ∈ PPP

}
.

It’s easy to show that cardX ′ = cardX. So it is enough to show this for X ′

instead of X. Let

F =


{

(P,Q)∈X′

Y ∩P ∈Q

}
Y ∈ PX

.
To finish the proof we show that for every disjoint finite Y+ ∈ PPX and finite

Y− ∈ PPX there exist (P,Q) ∈ X ′ such that

∀Y ∈ Y+ : (P,Q) ∈
{

(P,Q) ∈ X ′

Y ∩ P ∈ Q

}
and ∀Y ∈ Y− : (P,Q) /∈

{
(P,Q) ∈ X ′

Y ∩ P ∈ Q

}
what is equivalent to existence (P,Q) ∈ X ′ such that

∀Y ∈ Y+ : Y ∩ P ∈ Q and ∀Y ∈ Y− : Y ∩ P /∈ Q.

For existence of this (P,Q), it is enough existence of P such that intersections
Y ∩ P are different for different Y ∈ Y+ ∪ Y−.

Really, for each pair of distinct Y0, Y1 ∈ Y+ ∪ Y− choose a point which lies in
one of the sets Y0, Y1 and not in an other, and call the set of such points P . Then
Y ∩ P are different for different Y ∈ Y+ ∪ Y−. □

Corollary 676. For an infinite set X there is a family F of 2card X many
subsets of X such that for arbitrary disjoint subfamilies A and B the set A∪

{
X\A
A∈B

}
has finite intersection property.

Theorem 677. Let X be a set. The number of ultrafilters on X is 22card X if
X is infinite and cardX if X is finite.

Proof. The finite case follows from the fact that every ultrafilter on a finite set
is trivial. LetX be infinite. From the lemma, there exists a family F of 2card X many
subsets of X such that for every G ∈ PF we have Φ(F ,G) =

dA G⊓
dA
{

X\A
A∈F\G

}
̸=

⊥A(X).
This filter contains all sets from G and does not contain any sets from F \ G.

So for every suitable pairs (F0,G0) and (F1,G1) there is A ∈ Φ(F0,G0) such that
A ∈ Φ(F1,G1). Consequently all filters Φ(F ,G) are disjoint. So for every pair
(F ,G) where G ∈ PF there exist a distinct ultrafilter under Φ(F ,G), but the
number of such pairs (F ,G) is 22card X . Obviously the number of all filters is not
above 22card X . □

Corollary 678. The number of filters on U is 22card X if U us infinite and
2card U if U is finite.

Proof. The finite case is obvious. The infinite case follows from the theorem
and the fact that filters are collections of sets and there cannot be more than 22card U

collections of sets on U. □
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5.35. Bases on filtrators

Definition 679. A set S of binary relations is a base on a filtrator (A,Z)
of f ∈ A when all elements of S are above f and ∀X ∈ up f∃T ∈ S : T ⊑ X.

Obvious 680. Every base on an up-aligned filtrator is nonempty.

Proposition 681. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. (A,Z) is a filtered filtrator.
4◦. A set S ∈ PZ is a base of a filtrator element iff

dA
S exists and S is a

base of
dA

S.

Proof.
1◦⇒2◦, 2◦⇒3◦. Obvious.
3◦⇒4◦.

⇐. Obvious.
⇒. Let S be a base of an f ∈ A. f is obviously a lower bound of S. Let g

be a lower bound of S. Then for every X ∈ up f we have g ⊑ X
that is X ∈ up g. Thus up f ⊆ up g and thus f ⊒ g that is f is the
greatest upper bound of S.

□

Proposition 682. There exists an f ∈ A such that up f = S iff S is a base
and is an upper set (for every set S ∈ PZ).

Proof.
⇒. If up f = S then S is an upper set and S is a base of f because ∀X ∈ up f ∃T ∈

S : T = X.
⇐. Let S be a base of some filtrator element f and is an upper set. Then for

every X ∈ up f there is T ∈ S such that T ⊑ X. Thus X ∈ S. We have
up f ⊆ S. But S ⊆ up f is obvious. We have up f = S.

□

Proposition 683. up f is a base of f for every f ∈ A.

Proof. Denote S = up f . That f is a lower bound of S is obvious.
If X ∈ up f then ∃T ∈ S : T = X. Thus S is a base of f . □

Proposition 684. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. (A,Z) is a filtered filtrator.
4◦. f =

dA
S for every base S of an f ∈ A.

Proof.
1◦⇒2◦, 2◦⇒3◦. Obvious.
3◦⇒4◦. f is a lower bound of S by definition.

Let g be a lower bound of S. Then for every X ∈ up f there we have
g ⊑ X that is X ∈ up g. Thus up f ⊆ up g and thus f ⊒ g that is f is the
greatest lower bound of S.

□

Proposition 685. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
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2◦. (A,Z) is a primary filtrator.
3◦. (A,Z) is a filtered filtrator.
4◦. If S is a base on a filtrator, then

dA
S exists and up

dA
S =

⋃
K∈S upK.

Proof.
1◦⇒2◦, 2◦⇒3◦. Obvious.
3◦⇒4◦.

dA
S exists because our filtrator is filtered. Above we proved that S is a

base of
dA

S. That
⋃

K∈S upK ⊆ up
dA

S is obvious. If X ∈ up
dA

S
then by properties of bases we have K ∈ S such that K ⊑ X. Thus
X ∈ upK and so X ∈

⋃
K∈S upK. So up

dA
S ⊆

⋃
K∈S upK.

□

Proposition 686. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice.
3◦. (A,Z) is a filtrator with binarily meet-closed core such that ∀a ∈ A :

up a ̸= ∅.
4◦. A base on the filtrator (A;Z) is the same as base of a filter (on Z).

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Corollary 536.
3◦⇒4◦.

⇒. Let S be a base of f on the filtrator (A;Z). Then for every a, b ∈ S we
have a, b ∈ up f and thus a ⊓Z b = a ⊓A b ∈ up f . Thus ∃x ∈ S : x ⊑
a ⊓Z b that is x ⊑ a ∧ x ⊑ b. It remains to show that S is nonempty,
but this follows from up a being nonempty.

⇐. Let S be a base of filter f (on Z). Let X ∈ up f . Then there is T ∈ S
such that T ⊑ X.

□

5.36. Some Counter-Examples

Example 687. There exist a bounded distributive lattice which is not lattice
with separable center.

Proof. The lattice with the Hasse diagram2 on figure 5 is bounded and dis-
tributive because it does not contain “diamond lattice” nor “pentagon lattice” as a
sublattice [46].

It’s center is {0, 1}. x⊓y = 0 despite upx = {x, a, 1} but y⊓1 ̸= 0 consequently
the lattice is not with separable center. □

In this section A denotes the set of filters on a set.

Example 688. There is a separable poset (that is a set with ⋆ being an injec-
tion) which is not strongly separable (that is ⋆ isn’t order reflective).

Proof. (with help of sci.math partakers) Consider a poset with the Hasse
diagram 6.

Then ⋆p = {p, a, b}, ⋆q = {q, a, b}, ⋆r = {r, b}, ⋆a = {p, q, a, b}, ⋆b =
{p, q, a, b, r}.

Thus ⋆x = ⋆y ⇒ x = y for any x, y in our poset.
⋆a ⊆ ⋆b but not a ⊑ b. □

Example 689. There is a prefiltered filtrator which is not filtered.
2See Wikipedia for a definition of Hasse diagrams.
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1

a

x y

0

Figure 5

a b

p q r

Figure 6

Proof. (Matthias Klupsch) Take A = {a, b} with the order being equality
and Z = {b}. Then up a = ∅ ⊑ {b} = up b, so up is injective, hence the filtrator is
prefiltered, but because of a ̸⊑ b the filtrator is not filtered. □

For further examples we will use the filter ∆ defined by the formula

∆ =
Al{

] − ϵ; ϵ[
ϵ ∈ R, ϵ > 0

}
and more general

∆ + a =
Al{

]a− ϵ; a+ ϵ[
ϵ ∈ R, ϵ > 0

}
.

Example 690. There exists A ∈ PU such that
dA

A ̸=
d
A.

Proof.
dZ
{

]−ϵ;ϵ[
ϵ∈R,ϵ>0

}
=↑ {0} ≠ ∆. □

Example 691. There exists a set U and a filter a and a set S of filters on the
set U such that a ⊓A d

A
S ̸= d

A〈
a⊓A

〉∗
S.

Proof. Let a = ∆ and S =
{

↑R]ϵ;+∞[
ϵ>0

}
. Then a ⊓A d

A
S = ∆⊓A]0; +∞[) ̸=

⊥A while d

A〈
a⊓A

〉∗
S = d

A{⊥A} = ⊥A. □

Example 692. There are tornings which are not weak partitions.

Proof.
{∆+a

a∈R
}

is a torning but not weak partition of the real line. □

Lemma 693. Let A be the set of filters on a set U . Then X ⊓A Ω ⊑ Y ⊓A Ω iff
X \ Y is a finite set, having fixed sets X,Y ∈ PU .
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Proof. Let M be the set of finite subsets of U .
X ⊓A Ω ⊑ Y ⊓A Ω ⇔{

X ∩KX

KX ∈ Ω

}
⊇
{
Y ∩KY

KY ∈ Ω

}
⇔

∀KY ∈ Ω∃KX ∈ Ω : Y ∩KY = X ∩KX ⇔
∀LY ∈ M∃LX ∈ M : Y \ LY = X \ LX ⇔

∀LY ∈ M : X \ (Y \ LY ) ∈ M ⇔
X \ Y ∈ M.

□

Example 694. There exists a filter A on a set U such that (PU)/∼ and
Z(DA) are not complete lattices.

Proof. Due to the isomorphism it is enough to prove for (PU)/∼.
Let take U = N and A = Ω be the Fréchet filter on N.
Partition N into infinitely many infinite sets A0, A1, . . .. To withhold our ex-

ample we will prove that the set {[A0], [A1], . . . } has no supremum in (PU)/∼.
Let [X] be an upper bound of [A0], [A1], . . . that is ∀i ∈ N : X ⊓A Ω ⊒ Ai ⊓A Ω

that is Ai \X is finite. Consequently X is infinite. So X ∩Ai ̸= ∅.
Choose for every i ∈ N some zi ∈ X ∩Ai. The {z0, z1, . . . } is an infinite subset

of X (take into account that zi ̸= zj for i ̸= j). Let Y = X \ {z0, z1, . . . }. Then
Y ⊓A Ω ⊒ Ai ⊓A Ω because Ai \Y = Ai \ (X \ {zi}) = (Ai \X) ∪ {zi} which is finite
because Ai \X is finite. Thus [Y ] is an upper bound for {[A0], [A1], . . . }.

Suppose Y ⊓A Ω = X ⊓A Ω. Then Y \X is finite what is not true. So Y ⊓A Ω ⊏
X ⊓A Ω that is [Y ] is below [X]. □

5.36.1. Weak and Strong Partition.

Definition 695. A family S of subsets of a countable set is independent iff the
intersection of any finitely many members of S and the complements of any other
finitely many members of S is infinite.

Lemma 696. The “infinite” at the end of the definition could be equivalently
replaced with “nonempty” if we assume that S is infinite.

Proof. Suppose that some sets from the above definition has a finite inter-
section J of cardinality n. Then (thanks S is infinite) get one more set X ∈ S and
we have J ∩ X ̸= ∅ and J ∩ (N \ X) ̸= ∅. So card(J ∩ X) < n. Repeating this,
we prove that for some finite family of sets we have empty intersection what is a
contradiction. □

Lemma 697. There exists an independent family on N of cardinality c.

Proof. Let C be the set of finite subsets of Q. Since cardC = cardN, it
suffices to find c independent subsets of C. For each r ∈ R let

Er =
{

F ∈ C

card(F∩] − ∞; r[) is even

}
.

All Er1 and Er2 are distinct for distinct r1, r2 ∈ R since we may consider
F = {r′} ∈ C where a rational number r′ is between r1 and r2 and thus F is a
member of exactly one of the sets Er1 and Er2 . Thus card

{
Er

r∈R
}

= c.
We will show that

{
Er

r∈R
}

is independent. Let r1, . . . , rk, s1, . . . , sk be distinct
reals. It is enough to show that these have a nonempty intersection, that is existence
of some F such that F belongs to all the Er and none of Es.
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But this can be easily accomplished taking F having zero or one element in
each of intervals to which r1, . . . , rk, s1, . . . , sk split the real line. □

Example 698. There exists a weak partition of a filter on a set which is not a
strong partition.

Proof. (suggested by Andreas Blass) Let
{

Xr

r∈R
}

be an independent family
of subsets of N. We can assume a ̸= b ⇒ Xa ̸= Xb due the above lemma.

Let Fa be a filter generated by Xa and the complements N \Xb for all b ∈ R,
b ̸= a. Independence implies that Fa ̸= ⊥A (by properties of filter bases).

Let S =
{ Fr

r∈R
}

. We will prove that S is a weak partition but not a strong
partition.

Let a ∈ R. Then Xa ∈ Fa while ∀b ∈ R \ {a} : N \ Xa ∈ Fb and therefore
N \ Xa ∈ d

A
{

Fb

R∋b̸=a

}
. Therefore Fa ⊓A d

A
{

Fb

R∋b ̸=a

}
= ⊥A. Thus S is a weak

partition.
Suppose S is a strong partition. Then for each set Z ∈ PR

A

l

{
Fb

b ∈ Z

}
⊓A

A

l

{
Fb

b ∈ R \ Z

}
= ⊥A

what is equivalent to existence of M(Z) ∈ PN such that

M(Z) ∈
A

l

{
Fb

b ∈ Z

}
and N \M(Z) ∈

A

l

{
Fb

b ∈ R \ Z

}
that is

∀b ∈ Z : M(Z) ∈ Fb and ∀b ∈ R \ Z : N \M(Z) ∈ Fb.

Suppose Z ̸= Z ′ ∈ PN. Without loss of generality we may assume that some
b ∈ Z but b /∈ Z ′. Then M(Z) ∈ Fb and N \M(Z ′) ∈ Fb. If M(Z) = M(Z ′) then
Fb = ⊥A what contradicts to the above.

So M is an injective function from PR to PN what is impossible due cardi-
nality issues. □

Lemma 699. (by Niels Diepeveen, with help of Karl Kronenfeld) Let K
be a collection of nontrivial ultrafilters. We have dK = Ω iff ∃G ∈ K : A ∈ up G
for every infinite set A.

Proof.
⇒. Suppose dK = Ω and let A be a set such that ∄G ∈ K : A ∈ up G. Let’s prove

A is finite.
Really, ∀G ∈ K : U \A ∈ up G; U \A ∈ up Ω; A is finite.

⇐. Let ∃G ∈ K : A ∈ up G. Suppose A is a set in up dK.
To finish the proof it’s enough to show that U \A is finite.
Suppose U \A is infinite. Then ∃G ∈ K : U \A ∈ up G; ∃G ∈ K : A /∈

up G; A /∈ up dK, contradiction.
□

Lemma 700. (by Niels Diepeveen) If K is a non-empty set of ultrafilters
such that dK = Ω, then for every G ∈ K we have d(K \ {G}) = Ω.

Proof. ∃F ∈ K : A ∈ up F for every infinite set A.
The set A can be partitioned into two infinite sets A1, A2.
Take F1,F2 ∈ K such that A1 ∈ F1, A2 ∈ F2.
F1 ̸= F2 because otherwise A1 and A2 are not disjoint.
Obviously A ∈ F1 and A ∈ F2.
So there exist two different F ∈ K such that A ∈ up F . Consequently ∃F ∈

K \ {G} : A ∈ up F that is d(K \ {G}) = Ω. □
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Example 701. There exists a filter on a set which cannot be weakly partitioned
into ultrafilters.

Proof. Consider cofinite filter Ω on any infinite set.
Suppose K is its weak partition into ultrafilters. Then x ≍ d(K \ {x}) for

some ultrafilter x ∈ K.
We have d(K \ {x}) ⊏ dK (otherwise x ⊑ d(K \ {x})) what is impossible

due the last lemma. □

Corollary 702. There exists a filter on a set which cannot be strongly par-
titioned into ultrafilters.

5.37. Open problems about filters

Under which conditions a \∗ b and a# b are complementive to a?
Generalize straight maps for arbitrary posets.

5.38. Further notation

Below to define funcoids and reloids we need a fixed powerset filtrator.
Let (FA,T A) be an arbitrary but fixed powerset filtrator. This filtrator exists

by the theorem 462.
I will call elements of F filter objects.
For brevity we will denote lattice operations on FA without indexes (for ex-

ample, take
d
S =

dFA
S for S ∈ PFA).

Note that above we also took operations on T A without indexes (for example,
take

d
S =

dT A
S for S ∈ PT A).

Because we identify T A with principal elements of FA, the notation like
d
S

for S ∈ PT A would be inconsistent (it can mean both
dT A

S or
dFA

S). We
explicitly state that

d
S in this case does not mean

dFA
S.

For X ∈ F we will denote GR X the corresponding filter on PA. It is a con-
venient notation to describe relations between filters and sets, consider for example
the formula: {x} ⊆

⋂
GR X .

We will denote lattice operations without pointing a specific set like
dF

S =dF(A)
S for a set S ∈ PF (A).

5.39. Equivalent filters and rebase of filters

Throughout this section we will assume that Z is a lattice.
An important example: Z is the lattice of all small (regarding some

Grothendieck universe) sets. (This Z is not a powerset, and even not a complete
lattice.)

Throughout this section I will use the word filter to denote a filter on a sub-
lattice DA where A ∈ Z (if not told explicitly to be a filter on some other set).

The following is an embedding from filters A on a lattice DA into the lattice
of filters on Z: S A =

{
K∈Z

∃X∈A:X⊑K

}
.

Proposition 703. Values of this embedding are filters on the lattice Z.

Proof. That S A is an upper set is obvious.
Let P,Q ∈ S A. Then P,Q ∈ Z and there is an X ∈ A such that X ⊑ P

and Y ∈ A such that Y ⊑ Q. So X ⊓ Y ∈ A and P ⊓ Q ⊒ X ⊓ Y ∈ A, so
P ⊓Q ∈ SA. □
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5.39.1. Rebase of filters.

Definition 704. Rebase for every filter A and every A ∈ Z is A ÷ A =
d{↑A(X⊓A)

X∈A

}
.

Obvious 705. ⟨A⊓⟩∗S A is a filter on A.

Proposition 706. The rebase conforms to the formula

A ÷A = ⟨A⊓⟩∗S A.

Proof. We know that ⟨A⊓⟩∗S A is a filter.
If P ∈ ⟨A⊓⟩∗S A then P ∈ PA and Y ⊓ A ⊑ P for some Y ∈ A. Thus

P ⊒ Y ⊓A ∈
d{↑A(Y ⊓A)

Y ∈A

}
.

If P ∈
d{↑A(X⊓A)

X∈A

}
then by properties of generalized filter bases, there exists

X ∈ A such that P ⊒ X ⊓A. Also P ∈ PA. Thus P ∈ ⟨A⊓⟩∗S A. □

Proposition 707. X ÷ Base(X ) = X .

Proof. Because X ⊓ Base(X ) = X for X ∈ X . □

Proposition 708. (X ÷A) ÷B = X ÷B if B ⊑ A.

Proof.

(X ÷A) ÷B =
l
 ↑B (Y ⊓B)
Y ∈

d{↑A(X⊓A)
X∈X

}
 =

l{
↑B (X ⊓A)
X ∈ X

}
⊓ ↑B B =

l{
↑B (X ⊓A ⊓B)

X ∈ X

}
=

l{
↑B (X ⊓B)
X ∈ X

}
= X ÷B.

□

Proposition 709. If A ∈ A then A ÷A = A ∩ PA.

Proof. A ÷ A = ⟨A⊓⟩∗S A = ⟨A⊓⟩∗
{

K∈Z
∃X∈A:X⊑K

}
=
{

K∈Z
K∈A∧K∈PA

}
= A ∩

PA. □

Proposition 710. Let filters X and Y be such that Base(X ) = Base(Y) = B.
Then X ÷ C = Y ÷ C ⇔ X = Y for every Z ∋ C ⊒ B.

Proof. X ÷ C = Y ÷ C ⇔ X ∪
{

K∈PC
K⊒B

}
= Y ∪

{
K∈PC
K⊒B

}
⇔ X = Y. □

5.39.2. Equivalence of filters.

Definition 711. Two filters A and B (with possibly different base sets) are
equivalent (A ∼ B) iff there exists an X ∈ Z such that X ∈ A and X ∈ B and
PX ∩ A = PX ∩ B.

Proposition 712. X and Y are equivalent iff (X ∼ Y) iff Y = X ÷ Base(Y)
and X = Y ÷ Base(X ).

Proof.
⇒. Suppose X ∼ Y that is there exists a set P such that PP ∩ X = PP ∩ Y

and P ∈ X , P ∈ Y. Then X ÷ Base(Y) = (PP ∩ X ) ∪
{

K∈P Base(Y)
K⊒P

}
=

(PP ∩Y)∪
{

K∈P Base(Y)
K⊒P

}
= Y. So X ÷Base(Y) = Y, Y ÷Base(X ) = X

is similar.
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⇐. We have Y = (Y ÷ Base(X )) ÷ Base(Y).
Thus as easy to show Base(X )⊓Base(Y) ∈ Y and similarly Base(X )⊓

Base(Y) ∈ X .
It’s enough to show X ÷ (Base(X ) ⊓ Base(Y)) = Y ÷ (Base(X ) ⊓

Base(Y)) because for every P ∈ X ,Y we have X ∩ PP = X ÷ P =
(X ÷ (Base(X ) ⊓ Base(Y))) ÷P and similarly Y ∩ PP = (Y ÷ (Base(X ) ⊓
Base(Y))) ÷ P . But it follows from the conditions and proposition 708.

□

Proposition 713. If two filters with the same base are equivalent they are
equal.

Proof. Let A and B be two filters and PX ∩ A = PX ∩ B for some set X
such that X ∈ A and X ∈ B, and Base(A) = Base(B). Then

A = (PX ∩ A) ∪
{
Y ∈ DBase(A)

Y ⊒ X

}
=

(PX ∩ B) ∪
{
Y ∈ DBase(B)

Y ⊒ X

}
= B.

□

Proposition 714. If A ∈ S A then A ÷A ∼ A.

Proof.

(A ÷A) ∩ P(A ⊓ Base(A)) =
S A ∩ PA ∩ P(A ⊓ Base(A)) =

S A ∩ P(A ⊓ Base(A)) = A ∩ P(A ⊓ Base(A)).

Thus A ÷A ∼ A because A ⊓ Base(A) ⊒ X ∈ A for some X ∈ A and

A ⊓ Base(A) ⊒ X ⊓ Base(A) ∈ A ÷A.

□

Proposition 715. ∼ is an equivalence relation.

Proof.
Reflexivity. Obvious.
Symmetry. Obvious.
Transitivity. Let A ∼ B and B ∼ C for some filters A, B, and C. Then there exist

a set X such that X ∈ A and X ∈ B and PX ∩ A = PX ∩ B and a set
Y such that Y ∈ B and Y ∈ C and PY ∩ B = PY ∩ C. So X ⊓ Y ∈ A
because

PY ∩ PX ∩ A = PY ∩ PX ∩ B = P(X ⊓ Y ) ∩ B ⊇ {X ⊓ Y } ∩ B ∋ X ⊓ Y.

Similarly we have X ⊓ Y ∈ C. Finally

P(X ⊓ Y ) ∩ A = PY ∩ PX ∩ A = PY ∩ PX ∩ B =
PX ∩ PY ∩ B = PX ∩ PY ∩ C =P(X ⊓ Y ) ∩ C.

□

Definition 716. I will call equivalence classes as unfixed filters.

Remark 717. The word “unfixed” is meant to negate “fixed” (having a par-
ticular base) filters.
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Proposition 718. A ∼ B iff S A = S B for every filters A, B on sets.3

Proof. Let A ∼ B. Then there is a set P such that P ∈ A, P ∈ B and
A ∩ PP = B ∩ PP . So S A = (A ∩ PP ) ∪

{
K∈Z
K⊒P

}
. Similarly S B = (B ∩ PP ) ∪{

K∈Z
K⊒P

}
. Combining, we have S A = S B.

Let now S A = S B. Take K ∈ S A = S B. Then A ÷ K = B ÷ K and thus
(proposition 714) A ∼ A ÷K = B ÷K ∼ B, so having A ∼ B. □

Proposition 719. A ∼ B ⇒ A ÷ B = B ÷ B for every filters A and B and
set B.

Proof. A ÷B = ⟨B⊓⟩∗S A = ⟨B⊓⟩∗S B = B ÷B. □

5.39.3. Poset of unfixed filters.
Lemma 720. Let filters X and Y be such that Base(X ) = Base(Y) = B. Then

X ÷ C ⊑ Y ÷ C ⇔ X ⊑ Y for every set C ⊇ B.
Proof.

X ÷ C ⊑ Y ÷ C ⇔ X ÷ C ⊇ Y ÷ C ⇔

X ∪
{
K ∈ PC

K ⊒ B

}
⊇ Y ∪

{
K ∈ PC

K ⊒ B

}
⇔ X ⊇ Y ⇔ X ⊑ Y.

□

Proposition 721. X ⊑ Y ⇒ X ÷ B ⊑ Y ÷ B for every filters X , Y with the
same base and set B.

Proof. X ⊑ Y ⇔ X ⊇ Y ⇒ X ÷B ⊇ Y ÷B ⇔ X ÷B ⊑ Y ÷B. □

Define order of unfixed filters using already defined order of filters of a fixed
base:

Definition 722. X ⊑ Y ⇔ ∃x ∈ X , y ∈ Y : (Base(x) = Base(y) ∧ x ⊑ y) for
unfixed filters X , Y.

Proposition 718 allows to define:
Definition 723. S A = S a for every a ∈ A for every unfixed filter A.
Theorem 724. S is an order-isomorphism from the poset of unfixed filters to

the poset of filters on Z.
Proof. We already know that S is an order embedding. It remains to prove

that it is a surjection.
Let Y be a filter on Z. Take Z ∋ X ∈ Y. Then ⟨X⊓⟩∗Y is a filter on X and

S [⟨X⊓⟩∗Y] = S ⟨X⊓⟩∗Y = Y. We have proved that it is a surjection. □

Lemma 725. X ⊑ Y ⇔ S X ⊑ S Y for every unfixed filters X , Y.
Proof.

⇒. Suppose X ⊑ Y. Then there exist x ∈ X , y ∈ Y such that Base(x) = Base(y)
and x ⊑ y. Then S X = S x ⊑ S y = S Y.

⇐. Suppose S X ⊑ S Y. Then there are x ∈ X , y ∈ Y such that S x ⊑ S y.
Consequently S x′ ⊑ S y′ for x′ = x ÷ (Base(x) ⊔ Base(y)), y′ = y ÷
(Base(x) ⊔ Base(y)). So we have x′ ∈ X , y′ ∈ Y, Base(x′) = Base(y′) and
x′ ⊑ y′, thus X ⊑ Y.

3Use this proposition to shorten proofs of other theorem about equivalence of filters? (Our
proof uses transitivity of equivalence of filters. So we can’t use it to prove that it is an equivalence
relation, to avoid circular proof.)
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□

Theorem 726. ⊑ on the set of unfixed filters is a poset.

Proof.
Reflexivity. From the previous theorem.
Transitivity. From the previous theorem.
Antisymmetry. Suppose X ⊑ Y and Y ⊑ X . Then S X ⊑ S Y and S Y ⊑ S X .

Thus S X = S Y and so S x = S y for some x ∈ X , y ∈ Y. Consequently
S (x÷B) = S (y ÷B) for B = Base(x) ⊔ Base(y). Thus x÷B = y ÷B
and so x ∼ y, thus X = Y.

□

Theorem 727. [x] ⊑ [y] ⇔ x ⊑ y for filters x and y with the same base set.

Proof.
⇐. Obvious.
⇒. Let Base(x) = Base(y) = B. Suppose [x] ⊑ [y]. Then there exist x′ ∼ x and

y′ ∼ y such that C = Base(x′) = Base(y′) (for some set C) and x′ ⊑ y′.
We have by the lemma x′ ÷ (B ⊔ C) ⊑ y′ ÷ (B ⊔ C).
But x′ ÷ (B ⊔C) = x÷ (B ⊔C) and y′ ÷ (B ⊔C) = y ÷ (B ⊔C). So

x÷ (B ⊔ C) ⊑ y ÷ (B ⊔ C) and thus again applying the lemma x ⊑ y.
□

5.39.4. Rebase of unfixed filters. Proposition 719 allows to define:

Definition 728. A ÷B = a÷B for an unfixed filter A and arbitrary a ∈ A.

Proposition 729. X ⊑ Y ⇒ X ÷ C ⊑ Y ÷ C for every unfixed filters X , Y
and set C.

Proof. Let X ⊑ Y. Then there are x ∈ X , y ∈ Y such that Base(x) = Base(y)
and x ⊑ y. Then by proved above x ÷ C ⊑ y ÷ C what is equivalent to X ÷ C ⊑
Y ÷ C. □

Proposition 730. If C ∈ S X and C ∈ S Y for unfixed filters X and Y then
X ÷ C ⊑ Y ÷ C ⇔ X ⊑ Y.

Proof.
⇐. Previous proposition.
⇒. Let X ÷C ⊑ Y ÷C. We have some x ∈ X , y ∈ Y, such that Base(x) = Base(y)

and x÷ C ⊑ y ÷ C. So S (x÷ C) ⊑ S (y ÷ C). But S (x÷ C) ∼ x and
S (y ÷ C) ∼ y. Thus S x ⊑ S y that is x ⊑ y and so X ⊑ Y.

□

Obvious 731. (X ÷ A) ÷ B = X ÷ B if B ⊑ A for every unfixed filter X and
sets A, B.

Obvious 732. A ÷B = ⟨B⊓⟩∗S A for every unfixed filter A.

Obvious 733. If A ∈ S A then A ÷A ∈ A for every unfixed filter A.

Proposition 734. If C ∈ S X and C ∈ S Y for unfixed filters X and Y then
X ÷ C = Y ÷ C ⇔ X = Y.

Proof. The backward implication is obvious. Let now X ÷ C = Y ÷ C.
Take x ∈ X , y ∈ Y. We have X ÷C = x÷C = (x÷B) ÷C for B = C ⊔ Base(x) ⊔
Base(y). Similary Y ÷C = (y÷B) ÷C. Thus (x÷B) ÷C = (y÷B) ÷C and thus
x÷B = y ÷B, so x ∼ y that is X = Y. □
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Proposition 735. A ÷A =
d{↑A(X⊓A)

X∈S A

}
for every unfixed filter A.

Proof. Take a ∈ A.

l{
↑A (X ⊓A)
X ∈ S A

}
=

l{
↑A (X ⊓A ⊓ Base(a))

X ∈ S A

}
=

l{
↑A (X ⊓A)

X ∈ S A ∩ P Base(a)

}
=

l{
↑A (X ⊓A)

X ∈ S a ∩ P Base(a)

}
=

l{
↑A (X ⊓A)
X ∈ a

}
= a÷A = A ÷A.

□

5.39.5. The diagram for unfixed filters. Fix a set B.

Lemma 736. X 7→ X ÷B and x 7→ [x] are mutually inverse order isomorphisms
between

{unfixed filter X
B∈S X

}
and F(DB).

Proof. First, X ÷ B ∈ F(DB) for X ∈
{unfixed filter X

B∈S X
}

and [x] ∈{unfixed filter X
B∈S X

}
for x ∈ F(DB).

Suppose X0 ∈
{unfixed filter X

B∈S X
}

, x = X0 ÷ B, and X1 = [x]. We will prove
X0 = X1. Really, x ∈ X1, x = k ÷B for k ∈ X0, x ∼ k, thus x ∈ X0. So X0 = X1.

Suppose x0 ∈ F(DB), X = [x0], x1 = X ÷ B. We will prove x0 = x1. Really,
x1 = x0 ÷B. So x1 = x0 because Base(x0) = Base(x1) = B.

So we proved that they are mutually inverse bijections. That they are order
preserving is obvious. □

Lemma 737. S and X 7→ ⟨B⊓⟩∗X = X ∩ PB are mutually inverse order
isomorphisms between F(DB) and

{
X ∈F(Z)

B∈X

}
.

Proof. First, S x ∈
{

X ∈F(Z)
B∈X

}
for x ∈ F(DB) because of theorem 724 and

⟨B⊓⟩∗X ∈ F(DB) obviously.
Let’s prove ⟨B⊓⟩∗X = X ∩PB. If X ∈ ⟨B⊓⟩∗X then X ∈ X (because B ∈ X )

and X ∈ PB. So X ∈ X ∩ PB. If X ∈ X ∩ PB then X = B ∩X ∈ ⟨B⊓⟩∗X .
Let x0 ∈ F(DB), X = S x, and x1 = ⟨B⊓⟩∗X . Then obviously x0 = x1.
Let now X0 ∈

{
X ∈F(Z)

B∈X

}
, x = ⟨B⊓⟩∗X0, and X1 = S x. Then X1 = X0 ∪{

K∈Z
K⊒B

}
= X0.

So we proved that they are mutually inverse bijections. That they are order
preserving is obvious. □

Theorem 738. The diagram at the figure 7 (with the horizontal “unnamed”
arrow defined as the inverse isomorphism of its opposite arrow) is a commutative
diagram (in category Set), every arrow in this diagram is an isomorphism. Ev-
ery cycle in this diagram is an identity (therefore “parallel” arrows are mutually
inverse). The arrows preserve order.

Proof. It’s proved above, that all morphisms (except the “unnamed” arrow,
which is the inverse morphism by definition) depicted on the diagram are bijections
and the depicted “opposite” morphisms are mutually inverse.

That arrows preserve order is obvious.
It remains to apply lemma 196 (taking into account the proof of theorem 724).

□
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F(DB)

{
X ∈F(Z)

B∈X

} {unfixed filter X
B∈S X

}
x7→[x]

S

X 7→⟨B⊓⟩∗X =X ∩PB

X 7→X ÷B

S

Figure 7

5.39.6. The lattice of unfixed filters.

Theorem 739. Every nonempty set of unfixed filters has an infimum, provided
that the lattice Z is distributive.

Proof. Theorem 520. □

Theorem 740. Every bounded above set of unfixed filters has a supremum.

Proof. Theorem 515 for nonempty sets of unfixed filters. The join d∅ = [⊥]
for the least filter ⊥ ∈ Z(DA) for arbitrary A ∈ Z. □

Corollary 741. If Z is the set of small sets, then every small set of unfixed
filters has a supremum.

Proof. Let S be a set of filters on Z. Then TX ∈ X is a small set for every X ∈
S. Thus

{
TX

X ∈S

}
is small set and thus T =

⋃{ TX
X ∈S

}
is small set. Take the filter

T =↑ T . Then T is an upper bound of S and we can apply the theorem. □

Obvious 742. The poset of unfixed filters for the lattice of small sets is bounded
below (but not above).

Proposition 743. The set of unfixed filters forms a co-brouwerian (and thus
distributive) lattice, provided that Z is distributive lattice which is an ideal base.

Proof. Corollary 531. □

5.39.7. Principal unfixed filters and filtrator of unfixed filters.

Definition 744. Principal unfixed filter is an unfixed filter corresponding to
a principal filter on the poset Z.

Definition 745. The filtrator of unfixed filters is the filtrator whose base are
unfixed filters and whose core are principal unfixed filters.

We will equate principal unfixed filters with corresponding sets.

Theorem 746. If we add principal filters on DB, principal filters on Z con-
taining B, and above defined principal unfixed filters corresponding to them to
appropriate nodes of the diagram 7, then the diagram turns into a commutative
diagram of isomorphisms between filtrators. (I will not draw the modified diagram
for brevity.)

Every arrow of this diagram is an isomorphism between filtrators, every cycle
in the diagram is identity.

Proof. We need to prove only that principal filters on B and principal filters
on Z containing B correspond to each other by the isomorphisms of the diagram.
But that’s obvious. □
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Obvious 747. The filtrator of unfixed filters is a primary filtrator.

Obvious 748. The filtrator of unfixed filters is down-aligned.

Proposition 749. The filtrator of unfixed filters is
1◦. filtered;
2◦. with join-closed core.

Proof. Theorem 534. □

Proposition 750. The filtrator of unfixed filters is with binarily meet-closed
core.

Proof. Corollary 536. □

Proposition 751. The filtrator of unfixed filters is with separable core.

Proof. Theorem 537. □

Proposition 752. Cor X and Cor′ X are defined for every unfixed filter X and
Cor X = Cor′ X , provided that every DA is a complete lattice.

Proof. Cor X and Cor′ X exists because of the above isomorphism.
Cor′ X = Cor X by theorem 545. □

Obvious 753. Cor X = Cor′ X =
⋂

X for every filter X ∈ F(small sets).

Proposition 754. atoms
d
S =

⋂
⟨atoms⟩∗

S whenever
d
S is defined.

Proof. Theorem 108. □

Proposition 755. atoms(A ⊔ B) = atoms A ∪ atoms B for unfixed filters A, B,
whenever Z is a distributive lattice which is an ideal base.

Proof. Proposition 557. □

Proposition 756. ∂X is a free star for every unfixed filter X , whenever Z is
a distributive lattice which is an ideal base which has a least element.

Proof. Theorem 566. □

Proposition 757. The poset of unfixed filters is an atomistic lattice if ev-
ery DA (for A ∈ A) is an atomistic lattice.

Proof. Easily follows from 738 by isomorphism. □

Proposition 758. The poset of unfixed filters is a strongly separable lattice
if every DA (for A ∈ A) is an atomistic lattice.

Proof. Theorem 234. □

Proposition 759. Cor X = d(Z∩atomsunfixed filters) for every unfixed filter X
if every DA (for A ∈ A) is an atomistic lattice.

Proof. Theorem 599. □

Proposition 760. Cor(A ⊓ B) = Cor A ⊓ Cor B for every unfixed filters A, B,
provided every DA (for A ∈ A) is a complete lattice.

Proof. Theorem 601. □

Proposition 761. Cor
dA

S =
dZ⟨Cor⟩∗

S for the filtrator of unfixed filters
for every nonempty set S of unfixed filters, provided every DA (for A ∈ A) is a
complete lattice.

Proof. Theorem 602. □
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Proposition 762. Cor(A ⊔A B) = Cor A ⊔Z Cor B for the filtrator of unfixed
filters for every unfixed filters A, and B, provided every DA (for A ∈ A) is a
complete atomistic distributive lattice.

Proof. Can be easily deduced from theorem 603 and the triangular diagram
(above) of isomorphic filtrators. □

Conjecture 763. The theorem 614 holds for unfixed filters, too.

It is expected to be easily provable using isomorphisms from the triangular
diagram.



CHAPTER 6

Common knowledge, part 2 (topology)

In this chapter I describe basics of the theory known as general topology. Start-
ing with the next chapter after this one I will describe generalizations of customary
objects of general topology described in this chapter.

The reason why I’ve written this chapter is to show to the reader kinds of objects
which I generalize below in this book. For example, funcoids and a generalization of
proximity spaces, and funcoids are a generalization of pretopologies. To understand
the intuitive meaning of funcoids one needs first know what are proximities and
what are pretopologies.

Having said that, customary topology is not used in my definitions and proofs
below. It is just to feed your intuition.

6.1. Metric spaces

The theory of topological spaces started immediately with the definition would
be completely non-intuitive for the reader. It is the reason why I first describe
metric spaces and show that metric spaces give rise for a topology (see below).
Topological spaces are understandable as a generalization of topologies induced by
metric spaces.

Metric spaces is a formal way to express the notion of distance. For example,
there are distance |x − y| between real numbers x and y, distance between points
of a plane, etc.

Definition 764. A metric space is a set U together with a function d : U×U →
R (distance or metric) such that for every x, y, z ∈ U :

1◦. d(x, y) ≥ 0;
2◦. d(x, y) = 0 ⇔ x = y;
3◦. d(x, y) = d(y, x) (symmetry);
4◦. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Exercise 765. Show that the Euclid space Rn (with the standard distance) is
a metric space for every n ∈ N.

Definition 766. Open ball of radius r > 0 centered at point a ∈ U is the set

Br(a) =
{

x ∈ U

d(a, x) < r

}
.

Definition 767. Closed ball of radius r > 0 centered at point a ∈ U is the set

Br[a] =
{

x ∈ U

d(a, x) ≤ r

}
.

One example of use of metric spaces: Limit of a sequence x in a metric space
can be defined as a point y in this space such that

∀ϵ > 0∃N ∈ N∀n > N : d(xn, y) < ϵ.

140
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6.1.1. Open and closed sets.

Definition 768. A set A in a metric space is called open when ∀a ∈ A∃r >
0 : Br(a) ⊆ A.

Definition 769. A set A in a metric space is closed when its complement U \A
is open.

Exercise 770. Show that: closed intervals on real line are closed sets, open
intervals are open sets.

Exercise 771. Show that open balls are open and closed balls are closed.

Definition 772. Closure cl(A) of a set A in a metric space is the set of points
y such that

∀ϵ > 0∃a ∈ A : d(y, a) < ϵ.

Proposition 773. cl(A) ⊇ A.

Proof. It follows from d(a, a) = 0 < ϵ. □

Exercise 774. Prove cl(A ∪ B) = cl(A) ∪ cl(B) for every subsets A and B of
a metric space.

6.2. Pretopological spaces

Pretopological space can be defined in two equivalent ways: a neighborhood
system or a preclosure operator. To be more clear I will call pretopological space
only the first (neighborhood system) and the second call a preclosure space.

Definition 775. Pretopological space is a set U together with a filter ∆(x)
on U for every x ∈ U , such that ↑U {x} ⊑ ∆(x). ∆ is called a pretopology on U .
Elements of up ∆(x) are called neighborhoods of point x.

Definition 776. Preclosure on a set U is a unary operation cl on PU such
that for every A,B ∈ PU :

1◦. cl(∅) = ∅;
2◦. cl(A) ⊇ A;
3◦. cl(A ∪B) = cl(A) ∪ cl(B).

I call a preclosure together with a set U as preclosure space.

Theorem 777. Small pretopological spaces and small preclosure spaces bijec-
tively correspond to each other by the formulas:

cl(A) =
{

x ∈ U

A ∈ ∂∆(x)

}
; (3)

up ∆(x) =
{

A ∈ PU

x /∈ cl(U \A)

}
. (4)

Proof. First let’s prove that cl defined by formula (3) is really a preclosure.
cl(∅) = ∅ is obvious. If x ∈ A then A ∈ ∂∆(x) and so cl(A) ⊇ A. cl(A ∪ B) ={

x∈U
A∪B∈∂∆(x)

}
=
{

x∈U
A∈∂∆(x)∨B∈∂∆(x)

}
= cl(A) ∪ cl(B). So, it is really a preclosure.

Next let’s prove that ∆ defined by formula (4) is a pretopology. That up ∆(x)
is an upper set is obvious. Let A,B ∈ up ∆(x). Then x /∈ cl(U \A) ∧x /∈ cl(U \B);
x /∈ cl(U \A)∪cl(U \B) = cl((U \A)∪ (U \B)) = cl(U \ (A∩B)); A∩B ∈ up ∆(x).
We have proved that ∆(x) is a filter object.

Let’s prove ↑U {x} ⊑ ∆(x). If A ∈ up ∆(x) then x /∈ cl(U \A) and consequently
x /∈ U \A; x ∈ A; A ∈ up ↑U {x}. So ↑U {x} ⊑ ∆(x) and thus ∆ is a pretopology.
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It is left to prove that the functions defined by the above formulas are mutually
inverse.

Let cl0 be a preclosure, let ∆ be the pretopology induced by cl0 by the formula
(4), let cl1 be the preclosure induced by ∆ by the formula (3). Let’s prove cl1 = cl0.
Really,

x ∈ cl1(A) ⇔
∆(x) ̸≍↑U A ⇔

∀X ∈ up ∆(x) : X ∩A ̸= ∅ ⇔
∀X ∈ PU : (x /∈ cl0(U \X) ⇒ X ∩A ̸= ∅) ⇔

∀X ′ ∈ PU : (x /∈ cl0(X ′) ⇒ A \X ′ ̸= ∅) ⇔
∀X ′ ∈ PU : (A \X ′ = ∅ ⇒ x ∈ cl0(X ′)) ⇔

∀X ′ ∈ PU : (A ⊆ X ′ ⇒ x ∈ cl0(X ′)) ⇔
x ∈ cl0(A).

So cl1(A) = cl0(A).
Let now ∆0 be a pretopology, let cl be the closure induced by ∆0 by the formula

(3), let ∆1 be the pretopology induced by cl by the formula (4). Really

A ∈ up ∆1(x) ⇔
x /∈ cl(U \A) ⇔

∆0(x) ≍↑U (U \A) ⇔ (proposition 551)
↑U A ⊒ ∆0(x) ⇔
A ∈ up ∆0(x).

So ∆1(x) = ∆0(x).
That these functions are mutually inverse, is now proved. □

6.2.1. Pretopology induced by a metric. Every metric space induces a
pretopology by the formula:

∆(x) =
FUl{

Br(x)
r ∈ R, r > 0

}
.

Exercise 778. Show that it is a pretopology.

Proposition 779. The preclosure corresponding to this pretopology is the
same as the preclosure of the metric space.

Proof. I denote the preclosure of the metric space as clM and the preclosure
corresponding to our pretopology as clP . We need to show clP = clM . Really:

clP (A) ={
x ∈ U

A ∈ ∂∆(x)

}
={

x ∈ U

∀ϵ > 0 : Bϵ(x) ̸≍ A

}
={

y ∈ U

∀ϵ > 0∃a ∈ A : d(y, a) < ϵ

}
=

clM (A)

for every set A ∈ PU . □
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6.3. Topological spaces

Proposition 780. For the set of open sets of a metric space (U, d) it holds:
1◦. Union of any (possibly infinite) number of open sets is an open set.
2◦. Intersection of a finite number of open sets is an open set.
3◦. U is an open set.

Proof. Let S be a set of open sets. Let a ∈
⋃
S. Then there exists A ∈ S such

that a ∈ A. Because A is open we have Br(a) ⊆ A for some r > 0. Consequently
Br(a) ⊆

⋃
S that is

⋃
S is open.

Let A0, . . . , An be open sets. Let a ∈ A0 ∩ · · · ∩An for some n ∈ N. Then there
exist ri such that Bri

(a) ⊆ Ai. So Br(a) ⊆ A0 ∩ · · · ∩ An for r = min{r0, . . . , rn}
that is A0 ∩ · · · ∩An is open.

That U is an open set is obvious. □

The above proposition suggests the following definition:

Definition 781. A topology on a set U is a collection O (called the set of open
sets) of subsets of U such that:

1◦. Union of any (possibly infinite) number of open sets is an open set.
2◦. Intersection of a finite number of open sets is an open set.
3◦. U is an open set.

The pair (U,O) is called a topological space.

Remark 782. From the above it is clear that every metric induces a topology.

Proposition 783. Empty set is always open.

Proof. Empty set is union of an empty set. □

Definition 784. A closed set is a complement of an open set.

Topology can be equivalently expresses in terms of closed sets:
A topology on a set U is a collection (called the set of closed sets) of subsets of

U such that:
1◦. Intersection of any (possibly infinite) number of closed sets is a closed set.
2◦. Union of a finite number of closed sets is a closed set.
3◦. ∅ is a closed set.

Exercise 785. Show that the definitions using open and closed sets are equiv-
alent.

6.3.1. Relationships between pretopologies and topologies.
6.3.1.1. Topological space induced by preclosure space. Having a preclosure

space (U, cl) we define a topological space whose closed sets are such sets A ∈ PU
that cl(A) = A.

Proposition 786. This really defines a topology.

Proof. Let S be a set of closed sets. First, we need to prove that
⋂
S is

a closed set. We have cl(
⋂
S) ⊆ A for every A ∈ S. Thus cl(

⋂
S) ⊆

⋂
S and

consequently cl(
⋂
S) =

⋂
S. So

⋂
S is a closed set.

Let now A0, . . . , An be closed sets, then

cl(A0 ∪ · · · ∪An) = cl(A0) ∪ · · · ∪ cl(An) = A0 ∪ · · · ∪An

that is A0 ∪ · · · ∪An is a closed set.
That ∅ is a closed set is obvious. □
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Having a pretopological space (U,∆) we define a topological space whose open
sets are {

X ∈ PU

∀x ∈ X : X ∈ up ∆(x)

}
.

Proposition 787. This really defines a topology.

Proof. Let set S ⊆
{

X∈PU
∀x∈X:X∈up ∆(x)

}
. Then ∀X ∈ S∀x ∈ X : X ∈ up ∆(x).

Thus
∀x ∈

⋃
S∃X ∈ S : X ∈ up ∆(x)

and so ∀x ∈
⋃
S :
⋃
S ∈ up ∆(x). So

⋃
S is an open set.

Let now A0, . . . , An ∈
{

X∈PU
∀x∈X:X∈up ∆(x)

}
for n ∈ N. Then ∀x ∈ Ai : Ai ∈

up ∆(x) and so
∀x ∈ A0 ∩ · · · ∩An : Ai ∈ up ∆(x);

thus ∀x ∈ A0 ∩ · · · ∩ An : A0 ∩ · · · ∩ An ∈ up ∆(x). So A0 ∩ · · · ∩ An ∈{
X∈PU

∀x∈X:X∈up ∆(x)

}
.

That U is an open set is obvious. □

Proposition 788. Topology τ defined by a pretopology and topology ρ defined
by the corresponding preclosure, are the same.

Proof. Let A ∈ PU .
A is ρ-closed ⇔ cl(A) = A ⇔ cl(A) ⊆ A ⇔ ∀x ∈ U : (A ∈ ∂∆(x) ⇒ x ∈ A);

A is τ -open ⇔
∀x ∈ A : A ∈ up ∆(x) ⇔

∀x ∈ U : (x ∈ A ⇒ A ∈ up ∆(x)) ⇔
∀x ∈ U : (x /∈ U \A ⇒ U \A /∈ ∂∆(x)).

So ρ-closed and τ -open sets are complements of each other. It follows ρ = τ . □

6.3.1.2. Preclosure space induced by topological space. We define a preclosure
and a pretopology induced by a topology and then show these two are equivalent.

Having a topological space we define a preclosure space by the formula

cl(A) =
⋂{ X ∈ PU

X is a closed set, X ⊇ A

}
.

Proposition 789. It is really a preclosure.

Proof. cl(∅) = ∅ because ∅ is a closed set. cl(A) ⊇ A is obvious.
cl(A ∪B) =⋂{ X ∈ PU

X is a closed set, X ⊇ A ∪B

}
=⋂{ X1 ∪X2

X1, X2 ∈ PU are closed sets, X1 ⊇ A,X2 ⊇ B

}
=⋂{ X1 ∈ PU

X1 is a closed set, X1 ⊇ A

}
∪
⋂{ X2 ∈ PU

X2 is a closed set, X2 ⊇ B

}
=

cl(A) ∪ cl(B).
Thus cl is a preclosure. □

Or: ∆(x) =
dF{X∈O

x∈X

}
.

It is trivially a pretopology (used the fact that U ∈ O).
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Proposition 790. The preclosure and the pretopology defined in this section
above correspond to each other (by the formulas from theorem 777).

Proof. We need to prove cl(A) =
{

x∈U
∆(x)̸≍↑U A

}
, that is

⋂{ X ∈ PU

X is a closed set, X ⊇ A

}
=
{

x ∈ U
dFU{X∈O

x∈X

}
̸≍↑U A

}
.

Equivalently transforming it, we get:

⋂{ X ∈ PU

X is a closed set, X ⊇ A

}
=
{

x ∈ U

∀X ∈ O : (x ∈ X ⇒↑U X ̸≍↑U A)

}
;⋂{ X ∈ PU

X is a closed set, X ⊇ A

}
=
{

x ∈ U

∀X ∈ O : (x ∈ X ⇒ X ̸≍ A)

}
.

We have

x ∈
⋂{ X ∈ PU

X is a closed set, X ⊇ A

}
⇔

∀X ∈ PU : (X is a closed set ∧X ⊇ A ⇒ x ∈ X) ⇔
∀X ′ ∈ O : (U \X ′ ⊇ A ⇒ x ∈ U \X ′) ⇔

∀X ′ ∈ O : (X ′ ≍ A ⇒ x /∈ X ′) ⇔
∀X ∈ O : (x ∈ X ⇒ X ̸≍ A).

So our equivalence holds. □

Proposition 791. If τ is the topology induced by pretopology π, in turn
induced by topology ρ, then τ = ρ.

Proof. The set of closed sets of τ is {
A ∈ PU

clπ(A) = A

}
= A ∈ PU⋂{

X∈PU
X is a closed set in ρ,X⊇A

}
= A

 =

{
A ∈ PU

A is a closed set in ρ

}
(taken into account that intersecting closed sets is a closed set). □

Definition 792. Idempotent closures are called Kuratowski closures.

Theorem 793. The above defined correspondences between topologies and
pretopologies, restricted to Kuratowski closures, is a bijection.

Proof. Taking into account the above proposition, it’s enough to prove that:
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If τ is the pretopology induced by topology π, in turn induced by a Kuratowski
closure ρ, then τ = ρ.

clτ (A) =⋂{ X ∈ PU

X is a closed set in π,X ⊇ A

}
=⋂{ X ∈ PU

clρ(X) = X,X ⊇ A

}
=

⋂{ clρ(X)
X ∈ PU, clρ(X) = X,X ⊇ clρ(A)

}
=

⋂{clρ(clρ(X))
X = A

}
=

clρ(clρ(A)) =
clρ(A).

□

6.3.1.3. Topology induced by a metric.

Definition 794. Every metric space induces a topology in this way: A set X
is open iff

∀x ∈ X∃ϵ > 0 : Br(x) ⊆ X.

Exercise 795. Prove it is really a topology and this topology is the same as
the topology, induced by the pretopology, in turn induced by our metric space.

6.4. Proximity spaces

Let (U, d) be metric space. We will define distance between sets A,B ∈ PU
by the formula

d(A,B) = inf
{

d(a, b)
a ∈ A, b ∈ B

}
.

(Here “inf” denotes infimum on the real line.)

Definition 796. Sets A,B ∈ PU are near (denoted A δ B) iff d(A,B) = 0.

δ defined in this way (for a metric space) is an example of proximity as defined
below.

Definition 797. A proximity space is a set (U, δ) conforming to the following
axioms (for every A,B,C ∈ PU):

1◦. A ∩B ̸= ∅ ⇒ A δ B;
2◦. if A δ B then A ̸= ∅ and B ̸= ∅;
3◦. A δ B ⇒ B δ A (symmetry);
4◦. (A ∪B) δ C ⇔ A δ C ∨B δ C;
5◦. C δ (A ∪B) ⇔ C δ A ∨ C δ B;
6◦. A δ̄ B implies existence of P,Q ∈ PU with A δ̄ P , B δ̄ Q and P ∪Q = U .

Exercise 798. Show that proximity generated by a metric space is really a
proximity (conforms to the above axioms).

Definition 799. Quasi-proximity is defined as the above but without the sym-
metry axiom.

Definition 800. Closure is generated by a proximity by the following formula:

cl(A) =
{
a ∈ U

{a} δ A

}
.
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Proposition 801. Every closure generated by a proximity is a Kuratowski
closure.

Proof. First prove it is a preclosure. cl(∅) = ∅ is obvious. cl(A) ⊇ A is
obvious.

cl(A ∪B) ={
a ∈ U

{a} δ A ∪B

}
={

a ∈ U

{a} δ A ∨ {a} δ B

}
={

a ∈ U

{a} δ A

}
∪
{
a ∈ U

{a} δ B

}
=

cl(A) ∪ cl(B).
It is remained to prove that cl is idempotent, that is cl(cl(A)) = cl(A). It is

enough to show cl(cl(A)) ⊆ cl(A) that is if x /∈ cl(A) then x /∈ cl(cl(A)).
If x /∈ cl(A) then {x} δ̄ A. So there are P,Q ∈ PU such that {x} δ̄ P , A δ̄ Q,

P ∪Q = U . Then U \Q ⊆ P , so {x} δ̄ U \Q and hence x ∈ Q. Hence U \cl(A) ⊆ Q,
and so cl(A) ⊆ U \Q ⊆ P . Consequently {x} δ̄ cl(A) and hence x /∈ cl(cl(A)). □

6.5. Definition of uniform spaces

Here I will present the traditional definition of uniform spaces. Below in the
chapter about reloids I will present a shortened and more algebraic (however a little
less elementary) definition of uniform spaces.

Definition 802. Uniform space is a pair (U,D) of a set U and filter D ∈
F(U × U) (called uniformity or the set of entourages) such that:

1◦. If F ∈ D then idU ⊆ F .
2◦. If F ∈ D then there exists G ∈ D such that G ◦G ⊆ F .
3◦. If F ∈ D then F−1 ∈ D.
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CHAPTER 7

Funcoids

In this chapter (and several following chapters) the word filter will refer to a
filter (or equivalently any filter object) on a set (rather than a filter on an arbitrary
poset).

7.1. Informal introduction into funcoids

Funcoids are a generalization of proximity spaces and a generalization of pre-
topological spaces. Also funcoids are a generalization of binary relations.

That funcoids are a common generalization of “spaces” (proximity spaces,
(pre)topological spaces) and binary relations (including monovalued functions)
makes them smart for describing properties of functions in regard of spaces. For
example the statement “f is a continuous function from a space µ to a space ν”
can be described in terms of funcoids as the formula f ◦ µ ⊑ ν ◦ f (see below for
details).

Most naturally funcoids appear as a generalization of proximity spaces.1
Let δ be a proximity. We will extend the relation δ from sets to filters by the

formula:
A δ′ B ⇔ ∀A ∈ up A, B ∈ up B : A δ B.

Then (as it will be proved below) there exist two functions α, β ∈ FF such
that

A δ′ B ⇔ B ⊓ αA ≠ ⊥F ⇔ A ⊓ βB ̸= ⊥F .

The pair (α, β) is called funcoid when B ⊓ αA ≠ ⊥F ⇔ A ⊓ βB ≠ ⊥F . So
funcoids are a generalization of proximity spaces.

Funcoids consist of two components the first α and the second β. The first
component of a funcoid f is denoted as ⟨f⟩ and the second component is denoted
as
〈
f−1〉. (The similarity of this notation with the notation for the image of a

set under a function is not a coincidence, we will see that in the case of principal
funcoids (see below) these coincide.)

One of the most important properties of a funcoid is that it is uniquely deter-
mined by just one of its components. That is a funcoid f is uniquely determined
by the function ⟨f⟩. Moreover a funcoid f is uniquely determined by values of ⟨f⟩
on principal filters.

Next we will consider some examples of funcoids determined by specified values
of the first component on sets.

Funcoids as a generalization of pretopological spaces: Let α be a pretopological
space that is a map α ∈ F℧ for some set ℧. Then we define α′X = dx∈X αx for
every set X ∈ P℧. We will prove that there exists a unique funcoid f such
that α′ = ⟨f⟩|P◦ ↑ where P is the set of principal filters on ℧. So funcoids are
a generalization of pretopological spaces. Funcoids are also a generalization of
preclosure operators: For every preclosure operator p on a set ℧ it exists a unique
funcoid f such that ⟨f⟩|P◦ ↑=↑ ◦p.

1In fact I discovered funcoids pondering on topological spaces, not on proximity spaces, but
this is only of a historic interest.

149
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For every binary relation p on a set ℧ there exists unique funcoid f such that
∀X ∈ P℧ : ⟨f⟩ ↑ X =↑ ⟨p⟩∗

X

(where ⟨p⟩∗ is defined in the introduction), recall that a funcoid is uniquely deter-
mined by the values of its first component on sets. I will call such funcoids principal.
So funcoids are a generalization of binary relations.

Composition of binary relations (i.e. of principal funcoids) complies with the
formulas:

⟨g ◦ f⟩∗ = ⟨g⟩∗ ◦ ⟨f⟩∗ and
〈
(g ◦ f)−1〉∗ =

〈
f−1〉∗ ◦

〈
g−1〉∗

.

By similar formulas we can define composition of every two funcoids. Funcoids with
this composition form a category (the category of funcoids).

Also funcoids can be reversed (like reversal of X and Y in a binary relation)
by the formula (α, β)−1 = (β, α). In the particular case if µ is a proximity we have
µ−1 = µ because proximities are symmetric.

Funcoids behave similarly to (multivalued) functions but acting on filters in-
stead of acting on sets. Below there will be defined domain and image of a funcoid
(the domain and the image of a funcoid are filters).

7.2. Basic definitions

Definition 803. Let us call a funcoid from a set A to a set B a quadruple
(A,B, α, β) where α ∈ F (B)F(A), α ∈ F (A)F(B) such that

∀X ∈ F (A),Y ∈ F (B) : (Y ̸≍ αX ⇔ X ̸≍ βY).

Definition 804. Source and destination of every funcoid (A,B, α, β) are de-
fined as:

Src(A,B, α, β) = A and Dst(A,B, α, β) = B.

I will denote FCD(A,B) the set of funcoids from A to B.
I will denote FCD the set of all funcoids (for small sets).

Definition 805. I will call an endofuncoid a funcoid whose source is the same
as it’s destination.

Definition 806. ⟨(A,B, α, β)⟩ def= α for a funcoid (A,B, α, β).

Definition 807. The reverse funcoid (A,B, α, β)−1 = (B,A, β, α) for a fun-
coid (A,B, α, β).

Note 808. The reverse funcoid is not an inverse in the sense of group theory
or category theory.

Proposition 809. If f is a funcoid then f−1 is also a funcoid.

Proof. It follows from symmetry in the definition of funcoid. □

Obvious 810. (f−1)−1 = f for a funcoid f .

Definition 811. The relation [f ] ∈ P(F (Src f) × F (Dst f)) is defined (for
every funcoid f and X ∈ F (Src f), Y ∈ F (Dst f) by the formula X [f ] Y ⇔ Y ̸≍
⟨f⟩X .

Obvious 812. X [f ] Y ⇔ Y ̸≍ ⟨f⟩X ⇔ X ̸≍
〈
f−1〉Y for every funcoid f and

X ∈ F (Src f), Y ∈ F (Dst f).

Obvious 813.
[
f−1]=[f ]−1 for a funcoid f .

Theorem 814. Let A, B be sets.
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1◦. For given value of ⟨f⟩ ∈ F (B)F(A) there exists no more than one funcoid
f ∈ FCD(A,B).

2◦. For given value of [f ] ∈ P(F (A) × F (B)) there exists no more than one
funcoid f ∈ FCD(A,B).

Proof. Let f, g ∈ FCD(A,B).
Obviously, ⟨f⟩ = ⟨g⟩ ⇒[f ]=[g] and

〈
f−1〉 =

〈
g−1〉 ⇒[f ]=[g]. So it’s enough to

prove that [f ]=[g]⇒ ⟨f⟩ = ⟨g⟩.
Provided that [f ]=[g] we have

Y ̸≍ ⟨f⟩X ⇔ X [f ] Y ⇔ X [g] Y ⇔ Y ̸≍ ⟨g⟩X

and consequently ⟨f⟩X = ⟨g⟩X for every X ∈ F (A), Y ∈ F (B) because a set of
filters is separable, thus ⟨f⟩ = ⟨g⟩. □

Proposition 815. ⟨f⟩⊥ = ⊥ for every funcoid f .

Proof. Y ̸≍ ⟨f⟩⊥ ⇔ ⊥ ̸≍
〈
f−1〉Y ⇔ 0 ⇔ Y ̸≍ ⊥. Thus ⟨f⟩⊥ = ⊥ by

separability of filters. □

Proposition 816. ⟨f⟩(I ⊔ J ) = ⟨f⟩I ⊔ ⟨f⟩J for every funcoid f and I,J ∈
F (Src f).

Proof.

⋆⟨f⟩(I ⊔ J ) ={
Y ∈ F

Y ̸≍ ⟨f⟩(I ⊔ J )

}
={

Y ∈ F

I ⊔ J ̸≍ ⟨f−1⟩Y

}
={

Y ∈ F

I ̸≍ ⟨f−1⟩Y ∨ J ̸≍ ⟨f−1⟩Y

}
={

Y ∈ F

Y ̸≍ ⟨f⟩I ∨ Y ̸≍ ⟨f⟩J

}
={

Y ∈ F

Y ̸≍ ⟨f⟩I ⊔ ⟨f⟩J

}
=

⋆(⟨f⟩I ⊔ ⟨f⟩J ).

Thus ⟨f⟩(I ⊔ J ) = ⟨f⟩I ⊔ ⟨f⟩J because F (Dst f) is separable. □

Proposition 817. For every f ∈ FCD(A,B) for every sets A and B we have:
1◦. K [f ] I ⊔ J ⇔ K [f ] I ∨ K [f ] J for every I,J ∈ F (B), K ∈ F (A).
2◦. I ⊔ J [f ] K ⇔ I [f ] K ∨ J [f ] K for every I,J ∈ F (A), K ∈ F (B).

Proof.
1◦.

K [f ] I ⊔ J ⇔

(I ⊔ J ) ⊓ ⟨f⟩K ̸= ⊥F(B) ⇔

I ⊓ ⟨f⟩K ̸= ⊥F(B) ∨ J ⊓ ⟨f⟩K ̸= ⊥F(B) ⇔
K [f ] I ∨ K [f ] J .

2◦. Similar.
□
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7.2.1. Composition of funcoids.

Definition 818. Funcoids f and g are composable when Dst f = Src g.

Definition 819. Composition of composable funcoids is defined by the formula

(B,C, α2, β2) ◦ (A,B, α1, β1) = (A,C, α2 ◦ α1, β1 ◦ β2).

Proposition 820. If f , g are composable funcoids then g ◦ f is a funcoid.

Proof. Let f = (A,B, α1, β1), g = (B,C, α2, β2). For every X ∈ F (A),
Y ∈ F (C) we have

Y ̸≍ (α2 ◦ α1)X ⇔ Y ̸≍ α2α1X ⇔ α1X ̸≍ β2Y ⇔ X ̸≍ β1β2Y ⇔ X ̸≍ (β1 ◦ β2)Y.

So (A,C, α2 ◦ α1, β1 ◦ β2) is a funcoid. □

Obvious 821. ⟨g ◦ f⟩ = ⟨g⟩ ◦ ⟨f⟩ for every composable funcoids f and g.

Proposition 822. (h ◦ g) ◦ f = h ◦ (g ◦ f) for every composable funcoids f , g,
h.

Proof.

⟨(h ◦ g) ◦ f⟩ =
⟨h ◦ g⟩ ◦ ⟨f⟩ =

(⟨h⟩ ◦ ⟨g⟩) ◦ ⟨f⟩ =
⟨h⟩ ◦ (⟨g⟩ ◦ ⟨f⟩) =

⟨h⟩ ◦ ⟨g ◦ f⟩ =
⟨h ◦ (g ◦ f)⟩.

□

Theorem 823. (g ◦ f)−1 = f−1 ◦ g−1 for every composable funcoids f and g.

Proof.
〈
(g ◦ f)−1〉 =

〈
f−1〉 ◦

〈
g−1〉 =

〈
f−1 ◦ g−1〉. □

7.3. Funcoid as continuation

Let f be a funcoid.

Definition 824. ⟨f⟩∗ is the function T (Src f) → F (Dst f) defined by the
formula

⟨f⟩∗
X = ⟨f⟩ ↑ X.

Definition 825. [f ]∗ is the relation between T (Src f) and T (Dst f) defined
by the formula

X [f ]∗ Y ⇔↑ X [f ]↑ Y.

Obvious 826.
1◦. ⟨f⟩∗ = ⟨f⟩◦ ↑;
2◦. [f ]∗ =↑−1 ◦[f ]◦ ↑.

Obvious 827. ⟨g⟩⟨f⟩∗
X = ⟨g ◦ f⟩∗

X for every X ∈ T (Src f).

Theorem 828. For every funcoid f and X ∈ F (Src f), Y ∈ F (Dst f)
1◦. ⟨f⟩X =

d〈
⟨f⟩∗〉∗ up X ;

2◦. X [f ] Y ⇔ ∀X ∈ up X , Y ∈ up Y : X [f ]∗ Y .

Proof.
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2◦.

X [f ] Y ⇔
Y ⊓ ⟨f⟩X ̸= ⊥ ⇔

∀Y ∈ up Y :↑ Y ⊓ ⟨f⟩X ̸= ⊥ ⇔
∀Y ∈ up Y : X [f ]↑ Y.

Analogously X [f ] Y ⇔ ∀X ∈ up X :↑ X [f ] Y. Combining these two equiva-
lences we get

X [f ] Y ⇔ ∀X ∈ up X , Y ∈ up Y :↑ X [f ]↑ Y ⇔ ∀X ∈ up X , Y ∈ up Y : X [f ]∗ Y.

1◦.

Y ⊓ ⟨f⟩X ̸= ⊥ ⇔
X [f ] Y ⇔

∀X ∈ up X :↑ X [f ] Y ⇔
∀X ∈ up X : Y ⊓ ⟨f⟩∗

X ̸= ⊥.

Let’s denote W =
{

Y⊓⟨f⟩∗X
X∈up X

}
. We will prove that W is a generalized filter

base. To prove this it is enough to show that V =
{

⟨f⟩∗X
X∈up X

}
is a generalized filter

base.
Let P,Q ∈ V . Then P = ⟨f⟩∗

A, Q = ⟨f⟩∗
B where A,B ∈ up X ; A⊓B ∈ up X

and R ⊑ P ⊓ Q for R = ⟨f⟩∗(A ⊓ B) ∈ V . So V is a generalized filter base and
thus W is a generalized filter base.

⊥ /∈ W ⇔
d
W ̸= ⊥ by properties of generalized filter bases. That is

∀X ∈ up X : Y ⊓ ⟨f⟩∗
X ̸= ⊥F(Dst f) ⇔ Y ⊓

l〈
⟨f⟩∗〉∗ up X ̸= ⊥.

Comparing with the above, Y ⊓ ⟨f⟩X ≠ ⊥F(Dst f) ⇔ Y ⊓
d〈

⟨f⟩∗〉∗ up X ≠ ⊥.
So ⟨f⟩X =

d〈
⟨f⟩∗〉∗ up X because the lattice of filters is separable.

□

Corollary 829. Let f be a funcoid.
1◦. The value of f can be restored from the value of ⟨f⟩∗.
2◦. The value of f can be restored from the value of [f ]∗.

Proposition 830. For every f ∈ FCD(A,B) we have (for every I, J ∈ T A)

⟨f⟩∗⊥ = ⊥, ⟨f⟩∗(I ⊔ J) = ⟨f⟩∗
I ⊔ ⟨f⟩∗

J

and

¬(I [f ]∗ ⊥), I ⊔ J [f ]∗ K ⇔ I [f ]∗ K ∨ J [f ]∗ K
(for every I, J ∈ T A, K ∈ T B),

¬(⊥ [f ]∗ I),K [f ]∗ I ⊔ J ⇔ K [f ]∗ I ∨K [f ]∗ J
(for every I, J ∈ T B, K ∈ T A).

Proof. ⟨f⟩∗⊥ = ⟨f⟩⊥ = ⟨f⟩⊥ = ⊥;

⟨f⟩∗(I ⊔ J) = ⟨f⟩ ↑ (I ⊔ J) = ⟨f⟩ ↑ I ⊔ ⟨f⟩ ↑ J = ⟨f⟩∗
I ⊔ ⟨f⟩∗

J.
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I [f ]∗ ⊥ ⇔ ⊥ ̸≍ ⟨f⟩ ↑ I ⇔ 0;
I ⊔ J [f ]∗ K ⇔

↑ (I ⊔ J) [f ]↑ K ⇔
↑ K ̸≍ ⟨f⟩ ↑ (I ⊔ J) ⇔

↑ K ̸≍ ⟨f⟩∗(I ⊔ J) ⇔
↑ K ̸≍ ⟨f⟩∗

I ⊔ ⟨f⟩∗
J ⇔

↑ K ̸≍ ⟨f⟩∗
I∨ ↑ K ̸≍ ⟨f⟩∗

J ⇔
I [f ]∗ K ∨ J [f ]∗ K.

The rest follows from symmetry. □

Theorem 831. (fundamental theorem of theory of funcoids) Fix sets A and
B. Let LF = λf ∈ FCD(A,B) : ⟨f⟩∗ and LR = λf ∈ FCD(A,B) : [f ]∗.

1◦. LF is a bijection from the set FCD(A,B) to the set of functions α ∈
F (B)T A that obey the conditions (for every I, J ∈ T A)

α⊥ = ⊥, α(I ⊔ J) = αI ⊔ αJ. (5)
For such α it holds (for every X ∈ F (A))〈

L−1
F α

〉
X =

l
⟨α⟩∗ up X . (6)

2◦. LR is a bijection from the set FCD(A,B) to the set of binary relations
δ ∈ P(T A× T B) that obey the conditions

¬(I δ ⊥), I ⊔ J δ K ⇔ I δ K ∨ J δ K (for every I, J ∈ T A, K ∈ T B),
¬(⊥ δ I), K δ I ⊔ J ⇔ K δ I ∨K δ J (for every I, J ∈ T B, K ∈ T A).

(7)

For such δ it holds (for every X ∈ F (A), Y ∈ F (B))
X
[
L−1

R δ
]

Y ⇔ ∀X ∈ up X , Y ∈ up Y : X δ Y. (8)

Proof. Injectivity of LF and LR, formulas (6) (for α ∈ imLF ) and (8) (for
δ ∈ imLR), formulas (5) and (7) follow from two previous theorems. The only
thing remaining to prove is that for every α and δ that obey the above conditions
a corresponding funcoid f exists.

2◦. Let define α ∈ F (B)T A by the formula ∂(αX) =
{

Y ∈T B
XδY

}
for every

X ∈ T A. (It is obvious that
{

Y ∈T B
XδY

}
is a free star.) Analogously it can be

defined β ∈ F (A)T B by the formula ∂(βY ) =
{

X∈T A
XδY

}
. Let’s continue α and β

to α′ ∈ F (B)F(A) and β′ ∈ F (A)F(B) by the formulas

α′X =
l

⟨α⟩∗ up X and β′Y =
l

⟨β⟩∗ up Y

and δ to δ′ by the formula
X δ′ Y ⇔ ∀X ∈ up X , Y ∈ up Y : X δ Y.

Y ⊓ α′X ̸= ⊥ ⇔ Y ⊓
d

⟨α⟩∗ up X ̸= ⊥ ⇔
d

⟨Y⊓⟩∗⟨α⟩∗ up X ̸= ⊥. Let’s prove
that

W = ⟨Y⊓⟩∗⟨α⟩∗ up X
is a generalized filter base: To prove it is enough to show that ⟨α⟩∗ up X is a
generalized filter base. If A,B ∈ ⟨α⟩∗ up X then exist X1, X2 ∈ up X such that
A = αX1, B = αX2.

Then α(X1 ⊓ X2) ∈ ⟨α⟩∗ up X . So ⟨α⟩∗ up X is a generalized filter base and
thus W is a generalized filter base.

By properties of generalized filter bases,
d

⟨Y⊓⟩∗⟨α⟩∗X ̸= ⊥ is equivalent to
∀X ∈ up X : Y ⊓ αX ̸= ⊥,
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what is equivalent to

∀X ∈ up X , Y ∈ up Y :↑ Y ⊓ αX ̸= ⊥ ⇔
∀X ∈ up X , Y ∈ up Y : Y ∈ ∂(αX) ⇔

∀X ∈ up X , Y ∈ up Y : X δ Y.

Combining the equivalencies we get Y ⊓ α′X ̸= ⊥ ⇔ X δ′ Y. Analogously
X ⊓ β′Y ̸= ⊥ ⇔ X δ′ Y. So Y ⊓ α′X ̸= ⊥ ⇔ X ⊓ β′Y ̸= ⊥, that is (A,B, α′, β′) is
a funcoid. From the formula Y ⊓ α′X ̸= ⊥F(B) ⇔ X δ′ Y it follows that

X [(A,B, α′, β′)]∗ Y ⇔↑ Y ⊓ α′ ↑ X ̸= ⊥ ⇔↑ X δ′↑ Y ⇔ X δ Y.

1◦. Let define the relation δ ∈ P(T A × T B) by the formula X δ Y ⇔↑
Y ⊓ αX ̸= ⊥.

That ¬(I δ ⊥) and ¬(⊥ δ I) is obvious. We have

I ⊔ J δ K ⇔
↑ K ⊓ α(I ⊔ J) ̸= ⊥ ⇔

↑ K ⊓ (αI ⊔ αJ) ̸= ⊥ ⇔
↑ K ⊓ αI ̸= ⊥∨ ↑ K ⊓ αJ ̸= ⊥ ⇔

I δ K ∨ J δ K

and

K δ I ⊔ J ⇔
↑ (I ⊔ J) ⊓ αK ̸= ⊥ ⇔

(↑ I⊔ ↑ J) ⊓ αK ̸= ⊥ ⇔
↑ I ⊓ αK ̸= ⊥∨ ↑ J ⊓ αK ̸= ⊥ ⇔

K δ I ∨K δ J.

That is the formulas (7) are true.
Accordingly to the above there exists a funcoid f such that

X [f ] Y ⇔ ∀X ∈ up X , Y ∈ up Y : X δ Y.

For every X ∈ T A, Y ∈ T B we have:

↑ Y ⊓ ⟨f⟩ ↑ X ̸= ⊥ ⇔↑ X [f ]↑ Y ⇔ X δ Y ⇔↑ Y ⊓ αX ̸= ⊥,

consequently ∀X ∈ T A : αX = ⟨f⟩ ↑ X = ⟨f⟩∗
X.

□

Note that by the last theorem to every (quasi-)proximity δ corresponds a unique
funcoid. So funcoids are a generalization of (quasi-)proximity structures. Reverse
funcoids can be considered as a generalization of conjugate quasi-proximity.

Corollary 832. If α ∈ F (B)T A, β ∈ F (A)T B are functions such that
Y ̸≍ αX ⇔ X ̸≍ βY for every X ∈ T A, Y ∈ T B, then there exists exactly one
funcoid f such that ⟨f⟩∗ = α, ⟨f−1⟩∗ = β.

Proof. Prove α(I ⊔ J) = αI ⊔ αJ . Really,

Y ̸≍ α(I ⊔ J) ⇔ I ⊔ J ̸≍ βY ⇔ I ̸≍ βY ∨ J ̸≍ βY ⇔
Y ̸≍ αI ∨ Y ̸≍ αJ ⇔ Y ̸≍ αI ⊔ αJ.

So α(I ⊔ J) = αI ⊔ αJ by star-separability. Similarly β(I ⊔ J) = βI ⊔ βJ .
Thus by the theorem there exists a funcoid f such that ⟨f⟩∗ = α, ⟨f−1⟩∗ = β.
That this funcoid is unique, follows from the above. □
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Definition 833. Any Rel-morphism F : A → B corresponds to a funcoid
↑FCD F ∈ FCD(A,B), where by definition

〈
↑FCD F

〉
X =

dF〈⟨F ⟩∗〉∗ up X for every
X ∈ F (A).

Using the last theorem it is easy to show that this definition is monovalued and
does not contradict to former stuff. (Take α =↑ ◦⟨F ⟩∗.)

Proposition 834.
〈
↑FCD f

〉∗
X = ⟨f⟩∗

X for a Rel-morphism f and X ∈
T Src f .

Proof.
〈
↑FCD f

〉∗
X = min⟨↑⟩∗〈⟨f⟩∗〉∗ upX =↑ ⟨f⟩∗

X = ⟨f⟩∗
X. □

Corollary 835.
[
↑FCD f

]∗ = [f ]∗ for every Rel-morphism f .

Proof. X
[
↑FCD f

]∗
Y ⇔ Y ̸≍

〈
↑FCD f

〉∗
X ⇔ Y ̸≍ ⟨f⟩∗

X ⇔ X [f ]∗ Y for
X ∈ T Src f , Y ∈ T Dst f . □

Definition 836. ↑FCD(A,B) f =↑FCD (A,B, f) for every binary relation f be-
tween sets A and B.

Definition 837. Funcoids corresponding to a binary relation (= multivalued
function) are called principal funcoids.

Proposition 838. ↑FCD g◦ ↑FCD f =↑FCD (g◦f) for composable morphisms f , g
of category Rel.

Proof. For every X ∈ T Src f〈
↑FCD g◦ ↑FCD f

〉∗
X =

〈
↑FCD g

〉∗〈↑FCD f
〉∗
X =

⟨g⟩∗⟨f⟩∗
X = ⟨g ◦ f⟩∗

X =
〈
↑FCD (g ◦ f)

〉∗
X.

□

We may equate principal funcoids with corresponding binary relations by the
method of appendix A. This is useful for describing relationships of funcoids and
binary relations, such as for the formulas of continuous functions and continuous
funcoids (see below).

Thus (FCD(A,B),Rel(A,B)) is a filtrator. I call it filtrator of funcoids.

Theorem 839. If S is a generalized filter base on Src f then ⟨f⟩
d
S =d

⟨⟨f⟩⟩∗
S for every funcoid f .

Proof. ⟨f⟩
d
S ⊑ ⟨f⟩X for every X ∈ S and thus ⟨f⟩

d
S ⊑

d
⟨⟨f⟩⟩∗

S.
By properties of generalized filter bases:

⟨f⟩
l
S =

l〈
⟨f⟩∗〉∗ up

l
S =

l〈
⟨f⟩∗〉∗

{
X

∃P ∈ S : X ∈ up P

}
=

l{
⟨f⟩∗

X

∃P ∈ S : X ∈ up P

}
⊒

l

P∈S

⟨f⟩P =

l
⟨⟨f⟩⟩∗

S.

□
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Proposition 840. X [f ]
d
S ⇔ ∃Y ∈ S : X [f ] Y if f is a funcoid and S is a

generalized filter base on Dst f .
Proof.

X [f ]
l
S ⇔

l
S ⊓ ⟨f⟩X ̸= ⊥ ⇔

l
⟨⟨f⟩X ⊓⟩∗S ̸= ⊥ ⇔

(by properties of generalized filter bases) ⇔
∃Y ∈ ⟨⟨f⟩X ⊓⟩∗S : Y ≠ ⊥ ⇔ ∃Y ∈ S : ⟨f⟩X ⊓ Y ≠ ⊥ ⇔ ∃Y ∈ S : X [f ] Y.

□

Definition 841. A function f between two posets is said to preserve filtered
meets, when f

d
S =

d
⟨f⟩∗

S whenever
d
S is defined for a filter base S on the

first of the two posets.
Theorem 842. (discovered by Todd Trimble) A function φ : F (A) → F (B)

preserves finite joins (including nullary joins) and filtered meets iff there exists a
funcoid f such that ⟨f⟩ = φ.

Proof. Backward implication follows from above.
Let ψ = φ|T A. Then ψ preserves bottom element and binary joins. Thus there

exists a funcoid f such that ⟨f⟩∗ = ψ.
It remains to prove that ⟨f⟩ = φ.
Really, ⟨f⟩X =

d〈
⟨f⟩∗〉∗ up X =

d
⟨ψ⟩∗ up X =

d
⟨φ⟩∗ up X = φ

d
up X = φX

for every X ∈ F (A). □

Corollary 843. Funcoids f from A to B bijectively correspond by the formula
⟨f⟩ = φ to functions φ : F (A) → F (B) preserving finite joins and filtered meets.

7.4. Another way to represent funcoids as binary relations

This is based on a Todd Trimble’s idea.
Definition 844. The binary relation ξ⊛ ∈ P(F (Src ξ) × F (Dst ξ)) for a

funcoid ξ is defined by the formula A ξ⊛ B ⇔ B ⊒ ⟨ξ⟩A.
Definition 845. The binary relation ξ∗ ∈ P(T Src ξ×T Dst ξ) for a funcoid

ξ is defined by the formula
A ξ∗ B ⇔ B ⊒ ⟨ξ⟩A ⇔ B ∈ up⟨ξ⟩A.

Proposition 846. Funcoid ξ can be restored from
1◦. the value of ξ⊛;
2◦. the value of ξ∗.

Proof.
1◦. The value of ⟨ξ⟩ can be restored from ξ⊛.
2◦. The value of ⟨ξ⟩∗ can be restored from ξ∗.

□

Theorem 847. Let ν and ξ be composable funcoids. Then:
1◦. ξ⊛ ◦ ν⊛ = (ξ ◦ ν)⊛;
2◦. ξ∗ ◦ ν∗ = (ξ ◦ ν)∗.

Proof.
1◦.

A (ξ⊛ ◦ ν⊛) C ⇔ ∃B :
(
A ν⊛ B ∧ B ξ⊛ C

)
⇔

∃B ∈ F (Dst ν) : (B ⊒ ⟨ν⟩A ∧ C ⊒ ⟨ξ⟩B) ⇔
C ⊒ ⟨ξ⟩⟨ν⟩A ⇔ C ⊒ ⟨ξ ◦ ν⟩A ⇔ A (ξ ◦ ν)⊛ C.
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2◦.

A (ξ∗ ◦ ν∗) C ⇔ ∃B : (A ν∗ B ∧B ξ∗ C) ⇔
∃B : (B ∈ up⟨ν⟩A ∧ C ∈ up⟨ξ⟩B) ⇔ ∃B ∈ up⟨ν⟩A : C ∈ up⟨ξ⟩B.

A (ξ ◦ ν)∗ C ⇔ C ∈ up⟨ξ ◦ ν⟩B ⇔ C ∈ up⟨ξ⟩⟨ν⟩B.
It remains to prove

∃B ∈ up⟨ν⟩A : C ∈ up⟨ξ⟩B ⇔ C ∈ up⟨ξ⟩⟨ν⟩A.

∃B ∈ up⟨ν⟩A : C ∈ up⟨ξ⟩B ⇒ C ∈ up⟨ξ⟩⟨ν⟩A is obvious.
Let C ∈ up⟨ξ⟩⟨ν⟩A. Then C ∈ up

d
⟨⟨ξ⟩⟩∗ up⟨ν⟩A; so by properties of general-

ized filter bases, ∃P ∈ ⟨⟨ξ⟩⟩∗ up⟨ν⟩A : C ∈ upP ; ∃B ∈ up⟨ν⟩A : C ∈ up⟨ξ⟩B. □

Remark 848. The above theorem is interesting by the fact that composition
of funcoids is represented as relational composition of binary relations.

7.5. Lattices of funcoids

Definition 849. f ⊑ g
def= [f ] ⊆ [g] for f, g ∈ FCD(A,B) for every sets A, B.

Thus every FCD(A,B) is a poset. (It’s taken into account that [f ] ̸= [g] when
f ̸= g.)

We will consider filtrators (filtrators of funcoids) whose base is FCD(A,B) and
whose core are principal funcoids from A to B.

Lemma 850. ⟨f⟩∗
X =

dF
F ∈up f ⟨F ⟩∗

X for every funcoid f and typed set X ∈
T (Src f).

Proof. Obviously ⟨f⟩∗
X ⊑

dF
F ∈up f ⟨F ⟩∗

X.
Let B ∈ up⟨f⟩∗

X. Let FB = X ×B ⊔X × ⊤.
⟨FB⟩∗

X = B.
Let P ∈ T (Src f). We have

⊥ ≠ P ⊑ X ⇒ ⟨FB⟩∗
P = B ⊒ ⟨f⟩∗

P

and

P ̸⊑ X ⇒ ⟨FB⟩∗
P = ⊤ ⊒ ⟨f⟩∗

P.

Thus ⟨FB⟩∗
P ⊒ ⟨f⟩∗

P for every P and so FB ⊒ f that is FB ∈ up f .
Thus ∀B ∈ up⟨f⟩∗

X : B ∈ up
dF

F ∈up f ⟨F ⟩∗
X because B ∈ up⟨FB⟩∗

X.
So

d
F ∈up f ⟨F ⟩∗

X ⊑ ⟨f⟩∗
X. □

Theorem 851. ⟨f⟩X =
dF

F ∈up f ⟨F ⟩X for every funcoid f and X ∈ F (Src f).
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Proof.

Fl

F ∈up f

⟨F ⟩X =

Fl

F ∈up f

Fl〈
⟨F ⟩∗〉∗ up X =

Fl

F ∈up f

Fl

X∈up X
⟨F ⟩∗

X =

Fl

X∈up X

Fl

F ∈up f

⟨F ⟩∗
X =

Fl

X∈up X
⟨f⟩∗

X =

⟨f⟩X

(the lemma used). □

Below it is shown that FCD(A,B) are complete lattices for every sets A and B.
We will apply lattice operations to subsets of such sets without explicitly mentioning
FCD(A,B).

Theorem 852. FCD(A,B) is a complete lattice (for every sets A and B). For
every R ∈ PFCD(A,B) and X ∈ T A, Y ∈ T B

1◦. X [ dR]∗ Y ⇔ ∃f ∈ R : X [f ]∗ Y ;
2◦. ⟨ dR⟩∗

X = df∈R⟨f⟩∗
X.

Proof. Accordingly [27] to prove that it is a complete lattice it’s enough to
prove existence of all joins.

2◦. αX
def= df∈R⟨f⟩∗

X. We have α⊥ = ⊥;

α(I ⊔ J) =

l

f∈R

⟨f⟩∗(I ⊔ J) =

l

f∈R

(⟨f⟩∗
I ⊔ ⟨f⟩∗

J) =

l

f∈R

⟨f⟩∗
I ⊔ l⟨f⟩∗

J =

αI ⊔ αJ.

So ⟨h⟩∗ = α for some funcoid h. Obviously

∀f ∈ R : h ⊒ f. (9)

And h is the least funcoid for which holds the condition (9). So h = dR.
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1◦.

X
[

lR
]∗
Y ⇔

↑ Y ⊓
〈

lR
〉∗
X ̸= ⊥ ⇔

↑ Y ⊓ l

f∈R

⟨f⟩∗
X ̸= ⊥ ⇔

∃f ∈ R :↑ Y ⊓ ⟨f⟩∗
X ̸= ⊥ ⇔

∃f ∈ R : X [f ]∗ Y

(used proposition 610).

□

In the next theorem, compared to the previous one, the class of infinite joins is
replaced with lesser class of binary joins and simultaneously class of sets is changed
to more wide class of filters.

Theorem 853. For every f, g ∈ FCD(A,B) and X ∈ F (A) (for every sets
A, B)

1◦. ⟨f ⊔ g⟩X = ⟨f⟩X ⊔ ⟨g⟩X ;
2◦. [f ⊔ g] = [f ] ∪ [g].

Proof.

1◦. Let αX def= ⟨f⟩X ⊔ ⟨g⟩X ; βY def=
〈
f−1〉Y ⊔

〈
g−1〉Y for every X ∈ F (A),

Y ∈ F (B). Then

Y ⊓ αX ̸= ⊥ ⇔
Y ⊓ ⟨f⟩X ̸= ⊥ ∨ Y ⊓ ⟨g⟩X ̸= ⊥ ⇔

X ⊓
〈
f−1〉Y ̸= ⊥ ∨ X ⊓

〈
g−1〉Y ̸= ⊥ ⇔

X ⊓ βY ̸= ⊥.

So h = (A,B, α, β) is a funcoid. Obviously h ⊒ f and h ⊒ g. If p ⊒ f and p ⊒ g
for some funcoid p then ⟨p⟩X ⊒ ⟨f⟩X ⊔ ⟨g⟩X = ⟨h⟩X that is p ⊒ h. So f ⊔ g = h.

2◦. For every X ∈ F (A), Y ∈ F (B) we have

X [f ⊔ g] Y ⇔
Y ⊓ ⟨f ⊔ g⟩X ̸= ⊥ ⇔

Y ⊓ (⟨f⟩X ⊔ ⟨g⟩X ) ̸= ⊥ ⇔
Y ⊓ ⟨f⟩X ̸= ⊥ ∨ Y ⊓ ⟨g⟩X ̸= ⊥ ⇔

X [f ] Y ∨ X [g] Y.

□

7.6. More on composition of funcoids

Proposition 854. [g ◦ f ] = [g] ◦ ⟨f⟩ =
〈
g−1〉−1 ◦ [f ] for every composable

funcoids f and g.
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Proof. For every X ∈ F (Src f), Y ∈ F (Dst g) we have
X [g ◦ f ] Y ⇔

Y ⊓ ⟨g ◦ f⟩X ̸= ⊥ ⇔
Y ⊓ ⟨g⟩⟨f⟩X ̸= ⊥ ⇔

⟨f⟩X [g] Y ⇔
X ([g] ◦ ⟨f⟩) Y

and
[g ◦ f ] =[

(f−1 ◦ g−1)−1] =[
f−1 ◦ g−1]−1 =

(
[
f−1] ◦

〈
g−1〉)−1 =〈

g−1〉−1 ◦ [f ].
□

The following theorem is a variant for funcoids of the statement (which defines
compositions of relations) that x (g ◦ f) z ⇔ ∃y : (x f y ∧ y g z) for every x and z
and every binary relations f and g.

Theorem 855. For every sets A, B, C and f ∈ FCD(A,B), g ∈ FCD(B,C)
and X ∈ F (A), Z ∈ F (C)

X [g ◦ f ] Z ⇔ ∃y ∈ atomsF(B) : (X [f ] y ∧ y [g] Z).

Proof.
∃y ∈ atomsF(B) : (X [f ] y ∧ y [g] Z) ⇔

∃y ∈ atomsF(B) : (Z ⊓ ⟨g⟩y ̸= ⊥ ∧ y ⊓ ⟨f⟩X ̸= ⊥) ⇔

∃y ∈ atomsF(B) : (Z ⊓ ⟨g⟩y ̸= ⊥ ∧ y ⊑ ⟨f⟩X ) ⇒
Z ⊓ ⟨g⟩⟨f⟩X ̸= ⊥ ⇔

X [g ◦ f ] Z.
Reversely, if X [g ◦ f ] Z then ⟨f⟩X [g] Z, consequently there exists y ∈

atoms⟨f⟩X such that y [g] Z; we have X [f ] y. □

Theorem 856. For every sets A, B, C
1◦. f ◦ (g ⊔ h) = f ◦ g ⊔ f ◦ h for g, h ∈ FCD(A,B), f ∈ FCD(B,C);
2◦. (g ⊔ h) ◦ f = g ◦ f ⊔ h ◦ f for g, h ∈ FCD(B,C), f ∈ FCD(A,B).

Proof. I will prove only the first equality because the other is analogous.
For every X ∈ F (A), Z ∈ F (C)

X [f ◦ (g ⊔ h)] Z ⇔

∃y ∈ atomsF(B) : (X [g ⊔ h] y ∧ y [f ] Z) ⇔

∃y ∈ atomsF(B) : ((X [g] y ∨ X [h] y) ∧ y [f ] Z) ⇔

∃y ∈ atomsF(B) : ((X [g] y ∧ y [f ] Z) ∨ (X [h] y ∧ y [f ] Z)) ⇔

∃y ∈ atomsF(B) : (X [g] y ∧ y [f ] Z) ∨ ∃y ∈ atomsF(B) : (X [h] y ∧ y [f ] Z) ⇔
X [f ◦ g] Z ∨ X [f ◦ h] Z ⇔

X [f ◦ g ⊔ f ◦ h] Z.
□
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Another proof of the above theorem (without atomic filters):

Proof.

⟨f ◦ (g ⊔ h)⟩X =
⟨f⟩⟨g ⊔ h⟩X =

⟨f⟩(⟨g⟩X ⊔ ⟨h⟩X ) =
⟨f⟩⟨g⟩X ⊔ ⟨f⟩⟨h⟩X =

⟨f ◦ g⟩X ⊔ ⟨f ◦ h⟩X =
⟨f ◦ g ⊔ f ◦ h⟩X .

□

7.7. Domain and range of a funcoid

Definition 857. Let A be a set. The identity funcoid 1FCD
A =

(A,A, idF(A), idF(A)).

Obvious 858. The identity funcoid is a funcoid.

Proposition 859. [f ] = [1Dst f ] ◦ ⟨f⟩ for every funcoid f .

Proof. From proposition 854. □

Definition 860. Let A be a set, A ∈ F (A). The restricted identity funcoid

idFCD
A = (A,A,A⊓,A⊓).

Proposition 861. The restricted identity funcoid is a funcoid.

Proof. We need to prove that (A ⊓ X ) ⊓ Y ̸= ⊥ ⇔ (A ⊓ Y) ⊓ X ̸= ⊥ what is
obvious. □

Obvious 862.
1◦. (1FCD

A )−1 = 1FCD
A ;

2◦. (idFCD
A )−1 = idFCD

A .

Obvious 863. For every X ,Y ∈ F (A)
1◦. X

[
1FCD

A

]
Y ⇔ X ⊓ Y ≠ ⊥;

2◦. X
[
idFCD

A

]
Y ⇔ A ⊓ X ⊓ Y ̸= ⊥.

Definition 864. I will define restricting of a funcoid f to a filter A ∈ F (Src f)
by the formula

f |A = f ◦ idFCD
A .

Definition 865. Image of a funcoid f will be defined by the formula im f =
⟨f⟩⊤F(Src f).

Domain of a funcoid f is defined by the formula dom f = im f−1.

Obvious 866. For every morphism f ∈ Rel(A,B) for sets A and B

1◦. im ↑FCD f =↑ im f ;
2◦. dom ↑FCD f =↑ dom f .

Proposition 867. ⟨f⟩X = ⟨f⟩(X ⊓dom f) for every funcoid f , X ∈ F (Src f).
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Proof. For every Y ∈ F (Dst f) we have
Y ⊓ ⟨f⟩(X ⊓ dom f) ̸= ⊥ ⇔

X ⊓ dom f ⊓
〈
f−1〉Y ̸= ⊥ ⇔

X ⊓ im f−1 ⊓
〈
f−1〉Y ̸= ⊥ ⇔

X ⊓
〈
f−1〉Y ̸= ⊥ ⇔

Y ⊓ ⟨f⟩X ̸= ⊥.

Thus ⟨f⟩(X ⊓ dom f) = ⟨f⟩X because the lattice of filters is separable. □

Proposition 868. ⟨f⟩X = im(f |X ) for every funcoid f , X ∈ F (Src f).

Proof.
im(f |X ) =〈

f ◦ idFCD
X

〉
⊤ =

⟨f⟩
〈

idFCD
X

〉
⊤ =

⟨f⟩(X ⊓ ⊤) =
⟨f⟩X .

□

Proposition 869. X ⊓ dom f ̸= ⊥ ⇔ ⟨f⟩X ̸= ⊥ for every funcoid f and
X ∈ F (Src f).

Proof.
X ⊓ dom f ̸= ⊥ ⇔

X ⊓
〈
f−1〉⊤F(Dst f) ̸= ⊥ ⇔

⊤ ⊓ ⟨f⟩X ̸= ⊥ ⇔
⟨f⟩X ̸= ⊥.

□

Corollary 870. dom f = d

{
a∈atomsF(Src f)

⟨f⟩a̸=⊥

}
.

Proof. This follows from the fact that F (Src f) is an atomistic lattice. □

Proposition 871. dom(f |A) = A ⊓ dom f for every funcoid f and A ∈
F (Src f).

Proof.

dom(f |A) =

im(idFCD
A ◦f−1) =〈

idFCD
A

〉〈
f−1〉⊤ =

A ⊓
〈
f−1〉⊤ =

A ⊓ dom f.

□

Theorem 872. im f =
dF ⟨im⟩∗ up f and dom f =

dF ⟨dom⟩∗ up f for every
funcoid f .
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Proof.
im f =
⟨f⟩⊤ =

Fl

F ∈up f

⟨F ⟩⊤ =

Fl

F ∈up f

imF =

Fl
⟨im⟩∗ up f.

The second formula follows from symmetry. □

Proposition 873. For every composable funcoids f , g:
1◦. If im f ⊒ dom g then im(g ◦ f) = im g.
2◦. If im f ⊑ dom g then dom(g ◦ f) = dom f .

Proof.
1◦.

im(g ◦ f) =
⟨g ◦ f⟩⊤ =
⟨g⟩⟨f⟩⊤ =
⟨g⟩ im f =

⟨g⟩(im f ⊓ dom g) =
⟨g⟩ dom g =

⟨g⟩⊤ =
im g.

2◦. dom(g ◦ f) = im(f−1 ◦ g−1) what by proved above is equal to im f−1 that
is dom f .

□

7.8. Categories of funcoids

I will define two categories, the category of funcoids and the category of funcoid
triples.

The category of funcoids is defined as follows:
• Objects are small sets.
• The set of morphisms from a set A to a set B is FCD(A,B).
• The composition is the composition of funcoids.
• Identity morphism for a set is the identity funcoid for that set.

To show it is really a category is trivial.
The category of funcoid triples is defined as follows:

• Objects are filters on small sets.
• The morphisms from a filter A to a filter B are triples (A,B, f) where
f ∈ FCD(Base(A),Base(B)) and dom f ⊑ A ∧ im f ⊑ B.

• The composition is defined by the formula (B, C, g) ◦ (A,B, f) = (A, C, g ◦
f).

• Identity morphism for a filter A is idFCD
A .

To prove that it is really a category is trivial.
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Proposition 874. ↑FCD is a functor from Rel to FCD.

Proof. ↑FCD (g ◦ f) =↑FCD g◦ ↑FCD f was proved above. ↑FCD 1Rel
A = 1FCD

A is
obvious. □

7.9. Specifying funcoids by functions or relations on atomic filters

Theorem 875. For every funcoid f and X ∈ F (Src f), Y ∈ F (Dst f)
1◦. ⟨f⟩X = d⟨⟨f⟩⟩∗ atoms X ;
2◦. X [f ] Y ⇔ ∃x ∈ atoms X , y ∈ atoms Y : x [f ] y.

Proof.
1◦.

Y ⊓ ⟨f⟩X ̸= ⊥ ⇔
X ⊓

〈
f−1〉Y ̸= ⊥ ⇔

∃x ∈ atoms X : x ⊓
〈
f−1〉Y ̸= ⊥ ⇔

∃x ∈ atoms X : Y ⊓ ⟨f⟩x ̸= ⊥.

∂⟨f⟩X = d⟨∂⟩∗⟨⟨f⟩⟩∗ atoms X = ∂ d⟨⟨f⟩⟩∗ atoms X . So ⟨f⟩X =

d⟨⟨f⟩⟩∗ atoms X by corollary 568.
2◦. If X [f ] Y, then Y ⊓⟨f⟩X ̸= ⊥, consequently there exists y ∈ atoms Y such

that y ⊓ ⟨f⟩X ̸= ⊥, X [f ] y. Repeating this second time we get that there exists
x ∈ atoms X such that x [f ] y. From this it follows

∃x ∈ atoms X , y ∈ atoms Y : x [f ] y.

The reverse is obvious.
□

Corollary 876. Let f be a funcoid.
• The value of f can be restored from the value of ⟨f⟩|atomsF(Src f) .
• The value of f can be restored from the value of

[f ]|atomsF(Src f) × atomsF(Dst f) .

Theorem 877. Let A and B be sets.
1◦. A function α ∈ F (B)atomsF(A) such that (for every a ∈ atomsF(A))

αa ⊑
l〈

l◦⟨α⟩∗ ◦ atoms ◦ ↑
〉∗

up a (10)

can be continued to the function ⟨f⟩ for a unique f ∈ FCD(A,B);

⟨f⟩X = l⟨α⟩∗ atoms X (11)

for every X ∈ F (A).
2◦. A relation δ ∈ P(atomsF(A) × atomsF(B)) such that (for every a ∈

atomsF(A), b ∈ atomsF(B))

∀X ∈ up a, Y ∈ up b∃x ∈ atoms ↑ X, y ∈ atoms ↑ Y : x δ y ⇒ a δ b (12)

can be continued to the relation [f ] for a unique f ∈ FCD(A,B);

X [f ] Y ⇔ ∃x ∈ atoms X , y ∈ atoms Y : x δ y (13)

for every X ∈ F (A), Y ∈ F (B).

Proof. Existence of no more than one such funcoids and formulas (11) and
(13) follow from the previous theorem.
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1◦. Consider the function α′ ∈ F (B)T A defined by the formula (for every
X ∈ T A)

α′X = l⟨α⟩∗ atoms ↑ X.

Obviously α′⊥T A = ⊥F(B). For every I, J ∈ T A

α′(I ⊔ J) =

l⟨α⟩∗ atoms ↑ (I ⊔ J) =

l⟨α⟩∗(atoms ↑ ∪ atoms ↑ J) =

l(⟨α⟩∗ atoms ↑ I ∪ ⟨α⟩∗ atoms ↑ J) =

l⟨α⟩∗ atoms ↑ I ⊔ l⟨α⟩∗ atoms ↑ J =

α′I ⊔ α′J.

Let continue α′ till a funcoid f (by the theorem 831): ⟨f⟩X =
d

⟨α′⟩∗ up X .
Let’s prove the reverse of (10):

l〈

l◦⟨α⟩∗ ◦ atoms ◦ ↑
〉∗

up a =
l〈

l◦⟨α⟩∗
〉∗

⟨atoms⟩∗⟨↑⟩∗ up a ⊑
l〈

l◦⟨α⟩∗
〉∗

{{a}} =
l{(

l◦⟨α⟩∗
)

{a}
}

=
l{

l⟨α⟩∗{a}
}

=
l{

l{αa}
}

=
l

{αa} =
αa.

Finally,

αa =
l〈

l◦⟨α⟩∗ ◦ atoms ◦ ↑
〉∗

up a =
l

⟨α′⟩∗ up a = ⟨f⟩a,

so ⟨f⟩ is a continuation of α.
2◦. Consider the relation δ′ ∈ P(T A×T B) defined by the formula (for every

X ∈ T A, Y ∈ T B)

X δ′ Y ⇔ ∃x ∈ atoms ↑ X, y ∈ atoms ↑ Y : x δ y.

Obviously ¬(X δ′ ⊥F(B)) and ¬(⊥F(A) δ′ Y ).
For suitable I and J we have:

I ⊔ J δ′ Y ⇔
∃x ∈ atoms ↑ (I ⊔ J), y ∈ atoms ↑ Y : x δ y ⇔

∃x ∈ atoms ↑ I ∪ atoms ↑ J, y ∈ atoms ↑ Y : x δ y ⇔
∃x ∈ atoms ↑ I, y ∈ atoms ↑ Y : x δ y ∨ ∃x ∈ atoms ↑ J, y ∈ atoms ↑ Y : x δ y ⇔

I δ′ Y ∨ J δ′ Y ;

similarly X δ′ I ⊔ J ⇔ X δ′ I ∨X δ′ J for suitable I and J . Let’s continue δ′ till a
funcoid f (by the theorem 831):

X [f ] Y ⇔ ∀X ∈ up X , Y ∈ up Y : X δ′ Y.



7.9. SPECIFYING FUNCOIDS BY FUNCTIONS OR RELATIONS ON ATOMIC FILTERS 167

The reverse of (12) implication is trivial, so

∀X ∈ up a, Y ∈ up b∃x ∈ atoms ↑ X, y ∈ atoms ↑ Y : x δ y ⇔ a δ b.

Also

∀X ∈ up a, Y ∈ up b∃x ∈ atoms ↑ X, y ∈ atoms ↑ Y : x δ y ⇔
∀X ∈ up a, Y ∈ up b : X δ′ Y ⇔

a [f ] b.

So a δ b ⇔ a [f ] b, that is [f ] is a continuation of δ.
□

One of uses of the previous theorem is the proof of the following theorem:

Theorem 878. If A and B are sets, R ∈ PFCD(A,B), x ∈ atomsF(A), y ∈
atomsF(B), then

1◦. ⟨
d
R⟩x =

d
f∈R⟨f⟩x;

2◦. x [
d
R] y ⇔ ∀f ∈ R : x [f ] y.

Proof.
2◦. Let denote x δ y ⇔ ∀f ∈ R : x [f ] y. For every a ∈ atomsF(A), b ∈

atomsF(B)

∀X ∈ up a, Y ∈ up b∃x ∈ atoms ↑ X, y ∈ atoms ↑ Y : x δ y ⇒
∀f ∈ R,X ∈ up a, Y ∈ up b∃x ∈ atoms ↑ X, y ∈ atoms ↑ Y : x [f ] y ⇒

∀f ∈ R,X ∈ up a, Y ∈ up b : X [f ]∗ Y ⇒
∀f ∈ R : a [f ] b ⇔

a δ b.

So by theorem 877, δ can be continued till [p] for some funcoid p ∈ FCD(A,B).
For every funcoid q ∈ FCD(A,B) such that ∀f ∈ R : q ⊑ f we have

x [q] y ⇒ ∀f ∈ R : x [f ] y ⇔ x δ y ⇔ x [p] y,

so q ⊑ p. Consequently p =
d
R.

From this x [
d
R] y ⇔ ∀f ∈ R : x [f ] y.

1◦. From the former

y ∈ atoms
〈l

R
〉
x ⇔

y ⊓
〈l

R
〉
x ̸= ⊥ ⇔

∀f ∈ R : y ⊓ ⟨f⟩x ̸= ⊥ ⇔

y ∈
l

⟨atoms⟩∗
{

⟨f⟩x
f ∈ R

}
⇔

y ∈ atoms
l

f∈R

⟨f⟩x

for every y ∈ atomsF(A). From this it follows ⟨
d
R⟩x =

d
f∈R⟨f⟩x.

□

Theorem 879. g ◦ f =
dFCD

{
G◦F

F ∈up f.G∈up g

}
for every composable funcoids f

and g.
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Proof. Let x ∈ atomsF(Src f). Then
⟨g ◦ f⟩x =
⟨g⟩⟨f⟩x = (theorem 851)

Fl

G∈up g

⟨G⟩⟨f⟩x = (theorem 851)

Fl

G∈up g

⟨G⟩
Fl

F ∈up f

⟨F ⟩x = (theorem 839)

Fl

G∈up g

Fl

F ∈up f

⟨G⟩⟨F ⟩x =

Fl{
⟨G⟩⟨F ⟩x

F ∈ up f,G ∈ up g

}
=

Fl{
⟨G ◦ F ⟩x

F ∈ up f,G ∈ up g

}
= (theorem 878)〈FCDl{

G ◦ F
F ∈ up f,G ∈ up g

}〉
x.

Thus g ◦ f =
dFCD

{
G◦F

F ∈up f.G∈up g

}
. □

Proposition 880. For f ∈ FCD(A,B), a finite set X ∈ PA and a function
t ∈ F (B)X there exists (obviously unique) g ∈ FCD(A,B) such that ⟨g⟩p = ⟨f⟩p
for p ∈ atomsF(A) \ atomsX and ⟨g⟩@{x} = t(x) for x ∈ X.

This funcoid g is determined by the formula

g = (f \ (@X ×FCD ⊤)) ⊔ l

x∈X

(@{x} ×FCD t(x)).

Proof. Take g = (f \ (@X ×FCD ⊤)) ⊔ dq∈X(@{q} ×FCD t(x)) that is

g =
(
f ⊓X × ⊤

)
⊔ l

q∈X

(@{q} ×FCD t(x)) =

(
f ⊓

(
X × ⊤

))
⊔ l

q∈X

(@{q} ×FCD t(x)).

⟨g⟩p = (theorem 853) =〈
f ⊓

(
X × ⊤

)〉
p ⊔ l

q∈X

⟨@{q} ×FCD t(x)⟩p =

(theorem 878) =
(
⟨f⟩p ⊓

〈
X × ⊤

〉
p
)

⊔ l

q∈X

⟨@{q} ×FCD t(x)⟩p.

So ⟨g⟩@{x} = (⟨f⟩∗@{x} ⊓ ⊥) ⊔ t(x) = t(x) for x ∈ X.
If p ∈ atomsF(A) \ atomsX then we have ⟨g⟩p = (⟨f⟩p ⊓ ⊤) ⊔ ⊥ = ⟨f⟩p. □

Corollary 881. If f ∈ FCD(A,B), x ∈ A, and Y ∈ F (B), then there exists
an (obviously unique) g ∈ FCD(A,B) such that ⟨g⟩p = ⟨f⟩p for all ultrafilters p
except of p = @{x} and ⟨g⟩@{x} = Y.

This funcoid g is determined by the formula
g = (f \ (@{x} ×FCD ⊤)) ⊔ ({x} ×FCD Y).
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Theorem 882. Let A, B, C be sets, f ∈ FCD(A,B), g ∈ FCD(B,C), h ∈
FCD(A,C). Then

g ◦ f ̸≍ h ⇔ g ̸≍ h ◦ f−1.

Proof.

g ◦ f ̸≍ h ⇔

∃a ∈ atomsF(A), c ∈ atomsF(C) : a [(g ◦ f) ⊓ h] c ⇔

∃a ∈ atomsF(A), c ∈ atomsF(C) : (a [g ◦ f ] c ∧ a [h] c) ⇔

∃a ∈ atomsF(A), b ∈ atomsF(B), c ∈ atomsF(C) : (a [f ] b ∧ b [g] c ∧ a [h] c) ⇔

∃b ∈ atomsF(B), c ∈ atomsF(C) : (b [g] c ∧ b
[
h ◦ f−1] c) ⇔

∃b ∈ atomsF(B), c ∈ atomsF(C) : b
[
g ⊓ (h ◦ f−1)

]
c ⇔

g ̸≍ h ◦ f−1.

□

7.10. Funcoidal product of filters

A generalization of Cartesian product of two sets is funcoidal product of two
filters:

Definition 883. Funcoidal product of filters A and B is such a funcoid A×FCD

B ∈ FCD(Base(A),Base(B)) that for every X ∈ Base(A), Y ∈ Base(B)

X
[
A ×FCD B

]
Y ⇔ X ̸≍ A ∧ Y ̸≍ B.

Proposition 884. A ×FCD B is really a funcoid and〈
A ×FCD B

〉
X =

{
B if X ̸≍ A
⊥F(Base(B)) if X ≍ A.

Proof. Obvious. □

Obvious 885.
• ↑FCD(U,V ) (A×B) =↑U A× ↑V B for sets A ⊆ U and B ⊆ V .
• ↑FCD (A×B) =↑ A× ↑ B for typed sets A and B.

Proposition 886. f ⊑ A ×FCD B ⇔ dom f ⊑ A ∧ im f ⊑ B for every f ∈
FCD(A,B) and A ∈ F (A), B ∈ F (B).

Proof. If f ⊑ A×FCD B then dom f ⊑ dom(A×FCD B) ⊑ A, im f ⊑ im(A×FCD

B) ⊑ B. If dom f ⊑ A ∧ im f ⊑ B then

∀X ∈ F (A),Y ∈ F (B) : (X [f ] Y ⇒ X ⊓ A ̸= ⊥ ∧ Y ⊓ B ̸= ⊥);

consequently f ⊑ A ×FCD B. □

The following theorem gives a formula for calculating an important particular
case of a meet on the lattice of funcoids:

Theorem 887. f ⊓ (A ×FCD B) = idFCD
B ◦f ◦ idFCD

A for every funcoid f and
A ∈ F (Src f), B ∈ F (Dst f).

Proof. h def= idFCD
B ◦f ◦ idFCD

A . For every X ∈ F (Src f)

⟨h⟩X =
〈

idFCD
B

〉
⟨f⟩
〈

idFCD
A

〉
X = B ⊓ ⟨f⟩(A ⊓ X ).
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From this, as easy to show, h ⊑ f and h ⊑ A ×FCD B. If g ⊑ f ∧ g ⊑ A ×FCD B
for a g ∈ FCD(Src f,Dst f) then dom g ⊑ A, im g ⊑ B,

⟨g⟩X = B ⊓ ⟨g⟩(A ⊓ X ) ⊑ B ⊓ ⟨f⟩(A ⊓ X ) =
〈

idFCD
B

〉
⟨f⟩
〈

idFCD
A

〉
X = ⟨h⟩X ,

g ⊑ h. So h = f ⊓ (A ×FCD B). □

Corollary 888. f |A = f ⊓ (A ×FCD ⊤F(Dst f)) for every funcoid f and A ∈
F (Src f).

Proof. f ⊓ (A ×FCD ⊤F(Dst f)) = idFCD
⊤F(Dst f) ◦f ◦ idFCD

A = f ◦ idFCD
A = f |A. □

Corollary 889. f ̸≍ A ×FCD B ⇔ A [f ] B for every funcoid f and A ∈
F (Src f), B ∈ F (Dst f).

Proof.
f ̸≍ A ×FCD B ⇔〈

f ⊓ (A ×FCD B)
〉∗⊤ ≠ ⊥ ⇔〈

idFCD
B ◦f ◦ idFCD

A

〉∗
⊤ ≠ ⊥ ⇔〈

idFCD
B

〉
⟨f⟩
〈

idFCD
A

〉∗
⊤ ≠ ⊥ ⇔

B ⊓ ⟨f⟩(A ⊓ ⊤) ̸= ⊥ ⇔
B ⊓ ⟨f⟩A ≠ ⊥ ⇔

A [f ] B.
□

Corollary 890. Every filtrator of funcoids is star-separable.

Proof. The set of funcoidal products of principal filters is a separation subset
of the lattice of funcoids. □

Theorem 891. Let A, B be sets. If S ∈ P(F (A) × F (B)) then
l

(A,B)∈S

(A ×FCD B) =
l

domS ×FCD
l

imS.

Proof. If x ∈ atomsF(A) then by theorem 878〈
l

(A,B)∈S

(A ×FCD B)
〉
x =

l

(A,B)∈S

〈
A ×FCD B

〉
x.

If x ̸≍
d

domS then
∀(A,B) ∈ S : (x ⊓ A ≠ ⊥ ∧

〈
A ×FCD B

〉
x = B);{〈

A ×FCD B
〉
x

(A,B) ∈ S

}
= imS;

if x ≍
d

domS then
∃(A,B) ∈ S : (x ⊓ A = ⊥ ∧

〈
A ×FCD B

〉
x = ⊥);{〈

A ×FCD B
〉
x

(A,B) ∈ S

}
∋ ⊥.

So 〈
l

(A,B)∈S

(A ×FCD B)
〉
x =

{d
imS if x ̸≍

d
domS

⊥F(B) if x ≍
d

domS.



7.10. FUNCOIDAL PRODUCT OF FILTERS 171

From this the statement of the theorem follows. □

Corollary 892. For every A0,A1 ∈ F (A), B0,B1 ∈ F (B) (for every sets
A, B)

(A0 ×FCD B0) ⊓ (A1 ×FCD B1) = (A0 ⊓ A1) ×FCD (B0 ⊓ B1).

Proof. (A0 ×FCD B0) ⊓ (A1 ×FCD B1) =
d

{A ×FCD B0,A1 ×FCD B1} what is by
the last theorem equal to (A0 ⊓ A1) ×FCD (B0 ⊓ B1). □

Theorem 893. If A, B are sets and A ∈ F (A) then A×FCD is a complete
homomorphism from the lattice F (B) to the lattice FCD(A,B), if also A ≠ ⊥F(A)

then it is an order embedding.

Proof. Let S ∈ PF (B), X ∈ T A, x ∈ atomsF(A).〈

l

〈
A×FCD〉∗

S
〉∗
X =

l

B∈S

〈
A ×FCD B

〉∗
X ={

dS if X ∈ ∂A
⊥F(B) if X /∈ ∂A

=〈
A ×FCD

lS
〉∗
X;〈l〈

A×FCD〉∗
S
〉
x =

l

B∈S

〈
A ×FCD B

〉
x ={d

S if x ̸≍ A
⊥F(B) if x ≍ A.

Thus d

〈
A×FCD〉∗

S = A ×FCD dS and
d〈

A×FCD〉∗
S = A ×FCD d

S.
If A ≠ ⊥ then obviously A ×FCD X ⊑ A ×FCD Y ⇔ X ⊑ Y. □

The following proposition states that cutting a rectangle of atomic width from
a funcoid always produces a rectangular (representable as a funcoidal product of
filters) funcoid (of atomic width).

Proposition 894. If f is a funcoid and a is an atomic filter on Src f then

f |a = a×FCD ⟨f⟩a.

Proof. Let X ∈ F (Src f).

X ̸≍ a ⇒ ⟨f |a⟩X = ⟨f⟩a, X ≍ a ⇒ ⟨f |a⟩X = ⊥F(Dst f).

□

Lemma 895. λB ∈ F (B) : ⊤F ×FCD B is an upper adjoint of λf ∈ FCD(A,B) :
im f (for every sets A, B).

Proof. We need to prove im f ⊑ B ⇔ f ⊑ ⊤ ×FCD B what is obvious. □

Corollary 896. Image and domain of funcoids preserve joins.

Proof. By properties of Galois connections and duality. □

Proposition 897. f ⊑ A ×FCD B ⇔ dom f ⊑ A ∧ im f ⊑ B for every funcoid
f and filters A ∈ F(Src f), B ∈ F(Dst f).
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Proof. f ⊑ A ×FCD B ⇒ dom f ⊑ A because dom(A ×FCD B) ⊑ A.
Let now dom f ⊑ A ∧ im f ⊑ B. Then ⟨f⟩X ̸= ⊥ ⇒ X ̸≍ A that is f ⊑

A ×FCD ⊤. Similarly f ⊑ ⊤ ×FCD B. Thus f ⊑ A ×FCD B. □

7.11. Atomic funcoids

Theorem 898. An f ∈ FCD(A,B) is an atom of the lattice FCD(A,B) (for
some sets A, B) iff it is a funcoidal product of two atomic filter objects.

Proof.
⇒. Let f ∈ FCD(A,B) be an atom of the lattice FCD(A,B). Let’s get elements

a ∈ atoms dom f and b ∈ atoms⟨f⟩a. Then for every X ∈ F (A)
X ≍ a ⇒

〈
a×FCD b

〉
X = ⊥ ⊑ ⟨f⟩X , X ̸≍ a ⇒

〈
a×FCD b

〉
X = b ⊑ ⟨f⟩X .

So a×FCD b ⊑ f ; because f is atomic we have f = a×FCD b.
⇐. Let a ∈ atomsF(A), b ∈ atomsF(B), f ∈ FCD(A,B). If b ≍ ⟨f⟩a then ¬(a [f ] b),

f ≍ a ×FCD b; if b ⊑ ⟨f⟩a then ∀X ∈ F (A) : (X ̸≍ a ⇒ ⟨f⟩X ⊒ b),
f ⊒ a×FCD b. Consequently f ≍ a×FCD b∨ f ⊒ a×FCD b; that is a×FCD b
is an atom.

□

Theorem 899. The lattice FCD(A,B) is atomic (for every fixed sets A, B).

Proof. Let f be a non-empty funcoid from A to B. Then dom f ̸= ⊥, thus
by theorem 576 there exists a ∈ atoms dom f . So ⟨f⟩a ̸= ⊥ thus it exists b ∈
atoms⟨f⟩a. Finally the atomic funcoid a×FCD b ⊑ f . □

Theorem 900. The lattice FCD(A,B) is separable (for every fixed sets A, B).

Proof. Let f, g ∈ FCD(A,B), f ⊏ g. Then there exists a ∈ atomsF(A) such
that ⟨f⟩a ⊏ ⟨g⟩a. So because the lattice F (B) is atomically separable, there exists
b ∈ atoms such that ⟨f⟩a ⊓ b = ⊥ and b ⊑ ⟨g⟩a. For every x ∈ atomsF(A)

⟨f⟩a ⊓
〈
a×FCD b

〉
a = ⟨f⟩a ⊓ b = ⊥,

x ̸= a ⇒ ⟨f⟩x ⊓
〈
a×FCD b

〉
x = ⟨f⟩x ⊓ ⊥ = ⊥.

Thus ⟨f⟩x ⊓
〈
a×FCD b

〉
x = ⊥ and consequently f ≍ a×FCD b.〈

a×FCD b
〉
a = b ⊑ ⟨g⟩a,

x ̸= a ⇒
〈
a×FCD b

〉
x = ⊥ ⊑ ⟨g⟩x.

Thus
〈
a×FCD b

〉
x ⊑ ⟨g⟩x and consequently a×FCD b ⊑ g.

So the lattice FCD(A,B) is separable by theorem 225. □

Corollary 901. The lattice FCD(A,B) is:
1◦. separable;
2◦. strongly separable;
3◦. atomically separable;
4◦. conforming to Wallman’s disjunction property.

Proof. By theorem 233. □

Remark 902. For more ways to characterize (atomic) separability of the lattice
of funcoids see subsections “Separation subsets and full stars” and “Atomically
separable lattices”.

Corollary 903. The lattice FCD(A,B) is an atomistic lattice.

Proof. By theorem 231. □
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Proposition 904. atoms(f ⊔ g) = atoms f ∪ atoms g for every funcoids f, g ∈
FCD(A,B) (for every sets A, B).

Proof. a ×FCD b ̸≍ f ⊔ g ⇔ a [f ⊔ g] b ⇔ a [f ] b ∨ a [g] b ⇔ a ×FCD b ̸≍
f ∨ a×FCD b ̸≍ g for every atomic filters a and b. □

Theorem 905. The set of funcoids between sets A and B is a co-frame.

Proof. Theorems 831 and 533. □

Remark 906. The above proof does not use axiom of choice (unlike the below
proof).

See also an older proof of the set of funcoids being co-brouwerian:

Theorem 907. For every f, g, h ∈ FCD(A,B), R ∈ PFCD(A,B) (for every
sets A and B)

1◦. f ⊓ (g ⊔ h) = (f ⊓ g) ⊔ (f ⊓ h);
2◦. f ⊔

d
R =

d
⟨f⊔⟩∗

R.

Proof. We will take into account that the lattice of funcoids is an atomistic
lattice.

1◦.

atoms(f ⊓ (g ⊔ h)) =
atoms f ∩ atoms(g ⊔ h) =

atoms f ∩ (atoms g ∪ atomsh) =
(atoms f ∩ atoms g) ∪ (atoms f ∩ atomsh) =

atoms(f ⊓ g) ∪ atoms(f ⊓ h) =
atoms((f ⊓ g) ⊔ (f ⊓ h)).
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2◦.

atoms
(
f ⊔

l
R
)

=

atoms f ∪ atoms
l
R =

atoms f ∪
⋂

⟨atoms⟩∗
R =⋂

⟨(atoms f)∪⟩∗⟨atoms⟩∗
R = (use the following equality)⋂

⟨atoms⟩∗⟨f⊔⟩∗
R =

atoms
l

⟨f⊔⟩∗
R.

⟨(atoms f)∪⟩∗⟨atoms⟩∗
R ={

(atoms f) ∪A

A ∈ ⟨atoms⟩∗
R

}
={

(atoms f) ∪A

∃C ∈ R : A = atomsC

}
={

(atoms f) ∪ (atomsC)
C ∈ R

}
={

atoms(f ⊔ C)
C ∈ R

}
={

atomsB
∃C ∈ R : B = f ⊔ C

}
={

atomsB
B ∈ ⟨f⊔⟩∗

C

}
=

⟨atoms⟩∗⟨f⊔⟩∗
R.

□

Conjecture 908. f ⊓ dS = d⟨f⊓⟩∗S for principal funcoid f and a set S of
funcoids of appropriate sources and destinations.

Remark 909. See also example 1336 below.

The next proposition is one more (among the theorem 855) generalization for
funcoids of composition of relations.

Proposition 910. For every composable funcoids f , g

atoms(g ◦ f) =
x×FCD z

x ∈ atomsF(Src f), z ∈ atomsF(Dst g),

∃y ∈ atomsF(Dst f) : (x×FCD y ∈ atoms f ∧ y ×FCD z ∈ atoms g)

.
Proof. Using the theorem 855,

x×FCD z ̸≍ g ◦f ⇔ x [g ◦ f ] z ⇔ ∃y ∈ atomsF(Dst f) : (x×FCD y ̸≍ f ∧y×FCD z ̸≍ g).
□

Corollary 911. g◦f = d

{
G◦F

F ∈atoms f,G∈atoms g

}
for every composable funcoids

f , g.

Theorem 912. Let f be a funcoid.
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1◦. X [f ] Y ⇔ ∃F ∈ atoms f : X [F ] Y for every X ∈ F (Src f), Y ∈
F (Dst f);

2◦. ⟨f⟩X = dF ∈atoms f ⟨F ⟩X for every X ∈ F (Src f).

Proof.
1◦.

∃F ∈ atoms f : X [F ] Y ⇔

∃a ∈ atomsF(Src f), b ∈ atomsF(Dst f) : (a×FCD b ̸≍ f ∧ X
[
a×FCD b

]
Y) ⇔

∃a ∈ atomsF(Src f), b ∈ atomsF(Dst f) : (a×FCD b ̸≍ f ∧ a×FCD b ̸≍ X ×FCD Y) ⇔

∃F ∈ atoms f : (F ̸≍ f ∧ F ̸≍ X ×FCD Y) ⇔

f ̸≍ X ×FCD Y ⇔
X [f ] Y.

2◦. Let Y ∈ F (Dst f). Suppose Y ̸≍ ⟨f⟩X . Then X [f ] Y; ∃F ∈
atoms f : X [F ] Y; ∃F ∈ atoms f : Y ̸≍ ⟨F ⟩X ; Y ̸≍ dF ∈atoms f ⟨F ⟩X . So
⟨f⟩X ⊑ dF ∈atoms f ⟨F ⟩X . The contrary ⟨f⟩X ⊒ dF ∈atoms f ⟨F ⟩X is obvious.

□

7.12. Complete funcoids

Definition 913. I will call co-complete such a funcoid f that ⟨f⟩∗
X is a

principal filter for every X ∈ T (Src f).

Obvious 914. Funcoid f is co-complete iff ⟨f⟩X ∈ P(Dst f) for every X ∈
P(Src f).

Definition 915. I will call generalized closure such a function α ∈ (T B)T A

(for some sets A, B) that
1◦. α⊥ = ⊥;
2◦. ∀I, J ∈ T A : α(I ⊔ J) = αI ⊔ αJ .

Obvious 916. A funcoid f is co-complete iff ⟨f⟩∗ = ↑ ◦ α for a generalized
closure α.

Remark 917. Thus funcoids can be considered as a generalization of general-
ized closures. A topological space in Kuratowski sense is the same as reflexive and
transitive generalized closure. So topological spaces can be considered as a special
case of funcoids.

Definition 918. I will call a complete funcoid a funcoid whose reverse is co-
complete.

Theorem 919. The following conditions are equivalent for every funcoid f :
1◦. funcoid f is complete;
2◦. ∀S ∈ PF (Src f), J ∈ T (Dst f) : ( dS [f ] J ⇔ ∃I ∈ S : I [f ] J);
3◦. ∀S ∈ PT (Src f), J ∈ T (Dst f) :

(

dS [f ]∗ J ⇔ ∃I ∈ S : I [f ]∗ J
)
;

4◦. ∀S ∈ PF (Src f) : ⟨f⟩ dS = d⟨⟨f⟩⟩∗
S;

5◦. ∀S ∈ PT (Src f) : ⟨f⟩∗

dS = d

〈
⟨f⟩∗〉∗

S;
6◦. ∀A ∈ T (Src f) : ⟨f⟩∗

A = da∈atoms A⟨f⟩∗
a.

7◦. ∀K ∈ PFCD(X,dom f) : f ◦ dK = dg∈K(f ◦g) for every set X (in other
words, f is metacomplete).

8◦. ∀K ∈ PRel(X,dom f) : f ◦ dK = dg∈K(f ◦ g) for every set X.

Proof.
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3◦⇒1◦. For every S ∈ PT (Src f), J ∈ T (Dst f)

lS ⊓
〈
f−1〉∗

J ̸= ⊥ ⇔ ∃I ∈ S : I ⊓
〈
f−1〉∗

J ̸= ⊥,

consequently by theorem 583 we have that
〈
f−1〉∗

J is a principal filter.
1◦⇒2◦. For every S ∈ PF (Src f), J ∈ T (Dst f) we have that

〈
f−1〉∗

J is a
principal filter, consequently

lS ⊓
〈
f−1〉∗

J ̸= ⊥ ⇔ ∃I ∈ S : I ⊓
〈
f−1〉∗

J ̸= ⊥.

From this follows 2◦.
6◦⇒5◦.

⟨f⟩∗

lS =

l

a∈atoms dS

⟨f⟩∗
a =

l

⋃
A∈S

{
⟨f⟩∗

a

a ∈ atomsA

}
=

l

A∈S

l

a∈atoms A

⟨f⟩∗
a =

l

A∈S

⟨f⟩∗
A =

l

〈
⟨f⟩∗〉∗

S.

2◦⇒4◦. Using theorem 583,

J ̸≍ ⟨f⟩ lS ⇔

lS [f ] J ⇔
∃I ∈ S : I [f ] J ⇔

∃I ∈ S : J ̸≍ ⟨f⟩I ⇔

J ̸≍ l⟨⟨f⟩⟩∗
S.

5◦⇒7◦. ⟨f ◦ dK⟩∗
I = ⟨f⟩⟨ dK⟩∗

I = ⟨f⟩ dg∈K⟨g⟩∗
I = dg∈K⟨f⟩⟨g⟩∗

I =

dg∈K⟨f ◦ g⟩∗
I =

〈

dg∈K(f ◦ g)
〉∗
I for any suitable set I.

8◦⇒5◦. ⟨f⟩∗

dS = im
(
(f ◦

(
⊤ ×FCD dS

))
= im

(
f ◦ dG∈S(⊤ ×FCD dG)

)
=

dG∈S im(f ◦ (⊤ ×FCD G)) = dG∈S⟨f⟩∗
G = d

〈
⟨f⟩∗〉∗

S.
2◦⇒3◦, 4◦⇒5◦, 5◦⇒3◦, 5◦⇒6◦, 7◦⇒8◦. Obvious.

□

The following proposition shows that complete funcoids are a direct general-
ization of pretopological spaces.

Proposition 920. To specify a complete funcoid f it is enough to specify ⟨f⟩∗

on one-element sets, values of ⟨f⟩∗ on one element sets can be specified arbitrarily.

Proof. From the above theorem is clear that knowing ⟨f⟩∗ on one-element
sets ⟨f⟩∗ can be found on every set and then the value of ⟨f⟩ can be inferred for
every filter.

Choosing arbitrarily the values of ⟨f⟩∗ on one-element sets we can define a
complete funcoid the following way: ⟨f⟩∗

X = dα∈atoms X⟨f⟩∗
α for every X ∈

T (Src f). Obviously it is really a complete funcoid. □

Theorem 921. A funcoid is principal iff it is both complete and co-complete.
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Proof.
⇒. Obvious.
⇐. Let f be both a complete and co-complete funcoid. Consider the relation g

defined by that ↑ ⟨g⟩∗
α = ⟨f⟩∗

α for one-element sets α (g is correctly
defined because f corresponds to a generalized closure). Because f is a
complete funcoid f is the funcoid corresponding to g.

□

Theorem 922. If R ∈ PFCD(A,B) is a set of (co-)complete funcoids then

dR is a (co-)complete funcoid (for every sets A and B).

Proof. It is enough to prove for co-complete funcoids. Let R ∈ PFCD(A,B)
be a set of co-complete funcoids. Then for every X ∈ T (Src f)〈

lR
〉∗
X = l

f∈R

⟨f⟩∗
X

is a principal filter (used theorem 852). □

Corollary 923. If R is a set of binary relations between sets A and B then

d

〈
↑FCD(A,B)〉∗

R =↑FCD(A,B) ⋃R.

Proof. From two last theorems. □

Lemma 924. Every funcoid is representable as meet (on the lattice of funcoids)
of binary relations of the form X × Y ⊔X × ⊤T (B) (where X, Y are typed sets).

Proof. Let f ∈ FCD(A,B), X ∈ T A, Y ∈ up⟨f⟩X, g(X,Y ) def= X × Y ⊔X ×
⊤T (B). Then g(X,Y ) = X ×FCD Y ⊔X ×FCD ⊤F(B). For every K ∈ T A

⟨g(X,Y )⟩∗
K =

〈
X ×FCD Y

〉∗
K ⊔

〈
X ×FCD ⊤F(B)

〉∗
K =


⊥F(B) if K = ⊥T A

Y if ⊥T A ̸= K ⊑ X

⊤F(B) if K ̸⊑ X

 ⊒ ⟨f⟩∗
K;

so g(X,Y ) ⊒ f . For every X ∈ T A

l

Y ∈up⟨f⟩∗X

⟨g(X,Y )⟩∗
X =

Fl

Y ∈up⟨f⟩∗X

Y = ⟨f⟩∗
X;

consequently 〈l{
g(X,Y )

X ∈ T A, Y ∈ up⟨f⟩∗
X

}〉∗

X ⊑ ⟨f⟩∗
X

that is
l{

g(X,Y )
X ∈ T A, Y ∈ up⟨f⟩∗

X

}
⊑ f

and finally

f =
l{

g(X,Y )
X ∈ T A, Y ∈ up⟨f⟩∗

X

}
.

□

Corollary 925. Filtrators of funcoids are filtered.

Theorem 926.
1◦. g is metacomplete if g is a complete funcoid.
2◦. g is co-metacomplete if g is a co-complete funcoid.
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Proof.
1◦. Let R be a set of funcoids from a set A to a set B and g be a funcoid from

B to some C. Then 〈
g ◦ lR

〉∗
X =

⟨g⟩
〈

lR
〉∗
X =

⟨g⟩ l

f∈R

⟨f⟩∗
X =

l

f∈R

⟨g⟩⟨f⟩∗
X =

l

f∈R

⟨g ◦ f⟩∗
X =

〈

l

f∈R

(g ◦ f)
〉∗

X =

〈

l⟨g◦⟩∗
R
〉∗
X

for every typed set X ∈ T A. So g ◦ dR = d⟨g◦⟩∗
R.

2◦. By duality.
□

Conjecture 927. g is complete if g is a metacomplete funcoid.

I will denote ComplFCD and CoComplFCD the sets of small complete and co-
complete funcoids correspondingly. ComplFCD(A,B) are complete funcoids from A
to B and likewise with CoComplFCD(A,B).

Obvious 928. ComplFCD and CoComplFCD are closed regarding composition
of funcoids.

Proposition 929. ComplFCD and CoComplFCD (with induced order) are com-
plete lattices.

Proof. It follows from theorem 922. □

Theorem 930. Atoms of the lattice ComplFCD(A,B) are exactly funcoidal
products of the form ↑A {α} ×FCD b where α ∈ A and b is an ultrafilter on B.

Proof. First, it’s easy to see that ↑A {α} ×FCD b are elements of
ComplFCD(A,B). Also ⊥FCD(A,B) is an element of ComplFCD(A,B).

↑A {α} ×FCD b are atoms of ComplFCD(A,B) because they are atoms of
FCD(A,B).

It remains to prove that if f is an atom of ComplFCD(A,B) then f =↑A

{α} ×FCD b for some α ∈ A and an ultrafilter b on B.
Suppose f ∈ FCD(A,B) is a non-empty complete funcoid. Then there exists

α ∈ A such that ⟨f⟩∗@{α} ̸= ⊥F(B). Thus ↑A {α} ×FCD b ⊑ f for some ultrafilter
b on B. If f is an atom then f =↑A {α} ×FCD b. □

Theorem 931. G 7→ dα∈A(↑A {α} ×FCD G(α)) is an order isomorphism from
the set of functions G ∈ F (B)A to the set ComplFCD(A,B).

The inverse isomorphism is described by the formula G(α) = ⟨f⟩∗@{α} where
f is a complete funcoid.
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Proof. dα∈A(↑A {α} ×FCD G(α)) is complete because G(α) = datomsG(α)
and thus

l

α∈A

(↑A {α} ×FCD G(α)) = l

{
↑A {α} ×FCD b

α ∈ A, b ∈ atomsG(α)

}
is complete. So G 7→ dα∈A(↑A {α} ×FCD G(α)) is a function from G ∈ F (B)A to
ComplFCD(A,B).

Let f be complete. Then take

G(α) = l

{
b ∈ atomsF(Dst f)

↑A {α} ×FCD b ⊑ f

}

and we have f = dα∈A(↑A {α} ×FCD G(α)) obviously. So G 7→ dα∈A(↑A {α} ×FCD

G(α)) is surjection onto ComplFCD(A,B).
Let now prove that it is an injection:
Let

f = l

α∈A

(↑A {α} ×FCD F (α)) = l

α∈A

(↑A {α} ×FCD G(α))

for some F,G ∈ F (Dst f)Src f . We need to prove F = G. Let β ∈ Src f .

⟨f⟩∗@{β} = l

α∈A

〈
↑A {α} ×FCD F (α)

〉∗@{β} = F (β).

Similarly ⟨f⟩∗@{β} = G(β). So F (β) = G(β).
We have proved that it is a bijection. To show that it is monotone is trivial.
Denote f = dα∈A(↑A {α} ×FCD G(α)). Then

⟨f⟩∗@{α′} = (because ↑A {α′} is principal) =

l

α∈A

〈
↑A {α} ×FCD G(α)

〉
@{α′} =

〈
↑A {α′} ×FCD G(α′)

〉
@{α′} = G(α′).

□

Corollary 932. G 7→ dα∈A(G(α)×FCD ↑A {α}) is an order isomorphism from
the set of functions G ∈ F (B)A to the set CoComplFCD(A,B).

The inverse isomorphism is described by the formula G(α) =
〈
f−1〉∗@{α}

where f is a co-complete funcoid.

Corollary 933. ComplFCD(A,B) and CoComplFCD(A,B) are co-frames.

7.13. Funcoids corresponding to pretopologies

Let ∆ be a pretopology on a set U and cl the preclosure corresponding to it
(see theorem 777).

Both induce a funcoid, I will show that these two funcoids are reverse of each
other:

Theorem 934. Let f be a complete funcoid defined by the formula ⟨f⟩∗@{x} =
∆(x) for every x ∈ U , let g be a co-complete funcoid defined by the formula
⟨g⟩∗

X =↑U cl(GRX) for every X ∈ T U . Then g = f−1.

Remark 935. It is obvious that funcoids f and g exist.
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Proof. For X,Y ∈ T U we have
X [g]∗ Y ⇔

↑ Y ̸≍ ⟨g⟩ ↑ X ⇔
Y ̸≍ cl(GRX) ⇔

∃y ∈ Y : ∆(y) ̸≍↑ X ⇔
∃y ∈ Y : ⟨f⟩∗ ↑U {y} ̸≍↑ X ⇔

(proposition 610 and properties of complete funcoids)
⟨f⟩∗

Y ̸≍↑ X ⇔
Y [f ]∗ X.

So g = f−1. □

7.14. Completion of funcoids

Theorem 936. Cor f = Cor′ f for an element f of a filtrator of funcoids.

Proof. By theorem 545 and corollary 925. □

Definition 937. Completion of a funcoid f ∈ FCD(A,B) is the complete
funcoid Compl f ∈ FCD(A,B) defined by the formula ⟨Compl f⟩∗@{α} = ⟨f⟩∗@{α}
for α ∈ Src f .

Definition 938. Co-completion of a funcoid f is defined by the formula
CoCompl f = (Compl f−1)−1.

Obvious 939. Compl f ⊑ f and CoCompl f ⊑ f .

Proposition 940. The filtrator (FCD(A,B),ComplFCD(A,B)) is filtered.

Proof. Because the filtrator of funcoids is filtered. □

Theorem 941. Compl f = CorComplFCD(A,B) f = Cor′ComplFCD(A,B) f for every
funcoid f ∈ FCD(A,B).

Proof. CorComplFCD(A,B) f = Cor′ComplFCD(A,B) f using theorem 545 since the
filtrator (FCD(A,B),ComplFCD(A,B)) is filtered.

Let g ∈ upComplFCD(A,B) f . Then g ∈ ComplFCD(A,B) and g ⊒ f . Thus
g = Compl g ⊒ Compl f .

Thus ∀g ∈ upComplFCD(A,B) f : g ⊒ Compl f .
Let ∀g ∈ upComplFCD(A,B) f : h ⊑ g for some h ∈ ComplFCD(A,B).
Then h ⊑

d
upComplFCD(A,B) f = f and consequently h = Complh ⊑ Compl f .

Thus

Compl f =
ComplFCD(A,B)l

upComplFCD(A,B) f = CorComplFCD(A,B) f.

□

Theorem 942. ⟨CoCompl f⟩∗
X = Cor⟨f⟩∗

X for every funcoid f and typed
set X ∈ T (Src f).

Proof. CoCompl f ⊑ f thus ⟨CoCompl f⟩∗
X ⊑ ⟨f⟩∗

X but ⟨CoCompl f⟩∗
X

is a principal filter thus ⟨CoCompl f⟩∗
X ⊑ Cor⟨f⟩∗

X.
Let αX = Cor⟨f⟩∗

X. Then α⊥T (Src f) = ⊥F(Dst f) and

α(X ⊔ Y ) = Cor⟨f⟩∗(X ⊔ Y ) = Cor(⟨f⟩∗
X ⊔ ⟨f⟩∗

Y ) =
Cor⟨f⟩∗

X ⊔ Cor⟨f⟩∗
Y = αX ⊔ αY
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(used theorem 603). Thus α can be continued till ⟨g⟩ for some funcoid g. This
funcoid is co-complete.

Evidently g is the greatest co-complete element of FCD(Src f,Dst f) which is
lower than f .

Thus g = CoCompl f and Cor⟨f⟩∗
X = αX = ⟨g⟩∗

X = ⟨CoCompl f⟩∗
X. □

Theorem 943. ComplFCD(A,B) is an atomistic lattice.

Proof. Let f ∈ ComplFCD(A,B), X ∈ T (Src f).

⟨f⟩∗
X = l

x∈atoms X

⟨f⟩∗
x = l

x∈atoms X

⟨f |x⟩∗
x = l

x∈atoms X

⟨f |x⟩∗
X,

thus f = dx∈atoms X(f |x). It is trivial that every f |x is a join of atoms of
ComplFCD(A,B). □

Theorem 944. A funcoid is complete iff it is a join (on the lattice FCD(A,B))
of atomic complete funcoids.

Proof. It follows from the theorem 922 and the previous theorem. □

Corollary 945. ComplFCD(A,B) is join-closed.

Theorem 946. Compl dR = d⟨Compl⟩∗
R for every R ∈ PFCD(A,B) (for

every sets A, B).

Proof. For every typed set X〈
Compl lR

〉∗
X =

l

x∈atoms X

〈
lR

〉∗
x =

l

x∈atoms X

l

f∈R

⟨f⟩∗
x =

l

f∈R

l

x∈atoms X

⟨f⟩∗
x =

l

f∈R

⟨Compl f⟩∗
X =

〈

l⟨Compl⟩∗
R
〉∗
X.

□

Corollary 947. Compl is a lower adjoint.

Conjecture 948. Compl is not an upper adjoint (in general).

Proposition 949. Compl f = dα∈Src f (f |↑{α}) for every funcoid f .

Proof. Let denote R the right part of the equality to prove.
⟨R⟩∗@{β} = dα∈Src f

〈
f |↑{α}

〉∗@{β} = ⟨f⟩∗@{β} for every β ∈ Src f and R is
complete as a join of complete funcoids.

Thus R is the completion of f . □

Conjecture 950. Compl f = f \∗ (Ω ×FCD ℧).

This conjecture may be proved by considerations similar to these in the section
“Fréchet filter”.

Lemma 951. Co-completion of a complete funcoid is complete.



7.14. COMPLETION OF FUNCOIDS 182

Proof. Let f be a complete funcoid.

⟨CoCompl f⟩∗
X = Cor⟨f⟩∗

X = Cor l

x∈atoms X

⟨f⟩∗
x =

l

x∈atoms X

Cor⟨f⟩∗
x = l

x∈atoms X

⟨CoCompl f⟩∗
x

for every set typed X ∈ T (Src f). Thus CoCompl f is complete. □

Theorem 952. Compl CoCompl f = CoCompl Compl f = Cor f for every fun-
coid f .

Proof. Compl CoCompl f is co-complete since (used the lemma) CoCompl f
is co-complete. Thus Compl CoCompl f is a principal funcoid. CoCompl f is the
greatest co-complete funcoid under f and Compl CoCompl f is the greatest com-
plete funcoid under CoCompl f . So Compl CoCompl f is greater than any prin-
cipal funcoid under CoCompl f which is greater than any principal funcoid un-
der f . Thus Compl CoCompl f is the greatest principal funcoid under f . Thus
Compl CoCompl f = Cor f . Similarly CoCompl Compl f = Cor f . □

7.14.1. More on completion of funcoids.

Proposition 953. For every composable funcoids f and g

1◦. Compl(g ◦ f) ⊒ Compl g ◦ Compl f ;
2◦. CoCompl(g ◦ f) ⊒ CoCompl g ◦ CoCompl f .

Proof.
1◦. Compl g ◦ Compl f = Compl(Compl g ◦ Compl f) ⊑ Compl(g ◦ f).
2◦. CoCompl g ◦ CoCompl f = CoCompl(CoCompl g ◦ CoCompl f) ⊑

CoCompl(g ◦ f).
□

Proposition 954. For every composable funcoids f and g

1◦. CoCompl(g ◦ f) = (CoCompl g) ◦ f if f is a co-complete funcoid.
2◦. Compl(f ◦ g) = f ◦ Compl g if f is a complete funcoid.

Proof.
1◦. For every X ∈ T (Src f)

⟨CoCompl(g ◦ f)⟩∗
X =

Cor⟨g ◦ f⟩∗
X =

Cor⟨g⟩⟨f⟩∗
X =

⟨CoCompl g⟩⟨f⟩∗
X =

⟨(CoCompl g) ◦ f⟩∗
X.

2◦. (CoCompl(g ◦ f))−1 = f−1 ◦ (CoCompl g)−1; Compl(g ◦ f)−1 = f−1 ◦
Compl g−1; Compl(f−1 ◦ g−1) = f−1 ◦ Compl g−1. After variable replacement we
get Compl(f ◦ g) = f ◦ Compl g (after the replacement f is a complete funcoid).

□

Corollary 955. For every composable funcoids f and g

1◦. Compl f ◦ Compl g = Compl(Compl f ◦ g).
2◦. CoCompl g ◦ CoCompl f = CoCompl(g ◦ CoCompl f).

Proposition 956. For every composable funcoids f and g

1◦. Compl(g ◦ f) = Compl(g ◦ (Compl f));
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2◦. CoCompl(g ◦ f) = CoCompl((CoCompl g) ◦ f).

Proof.
1◦.

⟨g ◦ (Compl f)⟩∗@{x} = ⟨g⟩⟨Compl f⟩∗@{x} =
⟨g⟩⟨f⟩∗@{x} = ⟨g ◦ f⟩∗@{x}.

Thus Compl(g ◦ (Compl f)) = Compl(g ◦ f).
2◦. (Compl(g◦(Compl f))−1 = (Compl(g◦f))−1; CoCompl(g◦(Compl f))−1 =

CoCompl(g ◦ f)−1; CoCompl((Compl f)−1 ◦ g−1) = CoCompl(f−1 ◦ g−1);
CoCompl((CoCompl f−1) ◦ g−1) = CoCompl(f−1 ◦ g−1). After variable replace-
ment CoCompl((CoCompl g) ◦ f) = CoCompl(g ◦ f).

□

Theorem 957. The filtrator of funcoids (from a given set A to a given set B)
is with co-separable core.

Proof. Let f, g ∈ FCD(A,B) and f ⊔ g = ⊤. Then for every X ∈ T A we
have

⟨f⟩∗
X ⊔ ⟨g⟩∗

X = ⊤ ⇔ Cor⟨f⟩∗
X ⊔ Cor⟨g⟩∗

X = ⊤ ⇔
⟨CoCompl f⟩∗

X ⊔ ⟨CoCompl g⟩∗
X = ⊤.

Thus ⟨CoCompl f ⊔ CoCompl g⟩∗
X = ⊤;

f ⊔ g = ⊤ ⇒ CoCompl f ⊔ CoCompl g = ⊤. (14)
Applying the dual of the formulas (14) to the formula (14) we get:

f ⊔ g = ⊤ ⇒ Compl CoCompl f ⊔ Compl CoCompl g = ⊤
that is f ⊔g = ⊤ ⇒ Cor f ⊔Cor g = ⊤. So FCD(A,B) is with co-separable core. □

Corollary 958. The filtrator of complete funcoids is also with co-separable
core.

7.15. Monovalued and injective funcoids

Following the idea of definition of monovalued morphism let’s call monovalued
such a funcoid f that f ◦ f−1 ⊑ idFCD

im f .
Similarly, I will call a funcoid injective when f−1 ◦ f ⊑ idFCD

dom f .

Obvious 959. A funcoid f is:
1◦. monovalued iff f ◦ f−1 ⊑ 1FCD

Dst f ;
2◦. injective iff f−1 ◦ f ⊑ 1FCD

Src f .

In other words, a funcoid is monovalued (injective) when it is a monovalued
(injective) morphism of the category of funcoids. Monovaluedness is dual of injec-
tivity.

Obvious 960.
1◦. A morphism (A,B, f) of the category of funcoid triples is monovalued iff

the funcoid f is monovalued.
2◦. A morphism (A,B, f) of the category of funcoid triples is injective iff the

funcoid f is injective.

Theorem 961. The following statements are equivalent for a funcoid f :
1◦. f is monovalued.
2◦. It is metamonovalued.
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3◦. It is weakly metamonovalued.
4◦. ∀a ∈ atomsF(Src f) : ⟨f⟩a ∈ atomsF(Dst f) ∪{⊥F(Dst f)}.
5◦. ∀I,J ∈ F (Dst f) :

〈
f−1〉(I ⊓ J ) =

〈
f−1〉I ⊓

〈
f−1〉J .

6◦. ∀I, J ∈ T (Dst f) :
〈
f−1〉∗(I ⊓ J) =

〈
f−1〉∗

I ⊓
〈
f−1〉∗

J .

Proof.
4◦⇒5◦. Let a ∈ atomsF(Src f), ⟨f⟩a = b. Then because b ∈

atomsF(Dst f) ∪{⊥F(Dst f)}

(I ⊓ J ) ⊓ b ̸= ⊥ ⇔ I ⊓ b ̸= ⊥ ∧ J ⊓ b ̸= ⊥;
a [f ] I ⊓ J ⇔ a [f ] I ∧ a [f ] J ;

I ⊓ J
[
f−1] a ⇔ I

[
f−1] a ∧ J

[
f−1] a;

a ⊓
〈
f−1〉(I ⊓ J ) ̸= ⊥ ⇔ a ⊓

〈
f−1〉I ≠ ⊥ ∧ a ⊓

〈
f−1〉J ≠ ⊥;〈

f−1〉(I ⊓ J ) =
〈
f−1〉I ⊓

〈
f−1〉J .

5◦⇒1◦.
〈
f−1〉a ⊓

〈
f−1〉b =

〈
f−1〉(a ⊓ b) =

〈
f−1〉⊥ = ⊥ for every two distinct

atomic filter objects a and b on Dst f . This is equivalent to ¬(
〈
f−1〉a [f ]

b); b ≍ ⟨f⟩
〈
f−1〉a; b ≍

〈
f ◦ f−1〉a; ¬(a

[
f ◦ f−1] b). So a

[
f ◦ f−1]

b ⇒ a = b for every ultrafilters a and b. This is possible only when
f ◦ f−1 ⊑ 1FCD

Dst f .
6◦⇒5◦. 〈

f−1〉(I ⊓ J ) =
l〈〈

f−1〉∗
〉∗

up(I ⊓ J ) =
l〈〈

f−1〉∗
〉∗
{

I ⊓ J

I ∈ up I, J ∈ up J

}
=

l
{ 〈

f−1〉∗(I ⊓ J)
I ∈ up I, J ∈ up J

}
=

l
{ 〈

f−1〉∗
I ⊓ ⟨f⟩∗

J

I ∈ up I, J ∈ up J

}
=

l{
⟨f⟩∗

I

I ∈ up I

}
⊓

l
{ 〈

f−1〉∗
J

J ∈ up J

}
=〈

f−1〉I ⊓
〈
f−1〉J .

5◦⇒6◦. Obvious.
¬4◦⇒¬1◦. Suppose ⟨f⟩a /∈ atomsF(Dst f) ∪{⊥F(Dst f)} for some a ∈ atomsF(Src f).

Then there exist two atomic filters p and q on Dst f such that p ̸= q and
⟨f⟩a ⊒ p ∧ ⟨f⟩a ⊒ q. Consequently p ̸≍ ⟨f⟩a; a ̸≍

〈
f−1〉p; a ⊑

〈
f−1〉p;〈

f ◦ f−1〉p = ⟨f⟩
〈
f−1〉p ⊒ ⟨f⟩a ⊒ q;

〈
f ◦ f−1〉p ̸⊑ p and

〈
f ◦ f−1〉p ̸=

⊥F(Dst f). So it cannot be f ◦ f−1 ⊑ 1FCD
Dst f .

2◦⇒3◦. Obvious.
1◦⇒2◦.〈(l

G
)

◦ f
〉
x =

〈l
G
〉

⟨f⟩x =
l

g∈G

⟨g⟩⟨f⟩x =

l

g∈G

⟨g ◦ f⟩x =
〈

l

g∈G

(g ◦ f)
〉
x
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for every atomic filter object x ∈ atomsF(Src f). Thus (
d
G)◦f =

d
g∈G(g◦

f).
3◦⇒1◦. Take g = a×FCD y and h = b×FCD y for arbitrary atomic filter objects a ̸= b

and y. We have g ⊓ h = ⊥; thus (g ◦ f) ⊓ (h ◦ f) = (g ⊓ h) ◦ f = ⊥ and
thus impossible x [f ] a ∧ x [f ] b as otherwise x [g ◦ f ] y and x [h ◦ f ] y so
x [(g ◦ f) ⊓ (h ◦ f)] y. Thus f is monovalued.

□

Corollary 962. A binary relation corresponds to a monovalued funcoid iff it
is a function.

Proof. Because ∀I, J ∈ P(im f) :
〈
f−1〉∗(I⊓J) =

〈
f−1〉∗

I⊓
〈
f−1〉∗

J is true
for a funcoid f corresponding to a binary relation if and only if it is a function (see
proposition 388). □

Remark 963. This corollary can be reformulated as follows: For binary rela-
tions (principal funcoids) the classic concept of monovaluedness and monovalued-
ness in the above defined sense of monovaluedness of a funcoid are the same.

Theorem 964. If f , g are funcoids, f ⊑ g and g is monovalued then g|dom f =
f .

Proof. Obviously g|dom f ⊒ f . Suppose for contrary that g|dom f ⊏ f . Then
there exists an atom a ∈ atoms dom f such that ⟨g|dom f ⟩a ̸= ⟨f⟩a that is ⟨g⟩a ⊏
⟨f⟩a what is impossible. □

7.16. T0-, T1-, T2-, T3-, and T4-separable funcoids

For funcoids it can be generalized T0-, T1-, T2-, and T3- separability. Worthwhile
note that T0 and T2 separability is defined through T1 separability.

Definition 965. Let call T1-separable such endofuncoid f that for every α, β ∈
Ob f is true

α ̸= β ⇒ ¬(@{α} [f ]∗ @{β}).

Proposition 966. An endofuncoid f is T1-separable iff Cor f ⊑ 1FCD
Ob f .

Proof.

∀x, y ∈ Ob f : (@{x} [f ]∗ @{y} ⇒ x = y) ⇔

∀x, y ∈ Ob f : (@{x} [Cor f ]∗ @{y} ⇒ x = y) ⇔ Cor f ⊑ 1FCD
Ob f .

□

Proposition 967. An endofuncoid f is T1-separable iff Cor⟨f⟩∗{x} ⊑ {x} for
every x ∈ Ob f .

Proof.

Cor⟨f⟩∗{x} ⊑ {x} ⇔ ⟨CoCompl f⟩∗{x} ⊑ {x} ⇔

Compl CoCompl f ⊑ 1FCD
Ob f ⇔ Cor f ⊑ 1FCD

Ob f .

□

Definition 968. Let call T0-separable such funcoid f ∈ FCD(A,A) that f⊓f−1

is T1-separable.

Definition 969. Let call T2-separable such funcoid f that f−1 ◦ f is T1-
separable.
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For symmetric transitive funcoids T0-, T1- and T2-separability are the same (see
theorem 255).

Obvious 970. A funcoid f is T2-separable iff α ̸= β ⇒ ⟨f⟩∗@{α} ≍ ⟨f⟩∗@{β}
for every α, β ∈ Src f .

Definition 971. Funcoid f is regular iff for every C ∈ T Dst f and p ∈ Src f

⟨f⟩⟨f−1⟩C ≍ ⟨f⟩@{p} ⇐↑Src f {p} ≍ ⟨f−1⟩C.

Proposition 972. The following are pairwise equivalent:
1◦. A funcoid f is regular.
2◦. Compl(f ◦ f−1 ◦ f) ⊑ Compl f .
3◦. Compl(f ◦ f−1 ◦ f) ⊑ f .

Proof. Equivalently transform the defining formula for regular funcoids:
⟨f⟩⟨f−1⟩C ≍ ⟨f⟩@{p} ⇐↑Src f {p} ≍ ⟨f−1⟩C;
⟨f⟩⟨f−1⟩C ̸≍ ⟨f⟩@{p} ⇒↑Src f {p} ̸≍

〈
f−1〉C;

(by definition of funcoids)
C ̸≍ ⟨f⟩⟨f−1⟩⟨f⟩@{p} ⇒ C ̸≍ ⟨f⟩@{p};
⟨f⟩⟨f−1⟩⟨f⟩@{p} ⊑ ⟨f⟩@{p};〈
f ◦ f−1 ◦ f

〉
@{p} ⊑ ⟨f⟩@{p};

Compl(f ◦ f−1 ◦ f) ⊑ Compl f ;
Compl(f ◦ f−1 ◦ f) ⊑ f . □

Proposition 973. If f is complete, regularity of funcoid f is equivalent to
f ◦ Compl(f−1 ◦ f) ⊑ f .

Proof. By proposition 954. □

Remark 974. After seeing how it collapses into algebraic formulas about fun-
coids, the definition for a funcoid being regular seems quite arbitrary and sucked
out of the finger (not an example of algebraic elegance). So I present these formu-
las only because they coincide with the traditional definition of regular topological
spaces. However this is only my personal opinion and it may be wrong.

Definition 975. An endofuncoid is T3- iff it is both T2- and regular.

A topological space S is called T4-separable when for any two disjoint closed
sets A,B ⊆ S there exist disjoint open sets U , V containing A and B respectively.

Let f be the complete funcoid corresponding to the topological space.
Since the closed sets are exactly sets of the form

〈
f−1〉∗

X and sets X and Y

having non-intersecting open neighborhood is equivalent to ⟨f⟩∗
X ≍ ⟨f⟩∗Y , the

above is equivalent to:〈
f−1〉∗

A ≍
〈
f−1〉∗

B ⇒ ⟨f⟩∗〈
f−1〉∗

A ≍ ⟨f⟩∗〈
f−1〉∗

B;
⟨f⟩∗〈

f−1〉∗
A ̸≍ ⟨f⟩∗〈f−1〉∗

B ⇒ ⟨f−1⟩∗A ̸≍
〈
f−1〉∗

B;
⟨f⟩∗〈

f−1〉∗⟨f⟩∗〈f−1〉∗
A ̸≍ B ⇒ ⟨f⟩∗〈f−1〉∗

A ̸≍ B;
⟨f⟩∗〈

f−1〉∗⟨f⟩∗〈f−1〉∗
A ⊑ ⟨f⟩∗〈f−1〉∗

A;
f ◦ f−1 ◦ f ◦ f−1 ⊑ f ◦ f−1.
Take the last formula as the definition of T4-funcoid f .

7.17. Filters closed regarding a funcoid

Definition 976. Let’s call closed regarding a funcoid f ∈ FCD(A,A) such
filter A ∈ F (Src f) that ⟨f⟩A ⊑ A.

This is a generalization of closedness of a set regarding an unary operation.
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Proposition 977. If I and J are closed (regarding some funcoid f), S is a set
of closed filters on Src f , then

1◦. I ⊔ J is a closed filter;
2◦.

d
S is a closed filter.

Proof. Let denote the given funcoid as f . ⟨f⟩(I ⊔J ) = ⟨f⟩I ⊔⟨f⟩J ⊑ I ⊔J ,
⟨f⟩

d
S ⊑

d
⟨⟨f⟩⟩∗

S ⊑
d
S. Consequently the filters I ⊔ J and

d
S are closed. □

Proposition 978. If S is a set of filters closed regarding a complete funcoid,
then the filter dS is also closed regarding our funcoid.

Proof. ⟨f⟩ dS = d⟨⟨f⟩⟩∗
S ⊑ dS where f is the given funcoid. □

7.18. Proximity spaces

Fix a set U . Let equate typed subsets of U with subsets of U .
We will prove that proximity spaces are essentially the same as reflexive, sym-

metric, transitive funcoids.
Our primary interest here is the last axiom (6◦) in the definition 797 of prox-

imity spaces.

Proposition 979. If f is a transitive, symmetric funcoid, then the last axiom
of proximity holds.

Proof.

¬
(
A [f ]∗ B

)
⇔ ¬

(
A
[
f−1 ◦ f

]∗
B
)

⇔ ⟨f⟩∗
B ≍ ⟨f⟩∗

A ⇔

∃M ∈ U : M ≍ ⟨f⟩∗
A ∧M ≍ ⟨f⟩∗

B.

□

Proposition 980. For a reflexive funcoid, the last axiom of proximity implies
that it is transitive and symmetric.

Proof. Let ¬
(
A [f ]∗ B

)
implies ∃M : M ≍ ⟨f⟩∗

A ∧ M ≍ ⟨f⟩∗
B.

Then ¬
(
A [f ]∗ B

)
implies M ≍ ⟨f⟩∗

A ∧ ⟨f⟩∗
B ⊑ M , thus ⟨f⟩∗

A ≍ ⟨f⟩∗
B;

¬
(
A
[
f−1 ◦ f

]∗
B
)

that is f ⊒ f−1 ◦ f and thus f = f−1 ◦ f . By theorem 255 f is
transitive and symmetric. □

Theorem 981. Reflexive, symmetric, transitive funcoids endofuncoids on a
set U are essentially the same as proximity spaces on U .

Proof. Above and theorem 831. □



CHAPTER 8

Reloids

8.1. Basic definitions

Definition 982. Let A, B be sets. RLD♯(A,B) is the base of an arbitrary but
fixed primary filtrator over Rel(A,B).

Obvious 983. (RLD♯(A,B),Rel(A,B)) is a powerset filtrator.

Definition 984. I call a reloid from a set A to a set B a triple (A,B, F ) where
F ∈ RLD♯(A,B).

Definition 985. Source and destination of every reloid (A,B, F ) are defined
as

Src(A,B, F ) = A and Dst(A,B, F ) = B.

I will denote RLD(A,B) the set of reloids from A to B.
I will denote RLD the set of all reloids (for small sets).

Definition 986. I will call endoreloids reloids with the same source and des-
tination.

Definition 987.
• ↑RLD♯ f is the principal filter object corresponding to a Rel-morphism f .
• ↑RLD♯(A,B) f =↑RLD♯ (A,B, f) for every binary relation f ∈ P(A×B).
• ↑RLD f = (Src f,Dst f, ↑RLD♯ f) for every Rel-morphism f .
• ↑RLD(A,B) f =↑RLD (A,B, f) for every binary relation f ∈ P(A×B).

Definition 988. I call members of a set
〈
↑RLD〉∗Rel(A,B) as principal reloids.

Reloids are a generalization of uniform spaces. Also reloids are generalization
of binary relations.

Definition 989. up f−1 =
{

F −1

F ∈up f

}
for every f ∈ RLD♯(A,B).

Proposition 990. f−1 exists and f−1 ∈ RLD♯(B,A).

Proof. We need to prove that
{

F −1

F ∈up f

}
is a filter, but that’s obvious. □

Definition 991. The reverse reloid of a reloid is defined by the formula
(A,B, F )−1 = (B,A, F−1).

Note 992. The reverse reloid is not an inverse in the sense of group theory or
category theory.

Reverse reloid is a generalization of conjugate quasi-uniformity.

Definition 993. Every set RLD(A,B) is a poset by the formula f ⊑ g ⇔
GR f ⊑ GR g. We will apply lattice operations to subsets of RLD(A,B) without
explicitly mentioning RLD(A,B).

Filtrators of reloids are (RLD(A,B),Rel(A,B)) (for all sets A, B). Here I
equate principal reloids with corresponding Rel-morphisms.

188
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Obvious 994. (RLD(A,B),Rel(A,B)) is a powerset filtrator isomorphic to the
filtrator (RLD♯(A,B),Rel(A,B)). Thus RLD(A,B) is a special case of RLD♯(A,B).

8.2. Composition of reloids

Definition 995. Reloids f and g are composable when Dst f = Src g.

Definition 996. Composition of (composable) reloids is defined by the formula

g ◦ f =
RLDl{

G ◦ F
F ∈ up f,G ∈ up g

}
.

Obvious 997. Composition of reloids is a reloid.

Obvious 998. ↑RLD g◦ ↑RLD f =↑RLD (g ◦ f) for composable morphisms f , g of
category Rel.

Theorem 999. (h ◦ g) ◦ f = h ◦ (g ◦ f) for every composable reloids f , g, h.

Proof. For two nonempty collections A and B of sets I will denote
A ∼ B ⇔ ∀K ∈ A∃L ∈ B : L ⊆ K ∧ ∀K ∈ B∃L ∈ A : L ⊆ K.

It is easy to see that ∼ is a transitive relation.
I will denote B ◦A =

{
L◦K

K∈A,L∈B

}
.

Let first prove that for every nonempty collections of relations A, B, C
A ∼ B ⇒ A ◦ C ∼ B ◦ C.

Suppose A ∼ B and P ∈ A ◦ C that is K ∈ A and M ∈ C such that P = K ◦ M .
∃K ′ ∈ B : K ′ ⊆ K because A ∼ B. We have P ′ = K ′ ◦ M ∈ B ◦ C. Obviously
P ′ ⊆ P . So for every P ∈ A ◦C there exists P ′ ∈ B ◦C such that P ′ ⊆ P ; the vice
versa is analogous. So A ◦ C ∼ B ◦ C.

up((h ◦ g) ◦ f) ∼ up(h ◦ g) ◦ up f , up(h ◦ g) ∼ (uph) ◦ (up g). By proven above
up((h ◦ g) ◦ f) ∼ (uph) ◦ (up g) ◦ (up f).

Analogously up(h ◦ (g ◦ f)) ∼ (uph) ◦ (up g) ◦ (up f).
So up(h ◦ (g ◦ f)) ∼ up((h ◦ g) ◦ f) what is possible only if up(h ◦ (g ◦ f)) =

up((h ◦ g) ◦ f). Thus (h ◦ g) ◦ f = h ◦ (g ◦ f). □

Exercise 1000. Prove fn ◦ · · · ◦ f0 =
dRLD

{
Fn◦···◦F0
Fi∈up fi

}
for every composable

reloids f0, . . . , fn where n is an integer, independently of the inserted parentheses.
(Hint: Use generalized filter bases.)

Theorem 1001. For every reloid f :
1◦. f ◦ f =

dRLD
{

F ◦F
F ∈up f

}
if Src f = Dst f ;

2◦. f−1 ◦ f =
dRLD

{
F −1◦F
F ∈up f

}
;

3◦. f ◦ f−1 =
dRLD

{
F ◦F −1

F ∈up f

}
.

Proof. I will prove only 1◦ and 2◦ because 3◦ is analogous to 2◦.
1◦. It’s enough to show that ∀F,G ∈ up f∃H ∈ up f : H ◦ H ⊑ G ◦ F . To

prove it take H = F ⊓G.
2◦. It’s enough to show that ∀F,G ∈ up f∃H ∈ up f : H−1 ◦ H ⊑ G−1 ◦ F .

To prove it take H = F ⊓G. Then H−1 ◦H = (F ⊓G)−1 ◦ (F ⊓G) ⊑ G−1 ◦ F .
□

Exercise 1002. Prove fn =
dRLD

{
F n

F ∈up f

}
for every endofuncoid f and pos-

itive integer n.
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Theorem 1003. For every sets A, B, C if g, h ∈ RLD(A,B) then

1◦. f ◦ (g ⊔ h) = f ◦ g ⊔ f ◦ h for every f ∈ RLD(B,C);
2◦. (g ⊔ h) ◦ f = g ◦ f ⊔ h ◦ f for every f ∈ RLD(C,A).

Proof. We’ll prove only the first as the second is dual.
By the infinite distributivity law for filters we have

f ◦ g ⊔ f ◦ h =
RLDl{

F ◦G
F ∈ up f,G ∈ up g

}
⊔

RLDl{
F ◦H

F ∈ up f,H ∈ uph

}
=

RLDl{
(F1 ◦G) ⊔RLD (F2 ◦H)

F1, F2 ∈ up f,G ∈ up g,H ∈ uph

}
=

RLDl{
(F1 ◦G) ⊔ (F2 ◦H)

F1, F2 ∈ up f,G ∈ up g,H ∈ uph

}
.

Obviously

RLDl{
(F1 ◦G) ⊔ (F2 ◦H)

F1, F2 ∈ up f,G ∈ up g,H ∈ uph

}
⊒

RLDl{
(((F1 ⊓ F2) ◦G) ⊔ ((F1 ⊓ F2) ◦H))
F1, F2 ∈ up f,G ∈ up g,H ∈ uph

}
=

RLDl{
(F ◦G) ⊔ (F ◦H)

F ∈ up f,G ∈ up g,H ∈ uph

}
=

RLDl{
F ◦ (G ⊔H)

F ∈ up f,G ∈ up g,H ∈ uph

}
.

Because G ∈ up g ∧H ∈ uph ⇒ G ⊔H ∈ up(g ⊔ h) we have

RLDl{
F ◦ (G ⊔H)

F ∈ up f,G ∈ up g,H ∈ uph

}
⊒

RLDl{
F ◦K

F ∈ up f,K ∈ up(g ⊔ h)

}
=

f ◦ (g ⊔ h).

Thus we have proved f ◦g⊔f ◦h ⊒ f ◦ (g⊔h). But obviously f ◦ (g⊔h) ⊒ f ◦g
and f ◦(g⊔h) ⊒ f ◦h and so f ◦(g⊔h) ⊒ f ◦g⊔f ◦h. Thus f ◦(g⊔h) = f ◦g⊔f ◦h. □

Theorem 1004. Let A, B, C be sets, f ∈ RLD(A,B), g ∈ RLD(B,C), h ∈
RLD(A,C). Then

g ◦ f ̸≍ h ⇔ g ̸≍ h ◦ f−1.
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Proof.

g ◦ f ̸≍ h ⇔
RLDl{

G ◦ F
F ∈ up f,G ∈ up g

}
⊓

RLDl
uph ̸= ⊥ ⇔

RLDl{
(G ◦ F ) ⊓RLD H

F ∈ up f,G ∈ up g,H ∈ uph

}
̸= ⊥ ⇔

RLDl{
(G ◦ F ) ⊓H

F ∈ up f,G ∈ up g,H ∈ uph

}
̸= ⊥ ⇔

∀F ∈ up f,G ∈ up g,H ∈ uph :↑RLD ((G ◦ F ) ⊓H) ̸= ⊥ ⇔
∀F ∈ up f,G ∈ up g,H ∈ uph : G ◦ F ̸≍ H

(used properties of generalized filter bases).
Similarly g ̸≍ h ◦ f−1 ⇔ ∀F ∈ up f,G ∈ up g,H ∈ uph : G ̸≍ H ◦ F−1.
Thus g ◦ f ̸≍ h ⇔ g ̸≍ h ◦ f−1 because G ◦ F ̸≍ H ⇔ G ̸≍ H ◦ F−1 by

proposition 283. □

Theorem 1005. For every composable reloids f and g

1◦. g ◦ f = d

{
g◦F

F ∈atoms f

}
.

2◦. g ◦ f = d

{
G◦f

G∈atoms g

}
.

Proof. We will prove only the first as the second is dual. □

Obviously d
{

g◦F
F ∈atoms f

}
⊑ g ◦ f . We need to prove d

{
g◦F

F ∈atoms f

}
⊒ g ◦ f .

Really,

l

{
g ◦ F

F ∈ atoms f

}
⊒ g ◦ f ⇔

∀x ∈ RLD(Src f,Dst g) :
(
x ̸≍ g ◦ f ⇒ x ̸≍ l

{
g ◦ F

F ∈ atoms f

})
⇐

∀x ∈ RLD(Src f,Dst g) : (x ̸≍ g ◦ f ⇒ ∃F ∈ atoms f : x ̸≍ g ◦ F ) ⇔
∀x ∈ RLD(Src f,Dst g) : (g−1 ◦ x ̸≍ f ⇒ ∃F ∈ atoms f : g−1 ◦ x ̸≍ F )

what is obviously true.

Corollary 1006. If f and g are composable reloids, then

g ◦ f = l

{
G ◦ F

F ∈ atoms f,G ∈ atoms g

}
.

Proof. g ◦ f = dF ∈atoms f (g ◦ F ) = dF ∈atoms f dG∈atoms g(G ◦ F ) =

d

{
G◦F

F ∈atoms f,G∈atoms g

}
. □

8.3. Reloidal product of filters

Definition 1007. Reloidal product of filters A and B is defined by the formula

A ×RLD B def=
RLDl{

A×B

A ∈ up A, B ∈ up B

}
.

Obvious 1008.
• ↑U A×RLD ↑V B =↑RLD(U,V ) (A×B) for every sets A ⊆ U , B ⊆ V .
• ↑ A×RLD ↑ B =↑RLD (A×B) for every typed sets A, B.
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Theorem 1009. A ×RLD B = d

{
a×RLDb

a∈atoms A,b∈atoms B

}
for every filters A and B.

Proof. Obviously A ×RLD B ⊒ d

{
a×RLDb

a∈atoms A,b∈atoms B

}
.

Reversely, let K ∈ up d

{
a×RLDb

a∈atoms A,b∈atoms B

}
. Then K ∈ up(a×RLDb) for every

a ∈ atoms A, b ∈ atoms B. K ⊒ Xa × Yb for some Xa ∈ up a, Yb ∈ up b;

K ⊒ l

{
Xa × Yb

a ∈ atoms A, b ∈ atoms B

}
=

l

{
Xa

a ∈ atoms A

}
× l

{
Yb

b ∈ atoms B

}
⊒ A×B

where A ∈ up A, B ∈ up B; K ∈ up(A ×RLD B). □

Theorem 1010. If A0,A1 ∈ F (A), B0,B1 ∈ F (B) for some sets A, B then

(A0 ×RLD B0) ⊓ (A1 ×RLD B1) = (A0 ⊓ A1) ×RLD (B0 ⊓ B1).

Proof.
(A0 ×RLD B0) ⊓ (A1 ×RLD B1) =

RLDl{
P ⊓Q

P ∈ up(A0 ×RLD B0), Q ∈ up(A1 ×RLD B1)

}
=

RLDl{
(A0 ×B0) ⊓ (A1 ×B1)

A0 ∈ up A0, B0 ∈ up B0, A1 ∈ up A1, B1 ∈ up B1

}
=

RLDl{
(A0 ⊓A1) × (B0 ⊓B1)

A0 ∈ up A0, B0 ∈ up B0, A1 ∈ up A1, B1 ∈ up B1

}
=

RLDl{
K × L

K ∈ up(A0 ⊓ A1), L ∈ up(B0 ⊓ B1)

}
=

(A0 ⊓ A1) ×RLD (B0 ⊓ B1).
□

Theorem 1011. If S ∈ P(F (A) × F (B)) for some sets A, B then
l{

A ×RLD B
(A,B) ∈ S

}
=

l
domS ×RLD

l
imS.

Proof. Let P =
d

domS, Q =
d

imS; l =
d{ A×RLDB

(A,B)∈S

}
.

P ×RLD Q ⊑ l is obvious.
Let F ∈ up(P ×RLD Q). Then there exist P ∈ up P and Q ∈ up Q such that

F ⊒ P ×Q.
P = P1 ⊓ · · · ⊓ Pn where Pi ∈ domS and Q = Q1 ⊓ · · · ⊓Qm where Qj ∈ imS.
P ×Q =

d
i,j(Pi ×Qj).

Pi × Qj ∈ up(A ×RLD B) for some (A,B) ∈ S. P × Q =
d

i,j(Pi × Qj) ∈ up l.
So F ∈ up l. □

Corollary 1012.
d〈

A×RLD〉∗
T = A ×RLD d

T if A is a filter and T is a set
of filters with common base.

Proof. Take S = {A} × T where T is a set of filters.
Then

d{A×RLDB
B∈T

}
= A ×RLD d

T that is
d〈

A×RLD〉∗
T = A ×RLD d

T . □

Definition 1013. I will call a reloid convex iff it is a join of direct products.
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8.4. Restricting reloid to a filter. Domain and image

Definition 1014. Identity reloid for a set A is defined by the formula
1RLD

A =↑RLD(A,A) idA.

Obvious 1015. (1RLD
A )−1 = 1RLD

A .

Definition 1016. I define restricting a reloid f to a filter A as f |A = f ⊓
(A ×RLD ⊤F(Dst f)).

Definition 1017. Domain and image of a reloid f are defined as follows:

dom f =
Fl

⟨dom⟩∗ up f ; im f =
Fl

⟨im⟩∗ up f.

Proposition 1018. f ⊑ A ×RLD B ⇔ dom f ⊑ A ∧ im f ⊑ B for every reloid
f and filters A ∈ F (Src f), B ∈ F (Dst f).

Proof.
⇒. It follows from dom(A ×RLD B) ⊑ A ∧ im(A ×RLD B) ⊑ B.
⇐. dom f ⊑ A ⇔ ∀A ∈ up A∃F ∈ up f : domF ⊑ A. Analogously

im f ⊑ B ⇔ ∀B ∈ up B∃G ∈ up f : imG ⊑ B.
Let dom f ⊑ A ∧ im f ⊑ B, A ∈ up A, B ∈ up B. Then there exist

F,G ∈ up f such that domF ⊑ A∧imG ⊑ B. Consequently F⊓G ∈ up f ,
dom(F ⊓G) ⊑ A, im(F ⊓G) ⊑ B that is F ⊓G ⊑ A×B. So there exists
H ∈ up f such that H ⊑ A × B for every A ∈ up A, B ∈ up B. So
f ⊑ A ×RLD B.

□

Definition 1019. I call restricted identity reloid for a filter A the reloid

idRLD
A = (1RLD

Base(A))|A.

Theorem 1020. idRLD
A =

dRLD(Base(A),Base(A))
A∈up A idA for every filter A.

Proof. Let K ∈ up
dRLD(Base(A),Base(A))

A∈up A idA, then there exists A ∈ up A such
that GRK ⊇ idA. Then

idRLD
A ⊑

↑RLD(Base(A),Base(A)) idBase(A) ⊓(A ×RLD ⊤) ⊑

↑RLD(Base(A),Base(A)) idBase(A) ⊓(A×RLD ⊤) =

↑RLD(Base(A),Base(A)) idBase(A) ⊓ ↑RLD (A× ⊤) =

↑RLD(Base(A),Base(A)) (idBase(A) ∩ GR(A× ⊤)) =

↑RLD(Base(A),Base(A)) idA ⊑ K.

Thus K ∈ up idRLD
A .

Reversely let K ∈ up idRLD
A = up(1RLD

Base(A) ⊓ (A ×RLD ⊤)), then there exists
A ∈ up A such that

K ∈ up ↑RLD(Base(A),Base(A)) (idBase(A) ∩ GR(A× ⊤)) =

up ↑RLD(Base(A),Base(A)) idA ⊒

up
RLD(Base(A),Base(A))l

A∈up A
idA .

□
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Corollary 1021. (idRLD
A )−1 = idRLD

A .

Theorem 1022. f |A = f ◦ idRLD
A for every reloid f and A ∈ F (Src f).

Proof. We need to prove that

f ⊓ (A ×RLD ⊤) = f ◦
RLD(Src f,Src f)l {

idA

A ∈ up A

}
.

We have

f ◦
RLD(Src f,Src f)l {

idA

A ∈ up A

}
=

RLD(Src f,Src f)l {
GR(F ) ◦ idA

F ∈ up f,A ∈ up A

}
=

RLDl{
F |A

F ∈ up f,A ∈ up A

}
=

RLDl{
F ⊓ (A× ⊤T (Dst f))
F ∈ up f,A ∈ up A

}
=

RLDl{
F

F ∈ up f

}
⊓

RLDl{
A× ⊤T (Dst f)

A ∈ up A

}
=

f ⊓ (A ×RLD ⊤).

□

Theorem 1023. (g ◦f)|A = g ◦ (f |A) for every composable reloids f and g and
A ∈ F (Src f).

Proof. (g ◦ f)|A = (g ◦ f) ◦ idRLD
A = g ◦ (f ◦ idRLD

A ) = g ◦ (f |A). □

Theorem 1024. f ⊓ (A ×RLD B) = idRLD
B ◦f ◦ idRLD

A for every reloid f and
A ∈ F (Src f), B ∈ F (Dst f).

Proof.

f ⊓ (A ×RLD B) =

f ⊓ (A ×RLD ⊤F(Dst f)) ⊓ (⊤F(Src f) ×RLD B) =

f |A ⊓ (⊤F(Src f) ×RLD B) =

(f ◦ idRLD
A ) ⊓ (⊤F(Src f) ×RLD B) =

((f ◦ idRLD
A )−1 ⊓ (⊤F(Src f) ×RLD B)−1)−1 =

((idRLD
A ◦f−1) ⊓ (B ×RLD ⊤F(Src f)))−1 =

(idRLD
A ◦f−1 ◦ idRLD

B )−1 =

idRLD
B ◦f ◦ idRLD

A .

□

Proposition 1025. idB ◦ idA = idA⊓B for all filters A, B (on some set U).

Proof. idB ◦ idA = (idB)|A = (1RLD
U |B)|A = 1RLD

U |A⊓B = idA⊓B. □

Theorem 1026. f |↑{α} =↑Src f {α} ×RLD im(f |↑{α}) for every reloid f and
α ∈ Src f .
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Proof. First,
im(f |↑{α}) =

RLDl
⟨im⟩∗ up(f |↑{α}) =

RLDl
⟨im⟩∗ up(f ⊓ (↑Src f {α} × ⊤F(Dst f))) =

RLDl{
im(F ∩ ({α} × ⊤T (Dst f)))

F ∈ up f

}
=

RLDl{ im(F |↑{α})
F ∈ up f

}
.

Taking this into account we have:
↑Src f {α} ×RLD im(f |↑{α}) =

RLDl{
↑Src f {α} ×K

K ∈ im(f |↑{α})

}
=

RLDl
{

↑Src f {α} × im(F |↑{α})
F ∈ up f

}
=

RLDl{
F |↑{α}

F ∈ up f

}
=

RLDl{
F ⊓ (↑Src f {α} × ⊤T (Dst f))

F ∈ up f

}
=

RLDl{
F

F ∈ up f

}
⊓ ↑RLD (↑Src f {α} × ⊤T (Dst f)) =

f⊓ ↑RLD (↑Src f {α} × ⊤T (Dst f)) =
f |↑{α}.

□

Lemma 1027. λB ∈ F (B) : ⊤F ×RLDB is an upper adjoint of λf ∈ RLD(A,B) :
im f (for every sets A, B).

Proof. We need to prove im f ⊑ B ⇔ f ⊑ ⊤F ×RLD B what is obvious. □

Corollary 1028. Image and domain of reloids preserve joins.

Proof. By properties of Galois connections and duality. □

8.5. Categories of reloids

I will define two categories, the category of reloids and the category of reloid
triples.

The category of reloids is defined as follows:
• Objects are small sets.
• The set of morphisms from a set A to a set B is RLD(A,B).
• The composition is the composition of reloids.
• Identity morphism for a set is the identity reloid for that set.

To show it is really a category is trivial.
The category of reloid triples is defined as follows:

• Objects are small sets.
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• The morphisms from a filter A to a filter B are triples (A,B, f) where
f ∈ RLD(Base(A),Base(B)) and dom f ⊑ A, im f ⊑ B.

• The composition is defined by the formula (B, C, g) ◦ (A,B, f) = (A, C, g ◦
f).

• Identity morphism for a filter A is idRLD
A .

To prove that it is really a category is trivial.

Proposition 1029. ↑RLD is a functor from Rel to RLD.

Proof. ↑RLD (g ◦ f) =↑RLD g◦ ↑RLD f was proved above. ↑RLD 1Rel
A = 1RLD

A is
by definition. □

8.6. Monovalued and injective reloids

Following the idea of definition of monovalued morphism let’s call monovalued
such a reloid f that f ◦ f−1 ⊑ idRLD

im f .
Similarly, I will call a reloid injective when f−1 ◦ f ⊑ idRLD

dom f .

Obvious 1030. A reloid f is
• monovalued iff f ◦ f−1 ⊑ 1RLD

Dst f ;
• injective iff f−1 ◦ f ⊑ 1RLD

Src f .

In other words, a reloid is monovalued (injective) when it is a monovalued
(injective) morphism of the category of reloids.

Monovaluedness is dual of injectivity.

Obvious 1031.
1◦. A morphism (A,B, f) of the category of reloid triples is monovalued iff

the reloid f is monovalued.
2◦. A morphism (A,B, f) of the category of reloid triples is injective iff the

reloid f is injective.

Theorem 1032.
1◦. A reloid f is a monovalued iff there exists a Set-morphism (monovalued

Rel-morphism) F ∈ up f .
2◦. A reloid f is a injective iff there exists an injective Rel-morphism F ∈

up f .
3◦. A reloid f is a both monovalued and injective iff there exists an injection

(a monovalued and injective Rel-morphism = injective Set-morphism)
F ∈ up f .

Proof. The reverse implications are obvious. Let’s prove the direct implica-
tions:

1◦. Let f be a monovalued reloid. Then f ◦ f−1 ⊑ 1RLD
Dst f , that is

RLDl{
F ◦ F−1

F ∈ up f

}
⊑ 1RLD

Dst f .

It’s simple to show that
{

F ◦F −1

F ∈up f

}
is a filter base. Consequently there exists F ∈

up f such that F ◦ F−1 ⊑ 1RLD
Dst f that is F is monovalued.

2◦. Similar.
3◦. Let f be a both monovalued and injective reloid. Then by proved above

there exist F,G ∈ up f such that F is monovalued and G is injective. Thus F ⊓G ∈
up f is both monovalued and injective.

□
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Conjecture 1033. A reloid f is monovalued iff

∀g ∈ RLD(Src f,Dst f) : (g ⊑ f ⇒ ∃A ∈ F (Src f) : g = f |A).

8.7. Complete reloids and completion of reloids

Definition 1034. A complete reloid is a reloid representable as a join of reloidal
products ↑A {α} ×RLD b where α ∈ A and b is an ultrafilter on B for some sets A
and B.

Definition 1035. A co-complete reloid is a reloid representable as a join of
reloidal products a×RLD ↑A {β} where β ∈ B and a is an ultrafilter on A for some
sets A and B.

I will denote the sets of complete and co-complete reloids from a set A to a
set B as ComplRLD(A,B) and CoComplRLD(A,B) correspondingly and set of all
(co-)complete reloids (for small sets) as ComplRLD and CoComplRLD.

Obvious 1036. Complete and co-complete are dual.

Theorem 1037. G 7→ d

{
↑A{α}×RLDG(α)

α∈A

}
is an order isomorphism from the set

of functions G ∈ F (B)A to the set ComplRLD(A,B).
The inverse isomorphism is described by the formula G(α) = im(f |↑{α}) where

f is a complete reloid.

Proof. d

{
↑A{α}×RLDG(α)

α∈A

}
is complete because G(α) = datomsG(α) and

thus

l

{
↑A {α} ×RLD G(α)

α ∈ A

}
= l

{
↑A {α} ×RLD b

α ∈ A, b ∈ atomsG(α)

}
is complete. So G 7→ d

{
↑A{α}×RLDG(α)

α∈A

}
is a function from G ∈ F (B)A to

ComplRLD(A,B).
Let f be complete. Then take

G(α) = l

{
b ∈ atomsF(Dst f)

↑A {α} ×RLD b ⊑ f

}

and we have f = d

{
↑A{α}×RLDG(α)

α∈A

}
obviously. So G 7→ d

{
↑A{α}×RLDG(α)

α∈A

}
is

surjection onto ComplRLD(A,B).
Let now prove that it is an injection:
Let

f = l

{
↑A {α} ×RLD F (α)

α ∈ A

}
= l

{
↑A {α} ×RLD G(α)

α ∈ A

}
for some F,G ∈ F (B)A. We need to prove F = G. Let β ∈ Src f .

f ⊓ (↑A {β} ×RLD ⊤F(B)) = (theorem 610)

l

{
(↑A {α} ×RLD F (α)) ⊓ (↑A {β} ×RLD ⊤F(B))

α ∈ A

}
=

↑A {β} ×RLD F (β).

Similarly f⊓(↑A {β}×RLD⊤F(B)) =↑A {β}×RLDG(β). Thus ↑A {β}×RLDF (β) =↑A

{β} ×RLD G(β) and so F (β) = G(β).
We have proved that it is a bijection. To show that it is monotone is trivial.
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Denote f = d

{
↑A{α}×RLDG(α)

α∈A

}
. Then

im(f |↑{α′}) = im(f ⊓ (↑A {α′} × ⊤T (B))) =

(because ↑A {α′} × ⊤T (B) is principal) =

im l

{
(↑A {α} ×RLD G(α)) ⊓ (↑A {α′} × ⊤T (B))

α ∈ Src f

}
=

im(↑A {α′} ×RLD G(α′)) = G(α′).

□

Corollary 1038. G 7→ d

{
G(α)×RLD↑A{α}

α∈A

}
is an order isomorphism from the

set of functions G ∈ F (B)A to the set CoComplRLD(A,B).
The inverse isomorphism is described by the formula G(α) = im(f−1|↑{α})

where f is a co-complete reloid.

Corollary 1039. ComplRLD(A,B) and ComplFCD(A,B) are a co-frames.

Obvious 1040. Complete and co-complete reloids are convex.

Obvious 1041. Principal reloids are complete and co-complete.

Obvious 1042. Join (on the lattice of reloids) of complete reloids is complete.

Theorem 1043. A reloid which is both complete and co-complete is principal.

Proof. Let f be a complete and co-complete reloid. We have

f = l
{

↑Src f {α} ×RLD G(α)
α ∈ Src f

}
and f = l

{
H(β)×RLD ↑Dst f {β}

β ∈ Dst f

}
for some functions G : Src f → F (Dst f) and H : Dst f → F (Src f). For every
α ∈ Src f we have

G(α) =
im f |↑{α} =

im(f ⊓ (↑Src f {α} ×RLD ⊤F(Dst f))) = (*)

im l

{
(H(β)×RLD ↑Dst f {β}) ⊓ (↑Src f {α} ×RLD ⊤F(Dst f))

β ∈ Dst f

}
=

im l

{
(H(β)⊓ ↑Src f {α})×RLD ↑Dst f {β}

β ∈ Dst f

}
=

im l



({
↑Src f {α}×RLD ↑Dst f {β} if H(β) ̸≍↑Src f {α}
⊥RLD(Src f,Dst f) if H(β) ≍↑Src f {α}

)
β ∈ Dst f

 =

im l

{
↑Src f {α}×RLD ↑Dst f {β}
β ∈ Dst f,H(β) ̸≍↑Src f {α}

}
=

im l

{
↑RLD(Src f,Dst f) {(α, β)}

β ∈ Dst f,H(β) ̸≍↑Src f {α}

}
=

l

{
↑Dst f {β}

β ∈ Dst f,H(β) ̸≍↑Src f {α}

}
* theorem 610 was used.
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Thus G(α) is a principal filter that is G(α) =↑Dst f g(α) for some g : Src f →
Dst f ; ↑Src f {α} ×RLD G(α) =↑RLD(Src f,Dst f) ({α} × g(α)); f is principal as a join
of principal reloids. □

Definition 1044. Completion and co-completion of a reloid f ∈ RLD(A,B)
are defined by the formulas:

Compl f = CorComplRLD(A,B) f ; CoCompl f = CorCoComplRLD(A,B) f.

Theorem 1045. Atoms of the lattice ComplRLD(A,B) are exactly reloidal
products of the form ↑A {α} ×RLD b where α ∈ A and b is an ultrafilter on B.

Proof. First, it’s easy to see that ↑A {α} ×RLD b are elements of
ComplRLD(A,B). Also ⊥RLD(A,B) is an element of ComplRLD(A,B).

↑A {α} ×RLD b are atoms of ComplRLD(A,B) because they are atoms of
RLD(A,B).

It remains to prove that if f is an atom of ComplRLD(A,B) then f =↑A

{α} ×RLD b for some α ∈ A and an ultrafilter b on B.
Suppose f is a non-empty complete reloid. Then ↑A {α} ×RLD b ⊑ f for some

α ∈ A and an ultrafilter b on B. If f is an atom then f =↑A {α} ×RLD b. □

Obvious 1046. ComplRLD(A,B) is an atomistic lattice.

Proposition 1047. Compl f = d

{
f |↑{α}

α∈Src f

}
for every reloid f .

Proof. Let’s denote R the right part of the equality to be proven.
That R is a complete reloid follows from the equality

f |↑{α} =↑Src f {α} ×RLD im(f |↑{α}).

Obviously, R ⊑ f .
The only thing left to prove is that g ⊑ R for every complete reloid g such that

g ⊑ f .
Really let g be a complete reloid such that g ⊑ f . Then

g = l

{
↑Src f {α} ×RLD G(α)

α ∈ Src f

}
for some function G : Src f → F (Dst f).

We have ↑Src f {α} ×RLD G(α) = g|↑Src f {α} ⊑ f |↑{α}. Thus g ⊑ R. □

Conjecture 1048. Compl f ⊓ Compl g = Compl(f ⊓ g) for every f, g ∈
RLD(A,B).

Proposition 1049. Conjecture 1048 is equivalent to the statement that meet
of every two complete reloids is a complete reloid.

Proof. Let conjecture 1048 holds. Then for complete funcoids f and g we
have f ⊓ g = Compl(f ⊓ g) and thus f ⊓ g is complete.

Let meet of every two complete reloid is complete. Then Compl f ⊓ Compl g
is complete and thus it is greatest complete reloid which is less Compl f and less
Compl g what is the same as greatest complete reloid which is less than f and g
that is Compl(f ⊓ g). □

Theorem 1050. Compl dR = d⟨Compl⟩∗
R for every set R ∈ PRLD(A,B)

for every sets A, B.
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Proof.
Compl lR =

l

{ ( dR)|↑A{α}

α ∈ A

}
= (theorem 610)

l

 d

{
f |↑{α}
α∈A

}
f ∈ R

 =

l⟨Compl⟩∗
R.

□

Lemma 1051. Completion of a co-complete reloid is principal.

Proof. Let f be a co-complete reloid. Then there is a function F : Dst f →
F (Src f) such that

f = l

{
F (α)×RLD ↑Dst f {α}

α ∈ Dst f

}
.

So
Compl f =

l


(

d

{
F (α)×RLD↑Dst f {α}

α∈Dst f

})
|↑{β}

β ∈ Src f

 =

l

(

d
{

F (α)×RLD↑Dst f {α}
α∈Dst f

})
⊓ (↑Src f {β} ×RLD ⊤F(Dst f))

β ∈ Src f

 = (*)

l

 d

{
(F (α)×RLD↑Dst f {α})⊓(↑Src f {β}×RLD⊤F(Dst f))

α∈Dst f

}
β ∈ Src f

 =

l

 d

{
↑Src f {β}×RLD↑Dst f {α}

α∈Dst f

}
β ∈ Src f, ↑Src f {β} ⊑ F (α)


* theorem 610.

Thus Compl f is principal. □

Theorem 1052. Compl CoCompl f = CoCompl Compl f = Cor f for every
reloid f .

Proof. We will prove only Compl CoCompl f = Cor f . The rest follows from
symmetry.

From the lemma Compl CoCompl f is principal. It is obvious
Compl CoCompl f ⊑ f . So to finish the proof we need to show only that
for every principal reloid F ⊑ f we have F ⊑ Compl CoCompl f .

Really, obviously F ⊑ CoCompl f and thus F = ComplF ⊑ Compl CoCompl f .
□

Conjecture 1053. If f is a metacomplete reloid, then it is complete.

Conjecture 1054. Compl f = f \∗ (ΩSrc f ×RLD ⊤F(Dst f)) for every reloid f .

By analogy with similar properties of funcoids described above:

Proposition 1055. For composable reloids f and g it holds
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1◦. Compl(g ◦ f) ⊒ (Compl g) ◦ (Compl f)
2◦. CoCompl(g ◦ f) ⊒ (CoCompl g) ◦ (CoCompl f).

Proof.
1◦. (Compl g) ◦ (Compl f) ⊑ Compl((Compl g) ◦ (Compl f)) ⊑ Compl(g ◦ f).
2◦. By duality.

□

Conjecture 1056. For composable reloids f and g it holds
1◦. Compl(g ◦ f) = (Compl g) ◦ f if f is a co-complete reloid;
2◦. CoCompl(f ◦ g) = f ◦ CoCompl g if f is a complete reloid;
3◦. CoCompl((Compl g) ◦ f) = Compl(g ◦ (CoCompl f)) = (Compl g) ◦

(CoCompl f);
4◦. Compl(g ◦ (Compl f)) = Compl(g ◦ f);
5◦. CoCompl((CoCompl g) ◦ f) = CoCompl(g ◦ f).

8.8. What uniform spaces are

Proposition 1057. Uniform spaces are exactly reflexive, symmetric, transitive
endoreloids.

Proof. Easy to prove using theorem 1001. □



CHAPTER 9

Relationships between funcoids and reloids

9.1. Funcoid induced by a reloid

Every reloid f induces a funcoid (FCD)f ∈ FCD(Src f,Dst f) by the following
formulas (for every X ∈ F (Src f), Y ∈ F (Dst f)):

X [(FCD)f ] Y ⇔ ∀F ∈ up f : X
[
↑FCD F

]
Y;

⟨(FCD)f⟩X =
Fl

F ∈up f

〈
↑FCD F

〉
X .

We should prove that (FCD)f is really a funcoid.

Proof. We need to prove that

X [(FCD)f ] Y ⇔ Y ⊓ ⟨(FCD)f⟩X ̸= ⊥ ⇔ X ⊓
〈
(FCD)f−1〉Y ̸= ⊥.

The above formula is equivalent to:

∀F ∈ up f : X
[
↑FCD F

]
Y ⇔

Y ⊓
l

F ∈up f

〈
↑FCD F

〉
X ̸= ⊥ ⇔

X ⊓
l

F ∈up f

〈
↑FCD F−1〉Y ̸= ⊥.

We have Y ⊓
d

F ∈up f

〈
↑FCD F

〉
X =

d
F ∈up f (Y ⊓

〈
↑FCD F

〉
X ).

Let’s denote W =
{

Y⊓⟨↑FCDF⟩X
F ∈up f

}
.

∀F ∈ up f : X
[
↑FCD F

]
Y ⇔ ∀F ∈ up f : Y ⊓

〈
↑FCD F

〉
X ̸= ⊥ ⇔ ⊥ /∈ W.

We need to prove only that ⊥ /∈ W ⇔
d
W ̸= ⊥. (The rest follows from

symmetry.) To prove it is enough to show that W is a generalized filter base.
Let’s prove that W is a generalized filter base. For this it’s enough to prove that

V =
{

⟨↑FCDF⟩X
F ∈up f

}
is a generalized filter base. Let A,B ∈ V that is A =

〈
↑FCD P

〉
X ,

B =
〈
↑FCD Q

〉
X where P,Q ∈ up f . Then for C =

〈
↑FCD (P ⊓Q)

〉
X is true both

C ∈ V and C ⊑ A,B. So V is a generalized filter base and thus W is a generalized
filter base. □

Proposition 1058. (FCD) ↑RLD f =↑FCD f for every Rel-morphism f .

Proof. X
[
(FCD) ↑RLD f

]
Y ⇔ ∀F ∈ up ↑RLD f : X

[
↑FCD F

]
Y ⇔

X
[
↑FCD f

]
Y (for every X ∈ F (Src f), Y ∈ F (Dst f)). □

Theorem 1059. X [(FCD)f ] Y ⇔ X ×RLD Y ̸≍ f for every reloid f and
X ∈ F (Src f), Y ∈ F (Dst f).

202
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Proof.

X ×RLD Y ̸≍ f ⇔

∀F ∈ up f, P ∈ up(X ×RLD Y) : P ̸≍ F ⇔
∀F ∈ up f,X ∈ up X , Y ∈ up Y : X × Y ̸≍ F ⇔

∀F ∈ up f,X ∈ up X , Y ∈ up Y : X
[
↑FCD F

]
Y ⇔

∀F ∈ up f : X
[
↑FCD F

]
Y ⇔

X [(FCD)f ] Y.

□

Theorem 1060. (FCD)f =
dFCD up f for every reloid f .

Proof. Let a be an ultrafilter on Src f .

⟨(FCD)f⟩a =
d
{

⟨↑FCDF⟩a

F ∈up f

}
by the definition of (FCD).〈dFCD up f

〉
a =

d
{

⟨↑FCDF⟩a

F ∈up f

}
by theorem 878.

So ⟨(FCD)f⟩a =
〈dFCD up f

〉
a for every ultrafilter a. □

Lemma 1061. For every two filter bases S and T of morphisms Rel(U, V ) and
every typed set A ∈ T U

RLDl
S =

RLDl
T ⇒

Fl

F ∈S

⟨F ⟩∗
A =

Fl

G∈T

⟨G⟩∗
A.

Proof. Let
dRLD

S =
dRLD

T .
First let prove that

{
⟨F ⟩∗A
F ∈S

}
is a filter base. Let X,Y ∈

{
⟨F ⟩∗A
F ∈S

}
. Then

X = ⟨FX⟩∗
A and Y = ⟨FY ⟩∗

A for some FX , FY ∈ S. Because S is a filter base,
we have S ∋ FZ ⊑ FX ⊓ FY . So ⟨FZ⟩∗

A ⊑ X ⊓ Y and ⟨FZ⟩∗
A ∈

{
⟨F ⟩∗A
F ∈S

}
. So{

⟨F ⟩∗A
F ∈S

}
is a filter base.

Suppose X ∈ up
dF

F ∈S⟨F ⟩∗
A. Then there exists X ′ ∈

{
⟨F ⟩∗A
F ∈S

}
where X ⊒ X ′

because
{

⟨F ⟩∗A
F ∈S

}
is a filter base. That is X ′ = ⟨F ⟩∗

A for some F ∈ S. There
exists G ∈ T such that G ⊑ F because T is a filter base. Let Y ′ = ⟨G⟩∗

A. We
have Y ′ ⊑ X ′ ⊑ X; Y ′ ∈

{
⟨G⟩∗A
G∈T

}
; Y ′ ∈ up

dF
G∈T ⟨G⟩∗

A; X ∈ up
dF

G∈T ⟨G⟩∗
A.

The reverse is symmetric. □

Lemma 1062.
{

G◦F
F ∈up f,G∈up g

}
is a filter base for every reloids f and g.

Proof. Let denote D =
{

G◦F
F ∈up f,G∈up g

}
. Let A ∈ D ∧ B ∈ D. Then A =

GA ◦ FA ∧ B = GB ◦ FB for some FA, FB ∈ up f , GA, GB ∈ up g. So A ⊓ B ⊒
(GA ⊓GB) ◦ (FA ⊓ FB) ∈ D because FA ⊓ FB ∈ up f and GA ⊓GB ∈ up g. □

Theorem 1063. (FCD)(g ◦ f) = ((FCD)g) ◦ ((FCD)f) for every composable
reloids f and g.

Proof.

⟨(FCD)(g ◦ f)⟩∗
X =

Fl

H∈up(g◦f)

⟨H⟩∗
X =

Fl

H∈up
dRLD{ G◦F

F ∈up f,G∈up g }
⟨H⟩∗

X.
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Obviously

RLDl{
G ◦ F

F ∈ up f,G ∈ up g

}
=

RLDl
up

RLDl{
G ◦ F

F ∈ up f,G ∈ up g

}
;

from this by lemma 1061 (taking into account that{
G ◦ F

F ∈ up f,G ∈ up g

}
and

up
RLDl{

G ◦ F
F ∈ up f,G ∈ up g

}
are filter bases)

RLDl

H∈up
dRLD{ G◦F

F ∈up f,G∈up g }
⟨H⟩∗

X =
Fl{

⟨G ◦ F ⟩∗
X

F ∈ up f,G ∈ up g

}
.

On the other side

⟨((FCD)g) ◦ ((FCD)f)⟩∗
X = ⟨(FCD)g⟩⟨(FCD)f⟩∗

X =

⟨(FCD)g⟩
Fl

F ∈up f

⟨F ⟩∗
X =

l

G∈up g

〈
↑FCD G

〉 RLDl

F ∈up f

⟨F ⟩∗
X.

Let’s prove that
{

⟨F ⟩∗X
F ∈up f

}
is a filter base. If A,B ∈

{
⟨F ⟩∗X
F ∈up f

}
then A =

⟨F1⟩∗
X, B = ⟨F2⟩∗

X where F1, F2 ∈ up f . A ⊓ B ⊒ ⟨F1 ⊓ F2⟩∗
X ∈

{
⟨F ⟩∗X
F ∈up f

}
. So{

⟨F ⟩∗X
F ∈up f

}
is really a filter base.

By theorem 839 we have

〈
↑FCD G

〉 Fl

F ∈up f

⟨F ⟩∗
X =

Fl

F ∈up f

⟨G⟩∗⟨F ⟩∗
X.

So continuing the above equalities,

⟨((FCD)g) ◦ ((FCD)f)⟩∗
X =

Fl

G∈up g

Fl

F ∈up f

⟨G⟩∗⟨F ⟩∗
X =

Fl{
⟨G⟩∗⟨F ⟩∗

X

F ∈ up f,G ∈ up g

}
=

Fl{
⟨G ◦ F ⟩∗

X

F ∈ up f,G ∈ up g

}
.

Combining these equalities we get ⟨(FCD)(g ◦ f)⟩∗
X = ⟨((FCD)g) ◦ ((FCD)f)⟩∗

X
for every typed set X ∈ T (Src f). □

Proposition 1064. (FCD) idRLD
A = idFCD

A for every filter A.
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Proof. Recall that idRLD
A =

d{↑Base(A)idA

A∈up A

}
. For every X ,Y ∈ F (Base(A))

we have

X
[
(FCD) idRLD

A

]
Y ⇔

X ×RLD Y ̸≍ idRLD
A ⇔

∀A ∈ up A : X ×RLD Y ̸≍↑RLD(Base(A),Base(A)) idA ⇔

∀A ∈ up A : X
[
↑FCD(Base(A),Base(A)) idA

]
Y ⇔

∀A ∈ up A : X ⊓ Y ̸≍ A ⇔
X ⊓ Y ̸≍ A ⇔

X
[
idFCD

A

]
Y

(used properties of generalized filter bases). □

Corollary 1065. (FCD)1RLD
A = 1FCD

A for every set A.

Proposition 1066. (FCD) is a functor from RLD to FCD.

Proof. Preservation of composition and of identity is proved above. □

Proposition 1067.
1◦. (FCD)f is a monovalued funcoid if f is a monovalued reloid.
2◦. (FCD)f is an injective funcoid if f is an injective reloid.

Proof. We will prove only the first as the second is dual. Let f be a monoval-
ued reloid. Then f ◦f−1 ⊑ 1RLD

Dst f ; (FCD)(f ◦f−1) ⊑ 1FCD
Dst f ; (FCD)f ◦ ((FCD)f)−1 ⊑

1FCD
Dst f that is (FCD)f is a monovalued funcoid. □

Theorem 1068. g ◦ (X ×RLD Y) = X ×RLD ⟨(FCD)g⟩Y for every reloid g and
suitable filters X , Y.

Proof.

g ◦ (X ×RLD Y) =
l

G∈up g,X∈up X ,Y ∈up Y
(G ◦ (X × Y )) =

l

G∈up g,X∈up X ,Y ∈up Y
(X × ⟨G⟩∗

Y ) =

X ×RLD
l

G∈up g,Y ∈up Y
⟨G⟩∗

Y = X ×RLD ⟨(FCD)g⟩Y.

□

Corollary 1069. g ◦ (X ×RLD Y) ◦ f =
〈
(FCD)f−1〉X ×RLD ⟨(FCD)g⟩Y.

Proposition 1070. (FCD)(A ×RLD B) = A ×FCD B for every filters A, B.

Proof. X
[
(FCD)(A ×RLD B)

]
Y ⇔ ∀F ∈ up(A ×RLD B) : X

[
↑FCD F

]
Y (for

every X ∈ F (Base(A)), Y ∈ F (Base(B)).
Evidently

∀F ∈ up(A ×RLD B) : X
[
↑FCD F

]
Y ⇒ ∀A ∈ up A, B ∈ up B : X [A×B] Y.

Let ∀A ∈ up A, B ∈ up B : X [A×B] Y. Then if F ∈ up(A ×RLD B), there are
A ∈ up A, B ∈ up B such that F ⊒ A×B. So X

[
↑FCD F

]
Y. We have proved

∀F ∈ up(A ×RLD B) : X
[
↑FCD F

]
Y ⇔ ∀A ∈ up A, B ∈ up B : X [A×B] Y.
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Further

∀A ∈ up A, B ∈ up B : X [A×B] Y ⇔
∀A ∈ up A, B ∈ up B : (X ̸≍ A ∧ Y ̸≍ B) ⇔

X ̸≍ A ∧ Y ̸≍ B ⇔ X
[
A ×FCD B

]
Y.

Thus X
[
(FCD)(A ×RLD B)

]
Y ⇔ X

[
A ×FCD B

]
Y. □

Proposition 1071. dom(FCD)f = dom f and im(FCD)f = im f for every
reloid f .

Proof.

im(FCD)f = ⟨(FCD)f⟩⊤ =
Fl

F ∈up f

⟨F ⟩∗⊤ =

Fl

F ∈up f

imF =
Fl

⟨im⟩∗ up f = im f.

dom(FCD)f = dom f is similar. □

Proposition 1072. (FCD)(f ⊓ (A ×RLD B)) = (FCD)f ⊓ (A ×FCD B) for every
reloid f and A ∈ F (Src f) and B ∈ F (Dst f).

Proof.

(FCD)(f ⊓ (A ×RLD B)) =

(FCD)(idRLD
B ◦f ◦ idRLD

A ) =

(FCD) idRLD
B ◦(FCD)f ◦ (FCD) idRLD

A =

idFCD
B ◦(FCD)f ◦ idFCD

A =
(FCD)f ⊓ (A ×FCD B).

□

Corollary 1073. (FCD)(f |A) = ((FCD)f)|A for every reloid f and a filter
A ∈ F (Src f).

Proposition 1074. ⟨(FCD)f⟩X = im(f |X ) for every reloid f and a filter X ∈
F (Src f).

Proof. im(f |X ) = im(FCD)(f |X ) = im(((FCD)f)|X ) = ⟨(FCD)f⟩X . □

Proposition 1075. (FCD)f = d

{
x×FCDy

x∈atomsF(Src f),y∈atomsF(Dst f),x×RLDy ̸≍f

}
for

every reloid f .

Proof. (FCD)f = d

{
x×FCDy

x∈atomsF(Src f),y∈atomsF(Dst f),x×FCDy ̸≍(FCD)f

}
, but

x×FCD y ̸≍ (FCD)f ⇔ x [(FCD)f ] y ⇔ x×RLD y ̸≍ f,

thus follows the theorem. □
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9.2. Reloids induced by a funcoid

Every funcoid f ∈ FCD(A,B) induces a reloid from A to B in two ways,
intersection of outward relations and union of inward reloidal products of filters:

(RLD)outf =
RLDl

up f ;

(RLD)inf = l

{
A ×RLD B

A ∈ F (A),B ∈ F (B),A ×FCD B ⊑ f

}
.

Theorem 1076. (RLD)inf = d

{
a×RLDb

a∈atomsF(A),b∈atomsF(B),a×FCDb⊑f

}
.

Proof. It follows from theorem 1009. □

Proposition 1077. up ↑RLD f = up ↑FCD f for every Rel-morphism f .

Proof. X ∈ up ↑RLD f ⇔ X ⊒ f ⇔ X ∈ up ↑FCD f . □

Proposition 1078. (RLD)out ↑FCD f =↑RLD f for every Rel-morphism f .

Proof. (RLD)out ↑FCD f =
dRLD up f =↑RLD min up f =↑RLD f taking into

account the previous proposition. □

Surprisingly, a funcoid is greater inward than outward:

Theorem 1079. (RLD)outf ⊑ (RLD)inf for every funcoid f .

Proof. We need to prove

(RLD)outf ⊑ l
{

A ×RLD B
A ∈ F (A),B ∈ F (B),A ×FCD B ⊑ f

}
.

Let
K ∈ up l

{
A ×RLD B

A ∈ F (A),B ∈ F (B),A ×FCD B ⊑ f

}
.

Then

K ∈ up ↑RLD

l

{
XA × YB

A ∈ F (A),B ∈ F (B),A ×FCD B ⊑ f

}
= (RLD)out ↑FCD

l

{
XA × YB

A ∈ F (A),B ∈ F (B),A ×FCD B ⊑ f

}
= (RLD)out

FCD

l

{
↑FCD (XA × YB)

A ∈ F (A),B ∈ F (B),A ×FCD B ⊑ f

}
⊒ (RLD)out latoms f
= (RLD)outf

where XA ∈ up A, XB ∈ up B. K ∈ up(RLD)outf . □

Proposition 1080. (RLD)outf⊔(RLD)outg = (RLD)out(f⊔g) for funcoids f , g.

Proof.

(RLD)outf ⊔ (RLD)outg =
RLDl

F ∈up f

F ⊔
RLDl

G∈up g

G =

RLDl

F ∈up f,G∈up g

(F ⊔G) =
RLDl

H∈up(f⊔g)

H = (RLD)out(f ⊔ g).

□
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Theorem 1081. (FCD)(RLD)inf = f for every funcoid f .

Proof. For every typed sets X ∈ T (Src f), Y ∈ T (Dst f)
X [(FCD)(RLD)inf ]∗ Y ⇔

X ×RLD Y ̸≍ (RLD)inf ⇔

↑RLD (X × Y ) ̸≍ l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a×FCD b ⊑ f

}
⇔ (*)

∃a ∈ atomsF(A), b ∈ atomsF(B) : (a×FCD b ⊑ f ∧ a ⊑ X ∧ b ⊑ Y ) ⇔
X [f ]∗ Y.

* theorem 583.
Thus (FCD)(RLD)inf = f . □

Remark 1082. The above theorem allows to represent funcoids as reloids
((RLD)inf is the reloid representing funcoid f). Refer to the section “Funcoidal
reloids” below for more details.

Obvious 1083. (RLD)in(A ×FCD B) = A ×RLD B for every filters A, B.

Conjecture 1084. (RLD)out idFCD
A = idRLD

A for every filter A.

Exercise 1085. Prove that generally (RLD)in idFCD
A ̸= idRLD

A . I call
(RLD)in idFCD

A thick identity or thick diagonal, because it is greater (“thicker”) than
identity idRLD

A .

Proposition 1086. dom(RLD)inf = dom f and im(RLD)inf = im f for every
funcoid f .

Proof. We will prove only dom(RLD)inf = dom f as the other formula follows
from symmetry. Really:

dom(RLD)inf = dom d

{
a×RLDb

a∈atomsF(Src f),b∈atomsF(Dst f),a×FCDb⊑f

}
.

By corollary 1028 we have

dom(RLD)inf =

l

{
dom(a×RLD b)

a ∈ atomsF(Src f), b ∈ atomsF(Dst f), a×FCD b ⊑ f

}
=

l

{
dom(a×FCD b)

a ∈ atomsF(Src f), b ∈ atomsF(Dst f), a×FCD b ⊑ f

}
.

By corollary 896 we have

dom(RLD)inf =

dom l

{
a×FCD b

a ∈ atomsF(Src f), b ∈ atomsF(Dst f), a×FCD b ⊑ f

}
=

dom f.

□

Proposition 1087. dom(f |A) = A ⊓ dom f for every reloid f and filter A ∈
F (Src f).

Proof. dom(f |A) = dom(FCD)(f |A) = dom((FCD)f)|A = A ⊓ dom(FCD)f =
A ⊓ dom f . □

Theorem 1088. For every composable reloids f , g:
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1◦. If im f ⊒ dom g then im(g ◦ f) = im g;
2◦. If im f ⊑ dom g then dom(g ◦ f) = dom f .

Proof.

1◦. im(g ◦ f) = im(FCD)(g ◦ f) = im((FCD)g ◦ (FCD)f) = im(FCD)g = im g.
2◦. Similar.

□

Lemma 1089. If a, b, c are filters on powersets and b ̸= ⊥, then

RLD

l

{
G ◦ F

F ∈ atoms(a×RLD b), G ∈ atoms(b×RLD c)

}
= a×RLD c.

Proof.

a×RLD c = (b×RLD c) ◦ (a×RLD b) = (corollary 1006) =
RLD

l

{
G ◦ F

F ∈ atoms(a×RLD b), G ∈ atoms(b×RLD c)

}
.

□

Theorem 1090. a×RLD b ⊑ (RLD)inf ⇔ a×FCD b ⊑ f for every funcoid f and
a ∈ atomsF(Src f), b ∈ atomsF(Dst f).

Proof. a×FCD b ⊑ f ⇒ a×RLD b ⊑ (RLD)inf is obvious.

a×RLD b ⊑ (RLD)inf ⇒ a×RLD b ̸≍ (RLD)inf ⇒

a [(FCD)(RLD)inf ] b ⇒ a [f ] b ⇒ a×FCD b ⊑ f.

□

Conjecture 1091. If A ×RLD B ⊑ (RLD)inf then A ×FCD B ⊑ f for every
funcoid f and A ∈ F (Src f), B ∈ F (Dst f).

Theorem 1092. up(FCD)g ⊇ up g for every reloid g.

Proof. Let K ∈ up g. Then for every typed sets X ∈ T Src g, Y ∈ T Dst g

X [K]∗ Y ⇔ X
[
↑FCD K

]∗
Y ⇔ X

[
(FCD) ↑RLD K

]∗
Y ⇐ X [(FCD)g]∗ Y.

Thus ↑FCD K ⊒ (FCD)g that is K ∈ up(FCD)g. □

Theorem 1093. g ◦ (A ×RLD B) ◦ f =
〈
(FCD)f−1〉A ×RLD ⟨(FCD)g⟩B for every

reloids f , g and filters A ∈ F (Dst f), B ∈ F (Src g).
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Proof.

g ◦ (A ×RLD B) ◦ f =
RLDl{

G ◦ (A×B) ◦ F
F ∈ up f,G ∈ up g,A ∈ up A, B ∈ up B

}
=

RLDl
{ 〈

F−1〉∗
A× ⟨G⟩∗

B

F ∈ up f,G ∈ up g,A ∈ up A, B ∈ up B

}
=

RLDl
{ 〈

F−1〉∗
A×RLD ⟨G⟩∗

B

F ∈ up f,G ∈ up g,A ∈ up A, B ∈ up B

}
=

(theorem 1011)
Fl
{ 〈

F−1〉∗
A

F ∈ up f,A ∈ up A

}
×RLD

Fl{
⟨G⟩∗

B

G ∈ up g,B ∈ up B

}
=

Fl
{ 〈

↑FCD F−1〉∗
A

F ∈ up f,A ∈ up A

}
×RLD

Fl
{ 〈

↑FCD G
〉∗
B

G ∈ up g,B ∈ up B

}
=

Fl
{〈

↑FCD F−1〉A
F ∈ up f

}
×RLD

Fl
{〈

↑FCD G
〉
B

G ∈ up g

}
=

(by definition of (FCD))〈
(FCD)f−1〉A ×RLD ⟨(FCD)g⟩B.

□

Corollary 1094.

1◦. (A ×RLD B) ◦ f =
〈
(FCD)f−1〉A ×RLD B;

2◦. g ◦ (A ×RLD B) = A ×RLD ⟨(FCD)g⟩B.

9.3. Galois connections between funcoids and reloids

Theorem 1095. (FCD) : RLD(A,B) → FCD(A,B) is the lower adjoint of
(RLD)in : FCD(A,B) → RLD(A,B) for every sets A, B.

Proof. Because (FCD) and (RLD)in are trivially monotone, it’s enough to
prove (for every f ∈ RLD(A,B), g ∈ FCD(A,B))

f ⊑ (RLD)in(FCD)f and (FCD)(RLD)ing ⊑ g.
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The second formula follows from the fact that (FCD)(RLD)ing = g.

(RLD)in(FCD)f =

l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a×FCD b ⊑ (FCD)f

}
=

l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a [(FCD)f ] b

}
=

l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a×RLD b ̸≍ f

}
⊒

l

{
p ∈ atoms(a×RLD b)

a ∈ atomsF(A), b ∈ atomsF(B), p ̸≍ f

}
=

l

{
p ∈ atomsRLD(A,B)

p ̸≍ f

}
=

l

{
p

p ∈ atoms f

}
= f.

□

Corollary 1096.
1◦. (FCD) dS = d⟨(FCD)⟩∗

S if S ∈ PRLD(A,B).
2◦. (RLD)in

d
S =

d
⟨(RLD)in⟩∗

S if S ∈ PFCD(A,B).

Theorem 1097. (RLD)in(f ⊔ g) = (RLD)inf ⊔ (RLD)ing for every funcoids
f, g ∈ FCD(A,B).

Proof.

(RLD)in(f ⊔ g) = l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a×FCD b ⊑ f ⊔ g

}
=

l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a×FCD b ⊑ f ∨ a×FCD b ⊑ g

}
=

l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a×FCD b ⊑ f

}
⊔

l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a×FCD b ⊑ g

}
=

(RLD)inf ⊔ (RLD)ing.

□

Proposition 1098. (RLD)in(f ⊓ (A ×FCD B)) = ((RLD)inf) ⊓ (A ×RLD B) for
every funcoid f and A ∈ F (Src f), B ∈ F (Dst f).

Proof.

(RLD)in(f⊓(A×FCDB)) = ((RLD)inf)⊓(RLD)in(A×FCDB) = ((RLD)inf)⊓(A×RLDB).

□

Corollary 1099. (RLD)in(f |A) = ((RLD)inf)|A.

Conjecture 1100. (RLD)in is not a lower adjoint (in general).

Conjecture 1101. (RLD)out is neither a lower adjoint nor an upper adjoint
(in general).
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Exercise 1102. Prove that card FCD(A,B) = 22max{A,B} if A or B is an infinite
set (provided that A and B are nonempty).

Lemma 1103. ↑FCD(Src g,Dst g) {(x, y)} ⊑ (FCD)g ⇔↑RLD(Src g,Dst g) {(x, y)} ⊑ g
for every reloid g.

Proof.

↑FCD(Src g,Dst g) {(x, y)} ⊑ (FCD)g ⇔

↑FCD(Src g,Dst g) {(x, y)} ̸≍ (FCD)g ⇔ @{x} [(FCD)g]∗ @{y} ⇔

↑RLD(Src g,Dst g) {(x, y)} ̸≍ g ⇔↑RLD(Src g,Dst g) {(x, y)} ⊑ g.

□

Theorem 1104. Cor(FCD)g = (FCD) Cor g for every reloid g.
Proof.

Cor(FCD)g =

l

{
↑FCD(Src g,Dst g) {(x, y)}
↑FCD {(x, y)} ⊑ (FCD)g

}
=

l

{
↑FCD(Src g,Dst g) {(x, y)}

↑RLD(Src g,Dst g) {(x, y)} ⊑ g

}
=

l

{
(FCD) ↑RLD(Src g,Dst g) {(x, y)}
↑RLD(Src g,Dst g) {(x, y)} ⊑ g

}
=

(FCD) l

{
↑RLD(Src g,Dst g) {(x, y)}

↑RLD(Src g,Dst g) {(x, y)} ⊑ g

}
=

(FCD) Cor g.
□

Conjecture 1105.
1◦. Cor(RLD)ing = (RLD)in Cor g;
2◦. Cor(RLD)outg = (RLD)out Cor g.

Theorem 1106. For every reloid f :
1◦. Compl(FCD)f = (FCD) Compl f ;
2◦. CoCompl(FCD)f = (FCD) CoCompl f .

Proof. We will prove only the first, because the second is dual.

Compl(FCD)f = l

α∈Src f

((FCD)f)|↑{α} = (proposition 1072) =

l

α∈Src f

(FCD)(f |↑{α}) = (FCD) l

α∈Src f

f |↑{α} = (FCD) Compl f.

□

Conjecture 1107.
1◦. Compl(RLD)ing = (RLD)in Compl g;
2◦. Compl(RLD)outg = (RLD)out Compl g.

Note that the above Galois connection between funcoids and reloids is a Galois
surjection.

Proposition 1108. (RLD)ing = max
{

f∈RLD
(FCD)f⊑g

}
= max

{
f∈RLD

(FCD)f=g

}
.

Proof. By theorem 131 and proposition 323. □
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9.4. Funcoidal reloids

Definition 1109. I call funcoidal such a reloid ν that

X ×RLD Y ̸≍ ν ⇒
∃X ′ ∈ F (Base(X )) \ {⊥},Y ′ ∈ F (Base(Y)) \ {⊥} :

(X ′ ⊑ X ∧ Y ′ ⊑ Y ∧ X ′ ×RLD Y ′ ⊑ ν)

for every X ∈ F (Src ν), Y ∈ F (Dst ν).

Remark 1110. See theorem 1115 below for how they are bijectively related
with funcoids (and thus named funcoidal).

Proposition 1111. A reloid ν is funcoidal iff x ×RLD y ̸≍ ν ⇒ x ×RLD y ⊑ ν
for every atomic filter objects x and y on respective sets.

Proof.
⇒. x×RLD y ̸≍ ν ⇒ ∃X ′ ∈ atomsx,Y ′ ∈ atoms y : X ′ ×RLD Y ′ ⊑ ν ⇒ x×RLD y ⊑ ν.
⇐.

X ×RLD Y ̸≍ ν ⇒

∃x ∈ atoms X , y ∈ atoms Y : x×RLD y ̸≍ ν ⇒

∃x ∈ atoms X , y ∈ atoms Y : x×RLD y ⊑ ν ⇒
∃X ′ ∈ F (Base(X )) \ {⊥},Y ′ ∈ F (Base(Y)) \ {⊥} :

(X ′ ⊑ X ∧ Y ′ ⊑ Y ∧ X ′ ×RLD Y ′ ⊑ ν).

□

Proposition 1112.

(RLD)in(FCD)f = l

{
a×RLD b

a ∈ atomsF(Src ν), b ∈ atomsF(Dst ν), a×RLD b ̸≍ f

}
.

Proof.

(RLD)in(FCD)f =

l

{
a×RLD b

a ∈ atomsF(Src ν), b ∈ atomsF(Dst ν), a×FCD b ⊑ (FCD)f

}
=

l

{
a×RLD b

a ∈ atomsF(Src ν), b ∈ atomsF(Dst ν), a [(FCD)f ] b

}
=

l

{
a×RLD b

a ∈ atomsF(Src ν), b ∈ atomsF(Dst ν), a×RLD b ̸≍ f

}
.

□

Definition 1113. I call (RLD)in(FCD)f funcoidization of a reloid f .

Lemma 1114. (RLD)in(FCD)f is funcoidal for every reloid f .

Proof. x ×RLD y ̸≍ (RLD)in(FCD)f ⇒ x ×RLD y ⊑ (RLD)in(FCD)f for atomic
filters x and y. □

Theorem 1115. (RLD)in is a bijection from FCD(A,B) to the set of funcoidal
reloids from A to B. The reverse bijection is given by (FCD).
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Proof. Let f ∈ FCD(A,B). Prove that (RLD)inf is funcoidal.
Really (RLD)inf = (RLD)in(FCD)(RLD)inf and thus we can use the lemma

stating that it is funcoidal.
It remains to prove (RLD)in(FCD)f = f for a funcoidal reloid f .

((FCD)(RLD)ing = g for every funcoid g is already proved above.)

(RLD)in(FCD)f =

l

{
x×RLD y

x ∈ atomsF(Src f), y ∈ atomsF(Dst f), x×RLD y ̸≍ f

}
=

l

{
p ∈ atoms(x×RLD y)

x ∈ atomsF(Src f), y ∈ atomsF(Dst f), x×RLD y ̸≍ f

}
=

l

{
p ∈ atoms(x×RLD y)

x ∈ atomsF(Src f), y ∈ atomsF(Dst f), x×RLD y ⊑ f

}
=

latoms f = f.

□

Corollary 1116. Funcoidal reloids are convex.

Proof. Every (RLD)inf is obviously convex. □

Theorem 1117. (RLD)in(g ◦ f) = (RLD)ing ◦ (RLD)inf for every composable
funcoids f and g.

Proof.

(RLD)ing ◦ (RLD)inf = (corollary 1006) =
RLD

l

{
G ◦ F

F ∈ atoms(RLD)inf,G ∈ atoms(RLD)ing

}
Let F be an atom of the poset RLD(Src f,Dst f).

F ∈ atoms(RLD)inf ⇒ domF ×RLD imF ̸≍ (RLD)inf ⇒
(because (RLD)inf is a funcoidal reloid) ⇒

domF ×RLD imF ⊑ (RLD)inf

but domF ×RLD imF ⊑ (RLD)inf ⇒ F ⊑ (RLD)inf is obvious.
So

F ∈ atoms(RLD)inf ⇔ domF ×RLD imF ⊑ (RLD)inf ⇒

(FCD)(domF ×RLD imF ) ⊑ (FCD)(RLD)inf ⇔ domF ×FCD imF ⊑ f.

But

domF ×FCD imF ⊑ f ⇒ (RLD)in(domF ×FCD imF ) ⊑ (RLD)inf ⇔

domF ×RLD imF ⊑ (RLD)inf.

So F ∈ atoms(RLD)inf ⇔ domF ×FCD imF ⊑ f .
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Let F ∈ atoms(RLD)inf , G ∈ atoms(RLD)ing. Then domF ×FCD imF ⊑ f and
domG×FCD imG ⊑ g. Provided that imF ̸≍ domG, we have:

domF ×RLD imG = (domG×RLD imG) ◦ (domF ×RLD imF ) =
RLD

l

{
G′ ◦ F ′

F ′ ∈ atoms(domF ×RLD imF ), G′ ∈ atoms(domG×RLD imG)

}
⊑ (*)

RLD

l


G′ ◦ F ′

[l]F ′ ∈ atomsRLD(Src F,Dst F ), G′ ∈ atomsRLD(Src G,Dst G),

F ′ ⊑ (RLD)inf,G
′ ⊑ (RLD)ing

 =

RLD

l

{
G′ ◦ F ′

F ′ ∈ atoms(RLD)inf,G′ ∈ atoms(RLD)ing

}
= (RLD)ing ◦ (RLD)inf.

(*) F ′ ∈ atoms(domF ×RLD imF ) and domF ×FCD imF ⊑ f implies domF ′ ×FCD

imF ′ ⊑ f ; thus domF ′ ×RLD imF ′ ⊑ (RLD)inf and thus F ′ ⊑ (RLD)inf . Likewise
for G and G′.

Thus (RLD)ing◦(RLD)inf ⊒ d

RLD
{

dom F ×RLDim G
F ∈atoms(RLD)inf,G∈atoms(RLD)ing,im F ̸≍dom G

}
.

But

(RLD)ing ◦ (RLD)inf ⊑
RLD

l

{
(domG×RLD imG) ◦ (domF ×RLD imF )
F ∈ atoms(RLD)inf,G ∈ atoms(RLD)ing

}
=

RLD

l

{
domF ×RLD imG

F ∈ atoms(RLD)inf,G ∈ atoms(RLD)ing, imF ̸≍ domG

}
.

Thus

(RLD)ing ◦ (RLD)inf =
RLD

l

{
domF ×RLD imG

F ∈ atoms(RLD)inf,G ∈ atoms(RLD)ing, imF ̸≍ domG

}
=

RLD

l


domF ×RLD imG

F ∈ atomsRLD(Src f,Dst f), G ∈ atomsRLD(Dst f,Dst g),

domF ×FCD imF ⊑ f, domG×FCD imG ⊑ g, imF ̸≍ domG

.
But

(RLD)in(g ◦ f) = l

{
a×RLD c

a×FCD c ∈ atoms(g ◦ f)

}
= (proposition 910) =

l


a×RLD c

a ∈ F (Src f), c ∈ F (Dst g),
∃b ∈ F (Dst f) : (a×FCD b ∈ atoms f ∧ b×FCD c ∈ atoms g)

 =

l


a×RLD c

a ∈ F (Src f), c ∈ F (Dst g),
∃b0, b1 ∈ F (Dst f) : (a×FCD b ∈ atoms f ∧ b×FCD c ∈ atoms g ∧ b0 ̸≍ b1)

.
Now it becomes obvious that (RLD)ing ◦ (RLD)inf = (RLD)in(g ◦ f). □
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9.5. Complete funcoids and reloids

For the proof below assume

θ =



l

x∈Src f

(↑Src f {x} ×RLD ⟨f⟩∗@{x}) 7→ l

x∈Src f

(↑Src f {x} ×FCD ⟨f⟩∗@{x})


(where f ranges the set of complete funcoids).

Lemma 1118. θ is a bijection from complete reloids into complete funcoids.

Proof. Theorems 931 and 1037. □

Lemma 1119. (FCD)g = θg for every complete reloid g.

Proof. Really, g = dx∈Src f (↑Src f {x}×RLD ⟨f⟩∗@{x}) for a complete reloid g
and thus

(FCD)g = l

x∈Src f

(FCD)(↑Src f {x} ×RLD ⟨f⟩∗@{x}) =

l

x∈Src f

(↑Src f {x} ×FCD ⟨f⟩∗@{x}) = θg.

□

Lemma 1120. (RLD)outf = θ−1f for every complete funcoid f .

Proof. We have f = dx∈Src f (↑Src f {x} ×FCD ⟨f⟩∗@{x}). We need to prove
(RLD)outf = dx∈Src f (↑Src f {x} ×RLD ⟨f⟩∗@{x}).

Really, (RLD)outf ⊒ dx∈Src f (↑Src f {x} ×RLD ⟨f⟩∗@{x}).
It remains to prove that dx∈Src f (↑Src f {x} ×RLD ⟨f⟩∗@{x}) ⊒ (RLD)outf .
Let L ∈ up dx∈Src f (↑Src f {x} ×RLD ⟨f⟩∗@{x}). We will prove L ∈

up(RLD)outf .
We have

L ∈
⋂

x∈Src f

up(↑Src f {x} ×RLD ⟨f⟩∗@{x}).

⟨L⟩∗{x} = G(x) for some G(x) ∈ up⟨f⟩∗@{x} (because L ∈ up(↑Src f {x} ×RLD

⟨f⟩∗@{x}).
Thus L = G ∈ up f (because f is complete). Thus L ∈ up f and so L ∈

up(RLD)outf .
□

Proposition 1121. (FCD) and (RLD)out form mutually inverse bijections be-
tween complete reloids and complete funcoids.

Proof. From two last lemmas. □

Theorem 1122. The diagram at the figure 8 (with the “unnamed” arrow from
ComplRLD(A,B) to F (B)A defined as the inverse isomorphism of its opposite ar-
row) is a commutative diagram (in category Set), every arrow in this diagram is
an isomorphism. Every cycle in this diagram is an identity (therefore “parallel”
arrows are mutually inverse). The arrows preserve order.

Proof. It’s proved above, that all morphisms (except the “unnamed” arrow,
which is the inverse morphism by definition) depicted on the diagram are bijections
and the depicted “opposite” morphisms are mutually inverse.

That arrows preserve order is obvious.
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F (B)A

ComplFCD(A,B) ComplRLD(A,B)

G7→ d

{
{α}×RLDG(α)

α∈A

}
G 7→ d

{
{α}×FCDG(α)

α∈A

}f 7→(α7→⟨f⟩∗{α})

(RLD)out

(FCD)

Figure 8

It remains to apply lemma 196 (taking into account that θ can be decomposed
into

(
G 7→ d

{
{α}×RLDG(α)

α∈A

})−1
and G 7→ d

{
{α}×FCDG(α)

α∈A

}
). □

Theorem 1123. Composition of complete reloids is complete.

Proof. Let f , g be complete reloids. Then (FCD)(g ◦ f) = (FCD)g ◦ (FCD)f .
Thus (because (FCD)(g◦f) is a complete funcoid) we have g◦f = (RLD)out((FCD)g◦
(FCD)f), but (FCD)g ◦ (FCD)f is a complete funcoid, thus g ◦ f is a complete
reloid. □

Theorem 1124.
1◦. (RLD)outg◦(RLD)outf = (RLD)out(g◦f) for composable complete funcoids

f and g.
2◦. (RLD)outg ◦ (RLD)outf = (RLD)out(g ◦ f) for composable co-complete fun-

coids f and g.

Proof. Let f , g be composable complete funcoids.
(FCD)((RLD)outg ◦ (RLD)outf) = (FCD)(RLD)outg ◦ (FCD)(RLD)outf = g ◦ f .
Thus (taking into account that (RLD)outg ◦ (RLD)outf is complete) we have

(RLD)outg ◦ (RLD)outf = (RLD)out(g ◦ f).
For co-complete funcoids it’s dual. □

Proposition 1125. If f is a (co-)complete funcoid then up f is a filter.

Proof. It is enough to consider the case if f is complete.
We need to prove that ∀F,G ∈ up f : F ⊓G ∈ up f .
For every F ∈ Rel(Src f,Dst f) we have
F ∈ up f ⇔ F ⊒ f ⇔ ⟨F ⟩∗{x} ⊒ ⟨f⟩∗{x}.
Thus

F,G ∈ up f ⇒ ⟨F ⟩∗{x} ⊒ ⟨f⟩∗{x} ∧ ⟨G⟩∗{x} ⊒ ⟨f⟩∗{x} ⇒
⟨F ⊓G⟩∗{x} = ⟨F ⟩∗{x} ⊓ ⟨G⟩∗{x} ⊒ ⟨f⟩∗{x} ⇒ F ⊓G ∈ up f.

That up f is nonempty and up-directed is obvious. □



9.6. PROPERTIES PRESERVED BY RELATIONSHIPS 218

Corollary 1126.
1◦. If f is a (co-)complete funcoid then up f = up(RLD)outf .
2◦. If f is a (co-)complete reloid then up f = up(FCD)f .

Proof. By order isomorphism, it is enough to prove the first.
Because up f is a filter, by properties of generalized filter bases we have F ∈

up(RLD)outf ⇔ ∃g ∈ up f : F ⊒ g ⇔ F ∈ up f . □

9.6. Properties preserved by relationships

Proposition 1127. (FCD)f is reflexive iff f is reflexive (for every endoreloid f).

Proof.

f is reflexive ⇔ 1Rel
Ob f ⊑ f ⇔ ∀F ∈ up f : 1Rel

Ob f ⊑ F ⇔

1Rel
Ob f ⊑

FCDl
up f ⇔ 1Rel

Ob f ⊑ (FCD)f ⇔ (FCD)f is reflexive.

□

Proposition 1128. (RLD)outf is reflexive iff f is reflexive (for every endofun-
coid f).

Proof.

f is reflexive ⇔ 1Rel
Ob f ⊑ f ⇔ (corollary 925) ⇔

∀F ∈ up f : 1Rel
Ob f ⊑ F ⇔ 1Rel

Ob f ⊑
RLDl

up f ⇔

1Rel
Ob f ⊑ (RLD)outf ⇔ (RLD)outf is reflexive.

□

Proposition 1129. (RLD)inf is reflexive iff f is reflexive (for every endofun-
coid f).

Proof. (RLD)inf is reflexive iff (FCD)(RLD)inf if reflexive iff f is reflexive. □

Obvious 1130. (FCD), (RLD)in, and (RLD)out preserve symmetry of the argu-
ment funcoid or reloid.

Proposition 1131. a×RLD
F a = ⊥ for every nontrivial ultrafilter a.

Proof.

a×RLD
F a = (RLD)out(a×FCD a) =

RLDl
up(a×FCD a) ⊑ 1FCD ⊓ (⊤FCD \ 1FCD) = ⊥FCD.

□

Example 1132. There exist filters A and B such that (FCD)(A ×RLD
F B) ⊏

A ×FCD B.

Proof. Take A = B = a for a nontrivial ultrafilter a. a ×RLD
F a = ⊥. Thus

(FCD)(a×RLD
F a) = ⊥ ⊏ a×FCD a. □

Conjecture 1133. There exist filters A and B such that (FCD)(A ⋉ B) ⊏
A ×FCD B.

Example 1134. There is such a non-symmetric reloid f that (FCD)f is sym-
metric.
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Proof. Take f = ((RLD)in(=)|R) ⊓ (≥)R. f is non-symmetric because f ̸≍
(>)R but f ≍ (<)R. (FCD)f = (=)|R because (=)|R ⊑ f ⊑ (RLD)in(=)|R. □

Proposition 1135. If (RLD)inf is symmetric then endofuncoid f is symmetric.

Proof. Suppose (RLD)inf is symmetric then f = (FCD)(RLD)inf is symmet-
ric. □

Conjecture 1136. If (RLD)outf is symmetric then endofuncoid f is symmet-
ric.

Proposition 1137. If f is a transitive endoreloid, then (FCD)f is a transitive
funcoid.

Proof. f = f ◦ f ; (FCD)f = (FCD)(f ◦ f); (FCD)f = (FCD)f ◦ (FCD)f . □

Conjecture 1138. There exists a non-transitive endoreloid f such that
(FCD)f is a transitive funcoid.

Proposition 1139. (RLD)inf is transitive iff f is transitive (for every endo-
funcoid f).

Proof.

f = f ◦ f ⇒ (RLD)inf = (RLD)in(f ◦ f) ⇔ (theorem 1117) ⇔
(RLD)inf = (RLD)inf ◦ (RLD)inf ⇒

(FCD)(RLD)inf = (FCD)(RLD)inf ◦ (FCD)(RLD)inf ⇔ f = f ◦ f.

Thus f = f ◦ f ⇔ (RLD)inf ◦ (RLD)inf . □

Conjecture 1140.
1◦. There exists such a transitive endofuncoid f , that (RLD)outf is not a

transitive reloid.
2◦. There exists such a non-transitive endofuncoid f , that (RLD)outf is tran-

sitive reloid.

9.7. Some sub-posets of funcoids and reloids

Proposition 1141. The following are complete sub-meet-semilattices (that is
subsets closed for arbitrary meets) of RLD(A,A) (for every set A):

1◦. symmetric reloids on A;
2◦. reflexive reloids on A;
3◦. symmetric reflexive reloids on A;
4◦. transitive reloids on A;
5◦. symmetric reflexive transitive reloids (= reloids of equivalence = uniform

spaces) on A.

Proof. The first three items are obvious.
Fourth: Let S be a set of transitive reloids on A. That is f ◦ f ⊑ f for

every f ∈ S. Then (
d
S) ◦ (

d
S) ⊑ f ◦ f ⊑ f . Consequently (

d
S) ◦ (

d
S) ⊑

d
S.

The last item follows from the previous. □

Proposition 1142. The following are complete sub-meet-semilattices (that is
subsets closed for arbitrary meets) of FCD(A,A) (for every set A):

1◦. symmetric funcoids on A;
2◦. reflexive funcoids on A;
3◦. symmetric reflexive funcoids on A;
4◦. transitive funcoids on A;
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5◦. symmetric reflexive transitive funcoids (= funcoids of equivalence = prox-
imity spaces) on A.

Proof. Analogous. □

Obvious corollaries:

Corollary 1143. The following are complete lattices (for every set A):
1◦. symmetric reloids on A;
2◦. reflexive reloids on A;
3◦. symmetric reflexive reloids on A;
4◦. transitive reloids on A;
5◦. symmetric reflexive transitive reloids (= reloids of equivalence = uniform

spaces) on A.

Corollary 1144. The following are complete lattices (for every set A):
1◦. symmetric funcoids on A;
2◦. reflexive funcoids on A;
3◦. symmetric reflexive funcoids on A;
4◦. transitive funcoids on A;
5◦. symmetric reflexive transitive funcoids (= funcoids of equivalence = prox-

imity spaces) on A.

The following conjecture was inspired by theorem 2.2 in [44]:

Conjecture 1145. Join of a set S on the lattice of transitive reloids is the
join (on the lattice of reloids) of all compositions of finite sequences of elements
of S.

The similar question can be asked about uniform spaces.
Does the same hold for funcoids?

9.8. Double filtrators

Below I show that it’s possible to describe (FCD), (RLD)out, and (RLD)in en-
tirely in terms of filtrators (order). This seems not to lead to really interesting
results but it’s curious.

Definition 1146. Double filtrator is a triple (A,B,Z) of posets such that Z is
a sub-poset of both A and B.

In other words, a double filtrator (A,B,Z) is a triple such that both (A,Z)
and (B,Z) are filtrators.

Definition 1147. Double filtrator of funcoids and reloids is (FCD,RLD,Rel).

Definition 1148. (FCD)f =
dA upZ f for f ∈ B.

Definition 1149. (RLD)outf =
dB upZ f for f ∈ A.

Definition 1150. If (FCD) is a lower adjoint, define (RLD)in as the upper
adjoint of (FCD).

9.8.1. Embedding of A into B. In this section we will suppose that (FCD)
and (RLD)in form a Galois surjection, that is (FCD)(RLD)inf = f for every f ∈ A.

Then (RLD)in is an order embedding from A to B.
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9.8.2. One more core part. I this section we will assume that (FCD)
and (RLD)in form a Galois surjection and equate A with its image by (RLD)in
in B. We will also assume (A,Z) being a filtered filtrator.

Proposition 1151. (FCD)f = CorA f for every f ∈ B.

Proof. CorA f =
dA upA f ⊑

dA upZ f = (FCD)f . But for every g ∈ upA f

we have g =
dA upZ g ⊒

dA upZ f , thus
dA upA f ⊒

dA upZ f . □

Example 1152. (FCD)f ̸= Cor′A f for the double filtrator of funcoids and
reloids.

Proof. Consider a nontrivial ultrafiler a and the reloid f = idRLD
a .

Cor′A f = Cor′FCD idRLD
a =

FCD

ldownFCD idRLD
a =

FCD

l∅ = ⊥FCD ̸= a×FCD a = (FCD) idRLD
a .

□

I leave to a reader’s exercise to apply the above theory to complete funcoids
and reloids.



CHAPTER 10

On distributivity of composition with a principal
reloid

10.1. Decomposition of composition of binary relations

Remark 1153. Sorry for an unfortunate choice of terminology: “composition”
and “decomposition” are unrelated.

The idea of the proof below is that composition of binary relations can be
decomposed into two operations: ⊗ and dom:

g ⊗ f =
{

((x, z), y)
x f y ∧ y g z

}
.

Composition of binary relations can be decomposed: g ◦ f = dom(g ⊗ f).
It can be decomposed even further: g ⊗ f = Θ0f ∩ Θ1g where

Θ0f =
{

((x, z), y)
x f y, z ∈ ℧

}
and Θ1f =

{
((x, z), y)
y f z, x ∈ ℧

}
.

(Here ℧ is the Grothendieck universe.)
Now we will do a similar trick with reloids.

10.2. Decomposition of composition of reloids

A similar thing for reloids:
In this chapter we will equate reloids with filters on cartesian products of sets.
For composable reloids f and g we have

g ◦ f =
RLD(Src f,Dst g)l {

G ◦ F
F ∈ GR f,G ∈ GR g

}
=

RLD(Src f,Dst g)l {
dom(G⊗ F )

F ∈ GR f,G ∈ GR g

}
.

Lemma 1154.
{

G⊗F
F ∈GR f,G∈GR g

}
is a filter base.

Proof. Let P,Q ∈
{

G⊗F
F ∈GR f,G∈GR g

}
. Then P = G0 ⊗ F0, Q = G1 ⊗ F1 for

some F0, F1 ∈ f , G0, G1 ∈ g. Then F0 ∩ F1 ∈ up f , G0 ∩G1 ∈ up g and thus

P ∩Q ⊇ (F0 ∩ F1) ⊗ (G0 ∩G1) ∈
{

G⊗ F

F ∈ GR f,G ∈ GR g

}
.

□

Corollary 1155.
{

↑F(Src f×Dst g)(G⊗F )
F ∈GR f,G∈GR g

}
is a generalized filter base.

Proposition 1156. g ◦ f = dom
dF(Src f×Dst g)

{
G⊗F

F ∈GR f,G∈GR g

}
.

222
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Proof. ↑F(Src f×Dst g) dom(G ⊗ F ) ⊒ dom
dF(Src f×Dst g)

{
G⊗F

F ∈GR f,G∈GR g

}
.

Thus

g ◦ f ⊒ dom
F(Src f×Dst g)l {

G⊗ F

F ∈ GR f,G ∈ GR g

}
.

Let X ∈ up dom
dF(Src f×Dst g)

{
G⊗F

F ∈up f,G∈up g

}
. Then there exist Y such that

X × Y ∈ up
F(Src f×Dst g)l {

G⊗ F

F ∈ up f,G ∈ up g

}
.

So because it is a generalized filter base X×Y ⊇ G⊗F for some F ∈ up f , G ∈ up g.
Thus X ∈ up dom(G⊗ F ). X ∈ up(g ◦ f). □

We can define g ⊗ f for reloids f , g:

g ⊗ f =
{

G⊗ F

F ∈ GR f,G ∈ GR g

}
.

Then

g ◦ f =
F(Src f×Dst g)l

⟨dom⟩∗(g ⊗ f) = dom
〈

↑RLD(Src f×Dst g,℧)
〉∗

(g ⊗ f).

10.3. Lemmas for the main result

Lemma 1157. (g ⊗ f) ∩ (h⊗ f) = (g ∩ h) ⊗ f for binary relations f , g, h.

Proof.

(g ∩ h) ⊗ f = Θ0f ∩ Θ1(g ∩ h) = Θ0f ∩ (Θ1g ∩ Θ1h) =
(Θ0f ∩ Θ1g) ∩ (Θ0f ∩ Θ1h) = (g ⊗ f) ∩ (h⊗ f).

□

Lemma 1158. Let F =↑RLD f be a principal reloid (for a Rel-morphism f),
T be a set of reloids from DstF to a set V .

RLD(Src f×V,℧)l

G∈up dT

(G⊗ f) = l

G∈T

RLD(Src f×V,℧)l
(G⊗ F ).

Proof.
dRLD(Src f×V,℧)

G∈up dT
(G⊗ f) ⊒ dG∈T

dRLD(Src f×V,℧)(G⊗ F ) is obvious.
Let K ∈ up dG∈T

dRLD(Src f×V,℧)(G⊗ F ). Then for each G ∈ T

K ∈ up
RLD(Src f×V,℧)l

(G⊗ F );

K ∈ up
dRLD(Src f×V,℧)

{
Γ⊗f
Γ∈G

}
. Then K ∈

{
Γ⊗f
Γ∈G

}
by properties of generalized

filter bases.
K ∈

{
(Γ0∩···∩Γn)⊗f

n∈N,Γi∈G

}
=
{

(Γ0⊗f)∩···∩(Γn⊗f)
n∈N,Γi∈G

}
.

∀G ∈ T : K ⊇ (ΓG,0 ⊗ f) ∩ · · · ∩ (ΓG,n ⊗ f) for some n ∈ N, ΓG,i ∈ G.
K ⊇

{
(Γ0⊗f)∩···∩(Γn⊗f)

n∈N,Γi∈G

}
where Γi =

⋃
g∈G Γg,i ∈ up dT .
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K ∈
{

(Γ0⊗f)∩···∩(Γn⊗f)
n∈N

}
. So

K ∈
{

(Γ′
0 ⊗ f) ∩ · · · ∩ (Γ′

n ⊗ f)
n ∈ N,Γ′

i ∈ up dT

}
={

(Γ′
0 ∩ · · · ∩ Γ′

n) ⊗ f

n ∈ N,Γ′
i ∈ up dT

}
=

up
RLD(Src f×V,℧)l {

G⊗ f

G ∈ up dT

}
.

□

10.4. Proof of the main result

Lemma 1159. ( dT )◦F = d

{
G◦F
G∈T

}
for every principal reloid F =↑RLD f (for a

Rel-morphism f) and a set T of reloids from DstF to some set V . (In other words
principal reloids are co-metacomplete and thus also metacomplete by duality.)

Proof. (

lT
)

◦ F =
RLD(Src f,V )l

⟨dom⟩∗
((

lT
)

⊗ F
)

=

dom
RLD(Src f×V,℧)l ((

lT
)

⊗ F
)

=

dom
RLD(Src f×V,℧)l

G∈up dT

(G⊗ f);

l

G∈T

(G ◦ F ) =

l

G∈T

RLD(Src f,V )l
⟨dom⟩∗(G⊗ F ) =

l

G∈T

dom
RLD(Src f×V,℧)l

(G⊗ F ) =

dom l

G∈T

RLD(Src f×V,℧)l
(G⊗ F ).

It’s enough to prove
RLD(Src f×V,℧)l

G∈up dT

(G⊗ f) = l

G∈T

RLD(Src f×V,℧)l
(G⊗ F )

but this is the statement of the lemma. □

Theorem 1160. The following are pair-wise equivalent:
1◦. f is a complete reloid.
2◦. f ◦ dK = dg∈K(f ◦ g) for every complete reloid f and a set K of reloids

with suitable image (in other words, f is a metacomplete reloid).
3◦. f ◦ dK = dg∈K(f ◦ g) for every complete reloid f and a set K of Rel-

morphisms with suitable image.

Proof.
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2◦⇒3◦. Obvious.
1◦⇒2◦. Obviously f ◦ dK ⊒ dg∈K(f ◦ g).

f ◦ lK = (because f is complete) =

l
{

dx∈dom f ({x} ×RLD φx)
φ ∈ (T im f)dom f , ⟨φ⟩∗{x} ⊒ ⟨f⟩∗{x}

}
◦ lK =

(x 7→ x ◦ lK preserves filtered meets by theorem 842) =

l
{

dx∈dom f ({x} ×RLD φx) ◦ dK
φ ∈ (T im f)dom f , ⟨φ⟩∗{x} ⊒ ⟨f⟩∗{x}

}
= (by the lemma) =

l
{

dx∈dom f

(
({x} ×RLD φx) ◦ dK

)
φ ∈ (T im f)dom f , ⟨φ⟩∗{x} ⊒ ⟨f⟩∗{x}

}
=

(apply theorem 1068 two times) =

l
 dx∈dom f

(
φ ◦

(〈
( dK)−1

〉∗
{x} ×RLD {x}

))
φ ∈ (T im f)dom f , ⟨φ⟩∗{x} ⊒ ⟨f⟩∗{x}

 =

(by the lemma) =

l

φ ◦ dx∈dom f

(〈
( dK)−1

〉∗
{x} ×RLD {x}

)
φ ∈ (T im f)dom f , ⟨φ⟩∗{x} ⊒ ⟨f⟩∗{x}

 =

l{
φ ◦ Compl dK

φ ∈ (T im f)dom f , ⟨φ⟩∗{x} ⊒ ⟨f⟩∗{x}

}
⊑

l{
φ ◦ dK

φ ∈ (T im f)dom f , ⟨φ⟩∗{x} ⊒ ⟨f⟩∗{x}

}
= f ◦ lK.

3◦⇒1◦. f = f ◦ 1 = f ◦ dx∈dom f {x, x} = dx∈dom f (f ◦ {x, x}) =

dx∈dom f ({x} ×RLD ⟨(FCD)f⟩∗{x}) = Compl f .
□

10.5. Embedding reloids into funcoids

Definition 1161. Let f be a reloid. The funcoid
ρf = FCD(P(Src f × Src f),P(Dst f × Dst f))

is defined by the formulas:
⟨ρf⟩x = f ◦ x and

〈
ρf−1〉y = f−1 ◦ y

where x are endoreloids on Src f and y are endoreloids on Dst f .

Proposition 1162. It is really a funcoid (if we equate reloids x and y with
corresponding filters on Cartesian products of sets).

Proof. y ̸≍ ⟨ρf⟩x ⇔ y ̸≍ f ◦ x ⇔ f−1 ◦ y ̸≍ x ⇔
〈
ρf−1〉y ̸≍ x. □

Corollary 1163. (ρf)−1 = ρf−1.

Definition 1164. It can be continued to arbitrary funcoids x having destina-
tion Src f by the formula ⟨ρ∗f⟩x = ⟨ρf⟩ idSrc f ◦x = f ◦ x.

Proposition 1165. ρ is an injection.
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Proof. Consider x = idSrc f . □

Proposition 1166. ρ(g ◦ f) = (ρg) ◦ (ρf).

Proof. ⟨ρ(g ◦ f)⟩x = g ◦f ◦x = ⟨ρg⟩⟨ρf⟩x = (⟨ρg⟩◦⟨ρf⟩)x. Thus ⟨ρ(g ◦ f)⟩ =
⟨ρg⟩ ◦ ⟨ρf⟩ = ⟨(ρg) ◦ (ρf)⟩ and so ρ(g ◦ f) = (ρg) ◦ (ρf). □

Theorem 1167. ρ dF = d⟨ρ⟩∗
F for a set F of reloids.

Proof. It’s enough to prove ⟨ρ dF ⟩∗
X =

〈

d⟨ρ⟩∗
F
〉∗
X for a set X.

Really, 〈
ρ lF

〉∗
X =〈

ρ lF
〉

↑ X =

lF◦ ↑ X =

l

{
f◦ ↑ X
f ∈ F

}
=

l

{
⟨ρf⟩ ↑ X
f ∈ F

}
=〈

l

{
ρf

f ∈ F

}〉
X =〈

l⟨ρ⟩∗
F
〉∗
X.

□

Conjecture 1168. ρ
d
F =

d
⟨ρ⟩∗

F for a set F of reloids.

Proposition 1169. ρ1RLD
A = 1FCD

P(A×A).

Proof.
〈
ρ1RLD

A

〉
x = 1RLD

A ◦ x = x =
〈

1FCD
P(A×A)

〉
x. □

We can try to develop further theory by applying embedding of reloids into
funcoids for researching of properties of reloids.

Theorem 1170. Reloid f is monovalued iff funcoid ρf is monovalued.

Proof.
ρf is monovalued ⇔

(ρf) ◦ (ρf)−1 ⊑ 1Dst ρf ⇔
ρ(f ◦ f−1) ⊑ 1Dst ρf ⇔

ρ(f ◦ f−1) ⊑ 1FCD
P(Dst f×Dst f) ⇔

ρ(f ◦ f−1) ⊑ ρ1RLD
Dst f ⇔

f ◦ f−1 ⊑ 1RLD
Dst f ⇔

f is monovalued.
□



CHAPTER 11

Continuous morphisms

This chapter uses the apparatus from the section “Partially ordered dagger
categories”.

11.1. Traditional definitions of continuity

In this section we will show that having a funcoid or reloid ↑ f corresponding
to a function f we can express continuity of it by the formula ↑ f ◦ µ ⊑ ν◦ ↑ f (or
similar formulas) where µ and ν are some spaces.

11.1.1. Pretopology. Let (A, clA) and (B, clB) be preclosure spaces. Then
by definition a function f : A → B is continuous iff f clA(X) ⊆ clB(fX) for every
X ∈ PA. Let now µ and ν be endofuncoids corresponding correspondingly to clA
and clB . Then the condition for continuity can be rewritten as

↑FCD(Ob µ,Ob ν) f ◦ µ ⊑ ν◦ ↑FCD(Ob µ,Ob ν) f.

11.1.2. Proximity spaces. Let µ and ν be proximity spaces (which I consider
a special case of endofuncoids). By definition a Set-morphism f is a proximity-
continuous map from µ to ν iff

∀X,Y ∈ T (Obµ) : (X [µ]∗ Y ⇒ ⟨f⟩∗
X [ν]∗ ⟨f⟩∗

Y ).

Equivalently transforming this formula we get

∀X,Y ∈ T (Obµ) : (X [µ]∗ Y ⇒ ⟨f⟩ ↑ X [ν] ⟨f⟩ ↑ Y );
∀X,Y ∈ T (Obµ) : (X [µ]∗ Y ⇒↑ X

[
f−1 ◦ ν ◦ f

]
↑ Y );

∀X,Y ∈ T (Obµ) : (X [µ]∗ Y ⇒ X
[
f−1 ◦ ν ◦ f

]∗
Y );

µ ⊑ f−1 ◦ ν ◦ f.

So a function f is proximity continuous iff µ ⊑ f−1 ◦ ν ◦ f .

11.1.3. Uniform spaces. Uniform spaces are a special case of endoreloids.
Let µ and ν be uniform spaces. By definition a Set-morphism f is a uniformly

continuous map from µ to ν iff

∀ε ∈ up ν∃δ ∈ up ν∀(x, y) ∈ δ : (fx, fy) ∈ ε.

Equivalently transforming this formula we get:

∀ϵ ∈ up ν∃δ ∈ upµ∀(x, y) ∈ δ : {(fx, fy)} ⊆ ϵ;
∀ϵ ∈ up ν∃δ ∈ upµ∀(x, y) ∈ δ : f ◦ {(x, y)} ◦ f−1 ⊆ ϵ;

∀ϵ ∈ up ν∃δ ∈ upµ : f ◦ δ ◦ f−1 ⊆ ϵ;

∀ϵ ∈ up ν :↑RLD(Ob µ,Ob ν) f ◦ µ ◦ (↑RLD(Ob µ,Ob ν) f)−1 ⊑↑RLD(Ob µ,Ob ν) ϵ;

↑RLD(Ob µ,Ob ν) f ◦ µ ◦ (↑RLD(Ob µ,Ob ν) f)−1 ⊑ ν.

So a function f is uniformly continuous iff f ◦ µ ◦ f−1 ⊑ ν.

227
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11.2. Our three definitions of continuity

I have expressed different kinds of continuity with simple algebraic formulas
hiding the complexity of traditional epsilon-delta notation behind a smart algebra.
Let’s summarize these three algebraic formulas:

Let µ and ν be endomorphisms of some partially ordered semicategory. Con-
tinuous functions can be defined as these morphisms f of this semicategory which
conform to the following formula:

f ∈ C(µ, ν) ⇔ f ∈ Hom(Obµ,Ob ν) ∧ f ◦ µ ⊑ ν ◦ f.
If the semicategory is a partially ordered dagger semicategory then continuity also
can be defined in two other ways:

f ∈ C′(µ, ν) ⇔ f ∈ Hom(Obµ,Ob ν) ∧ µ ⊑ f† ◦ ν ◦ f ;
f ∈ C′′(µ, ν) ⇔ f ∈ Hom(Obµ,Ob ν) ∧ f ◦ µ ◦ f† ⊑ ν.

Remark 1171. In the examples (above) about funcoids and reloids the “dagger
functor” is the reverse of a funcoid or reloid, that is f† = f−1.

Proposition 1172. Every of these three definitions of continuity forms a wide
sub-semicategory (wide subcategory if the original semicategory is a category).

Proof.
C. Let f ∈ C(µ, ν), g ∈ C(ν, π). Then f ◦ µ ⊑ ν ◦ f , g ◦ ν ⊑ π ◦ g, g ◦ f ◦ µ ⊑

g ◦ ν ◦ f ⊑ π ◦ g ◦ f . So g ◦ f ∈ C(µ, π). 1Ob µ ∈ C(µ, µ) is obvious.
C′. Let f ∈ C′(µ, ν), g ∈ C′(ν, π). Then µ ⊑ f† ◦ ν ◦ f , ν ⊑ g† ◦ π ◦ g;

µ ⊑ f† ◦ g† ◦ π ◦ g ◦ f ; µ ⊑ (g ◦ f)† ◦ π ◦ (g ◦ f).
So g ◦ f ∈ C′(µ, π). 1Ob µ ∈ C′(µ, µ) is obvious.

C′′. Let f ∈ C′′(µ, ν), g ∈ C′′(ν, π). Then f ◦ µ ◦ f† ⊑ ν, g ◦ ν ◦ g† ⊑ π;
g ◦ f ◦ µ ◦ f† ◦ g† ⊑ π; (g ◦ f) ◦ µ ◦ (g ◦ f)† ⊑ π.

So g ◦ f ∈ C′′(µ, π). 1Ob µ ∈ C′′(µ, µ) is obvious.
□

Proposition 1173. For a monovalued morphism f of a partially ordered dag-
ger category and its endomorphisms µ and ν

f ∈ C′(µ, ν) ⇒ f ∈ C(µ, ν) ⇒ f ∈ C′′(µ, ν).

Proof. Let f ∈ C′(µ, ν). Then µ ⊑ f† ◦ ν ◦ f ;
f ◦ µ ⊑ f ◦ f† ◦ ν ◦ f ⊑ 1Dst f ◦ ν ◦ f = ν ◦ f ; f ∈ C(µ, ν).

Let f ∈ C(µ, ν). Then f ◦ µ ⊑ ν ◦ f ;
f ◦ µ ◦ f† ⊑ ν ◦ f ◦ f† ⊑ ν ◦ 1Dst f = ν; f ∈ C′′(µ, ν).

□

Proposition 1174. For an entirely defined morphism f of a partially ordered
dagger category and its endomorphisms µ and ν

f ∈ C′′(µ, ν) ⇒ f ∈ C(µ, ν) ⇒ f ∈ C′(µ, ν).

Proof. Let f ∈ C′′(µ, ν). Then f ◦ µ ◦ f† ⊑ ν; f ◦ µ ◦ f† ◦ f ⊑ ν ◦ f ;
f ◦ µ ◦ 1Src f ⊑ ν ◦ f ; f ◦ µ ⊑ ν ◦ f ; f ∈ C(µ, ν).

Let f ∈ C(µ, ν). Then f ◦µ ⊑ ν ◦f ; f† ◦f ◦µ ⊑ f† ◦ν ◦f ; 1Src µ ◦µ ⊑ f† ◦ν ◦f ;
µ ⊑ f† ◦ ν ◦ f ; f ∈ C′(µ, ν). □

For entirely defined monovalued morphisms our three definitions of continuity
coincide:
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Theorem 1175. If f is a monovalued and entirely defined morphism of a
partially ordered dagger semicategory then

f ∈ C′(µ, ν) ⇔ f ∈ C(µ, ν) ⇔ f ∈ C′′(µ, ν).

Proof. From two previous propositions. □

The classical general topology theorem that uniformly continuous function from
a uniform space to an other uniform space is proximity-continuous regarding the
proximities generated by the uniformities, generalized for reloids and funcoids takes
the following form:

Theorem 1176. If an entirely defined morphism of the category of reloids
f ∈ C′′(µ, ν) for some endomorphisms µ and ν of the category of reloids, then
(FCD)f ∈ C′((FCD)µ, (FCD)ν).

Exercise 1177. I leave a simple exercise for the reader to prove the last the-
orem.

Theorem 1178. Let µ and ν be endomorphisms of some partially ordered
dagger semicategory and f ∈ Hom(Obµ,Ob ν) be a monovalued, entirely defined
morphism. Then

f ∈ C(µ, ν) ⇔ f ∈ C(µ†, ν†).

Proof.

f ◦ µ ⊑ ν ◦ f ⇔ µ ⊑ f† ◦ ν ◦ f ⇒

µ ◦ f† ⊑ f† ◦ ν ◦ f ◦ f† ⇒ µ ◦ f† ⊑ f† ◦ ν ⇔

f ◦ µ† ⊑ ν† ◦ f ⇒ f† ◦ f ◦ µ† ⊑ f† ◦ ν† ◦ f ⇒

µ† ⊑ f† ◦ ν† ◦ f ⇔ µ ⊑ f† ◦ ν ◦ f.

Thus f ◦ µ ⊑ ν ◦ f ⇔ µ ⇔ f ◦ µ† ⊑ ν† ◦ f . □

11.3. Continuity for topological spaces

Proposition 1179. The following are pairwise equivalent for funcoids µ, ν and
a monovalued, entirely defined morphism f ∈ Hom(Obµ,Ob ν):

1◦. ∀A ∈ T Obµ,B ∈ up⟨ν⟩⟨f⟩∗
A :

〈
f−1〉∗

B ∈ up⟨µ⟩∗
A.

2◦. f ∈ C(µ, ν).
3◦. f ∈ C(µ−1, ν−1).

Proof.
2◦⇔3◦. By general f ◦ µ ⊑ ν ◦ f ⇔ f ◦ µ† ⊑ ν† ◦ f formula above.
1◦⇔2◦. 1◦ is equivalent to

〈〈
f−1〉∗

〉∗
up⟨ν⟩⟨f⟩∗

A ⊆ up⟨µ⟩∗
A equivalent to

⟨ν⟩⟨f⟩∗
A ⊒ ⟨f⟩⟨µ⟩∗

A (used “Orderings of filters” chapter).
□

Corollary 1180. The following are pairwise equivalent for topological spaces
µ, ν and a monovalued, entirely defined morphism f ∈ Hom(Obµ,Ob ν):

1◦. ∀x ∈ Obµ,B ∈ up⟨ν⟩⟨f⟩∗{x} :
〈
f−1〉∗

B ∈ up⟨µ⟩∗{x}.
2◦. Preimages (by f) of open sets are open.
3◦. f ∈ C(µ, ν) that is ⟨f⟩⟨µ⟩∗{x} ⊑ ⟨ν⟩⟨f⟩∗{x} for every x ∈ Obµ.
4◦. f ∈ C(µ−1, ν−1) that is ⟨f⟩

〈
µ−1〉∗

A ⊑
〈
ν−1〉⟨f⟩∗

A for every A ∈ T Obµ.
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Proof. 2◦ from the previous proposition is equivalent to ⟨f⟩⟨µ⟩∗{x} ⊑
⟨ν⟩⟨f⟩∗{x} equivalent to

〈〈
f−1〉∗

〉∗
up⟨ν⟩⟨f⟩∗{x} ⊆ up⟨µ⟩∗{x} for every x ∈ Obµ,

equivalent to 1◦ (used “Orderings of filters” chapter).
It remains to prove 3◦⇔2◦.

3◦⇒2◦. Let B be an open set in ν. For every x ∈
〈
f−1〉∗

B we have f(x) ∈ B that
is B is a neighborhood of f(x), thus

〈
f−1〉∗

B is a neighborhood of x. We
have proved that

〈
f−1〉∗

B is open.
2◦⇒3◦. Let B be a neighborhood of f(x). Then there is an open neighborhood

B′ ⊆ B of f(x).
〈
f−1〉∗

B′ is open and thus is a neighborhood of x (x ∈〈
f−1〉∗

B′ because f(x) ∈ B′). Consequently
〈
f−1〉∗

B is a neighborhood
of x.

Alternative proof of 2◦⇔4◦: http://math.stackexchange.com/a/1855782/4876
□

11.4. C(µ ◦ µ−1, ν ◦ ν−1)

Proposition 1181. f ∈ C(µ, ν) ⇒ f ∈ C′′(µ ◦ µ−1, ν ◦ ν−1) for endofuncoids
µ, ν and monovalued funcoid f ∈ FCD(Obµ,Ob ν).

Proof. Let f ∈ C(µ, ν).

X [f ◦ µ ◦ µ−1 ◦ f−1]∗ Z ⇔

∃p ∈ atomsF :
(
X [µ−1 ◦ f−1]∗ p ∧ p [f ◦ µ]∗ Z

)
⇔

∃p ∈ atomsF : (p [f ◦ µ]∗ X ∧ p [f ◦ µ]∗ Z) ⇒

∃p ∈ atomsF : (p [ν ◦ f ]∗ X ∧ p [ν ◦ f ]∗ Z) ⇔

∃p ∈ atomsF :
(
⟨f⟩∗

p [ν]∗ X ∧ ⟨f⟩∗
p [ν]∗ Z

)
⇒ X [ν ◦ ν−1]∗ Z

(taken into account monovaluedness of f and thus that ⟨f⟩∗
p is atomic or least).

Thus f ◦ µ ◦ µ−1 ◦ f−1 ⊑ ν ◦ ν−1 that is f ∈ C′′(µ ◦ µ−1, ν ◦ ν−1). □

Proposition 1182. f ∈ C′′(µ ◦ µ−1, ν ◦ ν−1) ⇒ f ∈ C′′(µ, ν) for complete
endofuncoids µ, ν and principal funcoid f ∈ FCD(Obµ,Ob ν), provided that µ is
reflexive, and ν is T1-separable.

Proof.

f ∈ C′′(µ ◦ µ−1, ν ◦ ν−1) ⇔
f ◦ µ ◦ µ−1 ◦ f−1 ⊑ ν ◦ ν−1 ⇒ (reflexivity of µ) ⇒
f ◦ µ ◦ f−1 ⊑ ν ◦ ν−1 ⇔ f ◦ µ−1 ◦ f−1 ⊑ ν ◦ ν−1 ⇒

⟨f ◦ µ−1 ◦ f−1⟩∗X ⊑ ⟨ν⟩∗⟨ν−1⟩∗X ⇒

Cor
〈
f ◦ µ−1 ◦ f−1〉∗

X ⊑ Cor⟨ν⟩∗⟨ν−1⟩∗X ⇔
⟨f ◦ µ−1 ◦ f−1⟩∗X ⊑ Cor⟨ν⟩∗⟨ν−1⟩∗X ⇒

(T1-separability) ⇒
⟨f ◦ µ−1 ◦ f−1⟩∗X ⊑ ⟨ν−1⟩∗X for any typed set X on Ob ν.

Thus

f ∈ C′′(µ ◦ µ−1, ν ◦ ν−1) ⇒ f ◦ µ−1 ◦ f−1 ⊑ ν−1 ⇔
f ◦ µ ◦ f−1 ⊑ ν ⇔ f ∈ C′′(µ, ν).

□

http://math.stackexchange.com/a/1855782/4876
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Theorem 1183. f ∈ C(µ ◦ µ−1, ν ◦ ν−1) ⇔ f ∈ C(µ, ν) for complete
endofuncoids µ, ν and principal monovalued and entirely defined funcoid f ∈
FCD(Obµ,Ob ν), provided that µ is reflexive, and ν is T1-separable.

Proof. Two above propositions and theorem 1175. □

11.5. Continuity of a restricted morphism

Consider some partially ordered semigroup. (For example it can be the semi-
group of funcoids or semigroup of reloids on some set regarding the composition.)
Consider also some lattice (lattice of objects). (For example take the lattice of set
theoretic filters.)

We will map every object A to so called restricted identity element IA of the
semigroup (for example restricted identity funcoid or restricted identity reloid). For
identity elements we will require

1◦. IA ◦ IB = IA⊓B ;
2◦. f ◦ IA ⊑ f ; IA ◦ f ⊑ f .

In the case when our semigroup is “dagger” (that is is a dagger semicategory) we
will require also (IA)† = IA.

We can define restricting an element f of our semigroup to an object A by the
formula f |A = f ◦ IA.

We can define rectangular restricting an element f of our semigroup to objects
A and B as IB ◦ f ◦ IA. Optionally we can define direct product A × B of two
objects by the formula (true for funcoids and for reloids):

f ⊓ (A×B) = IB ◦ f ◦ IA.

Square restricting of an element f to an object A is a special case of rectangular
restricting and is defined by the formula IA ◦f ◦ IA (or by the formula f ⊓ (A×A)).

Theorem 1184. For every elements f , µ, ν of our semigroup and an object A

1◦. f ∈ C(µ, ν) ⇒ f |A ∈ C(IA ◦ µ ◦ IA, ν);
2◦. f ∈ C′(µ, ν) ⇒ f |A ∈ C′(IA ◦ µ ◦ IA, ν);
3◦. f ∈ C′′(µ, ν) ⇒ f |A ∈ C′′(IA ◦ µ ◦ IA, ν).

(Two last items are true for the case when our semigroup is dagger.)

Proof.

1◦.

f |A ∈ C(IA ◦ µ ◦ IA, ν) ⇔
f |A ◦ IA ◦ µ ◦ IA ⊑ ν ◦ f |A ⇔

f ◦ IA ◦ IA ◦ µ ◦ IA ⊑ ν ◦ f |A ⇔
f ◦ IA ◦ µ ◦ IA ⊑ ν ◦ f ◦ IA ⇐

f ◦ IA ◦ µ ⊑ ν ◦ f ⇐
f ◦ µ ⊑ ν ◦ f ⇔
f ∈ C(µ, ν).
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2◦.

f |A ∈ C′(IA ◦ µ ◦ IA, ν) ⇔

IA ◦ µ ◦ IA ⊑ (f |A)† ◦ ν ◦ f |A ⇐

IA ◦ µ ◦ IA ⊑ (f ◦ IA)† ◦ ν ◦ f ◦ IA ⇔

IA ◦ µ ◦ IA ⊑ IA ◦ f† ◦ ν ◦ f ◦ IA ⇐

µ ⊑ f† ◦ ν ◦ f ⇔
f ∈ C′(µ, ν).

3◦.

f |A ∈ C′′(IA ◦ µ ◦ IA, ν) ⇔

f |A ◦ IA ◦ µ ◦ IA ◦ (f |A)† ⊑ ν ⇔

f ◦ IA ◦ IA ◦ µ ◦ IA ◦ IA ◦ f† ⊑ ν ⇔

f ◦ IA ◦ µ ◦ IA ◦ f† ⊑ ν ⇐

f ◦ µ ◦ f† ⊑ ν ⇔
f ∈ C′′(µ, ν).

□

11.6. Anticontinuous morphisms

Let µ and ν be endomorphisms of some partially ordered semicategory. An-
ticontinuous functions can be defined as these morphisms f of this semicategory
which conform to the following formula:

f ∈ C∗(µ, ν) ⇔ f ∈ Hom(Obµ,Ob ν) ∧ f ◦ µ ⊒ ν ◦ f.

If the semicategory is a partially ordered dagger semicategory then anticontinuity
also can be defined in two other ways:

f ∈ C′
∗(µ, ν) ⇔ f ∈ Hom(Obµ,Ob ν) ∧ µ ⊒ f† ◦ ν ◦ f ;

f ∈ C′′
∗(µ, ν) ⇔ f ∈ Hom(Obµ,Ob ν) ∧ f ◦ µ ◦ f† ⊒ ν.

Anticontinuity is the order dual of continuity.

Theorem 1185. For partially ordered dagger categories:
1◦. f ∈ C∗(µ, ν) ⇔ f† ∈ C(ν†, µ†);
2◦. f ∈ C′

∗(µ, ν) ⇔ f† ∈ C′′(ν†, µ†);
3◦. f ∈ C′′

∗(µ, ν) ⇔ f† ∈ C′(ν†, µ†).

Proof.
1◦. f ∈ C∗(f, g) ⇔ f ◦ µ ⊒ ν ◦ f ⇔ µ† ◦ f† ⊒ f† ◦ ν† ⇔ f† ∈ C(ν†, µ†).
2◦. f ∈ C′

∗(µ, ν) ⇔ µ ⊒ f† ◦ ν ◦ f ⇔ f† ◦ ν† ◦ f ⊑ µ† ⇔ f† ∈ C′′(ν†, µ†).
3◦. By duality.

□

Definition 1186. An open map from a topological space to a topological space
is a function which maps open sets into open sets.

Theorem 1187. For topological spaces considered as complete funcoids, a prin-
cipal anticontinuous morphism is the same as open map.
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Proof. Because f , µ, ν are complete funcoids, we have
f ∈ C∗(µ, ν) ⇔ f ◦ µ ⊒ ν ◦ f ⇔ Compl(f ◦ µ) ⊒ Compl(ν ◦ f).

Equivalently transforming further, we get
∀x ∈ Obµ : ⟨f⟩⟨µ⟩∗@{x} ⊒ ⟨ν⟩⟨f⟩∗@{x};

∀x ∈ Obµ, V ∈ ⟨µ⟩∗{x} : ⟨f⟩∗
V ⊒ ⟨ν⟩⟨f⟩∗@{x},

what is the criterion of f being an open map. □



CHAPTER 12

Connectedness regarding funcoids and reloids

12.1. Some lemmas

Lemma 1188. Let U be a set, A,B ∈ T U be typed sets, f be an endo-funcoid
on U . If ¬(A [f ]∗ B) ∧A ⊔B ∈ up(dom f ⊔ im f) then f is closed on A.

Proof. Let A ⊔B ∈ up(dom f ⊔ im f).

¬(A [f ]∗ B) ⇔
B ⊓ ⟨f⟩∗

A = ⊥ ⇒
(dom f ⊔ im f) ⊓B ⊓ ⟨f⟩∗

A = ⊥ ⇒
((dom f ⊔ im f) \A) ⊓ ⟨f⟩∗

A = ⊥ ⇔
⟨f⟩∗

A ⊑ A.

□

Corollary 1189. If ¬(A [f ]∗ B) ∧A⊔B ∈ up(dom f ⊔ im f) then f is closed
on A \B for a funcoid f ∈ FCD(U,U) for every sets U and typed sets A,B ∈ T U .

Proof. Let ¬(A [f ]∗ B) ∧A ⊔B ∈ up(dom f ⊔ im f). Then

¬((A \B) [f ]∗ B) ∧ (A \B) ⊔B ∈ up(dom f ⊔ im f).

□

Lemma 1190. If ¬(A [f ]∗ B) ∧ A ⊔ B ∈ up(dom f ⊔ im f) then ¬(A [fn]∗ B)
for every whole positive n.

Proof. Let ¬(A [f ]∗ B) ∧A ⊔B ∈ up(dom f ⊔ im f). From the above lemma
⟨f⟩∗

A ⊑ A. B ⊓ ⟨f⟩A = ⊥, consequently ⟨f⟩∗
A ⊑ A \ B. Because (by the above

corollary) f is closed on A \B, then ⟨f⟩⟨f⟩A ⊑ A \B, ⟨f⟩⟨f⟩⟨f⟩A ⊑ A \B, etc. So
⟨fn⟩A ⊑ A \B, B ≍ ⟨fn⟩A, ¬(A [fn]∗ B). □

12.2. Endomorphism series

Definition 1191. S1(µ) = µ⊔µ2 ⊔µ3 ⊔ . . . for an endomorphism µ of a semi-
category with countable join of morphisms (that is join defined for every countable
set of morphisms).

Definition 1192. S(µ) = µ0 ⊔S1(µ) = µ0 ⊔ µ⊔ µ2 ⊔ µ3 ⊔ . . .where µ0 = 1Ob µ

(identity morphism for the object Obµ) where Obµ is the object of endomorphism
µ for an endomorphism µ of a category with countable join of morphisms.

I call S1 and S endomorphism series.

Proposition 1193. The relation S(µ) is transitive for the category Rel.

234
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Proof.

S(µ) ◦ S(µ) = µ0 ⊔ S(µ) ⊔ µ ◦ S(µ) ⊔ µ2 ◦ S(µ) ⊔ · · · =
(µ0 ⊔ µ1 ⊔ µ2 ⊔ . . . ) ⊔ (µ1 ⊔ µ2 ⊔ µ3 ⊔ . . . ) ⊔ (µ2 ⊔ µ3 ⊔ µ4 ⊔ . . . ) =

µ0 ⊔ µ1 ⊔ µ2 ⊔ · · · = S(µ).
□

12.3. Connectedness regarding binary relations

Before going to research connectedness for funcoids and reloids we will excurse
into the basic special case of connectedness regarding binary relations on a set ℧.

This is commonly studied in “graph theory” courses. Digraph as commonly
defined is essentially the same as an endomorphism of the category Rel.

Definition 1194. A set A is called (strongly) connected regarding a binary
relation µ on U when

∀X,Y ∈ PU \ {∅} : (X ∪ Y = A ⇒ X [µ]∗ Y ).

Definition 1195. A typed set A of type U is called (strongly) connected re-
garding a Rel-endomorphism µ on U when

∀X,Y ∈ T (Obµ) \ {⊥T (Ob µ)} : (X ⊔ Y = A ⇒ X [µ]∗ Y ).

Obvious 1196. A typed set A is connected regarding Rel-endomorphism µ on
its type iff GRA is connected regarding GR µ.

Let ℧ be a set.

Definition 1197. Path between two elements a, b ∈ ℧ in a set A ⊆ ℧ through
binary relation µ is the finite sequence x0 . . . xn where x0 = a, xn = b for n ∈ N
and xi (µ ∩A×A) xi+1 for every i = 0, . . . , n− 1. n is called path length.

Proposition 1198. There exists path between every element a ∈ ℧ and that
element itself.

Proof. It is the path consisting of one vertex (of length 0). □

Proposition 1199. There is a path from element a to element b in a set A
through a binary relation µ iff a (S(µ ∩A×A)) b (that is (a, b) ∈ S(µ ∩A×A)).

Proof.
⇒. If a path from a to b exists, then {b} ⊆ ⟨(µ ∩A×A)n⟩∗{a} where n is the path

length. Consequently {b} ⊆ ⟨S(µ ∩A×A)⟩∗{a}; a (S(µ ∩A×A)) b.
⇐. If a (S(µ ∩A×A)) b then there exists n ∈ N such that a (µ ∩A×A)n b.

By definition of composition of binary relations this means that there
exist finite sequence x0 . . . xn where x0 = a, xn = b for n ∈ N and
xi (µ ∩A×A) xi+1 for every i = 0, . . . , n − 1. That is there is a path
from a to b.

□

Proposition 1200. There is a path from element a to element b in a set A
through a binary relation µ iff a (S1(µ ∩A×A)) b (that is (a, b) ∈ S1(µ∩A×A)).

Proof. Similar to the previous proof. □

Theorem 1201. The following statements are equivalent for a binary relation
µ and a set A:

1◦. For every a, b ∈ A there is a nonzero-length path between a and b in A
through µ.
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2◦. S1(µ ∩ (A×A)) ⊇ A×A.
3◦. S1(µ ∩ (A×A)) = A×A.
4◦. A is connected regarding µ.

Proof.
1◦⇒2◦. Let for every a, b ∈ A there is a nonzero-length path between a and b in

A through µ. Then a (S1(µ ∩A×A)) b for every a, b ∈ A. It is possible
only when S1(µ ∩ (A×A)) ⊇ A×A.

3◦⇒1◦. For every two vertices a and b we have a (S1(µ ∩A×A)) b. So (by the
previous) for every two vertices a and b there exists a nonzero-length path
from a to b.

3◦⇒4◦. Suppose ¬(X [µ ∩ (A×A)]∗ Y ) for some X,Y ∈ P℧ \ {∅} such that
X∪Y = A. Then by a lemma ¬(X [(µ ∩ (A×A))n]∗ Y ) for every n ∈ Z+.
Consequently ¬(X [S1(µ ∩ (A×A))]∗ Y ). So S1(µ ∩ (A×A)) ̸= A×A.

4◦⇒3◦. If ⟨S1(µ ∩ (A×A))⟩∗{v} = A for every vertex v then S1(µ∩(A×A)) = A×
A. Consider the remaining case when V

def= ⟨S1(µ ∩ (A×A))⟩∗{v} ⊂ A
for some vertex v. Let W = A \ V . If cardA = 1 then S1(µ ∩ (A×A)) ⊇
idA = A×A; otherwise W ̸= ∅. Then V ∪W = A and so V [µ]∗ W what
is equivalent to V [µ ∩ (A×A)]∗ W that is ⟨µ ∩ (A×A)⟩∗

V ∩ W ̸= ∅.
This is impossible because

⟨µ ∩ (A×A)⟩∗
V = ⟨µ ∩ (A×A)⟩∗⟨S1(µ ∩ (A×A))⟩∗

V =〈
(µ ∩ (A×A))2 ∪ (µ ∩ (A×A))3 ∪ · · · ∪

〉∗
V ⊆ ⟨S1(µ ∩ (A×A))⟩∗

V = V.

2◦⇒3◦. Because S1(µ ∩ (A×A)) ⊆ A×A.
□

Corollary 1202. A set A is connected regarding a binary relation µ iff it is
connected regarding µ ∩ (A×A).

Definition 1203. A connected component of a setA regarding a binary relation
F is a maximal connected subset of A.

Theorem 1204. The setA is partitioned into connected components (regarding
every binary relation F ).

Proof. Consider the binary relation a ∼ b ⇔ a (S(F )) b ∧ b (S(F )) a. ∼ is
a symmetric, reflexive, and transitive relation. So all points of A are partitioned
into a collection of sets Q. Obviously each component is (strongly) connected. If
a set R ⊆ A is greater than one of that connected components A then it contains
a point b ∈ B where B is some other connected component. Consequently R is
disconnected. □

Proposition 1205. A set is connected (regarding a binary relation) iff it has
one connected component.

Proof. Direct implication is obvious. Reverse is proved by contradiction. □

12.4. Connectedness regarding funcoids and reloids

Definition 1206. Connectivity reloid S∗
1 (µ) =

dRLD
M∈up µ S1(M) for an en-

doreloid µ.

Definition 1207. S∗(µ) for an endoreloid µ is defined as follows:

S∗(µ) =
RLDl

M∈up µ

S(M).
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Do not mess the word connectivity with the word connectedness which means
being connected.1

Proposition 1208. S∗(µ) = 1RLD
Ob µ ⊔ S∗

1 (µ) for every endoreloid µ.

Proof. By the proposition 610. □

Proposition 1209. S∗(µ) = S(µ) and S∗
1 (µ) = S1(µ) if µ is a principal reloid.

Proof. S∗(µ) =
d

{S(µ)} = S(µ); S∗
1 (µ) =

d
{S1(µ)} = S1(µ). □

Definition 1210. A filter A ∈ F (Obµ) is called connected regarding an en-
doreloid µ when S∗

1 (µ ⊓ (A ×RLD A)) ⊒ A ×RLD A.

Obvious 1211. A filter A ∈ F (Obµ) is connected regarding an endoreloid µ
iff S∗

1 (µ ⊓ (A ×RLD A)) = A ×RLD A.

Definition 1212. A filter A ∈ F (Obµ) is called connected regarding an end-
ofuncoid µ when

∀X ,Y ∈ F (Obµ) \ {⊥F(Ob µ)} : (X ⊔ Y = A ⇒ X [µ] Y).

Proposition 1213. Let A be a typed set of type U . The filter ↑ A is connected
regarding an endofuncoid µ on U iff

∀X,Y ∈ T (Obµ) \ {⊥T (Ob µ)} : (X ⊔ Y = A ⇒ X [µ]∗ Y ).

Proof.
⇒. Obvious.
⇐. It follows from co-separability of filters.

□

Theorem 1214. The following are equivalent for every typed set A of type U
and Rel-endomorphism µ on a set U :

1◦. A is connected regarding µ.
2◦. ↑ A is connected regarding ↑RLD µ.
3◦. ↑ A is connected regarding ↑FCD µ.

Proof.
1◦⇔2◦.

S∗
1 (↑RLD µ ⊓ (A×RLD A)) =
S∗

1 (↑RLD (µ ⊓ (A×A))) =
↑RLD S1(µ ⊓ (A×A)).

So
S∗

1 (↑RLD µ ⊓ (A×RLD A)) ⊒ A×RLD A ⇔

↑RLD S1(µ ⊓ (A×A)) ⊒↑RLD (A×A) = A×RLD A.

1◦⇔3◦. It follows from the previous proposition.
□

Next is conjectured a statement more strong than the above theorem:

Conjecture 1215. Let A be a filter on a set U and F be a Rel-endomorphism
on U .

A is connected regarding ↑FCD F iff A is connected regarding ↑RLD F .

1In some math literature these two words are used interchangeably.
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Obvious 1216. A filter A is connected regarding a reloid µ iff it is connected
regarding the reloid µ ⊓ (A ×RLD A).

Obvious 1217. A filter A is connected regarding a funcoid µ iff it is connected
regarding the funcoid µ ⊓ (A ×FCD A).

Theorem 1218. A filter A is connected regarding a reloid f iff A is connected
regarding every F ∈

〈
↑RLD〉∗ up f .

Proof.
⇒. Obvious.
⇐. A is connected regarding ↑RLD F iff S1(F ) = F 1 ⊔ F 2 ⊔ · · · ∈ up(A ×RLD A).

S∗
1 (f) =

dRLD
F ∈up f S1(F ) ⊒

d
F ∈up f (A ×RLD A) = A ×RLD A.

□

Conjecture 1219. A filter A is connected regarding a funcoid f iff A is
connected regarding every F ∈

〈
↑FCD〉∗ up f .

The above conjecture is open even for the case when A is a principal filter.

Conjecture 1220. A filter A is connected regarding a reloid f iff it is con-
nected regarding the funcoid (FCD)f .

The above conjecture is true in the special case of principal filters:

Proposition 1221. A filter ↑ A (for a typed set A) is connected regarding an
endoreloid f on the suitable object iff it is connected regarding the endofuncoid
(FCD)f .

Proof. ↑ A is connected regarding a reloid f iff A is connected regarding every
F ∈ up f that is when (taken into account that connectedness for ↑RLD F is the
same as connectedness of ↑FCD F )

∀F ∈ up f∀X ,Y ∈ F (Ob f) \ {⊥F(Ob f)} : (X ⊔ Y =↑ A ⇒ X
[
↑FCD F

]
Y) ⇔

∀X ,Y ∈ F (Ob f) \ {⊥F(Ob f)}∀F ∈ up f : (X ⊔ Y =↑ A ⇒ X
[
↑FCD F

]
Y) ⇔

∀X ,Y ∈ F (Ob f) \ {⊥F(Ob f)}(X ⊔ Y =↑ A ⇒ ∀F ∈ up f : X
[
↑FCD F

]
Y) ⇔

∀X ,Y ∈ F (Ob f) \ {⊥F(Ob f)}(X ⊔ Y =↑ A ⇒ X [(FCD)f ] Y)

that is when the set ↑ A is connected regarding the funcoid (FCD)f . □

Conjecture 1222. A set A is connected regarding an endofuncoid µ iff for
every a, b ∈ A there exists a totally ordered set P ⊆ A such that minP = a,
maxP = b and

∀q ∈ P \ {b} :
{
x ∈ P

x ≤ q

}
[µ]∗

{
x ∈ P

x > q

}
.

Weaker condition:

∀q ∈ P \ {b} :
{
x ∈ P

x ≤ q

}
[µ]∗

{
x ∈ P

x > q

}
∨ ∀q ∈ P \ {a} :

{
x ∈ P

x < q

}
[µ]∗

{
x ∈ P

x ≥ q

}
.

12.5. Algebraic properties of S and S∗

Theorem 1223. S∗(S∗(f)) = S∗(f) for every endoreloid f .
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Proof.

S∗(S∗(f)) =
RLDl

R∈up S∗(f)

S(R) ⊑

RLDl

R∈
{

S(F )
F ∈up f

}S(R) =
RLDl

R∈up f

S(S(R)) =
RLDl

R∈up f

S(R) = S∗(f).

So S∗(S∗(f)) ⊑ S∗(f). That S∗(S∗(f)) ⊒ S∗(f) is obvious. □

Corollary 1224. S∗(S(f)) = S(S∗(f)) = S∗(f) for every endoreloid f .

Proof. Obviously S∗(S(f)) ⊒ S∗(f) and S(S∗(f)) ⊒ S∗(f).
But S∗(S(f)) ⊑ S∗(S∗(f)) = S∗(f) and S(S∗(f)) ⊑ S∗(S∗(f)) = S∗(f). □

Conjecture 1225. S(S(f)) = S(f) for
1◦. every endoreloid f ;
2◦. every endofuncoid f .

Conjecture 1226. S(f) ◦ S(f) = S(f) for every endoreloid f .

Theorem 1227. S∗(f) ◦ S∗(f) = S(f) ◦ S∗(f) = S∗(f) ◦ S(f) = S∗(f) for
every endoreloid f .

Proof. 2

It is enough to prove S∗(f) ◦ S∗(f) = S∗(f) because S∗(f) ⊑ S(f) ◦ S∗(f) ⊑
S∗(f) ◦ S∗(f) and likewise for S∗(f) ◦ S(f).

S∗(µ) ◦ S∗(µ) =
RLDl

F ∈up S∗(µ)

(F ◦ F ) = (see below) =

RLDl

X∈up µ

(S(X) ◦ S(X)) =
RLDl

X∈up µ

S(X) = S∗(µ).

F ∈ upS∗(µ) ⇔ F ∈ up
Fl

F ∈up µ

S(F ) ⇒

(by properties of filter bases) ⇒ ∃X ∈ upµ : F ⊒ S(X) ⇒
∃X ∈ upµ : F ◦ F ⊒ S(X) ◦ S(X)

thus
RLDl

F ∈up S∗(µ)

F ◦ F ⊒
RLDl

X∈up µ

(S(X) ◦ S(X));

X ∈ upµ ⇒ S(X) ∈ upS∗(µ) ⇒ ∃F ∈ upS∗(µ) : S(X) ◦ S(X) ⊒ F ◦ F thus
RLDl

F ∈up S∗(µ)

F ◦ F ⊑
RLDl

X∈up µ

(S(X) ◦ S(X)).

□

Conjecture 1228. S(f) ◦ S(f) = S(f) for every endofuncoid f .

2Can be more succintly proved considering µ 7→ S∗(µ) as a pointfree funcoid?
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12.6. Irreflexive reloids

Definition 1229. Endoreloid f is irreflexive iff f ≍ 1Ob f .

Proposition 1230. Endoreloid f is irreflexive iff f ⊑ ⊤ \ 1.

Proof. By theorem 604. □

Obvious 1231. f \ 1 is an irreflexive endoreloid if f is an endoreloid.

Proposition 1232. S(f) = S(f ⊔ 1) if f is an endoreloid, endofuncoid, or
endorelation.

Proof. First prove (f ⊔1)n = 1⊔f ⊔ . . .⊔fn for n ∈ N. For n = 0 it’s obvious.
By induction we have

(f ⊔ 1)n+1 =
(f ⊔ 1)n ◦ (f ⊔ 1) =

(1 ⊔ f ⊔ · · · ⊔ fn) ◦ (f ⊔ 1) =
(f ⊔ f2 ⊔ · · · ⊔ fn+1) ⊔ (1 ⊔ f ⊔ · · · ⊔ fn) =

1 ⊔ f ⊔ · · · ⊔ fn+1.

So S(f ⊔ 1) = 1 ⊔ (1 ⊔ f) ⊔ (1 ⊔ f ⊔ f2) ⊔ . . . = 1 ⊔ f ⊔ f2 ⊔ . . . = S(f). □

Corollary 1233. S(f) = S(f ⊔ 1) = S(f \ 1) if f is an endoreloid (or just an
endorelation).

Proof. S(f \ 1) = S((f \ 1) ⊔ 1) ⊒ S(f). But S(f \ 1) ⊑ S(f) is obvious. So
S(f \ 1) = S(f). □

12.7. Micronization

“Micronization” was a thoroughly wrong idea with several errors in the proofs.
This section is removed from the book.



CHAPTER 13

Total boundness of reloids

13.1. Thick binary relations

Definition 1234. I will call α-thick and denote thickα(E) a Rel-
endomorphism E when there exists a finite cover S of ObE such that ∀A ∈ S :
A×A ⊆ GRE.

Definition 1235. CS(S) =
⋃{

A×A
A∈S

}
for a collection S of sets.

Remark 1236. CS means “Cartesian squares”.

Obvious 1237. A Rel-endomorphism is α-thick iff there exists a finite cover
S of ObE such that CS(S) ⊆ GRE.

Definition 1238. I will call β-thick and denote thickβ(E) a Rel-
endomorphism E when there exists a finite set B such that ⟨GRE⟩∗

B = ObE.

Proposition 1239. thickα(E) ⇒ thickβ(E).

Proof. Let thickα(E). Then there exists a finite cover S of the set ObE such
that ∀A ∈ S : A × A ⊆ GRE. Without loss of generality assume A ̸= ∅ for every
A ∈ S. So A ⊆ ⟨GRE⟩∗{xA} for some xA for every A ∈ S. So

⟨GRE⟩∗
{ xA

A ∈ S

}
=
⋃{ ⟨GRE⟩∗{xA}

A ∈ S

}
= ObE

and thus E is β-thick. □

Obvious 1240. Let X be a set, A and B be Rel-endomorphisms on X and
B ⊒ A. Then:

• thickα(A) ⇒ thickα(B);
• thickβ(A) ⇒ thickβ(B).

Example 1241. There is a β-thick Rel-morphism which is not α-thick.

Proof. Consider the Rel-morphism on [0; 1] with the graph on figure 9:

Γ =
{

(x, x)
x ∈ [0; 1]

}
∪
{

(x, 0)
x ∈ [0; 1]

}
∪
{

(0, x)
x ∈ [0; 1]

}
.

y

x

1

0 1

Figure 9. Thickness counterexample graph

Γ is β-thick because ⟨Γ⟩∗{0} = [0; 1].
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To prove that Γ is not α-thick it’s enough to prove that every set A such that
A×A ⊆ Γ is finite.

Suppose for the contrary that A is infinite. Then A contains more than one
non-zero points y, z (y ̸= z). Without loss of generality y < z. So we have that
(y, z) is not of the form (y, y) nor (0, y) nor (y, 0). Therefore A × A isn’t a subset
of Γ. □

13.2. Totally bounded endoreloids

The below is a straightforward generalization of the customary definition of
totally bounded sets on uniform spaces (it’s proved below that for uniform spaces
the below definitions are equivalent).

Definition 1242. An endoreloid f is α-totally bounded (totBoundα(f)) if ev-
ery E ∈ up f is α-thick.

Definition 1243. An endoreloid f is β-totally bounded (totBoundβ(f)) if ev-
ery E ∈ up f is β-thick.

Remark 1244. We could rewrite the above definitions in a more algebraic way
like up f ⊆ thickα (with thickα would be defined as a set rather than as a predicate),
but we don’t really need this simplification.

Proposition 1245. If an endoreloid is α-totally bounded then it is β-totally
bounded.

Proof. Because thickα(E) ⇒ thickβ(E). □

Proposition 1246. If an endoreloid f is reflexive and Ob f is finite then f is
both α-totally bounded and β-totally bounded.

Proof. It enough to prove that f is α-totally bounded. Really, every E ∈ up f
is reflexive. Thus {x} × {x} ⊆ GRE for x ∈ Ob f and thus

{
{x}

x∈Ob f

}
is a sought

for finite cover of Ob f . □

Obvious 1247.
• A principal endoreloid induced by a Rel-morphism E is α-totally bounded

iff E is α-thick.
• A principal endoreloid induced by a Rel-morphism E is β-totally bounded

iff E is β-thick.

Example 1248. There is a β-totally bounded endoreloid which is not α-totally
bounded.

Proof. It follows from the example above and properties of principal en-
doreloids. □

13.3. Special case of uniform spaces

Remember that uniform space is essentially the same as symmetric, reflexive
and transitive endoreloid.

Theorem 1249. Let f be such an endoreloid that f ◦ f−1 ⊑ f . Then f is
α-totally bounded iff it is β-totally bounded.

Proof.
⇒. Proved above.
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⇐. For every ϵ ∈ up f we have that ⟨GR ϵ⟩∗{c0}, . . . , ⟨GR ϵ⟩∗{cn} covers the space.
⟨GR ϵ⟩∗{ci}×⟨GR ϵ⟩∗{ci} ⊆ GR(ϵ◦ϵ−1) because for x ∈ ⟨GR ϵ⟩∗{ci} (the
same as ci ∈ ⟨GR ϵ⟩∗{x}) we have〈

⟨GR ϵ⟩∗{ci} × ⟨GR ϵ⟩∗{ci}
〉∗{x} = ⟨GR ϵ⟩∗{ci} ⊆ ⟨GR ϵ⟩∗〈GR ϵ−1〉∗{x} =

〈
GR(ϵ ◦ ϵ−1)

〉∗{x}.

For every ϵ′ ∈ up f exists ϵ ∈ up f such that ϵ◦ ϵ−1 ⊑ ϵ′ because f ◦f−1 ⊑
f . Thus for every ϵ′ we have ⟨GR ϵ⟩∗{ci} × ⟨GR ϵ⟩∗{ci} ⊆ GR ϵ′ and so
⟨GR ϵ⟩∗{c0}, . . . , ⟨GR ϵ⟩∗{cn} is a sought for finite cover.

□

Corollary 1250. A uniform space is α-totally bounded iff it is β-totally
bounded.

Proof. From the theorem and the definition of uniform spaces. □

Thus we can say about just totally bounded uniform spaces (without specifying
whether it is α or β).

13.4. Relationships with other properties

Theorem 1251. Let µ and ν be endoreloids. Let f be a principal C′(µ, ν)
continuous, monovalued, surjective reloid. Then if µ is β-totally bounded then ν is
also β-totally bounded.

Proof. Let φ be the monovalued, surjective function, which induces the
reloid f .

We have µ ⊑ f−1 ◦ ν ◦ f .
Let F ∈ up ν. Then there exists E ∈ upµ such that E ⊆ φ−1 ◦ F ◦ φ.
Since µ is β-totally bounded, there exists a finite typed subset A of Obµ such

that ⟨GRE⟩∗
A = Obµ.

We claim ⟨GRF ⟩∗⟨φ⟩∗
A = Ob ν.

Indeed let y ∈ Ob ν be an arbitrary point. Since φ is surjective, there exists
x ∈ Obµ such that φx = y. Since ⟨GRE⟩∗

A = Obµ there exists a ∈ A such that
a (GRE) x and thus a (φ−1 ◦ F ◦ φ) x. So (φa, y) = (φa, φx) ∈ GRF . Therefore
y ∈ ⟨GRF ⟩∗⟨φ⟩∗

A. □

Theorem 1252. Let µ and ν be endoreloids. Let f be a principal C′′(µ, ν)
continuous, surjective reloid. Then if µ is α-totally bounded then ν is also α-totally
bounded.

Proof. Let φ be the surjective binary relation which induces the reloid f .
We have f ◦ µ ◦ f−1 ⊑ ν.
Let F ∈ up ν. Then there exists E ∈ upµ such that φ ◦ E ◦ φ−1 ⊆ F .
There exists a finite cover S of Obµ such that

⋃{
A×A
A∈S

}
⊆ GRE.

Thus φ ◦
(⋃{

A×A
A∈S

})
◦ φ−1 ⊆ GRF that is

⋃{ ⟨φ⟩∗A×⟨φ⟩∗A
A∈S

}
⊆ GRF .

It remains to prove that
{

⟨φ⟩∗A
A∈S

}
is a cover of Ob ν. It is true because φ is a

surjection and S is a cover of Obµ. □

A stronger statement (principality requirement removed):

Conjecture 1253. The image of a uniformly continuous entirely defined
monovalued surjective reloid from a (α-, β-)totally bounded endoreloid is also (α-,
β-)totally bounded.

Can we remove the requirement to be entirely defined from the above conjec-
ture?
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Question 1254. Under which conditions it’s true that join of (α-, β-) totally
bounded reloids is also totally bounded?

13.5. Additional predicates

We may consider also the following predicates expressing different kinds of what
is intuitively is understood as boundness. Their usefulness is unclear, but I present
them for completeness.

• totBoundα(f)
• totBoundβ(f)
• ∃n ∈ N∀E ∈ up f : thickα(En)
• ∃n ∈ N∀E ∈ up f : thickβ(En)
• ∃n ∈ N∀E ∈ up f : thickα(E0 ⊔ . . . ⊔ En)
• ∃n ∈ N∀E ∈ up f : thickβ(E0 ⊔ . . . ⊔ En)
• ∃n ∈ N : totBoundα(fn)
• ∃n ∈ N : totBoundβ(fn)
• ∃n ∈ N : totBoundα(f0 ⊔ . . . ⊔ fn)
• ∃n ∈ N : totBoundβ(f0 ⊔ . . . ⊔ fn)
• totBoundα(S(f))
• totBoundβ(S(f))

Some of the above defined predicates are equivalent:

Proposition 1255.
• ∃n ∈ N∀E ∈ up f : thickα(En) ⇔ ∃n ∈ N : totBoundα(fn).
• ∃n ∈ N∀E ∈ up f : thickβ(En) ⇔ ∃n ∈ N : totBoundβ(fn).

Proof. Because for every E ∈ up f some F ∈ up fn is a subset of En, we have
∀E ∈ up f : thickα(En) ⇔ ∀F ∈ up fn : thickα(F )

and likewise for thickβ . □

Proposition 1256.
• ∃n ∈ N∀E ∈ up f : thickα(E0 ⊔ . . . ⊔ En) ⇔ ∃n ∈ N : totBoundα(f0 ⊔
. . . ⊔ fn)

• ∃n ∈ N∀E ∈ up f : thickβ(E0 ⊔ . . . ⊔ En) ⇔ ∃n ∈ N : totBoundβ(f0 ⊔
. . . ⊔ fn)

Proof. It’s enough to prove
∀E ∈ up f∃F ∈ up(f0 ⊔ · · · ⊔ fn) : F ⊑ E0 ⊔ . . . ⊔ En and (15)
∀F ∈ up(f0 ⊔ · · · ⊔ fn)∃E ∈ up f : E0 ⊔ . . . ⊔ En ⊑ F. (16)

For the formula (15) take F = E0 ⊔ · · · ⊔ En.
Let’s prove (16). Let F ∈ up(f0 ⊔ · · · ⊔ fn). Using the fact that F ∈ up f i

take Ei ∈ up f for i = 0, . . . , n such that Ei
i ⊑ F (exercise 1002 and properties of

generalized filter bases) and then E = E0 ⊓· · ·⊓En ∈ up f . We have E0 ⊔. . .⊔En ⊑
F . □

Proposition 1257. All predicates in the above list are pairwise equivalent in
the case if f is a uniform space.

Proof. Because f ◦ f = f and thus fn = f0 ⊔ · · · ⊔ fn = S(f) = f . □



CHAPTER 14

Orderings of filters in terms of reloids

Whilst the other chapters of this book use filters to research funcoids and
reloids, here the opposite thing is discussed, the theory of reloids is used to describe
properties of filters.

In this chapter the word filter is used to denote a filter on a set (not on an
arbitrary poset) only.

14.1. Ordering of filters

Below I will define some categories having filters (with possibly different bases)
as their objects and some relations having two filters (with possibly different bases)
as arguments induced by these categories (defined as existence of a morphism be-
tween these two filters).

Theorem 1258. card a = cardU for every ultrafilter a on U if U is infinite.

Proof. Let f(X) = X if X ∈ a and f(X) = U \X if X /∈ a. Obviously f is a
surjection from U to a.

Every X ∈ a appears as a value of f exactly twice, as f(X) and f(U \X). So
card a = (cardU)/2 = cardU . □

Corollary 1259. Cardinality of every two ultrafilters on a set U is the same.

Proof. For infinite U it follows from the theorem. For finite case it is obvious.
□

Proposition 1260.
〈
↑FCD f

〉
A =

{
C∈P(Dst f)
⟨f−1⟩∗C∈A

}
for every Set-morphism

f : Base(A) → Base(B). (Here a funcoid is considered as a pair of functions
F(Base(A)) → F(Base(B)), F(Base(B)) → F(Base(A)) rather than as a pair of
functions F (Base(A)) → F (Base(B)), F (Base(B)) → F (Base(A)).)

Proof. For every set C ∈ P Base(B) we have〈
f−1〉∗

C ∈ A ⇒

∃K ∈ A :
〈
f−1〉∗

C = K ⇒

∃K ∈ A : ⟨f⟩∗〈
f−1〉∗

C = ⟨f⟩∗
K ⇒

∃K ∈ A : C ⊇ ⟨f⟩∗
K ⇔

∃K ∈ A : C ∈
〈
↑FCD f

〉∗
K ⇒

C ∈
〈
↑FCD f

〉
A.

So C ∈
{

C∈P(Dst f)
⟨f−1⟩∗C∈A

}
⇒ C ∈

〈
↑FCD f

〉
A.

Let now C ∈
〈
↑FCD f

〉
A. Then ↑

〈
f−1〉∗

C ⊒
〈
↑FCD f−1〉〈↑FCD f

〉
A ⊒ A and

thus
〈
f−1〉∗

C ∈ A. □

Below I’ll define some directed multigraphs. By an abuse of notation, I will
denote these multigraphs the same as (below defined) categories based on some
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of these directed multigraphs with added composition of morphisms (of directed
multigraphs edges). As such I will call vertices of these multigraphs objects and
edges morphisms.

Definition 1261. I will denote GreFunc1 the multigraph whose objects are
filters and whose morphisms between objects A and B are Set-morphisms from
Base(A) to Base(B) such that B ⊑

〈
↑FCD f

〉
A.

Definition 1262. I will denote GreFunc2 the multigraph whose objects are
filters and whose morphisms between objects A and B are Set-morphisms from
Base(A) to Base(B) such that B =

〈
↑FCD f

〉
A.

Definition 1263. Let A be a filter on a set X and B be a filter on a set Y .
A ≥1 B iff HomGreFunc1(A,B) is not empty.

Definition 1264. Let A be a filter on a set X and B be a filter on a set Y .
A ≥2 B iff HomGreFunc2(A,B) is not empty.

Proposition 1265.
1◦. f ∈ HomGreFunc1(A,B) iff f is a Set-morphism from Base(A) to Base(B)

such that
C ∈ B ⇐

〈
f−1〉∗

C ∈ A
for every C ∈ P Base(B).

2◦. f ∈ HomGreFunc2(A,B) iff f is a Set-morphism from Base(A) to Base(B)
such that

C ∈ B ⇔
〈
f−1〉∗

C ∈ A
for every C ∈ P Base(B).

Proof.
1◦.

f ∈ HomGreFunc1(A,B) ⇔ B ⊑
〈
↑FCD f

〉
A ⇔

∀C ∈
〈
↑FCD f

〉
A : C ∈ B ⇔ ∀C ∈ P Base(B) : (

〈
f−1〉∗

C ∈ A ⇒ C ∈ B).
2◦.

f ∈ HomGreFunc2(A,B) ⇔ B =
〈
↑FCD f

〉
A ⇔ ∀C : (C ∈ B ⇔ C ∈

〈
↑FCD f

〉
A) ⇔

∀C ∈ P Base(B) : (C ∈ B ⇔ C ∈
〈
↑FCD f

〉
A) ⇔

∀C ∈ P Base(B) : (
〈
f−1〉∗

C ∈ A ⇔ C ∈ B).
□

Definition 1266. The directed multigraph FuncBij is the directed multigraph
got from GreFunc2 by restricting to only bijective morphisms.

Definition 1267. A filter A is directly isomorphic to a filter B iff there is a
morphism f ∈ HomFuncBij(A,B).

Obvious 1268. f ∈ HomGreFunc1(A,B) ⇔ B ⊑
〈
↑FCD f

〉
A for every Set-

morphism from Base(A) to Base(B).

Obvious 1269. f ∈ HomGreFunc2(A,B) ⇔ B =
〈
↑FCD f

〉
A for every Set-

morphism from Base(A) to Base(B).

Corollary 1270. A ≥1 B iff it exists a Set-morphism f : Base(A) → Base(B)
such that B ⊑

〈
↑FCD f

〉
A.

Corollary 1271. A ≥2 B iff it exists a Set-morphism f : Base(A) → Base(B)
such that B =

〈
↑FCD f

〉
A.
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Proposition 1272. For a bijective Set-morphism f : Base(A) → Base(B) the
following are equivalent:

1◦. B =
{

C∈P Base(B)
⟨f−1⟩∗C∈A

}
.

2◦. ∀C ∈ Base(B) : (C ∈ B ⇔
〈
f−1〉∗

C ∈ A).
3◦. ∀C ∈ Base(A) : (C ∈ ⟨f⟩∗B ⇔ C ∈ A).
4◦.

〈
↑FCD f

〉
|A is a bijection from A to B.

5◦.
〈
↑FCD f

〉
|A is a function onto B.

6◦. B =
〈
↑FCD f

〉
A.

7◦. f ∈ HomGreFunc2(A,B).
8◦. f ∈ HomFuncBij(A,B).

Proof.
1◦⇔2◦.

B =
{
C ∈ P Base(B)
⟨f−1⟩∗

C ∈ A

}
⇔ ∀C ∈ P Base(B) : (C ∈ B ⇔

〈
f−1〉∗

C ∈ A).

2◦⇔3◦. Because f is a bijection.
2◦⇒5◦. For every C ∈ B we have

〈
f−1〉∗

C ∈ A and thus
〈
↑FCD f

〉
|A
〈
↑FCD f−1〉C =

⟨f⟩∗〈
f−1〉∗

C = C. Thus
〈
↑FCD f

〉
|A is onto B.

4◦⇒5◦. Obvious.
5◦⇒4◦. We need to prove only that

〈
↑FCD f

〉
|A is an injection. But this follows

from the fact that f is a bijection.
4◦⇒3◦. We have ∀C ∈ Base(A) : ((

〈
↑FCD f

〉
|A)C ∈ B ⇔ C ∈ A) and consequently

∀C ∈ Base(A) : (⟨f⟩∗
C ∈ B ⇔ C ∈ A).

6◦⇔1◦. From the last corollary.
1◦⇔7◦. Obvious.
7◦⇔8◦. Obvious.

□

Corollary 1273. The following are equivalent for every filters A and B:
1◦. A is directly isomorphic to B.
2◦. There is a bijective Set-morphism f : Base(A) → Base(B) such that for

every C ∈ P Base(B)
C ∈ B ⇔

〈
f−1〉∗

C ∈ A.
3◦. There is a bijective Set-morphism f : Base(A) → Base(B) such that for

every C ∈ P Base(B)
⟨f⟩∗

C ∈ B ⇔ C ∈ A.
4◦. There is a bijective Set-morphism f : Base(A) → Base(B) such that〈

↑FCD f
〉
|A is a bijection from A to B.

5◦. There is a bijective Set-morphism f : Base(A) → Base(B) such that〈
↑FCD f

〉
|A is a function onto B.

6◦. There is a bijective Set-morphism f : Base(A) → Base(B) such that
B =

〈
↑FCD f

〉
A.

7◦. There is a bijective morphism f ∈ HomGreFunc2(A,B).
8◦. There is a bijective morphism f ∈ HomFuncBij(A,B).

Proposition 1274. GreFunc1 and GreFunc2 with function composition are
categories.

Proof. Let f : A → B and g : B → C be morphisms of GreFunc1. Then
B ⊑

〈
↑FCD f

〉
A and C ⊑

〈
↑FCD g

〉
B. So〈

↑FCD (g ◦ f)
〉
A =

〈
↑FCD g

〉〈
↑FCD f

〉
A ⊒

〈
↑FCD g

〉
B ⊒ C.
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Thus g ◦ f is a morphism of GreFunc1. Associativity law is evident. idBase(A) is
the identity morphism of GreFunc1 for every filter A.

Let f : A → B and g : B → C be morphisms of GreFunc2. Then B =〈
↑FCD f

〉
A and C =

〈
↑FCD g

〉
B. So〈

↑FCD (g ◦ f)
〉
A =

〈
↑FCD g

〉〈
↑FCD f

〉
A =

〈
↑FCD g

〉
B = C.

Thus g ◦ f is a morphism of GreFunc2. Associativity law is evident. idBase(A) is
the identity morphism of GreFunc2 for every filter A. □

Corollary 1275. ≤1 and ≤2 are preorders.

Theorem 1276. FuncBij is a groupoid.

Proof. First let’s prove it is a category. Let f : A → B and g : B → C be
morphisms of FuncBij. Then f : Base(A) → Base(B) and g : Base(B) → Base(C)
are bijections and B =

〈
↑FCD f

〉
A and C =

〈
↑FCD g

〉
B. Thus g ◦ f : Base(A) →

Base(C) is a bijection and C =
〈
↑FCD (g ◦ f)

〉
A. Thus g ◦ f is a morphism of

FuncBij. idBase(A) is the identity morphism of FuncBij for every filter A. Thus
it is a category.

It remains to prove only that every morphism f ∈ HomFuncBij(A,B) has a
reverse (for every filters A, B). We have f is a bijection Base(A) → Base(B) such
that for every C ∈ P Base(A)

⟨f⟩∗
C ∈ B ⇔ C ∈ A.

Then f−1 : Base(B) → Base(A) is a bijection such that for every C ∈ P Base(B)〈
f−1〉∗

C ∈ A ⇔ C ∈ B.
Thus f−1 ∈ HomFuncBij(B,A). □

Corollary 1277. Being directly isomorphic is an equivalence relation.

Rudin-Keisler order of ultrafilters is considered in such a book as [43].

Obvious 1278. For the case of ultrafilters being directly isomorphic is the same
as being Rudin-Keisler equivalent.

Definition 1279. A filter A is isomorphic to a filter B iff there exist sets
A ∈ A and B ∈ B such that A ÷A is directly isomorphic to B ÷B.

Obvious 1280. Equivalent filters are isomorphic.

Theorem 1281. Being isomorphic (for small filters) is an equivalence relation.

Proof.
Reflexivity. Because every filter is directly isomorphic to itself.
Symmetry. If filter A is isomorphic to B then there exist sets A ∈ A and B ∈ B

such that A÷A is directly isomorphic to B ÷B and thus B ÷B is directly
isomorphic to A ÷A. So B is isomorphic to A.

Transitivity. Let A be isomorphic to B and B be isomorphic to C. Then exist
A ∈ A, B1 ∈ B, B2 ∈ B, C ∈ C such that there are bijections f : A → B1
and g : B2 → C such that

∀X ∈ PA : (X ∈ B ⇔
〈
f−1〉∗

X ∈ A) and ∀X ∈ PB1 : (X ∈ A ⇔ ⟨f⟩∗
X ∈ B)

and also ∀X ∈ PB2 : (X ∈ B ⇔ ⟨g⟩∗
X ∈ C).

So g ◦f is a bijection from
〈
f−1〉∗(B1 ∩B2) ∈ A to ⟨g⟩∗(B1 ∩B2) ∈ C

such that
X ∈ A ⇔ ⟨f⟩∗

X ∈ B ⇔ ⟨g⟩∗⟨f⟩∗
X ∈ C ⇔ ⟨g ◦ f⟩∗

X ∈ C.
Thus g ◦ f establishes a bijection which proves that A is isomorphic to C.



14.1. ORDERING OF FILTERS 249

□

Lemma 1282. Let cardX = cardY , u be an ultrafilter on X and v be an
ultrafilter on Y ; let A ∈ u and B ∈ v. Let u÷A and v÷B be directly isomorphic.
Then if card(X \A) = card(Y \B) we have u and v directly isomorphic.

Proof. Arbitrary extend the bijection witnessing being directly isomorphic to
the sets X \A and X \B. □

Theorem 1283. If cardX = cardY then being isomorphic and being directly
isomorphic are the same for ultrafilters u on X and v on Y .

Proof. That if two filters are isomorphic then they are directly isomorphic is
obvious.

Let ultrafilters u and v be isomorphic that is there is a bijection f : A → B
where A ∈ u, B ∈ v witnessing isomorphism of u and v.

If one of the filters u or v is a trivial ultrafilter then the other is also a trivial
ultrafilter and as it is easy to show they are directly isomorphic. So we can assume
u and v are not trivial ultrafilters.

If card(X \A) = card(Y \B) our statement follows from the last lemma.
Now assume without loss of generality card(X \A) < card(Y \B).
cardB = cardY because otherwise card(X \A) = card(Y \B).
It is easy to show that there exists B′ ⊃ B such that card(X \A) = card(Y \B′)

and cardB′ = cardB.
We will find a bijection g from B to B′ which witnesses direct isomorphism of

v to v itself. Then the composition g ◦ f witnesses a direct isomorphism of u ÷ A
and v ÷B′ and by the lemma u and v are directly isomorphic.

Let D = B′ \B. We have D /∈ v.
There exists a set E ⊆ B such that cardE ≥ cardD and E /∈ v.
We have cardE = card(D∪E) and thus there exists a bijection h : E → D∪E.
Let

g(x) =
{
x if x ∈ B \ E;
h(x) if x ∈ E.

g|B\E and g|E are bijections.
im(g|B\E) = B \ E; im(g|E) = im h = D ∪ E;

(D ∪ E) ∩ (B \ E) = (D ∩ (B \ E)) ∪ (E ∩ (B \ E)) = ∅ ∪ ∅ = ∅.

Thus g is a bijection from B to (B \ E) ∪ (D ∪ E) = B ∪D = B′.
To finish the proof it’s enough to show that ⟨g⟩∗

v = v. Indeed it follows from
B \ E ∈ v. □

Proposition 1284.
1◦. For every A ∈ A and B ∈ B we have A ≥2 B iff A ÷A ≥2 B ÷B.
2◦. For every A ∈ A and B ∈ B we have A ≥1 B iff A ÷A ≥1 B ÷B.

Proof.
1◦. A ≥2 B iff there exist a bijective Set-morphism f such that B =〈

↑FCD f
〉
A. The equality is obviously preserved replacing A with A ÷ A and B

with B ÷B.
2◦. A ≥1 B iff there exist a bijective Set-morphism f such that B ⊆〈

↑FCD f
〉
A. The equality is obviously preserved replacing A with A ÷ A and B

with B ÷B.
□
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Proposition 1285. For ultrafilters ≥2 is the same as Rudin-Keisler ordering
(as defined in [43]).

Proof. x ≥2 y iff there exist sets A ∈ x and B ∈ y and a bijective Set-
morphism f : X → Y such that

y ÷B =
{

C ∈ PY

⟨f−1⟩∗
C ∈ x÷A

}
that is when C ∈ y ÷ B ⇔

〈
f−1〉∗

C ∈ x ÷ A what is equivalent to C ∈ y ⇔〈
f−1〉∗

C ∈ x what is the definition of Rudin-Keisler ordering. □

Remark 1286. The relation of being isomorphic for ultrafilters is traditionally
called Rudin-Keisler equivalence.

Obvious 1287. (≥1) ⊇ (≥2).

Definition 1288. Let Q and R be binary relations on the set of (small) filters.
I will denote MonRldQ,R the directed multigraph with objects being filters and
morphisms such monovalued reloids f that (dom f) Q A and (im f) R B.

I will also denote CoMonRldQ,R the directed multigraph with objects being
filters and morphisms such injective reloids f that (im f) Q A and (dom f) R B.
These are essentially the duals.

Some of these directed multigraphs are categories with reloid composition (see
below). By abuse of notation I will denote these categories the same as these
directed multigraphs.

Lemma 1289. CoMonRldQ,R ̸= ∅ ⇔ MonRldQ,R ̸= ∅.

Proof.

f ∈ CoMonRldQ,R ⇔ (im f) Q A ∧ (dom f) R B ⇔
(dom f−1) Q A ∧ (im f−1) R B ⇔ f−1 ∈ MonRldQ,R

for every monovalued reloid f (or what is the same, injective reloid f−1). □

Theorem 1290. For every filters A and B the following are equivalent:
1◦. A ≥1 B.
2◦. HomMonRld=,⊒(A,B) ̸= ∅.
3◦. HomMonRld⊑,⊒(A,B) ̸= ∅.
4◦. HomMonRld⊑,=(A,B) ̸= ∅.
5◦. HomCoMonRld=,⊒(A,B) ̸= ∅.
6◦. HomCoMonRld⊑,⊒(A,B) ̸= ∅.
7◦. HomCoMonRld⊑,=(A,B) ̸= ∅.

Proof.
1◦⇒2◦. There exists a Set-morphism f : Base(A) → Base(B) such that B ⊑〈

↑FCD f
〉
A. We have

dom(↑RLD f)|A = A ⊓ ⊤(Base(A)) = A

and

im(↑RLD f)|A = im(FCD)(↑RLD f)|A = im(↑FCD f)|A =
〈
↑FCD f

〉
A ⊒ B.

Thus (↑RLD f)|A is a monovalued reloid such that dom(↑RLD f)|A = A
and im(↑RLD f)|A ⊒ B.

2◦⇒3◦, 4◦⇒3◦, 5◦⇒6◦, 7◦⇒6◦. Obvious.
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3◦⇒1◦. We have B ⊑ ⟨(FCD)f⟩A for a monovalued reloid f ∈
RLD(Base(A),Base(B)). Then there exists a Set-morphism
F : Base(A) → Base(B) such that B ⊑

〈
↑FCD F

〉
A that is A ≥1 B.

6◦⇒7◦. Let f be an injective reloid such that im f ⊑ A and dom f ⊒ B. Then
im f |B ⊑ A and dom f |B = B. So f |B ∈ HomCoMonRld⊑,=(A,B).

2◦⇔5◦, 3◦⇔6◦, 4◦⇔7◦. By the lemma.
□

Theorem 1291. For every filters A and B the following are equivalent:
1◦. A ≥2 B.
2◦. HomMonRld=,=(A,B) ̸= ∅.
3◦. HomCoMonRld=,=(A,B) ̸= ∅.

Proof.
1◦⇒2◦. Let A ≥2 B that is B =

〈
↑FCD f

〉
A for some Set-morphism f : Base(A) →

Base(B). Then dom(↑RLD f)|A = A and
im(↑RLD f)|A = im(FCD)(↑RLD f)|A = im(↑FCD f)|A =

〈
↑FCD f

〉
A = B.

So (↑RLD f)|A is a sought for reloid.
2◦⇒1◦. There exists a monovalued reloid f with domain A such that ⟨(FCD)f⟩A =

B. By corollary 1327 below, there exists a Set-morphism F : Base(A) →
Base(B) such that f = (↑RLD F )|A. Thus〈

↑FCD F
〉
A = im(↑FCD F )|A = im(FCD)(↑RLD F )|A = im(FCD)f = im f = B.

Thus A ≥2 B is testified by the morphism F .
2◦⇔3◦. By the lemma.

□

Theorem 1292. The following are categories (with reloid composition):
1◦. MonRld⊑,⊒;
2◦. MonRld⊑,=;
3◦. MonRld=,=;
4◦. CoMonRld⊑,⊒;
5◦. CoMonRld⊑,=;
6◦. CoMonRld=,=.

Proof. We will prove only the first three. The rest follow from duality. We
need to prove only that composition of morphisms is a morphism, because associa-
tivity and existence of identity morphism are evident. We have:

1◦. Let f ∈ HomMonRld⊑,⊒(A,B), g ∈ HomMonRld⊑,⊒(B, C). Then dom f ⊑
A, im f ⊒ B, dom g ⊑ B, im g ⊒ C. So dom(g ◦ f) ⊑ A, im(g ◦ f) ⊒ C that is
g ◦ f ∈ HomMonRld⊑,⊒(A, C).

2◦. Let f ∈ HomMonRld⊑,=(A,B), g ∈ HomMonRld⊑,=(B, C). Then dom f ⊑
A, im f = B, dom g ⊑ B, im g = C. So dom(g ◦ f) ⊑ A, im(g ◦ f) = C that is
g ◦ f ∈ HomMonRld⊑,=(A, C).

3◦. Let f ∈ HomMonRld=,=(A,B), g ∈ HomMonRld=,=(B, C). Then dom f =
A, im f = B, dom g = B, im g = C. So dom(g ◦ f) = A, im(g ◦ f) = C that is
g ◦ f ∈ HomMonRld=,=(A, C).

□

Definition 1293. Let BijRld be the groupoid of all bijections of the category
of reloid triples. Its objects are filters and its morphisms from a filter A to filter B
are monovalued injective reloids f such that dom f = A and im f = B.

Theorem 1294. Filters A and B are isomorphic iff HomBijRld(A,B) ̸= ∅.
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Proof.
⇒. Let A and B be isomorphic. Then there are sets A ∈ A, B ∈ B and a bijective

Set-morphism F : A → B such that ⟨F ⟩∗ : PA ∩ A → PB ∩ B is a
bijection.

Obviously f = (↑RLD F )|A is monovalued and injective.
im f =

Fl{
imG

G ∈ up(↑RLD F )|A

}
=

Fl{
im(H ∩ F |X)

H ∈ up(↑RLD F )|A, X ∈ A

}
=

Fl{
imF |P
P ∈ A

}
=

Fl{
⟨F ⟩∗

P

P ∈ A

}
=

Fl{
⟨F ⟩∗

P

P ∈ PA ∩ A

}
=

Fl
(PB ∩ B) =
Fl

B = B.

Thus dom f = A and im f = B.
⇐. Let f be a monovalued injective reloid such that dom f = A and im f = B.

Then there exist a function F ′ and an injective binary relation F ′′ such
that F ′, F ′′ ∈ f . Thus F = F ′ ∩ F ′′ is an injection such that F ∈ f . The
function F is a bijection from A = domF to B = imF . The function
⟨F ⟩∗ is an injection on PA ∩ A (and moreover on PA). It’s simple to
show that ∀X ∈ PA ∩ A : ⟨F ⟩∗

X ∈ PB ∩ B and similarly

∀Y ∈ PB ∩ B : (⟨F ⟩∗)−1Y =
〈
F−1〉∗

Y ∈ PA ∩ A.

Thus ⟨F ⟩∗|PA∩A is a bijection PA ∩ A → PB ∩ B. So filters A and B
are isomorphic.

□

Proposition 1295. (≥1) = (⊒) ◦ (≥2) (when we limit to small filters).

Proof. A ≥1 B iff exists a function f : Base(A) → Base(B) such that B ⊑〈
↑FCD f

〉
A. But B ⊑

〈
↑FCD f

〉
A is equivalent to ∃B′ ∈ F : (B′ ⊒ B ∧ B′ =〈

↑FCD f
〉
A). So A ≥1 B is equivalent to existence of B′ ∈ F such that B′ ⊒ B and

existence of a function f : Base(A) → Base(B) such that B′ =
〈
↑FCD f

〉
A. This is

equivalent to A ((⊒) ◦ (≥2)) B. □

Proposition 1296. If a and b are ultrafilters then b ≥1 a ⇔ b ≥2 a.

Proof. We need to prove only b ≥1 a ⇒ b ≥2 a. If b ≥1 a then there exists
a monovalued reloid f : Base(b) → Base(a) such that dom f = b and im f ⊒ a.
Then im f = im(FCD)f ∈ {⊥F(Base(a))} ∪ atomsF(Base(a)) because (FCD)f is a
monovalued funcoid. So im f = a (taken into account im f ̸= ⊥F(Base(a))) and thus
b ≥2 a. □

Corollary 1297. For atomic filters ≥1 is the same as ≥2.
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Thus I will write simply ≥ for atomic filters.

14.1.1. Existence of no more than one monovalued injective reloid
for a given pair of ultrafilters.

14.1.1.1. The lemmas. The lemmas in this section were provided to me by
Robert Martin Solovay in [42]. They are based on Wistar Comfort’s work.

In this section we will assume µ is an ultrafilter on a set I and function f : I → I
has the property X ∈ µ ⇔

〈
f−1〉∗

X ∈ µ.

Lemma 1298. If X ∈ µ then X ∩ ⟨f⟩∗
X ∈ µ.

Proof. If ⟨f⟩∗
X /∈ µ then X ⊆

〈
f−1〉∗⟨f⟩∗

X /∈ µ and so X /∈ µ. Thus
X ∈ µ ∧ ⟨f⟩∗

X ∈ µ and consequently X ∩ ⟨f⟩∗
X ∈ µ. □

We will say that x is periodic when fn(x) = x for some positive integer x. The
least such n is called the period of x.

Let’s define x ∼ y iff there exist i, j ∈ N such that f i(x) = f j(y). Trivially it
is an equivalence relation. If x and y are periodic, then x ∼ y iff exists n ∈ N such
that fn(y) = x.

Let A =
{

x∈I
x is periodic with period>1

}
.

We will show A /∈ µ. Let’s assume A ∈ µ.
Let a set D ⊆ A contains (by the axiom of choice) exactly one element from

each equivalence class of A defined by the relation ∼.
Let α be a function A → N defined as follows. Let x ∈ A. Let y be the unique

element of D such that x ∼ y. Let α(x) be the least n ∈ N such that fn(y) = x.
Let B0 =

{
x∈A

α(x) is even

}
and B1 =

{
x∈A

α(x) is odd

}
.

Let B2 =
{

x∈A
α(x)=0

}
.

Lemma 1299. B0 ∩ ⟨f⟩∗
B0 ⊆ B2.

Proof. If x ∈ B0 ∩ ⟨f⟩∗
B0 then for a minimal even n and x = f(x′) where

fm(y′) = x′ for a minimal even m. Thus fn(y) = f(x′) thus y and x′ laying in
the same equivalence class and thus y = y′. So we have fn(y) = fm+1(y). Thus
n ≤ m+ 1 by minimality.

x′ lies on an orbit and thus x′ = f−1(x) where by f−1 I mean step backward
on our orbit; fm(y) = f−1(x) and thus x′ = fn−1(y) thus n− 1 ≥ m by minimality
or n = 0.

Thus n = m+ 1 what is impossible for even n and m. We have a contradiction
what proves B0 ∩ ⟨f⟩∗

B0 ⊆ ∅.
Remained the case n = 0, then x = f0(y) and thus α(x) = 0. □

Lemma 1300. B1 ∩ ⟨f⟩∗
B1 = ∅.

Proof. Let x ∈ B1 ∩ ⟨f⟩∗
B1. Then fn(y) = x for an odd n and x = f(x′)

where fm(y′) = x′ for an odd m. Thus fn(y) = f(x′) thus y and x′ laying in
the same equivalence class and thus y = y′. So we have fn(y) = fm+1(y). Thus
n ≤ m+ 1 by minimality.

x′ lies on an orbit and thus x′ = f−1(x) where by f−1 I mean step backward
on our orbit;

fm(y) = f−1(x) and thus x′ = fn−1(y) thus n − 1 ≥ m by minimality (n = 0
is impossible because n is odd).

Thus n = m+ 1 what is impossible for odd n and m. We have a contradiction
what proves B1 ∩ ⟨f⟩∗

B1 = ∅. □

Lemma 1301. B2 ∩ ⟨f⟩∗
B2 = ∅.
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Proof. Let x ∈ B2 ∩ ⟨f⟩∗
B2. Then x = y and x′ = y where x = f(x′). Thus

x = f(x) and so x /∈ A what is impossible. □

Lemma 1302. A /∈ µ.

Proof. Suppose A ∈ µ.
Since A ∈ µ we have B0 ∈ µ or B1 ∈ µ.
So either B0 ∩ ⟨f⟩∗

B0 ⊆ B2 or B1 ∩ ⟨f⟩∗
B1 ⊆ B2. As such by the lemma

1298 we have B2 ∈ µ. This is incompatible with B2 ∩ ⟨f⟩∗
B2 = ∅. So we got a

contradiction. □

Let C be the set of points x which are not periodic but fn(x) is periodic for
some positive n.

Lemma 1303. C /∈ µ.

Proof. Let β be a function C → N such that β(x) is the least n ∈ N such
that fn(x) is periodic.

Let C0 =
{

x∈C
β(x) is even

}
and C1 =

{
x∈C

β(x) is odd

}
.

Obviously Cj ∩⟨f⟩∗
Cj = ∅ for j = 0, 1. Hence by lemma 1298 we have C0, C1 /∈

µ and thus C = C0 ∪ C1 /∈ µ. □

Let E be the set of x ∈ I such that for no n ∈ N we have fn(x) periodic.

Lemma 1304. Let x, y ∈ E be such that f i(x) = f j(y) and f i′(x) = f j′(y) for
some i, j, i′, j′ ∈ N. Then i− j = i′ − j′.

Proof. i 7→ f i(x) is a bijection.
So y = f i−j(y) and y = f i′−j′(y). Thus f i−j(y) = f i′−j′(y) and so i − j =

i′ − j′. □

Lemma 1305. E /∈ µ.

Proof. Let D′ ⊆ E be a subset of E with exactly one element from each
equivalence class of the relation ∼ on E.

Define the function γ : E → Z as follows. Let x ∈ E. Let y be the unique
element of D′ such that x ∼ y. Choose i, j ∈ N such that f i(y) = f j(x). Let
γ(x) = i− j. By the last lemma, γ is well-defined.

It is clear that if x ∈ E then f(x) ∈ E and moreover γ(f(x)) = γ(x) + 1.
Let E0 =

{
x∈E

γ(x) is even

}
and E1 =

{
x∈E

γ(x) is odd

}
.

We have E0 ∩ ⟨f⟩∗
E0 = ∅ /∈ µ and hence E0 /∈ µ.

Similarly E1 /∈ µ.
Thus E = E0 ∪ E1 /∈ µ. □

Lemma 1306. f is the identity function on a set in µ.

Proof. We have shown A,C,E /∈ µ. But the points which lie in none of these
sets are exactly points periodic with period 1 that is fixed points of f . Thus the
set of fixed points of f belongs to the filter µ. □

14.1.1.2. The main theorem and its consequences.

Theorem 1307. For every ultrafilter a the morphism (a, a, idFCD
a ) is the only

1◦. monovalued morphism of the category of reloid triples from a to a;
2◦. injective morphism of the category of reloid triples from a to a;
3◦. bijective morphism of the category of reloid triples from a to a.
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Proof. We will prove only 1◦ because the rest follow from it.
Let f be a monovalued morphism of reloid triples from a to a. Then it exists

a Set-morphism F such that F ∈ f . Trivially
〈
↑FCD F

〉
a ⊒ a and thus ⟨F ⟩∗

A ∈ a
for every A ∈ a. Thus by the lemma we have that F is the identity function on a
set in a and so obviously f is an identity. □

Corollary 1308. For every two atomic filters (with possibly different bases)
A and B there exists at most one bijective reloid triple from A to B.

Proof. Suppose that f and g are two different bijective reloids from A to
B. Then g−1 ◦ f is not the identity reloid (otherwise g−1 ◦ f = idRLD

dom f and so
f = g because f and g are isomorphisms). But g−1 ◦ f is a bijective reloid (as a
composition of bijective reloids) from A to A what is impossible. □

14.2. Rudin-Keisler equivalence and Rudin-Keisler order

Theorem 1309. Atomic filters a and b (with possibly different bases) are iso-
morphic iff a ≥ b ∧ b ≥ a.

Proof. Let a ≥ b ∧ b ≥ a. Then there are a monovalued reloids f and g
such that dom f = a and im f = b and dom g = b and im g = a. Thus g ◦ f
and f ◦ g are monovalued morphisms from a to a and from b to b. By the above
we have g ◦ f = idRLD

a and f ◦ g = idRLD
b so g = f−1 and f−1 ◦ f = idRLD

a and
f ◦ f−1 = idRLD

b . Thus f is an injective monovalued reloid from a to b and thus a
and b are isomorphic. □

The last theorem cannot be generalized from atomic filters to arbitrary filters,
as it’s shown by the following example:

Example 1310. A ≥1 B ∧B ≥1 A but A is not isomorphic to B for some filters
A and B.

Proof. Consider A =↑R [0; 1] and B =
d{↑R[0;1+ϵ[

ϵ>0

}
. Then the function

f = λx ∈ R : x/2 witnesses both inequalities A ≥1 B and B ≥1 A. But these filters
cannot be isomorphic because only one of them is principal. □

Lemma 1311. Let f0 and f1 be Set-morphisms. Let f(x, y) = (f0x, f1y) for a
function f . Then〈

↑FCD(Src f0×Src f1,Dst f0×Dst f1) f
〉

(A ×RLD B) =
〈
↑FCD f0

〉
A ×RLD 〈↑FCD f1

〉
B.

Proof. 〈
↑FCD(Src f0×Src f1,Dst f0×Dst f1) f

〉
(A ×RLD B) =〈

↑FCD(Src f0×Src f1,Dst f0×Dst f1) f
〉l{

↑Src f0×Src f1 (A×B)
A ∈ A, B ∈ B

}
=

l{
↑Dst f0×Dst f1 ⟨f⟩∗(A×B)

A ∈ A, B ∈ B

}
=

l{
↑Dst f0×Dst f1 (⟨f0⟩∗

A× ⟨f1⟩∗
B)

A ∈ A, B ∈ B

}
=

l{
↑Dst f0 ⟨f0⟩∗

A× ↑Dst f1 ⟨f1⟩∗
B)

A ∈ A, B ∈ B

}
= (theorem 891)

l{
↑Dst f0 ⟨f0⟩∗

A

A ∈ A

}
×RLD

l{
↑Dst f1 ⟨f1⟩∗

B

B ∈ B

}
=〈

↑FCD f0
〉
A ×RLD 〈↑FCD f1

〉
B.
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□

Theorem 1312. Let f be a monovalued reloid. Then GR f is isomorphic to
the filter dom f .

Proof. Let f be a monovalued reloid. There exists a function F ∈ GR f .
Consider the bijective function p = λx ∈ domF : (x, Fx).

⟨p⟩∗ domF = F and consequently
⟨p⟩ dom f =

RLDl

K∈up f

⟨p⟩∗ domK =

RLDl

K∈up f

⟨p⟩∗ dom(K ∩ F ) =

RLDl

K∈up f

(K ∩ F ) =

RLDl

K∈up f

K = f.

Thus p witnesses that f is isomorphic to the filter dom f . □

Corollary 1313. The graph of a monovalued reloid with atomic domain is
atomic.

Corollary 1314. idRLD
A is isomorphic to A for every filter A.

Theorem 1315. There are atomic filters incomparable by Rudin-Keisler order.
(Elements a and b are incomparable when a ̸⊑ b ∧ b ̸⊑ a.)

Proof. See [13]. □

Theorem 1316. ≥1 and ≥2 are different relations.

Proof. Consider a is an arbitrary non-empty filter. Then a ≥1 ⊥F(Base(a))

but not a ≥2 ⊥F(Base(a)). □

Proposition 1317. If a ≥2 b where a is an ultrafilter then b is also an ultra-
filter.

Proof. b =
〈
↑FCD f

〉
a for some f : Base(a) → Base(b). So b is an ultrafilter

since f is monovalued. □

Corollary 1318. If a ≥1 b where a is an ultrafilter then b is also an ultrafilter
or ⊥F(Base(a)).

Proof. b ⊑
〈
↑FCD f

〉
a for some f : Base(a) → Base(b). Therefore b′ =〈

↑FCD f
〉
a is an ultrafilter. From this our statement follows. □

Proposition 1319. Principal filters, generated by sets of the same cardinality,
are isomorphic.

Proof. Let A and B be sets of the same cardinality. Then there are a bijection
f from A to B. We have ⟨f⟩∗

A = B and thus A and B are isomorphic. □

Proposition 1320. If a filter is isomorphic to a principal filter, then it is also
a principal filter induced by a set with the same cardinality.



14.3. CONSEQUENCES 257

Proof. Let A be a principal filter and B is a filter isomorphic to A. Then
there are sets X ∈ A and Y ∈ B such that there are a bijection f : X → Y such
that ⟨f⟩∗

A = B.
So minB exists and minB = ⟨f⟩∗ minA and thus B is a principal filter (of the

same cardinality as A). □

Proposition 1321. A filter isomorphic to a non-trivial ultrafilter is a non-
trivial ultrafilter.

Proof. Let a be a non-trivial ultrafilter and a be isomorphic to b. Then a ≥2 b
and thus b is an ultrafilter. The filter b cannot be trivial because otherwise a would
be also trivial. □

Theorem 1322. For an infinite set U there exist 22card U equivalence classes of
isomorphic ultrafilters.

Proof. The number of bijections between any two given subsets of U is no
more than (cardU)card U = 2card U . The number of bijections between all pairs of
subsets of U is no more than 2card U · 2card U = 2card U . Therefore each isomorphism
class contains at most 2card U ultrafilters. But there are 22card U ultrafilters. So there
are 22card U classes. □

Remark 1323. One of the above mentioned equivalence classes contains trivial
ultrafilters.

Corollary 1324. There exist non-isomorphic nontrivial ultrafilters on any
infinite set.

14.3. Consequences

Theorem 1325. The graph of reloid F×RLD ↑A {a} is isomorphic to the filter
F for every set A and a ∈ A.

Proof. From 1312. □

Theorem 1326. If f , g are reloids, f ⊑ g and g is monovalued then g|dom f = f .

Proof. It’s simple to show that f = d

{
f |a

a∈atomsF(Src f)

}
(use the fact that

k ⊑ f |a for some a ∈ atomsF(Src f) for every k ∈ atoms f and the fact that
RLD(Src f,Dst f) is atomistic).

Suppose that g|dom f ̸= f . Then there exists a ∈ atoms dom f such that g|a ̸=
f |a.

Obviously g|a ⊒ f |a.
If g|a ⊐ f |a then g|a is not atomic (because f |a ̸= ⊥RLD(Src f,Dst f)) what

contradicts to a theorem above. So g|a = f |a what is a contradiction and thus
g|dom f = f . □

Corollary 1327. Every monovalued reloid is a restricted principal monoval-
ued reloid.

Proof. Let f be a monovalued reloid. Then there exists a function F ∈ GR f .
So we have

(↑RLD(Src f,Dst f) F )|dom f = f.

□

Corollary 1328. Every monovalued injective reloid is a restricted injective
monovalued principal reloid.
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Proof. Let f be a monovalued injective reloid. There exists a function F such
that f = (↑RLD(Src f,Dst f) F )|dom f . Also there exists an injection G ∈ up f .

Thus

f = f ⊓ (↑RLD(Src f,Dst f) G)|dom f =

(↑RLD(Src f,Dst f) F )|dom f ⊓ (↑RLD(Src f,Dst f) G)|dom f =

(↑RLD(Src f,Dst f) (F ⊓G))|dom f .

Obviously F ⊓G is an injection. □

Theorem 1329. If a reloid f is monovalued and dom f is an principal filter
then f is principal.

Proof. f is a restricted principal monovalued reloid. Thus f = F |dom f where
F is a principal monovalued reloid. Thus f is principal. □

Lemma 1330. If a filter A is isomorphic to a filter B then if X is a typed set
then there exists a typed set Y such that ↑Base(A) X ⊓ A is a filter isomorphic to
↑Base(B) Y ⊓ B.

Proof. Let f be a monovalued injective reloid such that dom f = A, im f = B.
By proposition 629 we have: ↑Base(A) X ⊓ A = X where X is a filter comple-

mentive to A. Let Y = A \ X .
⟨(FCD)f⟩X ⊓ ⟨(FCD)f⟩Y = ⟨(FCD)f⟩(X ⊓ Y) = ⊥ by injectivity of f .
⟨(FCD)f⟩X ⊔⟨(FCD)f⟩Y = ⟨(FCD)f⟩(X ⊔Y) = ⟨(FCD)f⟩A = B. So ⟨(FCD)f⟩X

is a filter complementive to B. So by proposition 629 there exists a set Y such that
⟨(FCD)f⟩X =↑ Y ⊓ B.

f |X is obviously a monovalued injective reloid with dom(f |X ) =↑ X ⊓ A and
im(f |X ) =↑ Y ⊓ B. So ↑ X ⊓ A is isomorphic to ↑ Y ⊓ B. □

Example 1331. A ≥2 B ∧B ≥2 A but A is not isomorphic to B for some filters
A and B.

Proof. (proof idea by Andreas Blass, rewritten using reloids by me)
Let un, hn with n ranging over the set Z be sequences of ultrafilters on N

and functions N → N such that
〈
↑FCD(N,N) hn

〉
un+1 = un and un are pairwise

non-isomorphic. (See [6] for a proof that such ultrafilters and functions exist.)
A def= dn∈Z(↑Z {n} ×RLD u2n+1); B def= dn∈Z(↑Z {n} ×RLD u2n).
Let the Set-morphisms f, g : Z × N → Z × N be defined by the formulas

f(n, x) = (n, h2nx) and g(n, x) = (n− 1, h2n−1x).
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Using the fact that every function induces a complete funcoid and a lemma
above we get: 〈

↑FCD f
〉
A =

l

〈〈
↑FCD f

〉〉∗
{

↑Z {n} ×RLD u2n+1

n ∈ Z

}
=

l

{
↑Z {n} ×RLD u2n

n ∈ Z

}
=

B.〈
↑FCD g

〉
B =

l

〈〈
↑FCD g

〉〉∗
{

↑Z {n} ×RLD u2n

n ∈ Z

}
=

l

{
↑Z {n− 1} ×RLD u2n−1

n ∈ Z

}
=

l

{
↑Z {n} ×RLD u2n+1

n ∈ Z

}
=

A.
It remains to show that A and B are not isomorphic.
Let X ∈ up(↑Z {n} ×RLD u2n+1) for some n ∈ Z. Then if ↑Z×N X ⊓ A is an

ultrafilter we have ↑Z×N X ⊓ A =↑Z {n} ×RLD u2n+1 and thus by the theorem 1325
is isomorphic to u2n+1.

If X /∈ up(↑Z {n} ×RLD u2n+1) for every n ∈ Z then (Z × N) \ X ∈ up(↑Z
{n} ×RLD u2n+1) and thus (Z × N) \X ∈ up A and thus ↑Z×N X ⊓ A = ⊥Z×N.

We have also

(↑Z {0} ×RLD N) ⊓ B = (↑Z {0} ×RLD N) ⊓ l

{
↑Z {n} ×RLD u2n

n ∈ Z

}
=

l

{
(↑Z {0} ×RLD N) ⊓ (↑Z {n} ×RLD u2n)

n ∈ Z

}
=↑Z {0} ×RLD u0 (an ultrafilter).

Thus every ultrafilter generated as intersecting A with a principal filter ↑Z×N X
is isomorphic to some u2n+1 and thus is not isomorphic to u0. By the lemma it
follows that A and B are non-isomorphic. □

14.3.1. Metamonovalued reloids.

Proposition 1332. (
⋂
G) ◦ f =

⋂
g∈G(g ◦ f) for every function f and a set G

of binary relations.
Proof.

(x, z) ∈
(⋂

G
)

◦ f ⇔

∃y : (fx = y ∧ (y, z) ∈
⋂
G) ⇔

(fx, z) ∈
⋂
G ⇔

∀g ∈ G : (fx, z) ∈ g ⇔
∀g ∈ G∃y : (fx = y ∧ (y, z) ∈ g) ⇔

∀g ∈ G : (x, z) ∈ g ◦ f ⇔

(x, z) ∈
⋂

g∈G

(g ◦ f).

□
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Lemma 1333. (
d
G) ◦ f =

d
g∈G(g ◦ f) if f is a monovalued principal reloid

and G is a set of reloids (with matching sources and destinations).

Proof. Let f =↑RLD φ for some monovalued Rel-morphism φ.
(
d
G) ◦ f =

dRLD
g∈up

d
G(g ◦ φ);

up
l

g∈G

(g ◦ f) =

up
l

g∈G

RLDl

Γ∈up g

(Γ ◦ φ) =

up
l ⋃

g∈G

{
↑RLD (Γ ◦ φ)

Γ ∈ up g

}
=

up
RLDl

Γ∈up
d

G

(Γ ◦ φ) =

up
l{

(Γ0 ◦ φ) ⊓ · · · ⊓ (Γn ◦ φ)
Γi ∈ up

d
G where i = 0, . . . , n for n ∈ N

}
= (proposition above)

up
l{

(Γ0 ⊓ · · · ⊓ Γn) ◦ φ
Γi ∈ up

d
G where i = 0, . . . , n for n ∈ N

}
=

up
l{

Γ ◦ φ
Γ ∈ up

d
G

}
.

Thus (
d
G) ◦ f =

d
g∈G(g ◦ f). □

Theorem 1334.
1◦. Monovalued reloids are metamonovalued.
2◦. Injective reloids are metainjective.

Proof. We will prove only the first, as the second is dual.
Let G be a set of reloids and f be a monovalued reloid.
Let f ′ be a principal monovalued continuation of f (so that f = f ′|dom f ).
By the lemma (

d
G) ◦ f ′ =

d
g∈G(g ◦ f ′). Restricting this equality to dom f we

get: (
d
G) ◦ f =

d
g∈G(g ◦ f). □

Conjecture 1335. Every metamonovalued reloid is monovalued.



CHAPTER 15

Counter-examples about funcoids and reloids

For further examples we will use the filter defined by the formula

∆ =
F(R)l {

]−ϵ; ϵ[
ϵ ∈ R, ϵ > 0

}
.

I will denote Ω(A) the Fréchet filter on a set A.

Example 1336. There exist a funcoid f and a set S of funcoids such that
f ⊓ dS ̸= d⟨f⊓⟩∗

S.

Proof. Let f = ∆×FCD ↑F(R) {0} and S =
{

↑FCD(R,R)(]ϵ;+∞[×{0})
ϵ∈R,ϵ>0

}
. Then

f ⊓ lS = (∆×FCD ↑F(R) {0})⊓ ↑FCD(R,R) (]0; +∞[×{0}) =

(∆⊓ ↑F(R)]0; +∞[)×FCD ↑F(R) {0} ≠ ⊥FCD(R,R)

while d⟨f⊓⟩∗
S = d{⊥FCD(R,R)} = ⊥FCD(R,R). □

Example 1337. There exist a set R of funcoids and a funcoid f such that
f ◦ dR ̸= d⟨f◦⟩∗

R.

Proof. Let f = ∆×FCD ↑F(R) {0}, R =
{

↑R{0}×FCD↑R]ϵ;+∞[
ϵ∈R,ϵ>0

}
.

We have dR =↑R {0}×FCD ↑R]0; +∞[; f ◦ dR =↑FCD(R,R) ({0} × {0}) ̸=
⊥FCD(R,R) and d⟨f◦⟩∗

R = d{⊥FCD(R,R)} = ⊥FCD(R,R). □

Example 1338. There exist a set R of reloids and a reloid f such that f ◦ dR ̸=

d⟨f◦⟩∗
R.

Proof. Let f = ∆×RLD ↑F(R) {0}, R =
{

↑R{0}×RLD↑R]ϵ;+∞[
ϵ∈R,ϵ>0

}
.

We have dR =↑R {0}×RLD ↑R]0; +∞[; f ◦ dR =↑RLD(R,R) ({0} × {0}) ̸=
⊥RLD(R,R) and d⟨f◦⟩∗

R = d{⊥RLD(R,R)} = ⊥RLD(R,R). □

Example 1339. There exist a set R of funcoids and filters X and Y such that
1◦. X [ dR] Y ∧ ∄f ∈ R : X [f ] Y;
2◦. ⟨ dR⟩X ⊐ d

{
⟨f⟩X
f∈R

}
.

Proof.
1◦. Take X = ∆ and Y = ⊤F(R), R =

{
↑FCD(R,R)(]ϵ;+∞[×R)

ϵ∈R,ϵ>0

}
. Then

dR =↑FCD(R,R) (]0; +∞[×R). So X [ dR] Y and ∀f ∈ R : ¬(X [f ] Y).
2◦. With the same X and R we have ⟨ dR⟩X = ⊤F(R) and ⟨f⟩X = ⊥F(R) for

every f ∈ R, thus d

{
⟨f⟩X
f∈R

}
= ⊥F(R).

□

Example 1340. dB∈T (A ×RLD B) ̸= A ×RLD dT for some filter A and set of
filters T (with a common base).

261
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Proof. Take R+ =
{

x∈R
x>0

}
, A = ∆, T =

{
↑{x}
x∈R+

}
where ↑ = ↑R.

dT =↑ R+; A ×RLD dT = ∆×RLD ↑ R+.

dB∈T (A ×RLD B) = dx∈R+
(∆×RLD ↑ {x}).

We’ll prove that dx∈R+
(∆×RLD ↑ {x}) ̸= ∆×RLD ↑ R+.

Consider K =
⋃

x∈R+
({x}×] − 1/x; 1/x[).

K ∈ up(∆×RLD ↑ {x}) and thus K ∈ up dx∈R+
(∆×RLD ↑ {x}) . But K /∈

up(∆×RLD ↑ R+). □

Theorem 1341. For a filter a we have a ×RLD a ⊑ 1RLD
Base(a) only in the case if

a = ⊥F(Base(a)) or a is a trivial ultrafilter.

Proof. If a ×RLD a ⊑ 1RLD
Base(a) then there exists m ∈ up(a ×RLD a) such that

m ⊑ 1Rel
Base(a). Consequently there exist A,B ∈ up a such that A × B ⊑ 1Rel

Base(a)
what is possible only in the case when ↑ A =↑ B = a is trivial a ultrafilter or the
least filter. □

Corollary 1342. Reloidal product of a non-trivial atomic filter with itself is
non-atomic.

Proof. Obviously (a ×RLD a) ⊓ 1RLD
Base(a) ̸= ⊥RLD and (a ×RLD a) ⊓ 1RLD

Base(a) ⊏

a×RLD a. □

Example 1343. There exist two atomic reloids whose composition is non-
atomic and non-empty.

Proof. Let a be a non-trivial ultrafilter on N and x ∈ N. Then

(a×RLD ↑N {x}) ◦ (↑N {x} ×RLD a) =
RLD(N,N)l

A∈a

((A× {x}) ◦ ({x} ×A) =

RLD(N,N)l

A∈a

(A×A) = a×RLD a

is non-atomic despite of a×RLD ↑N {x} and ↑N {x} ×RLD a are atomic. □

Example 1344. There exists non-monovalued atomic reloid.

Proof. From the previous example it follows that the atomic reloid ↑N
{x} ×RLD a is not monovalued. □

Example 1345. Non-convex reloids exist.

Proof. Let a be a non-trivial ultrafilter. Then idRLD
a is non-convex. This

follows from the fact that only reloidal products which are below 1RLD
Base(a) are reloidal

products of ultrafilters and idRLD
a is not their join. □

Example 1346. There exists (atomic) composable funcoids f and g such that
H ∈ up(g ◦ f) ⇏ ∃F ∈ up f,G ∈ up g : H ⊒ G ◦ F.

Proof. Let a be a nontrivial ultrafilter and p be an arbitrary point, f =
a ×FCD {p}, g = {p} ×FCD a. Then g ◦ f = a ×FCD a. Take H = 1. Let F ∈ up f
and G ∈ up g. We have F ∈ up(A0 ×FCD {p}), G ∈ up({p} ×FCD A1) where
A0, A1 ∈ up a (take A0 = ⟨F ⟩∗@{p} and similarly for A1). Thus G ◦ F ⊒ A0 × A1
and so H /∈ up(G ◦ F ). □

Example 1347. (RLD)inf ̸= (RLD)outf for a funcoid f .
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Proof. Let f = 1FCD
N . Then (RLD)inf = da∈atomsF(N)(a ×RLD a) and

(RLD)outf = 1RLD
N . But we have shown above a ×RLD a ̸⊑ 1RLD

N for non-trivial
ultrafilter a, and so (RLD)inf ̸⊑ (RLD)outf . □

Proposition 1348. 1FCD
U ⊓ ↑FCD(U,U) ((U × U) \ idU) = idFCD

Ω(U) ̸= ⊥FCD(U,U) for
every infinite set U.

Proof. Note that
〈

idFCD
Ω(U)

〉
X = X ⊓ Ω(U) for every filter X on U.

Let f = 1FCD
U , g =↑FCD(U,U) ((U × U) \ idU).

Let x be a non-trivial ultrafilter on U. If X ∈ upx then cardX ≥ 2 (In fact,
X is infinite but we don’t need this.) and consequently ⟨g⟩∗

X = ⊤F(U). Thus
⟨g⟩x = ⊤F(U). Consequently

⟨f ⊓ g⟩x = ⟨f⟩x ⊓ ⟨g⟩x = x ⊓ ⊤F(U) = x.

Also
〈

idFCD
Ω(U)

〉
x = x ⊓ Ω(U) = x.

Let now x be a trivial ultrafilter. Then ⟨f⟩x = x and ⟨g⟩x = ⊤F(U) \ x. So

⟨f ⊓ g⟩x = ⟨f⟩x ⊓ ⟨g⟩x = x ⊓ (⊤F(U) \ x) = ⊥F(U).

Also
〈

idFCD
Ω(U)

〉
x = x ⊓ Ω(U) = ⊥F(U).

So ⟨f ⊓ g⟩x =
〈

idFCD
Ω(U)

〉
x for every ultrafilter x on U. Thus f ⊓ g = idFCD

Ω(U). □

Example 1349. There exist binary relations f and g such that ↑FCD(A,B)

f⊓ ↑FCD(A,B) g ̸=↑FCD(A,B) (f ∩ g) for some sets A, B such that f, g ⊆ A×B.

Proof. From the proposition above. □

Example 1350. There exists a principal funcoid which is not a complemented
element of the lattice of funcoids.

Proof. I will prove that quasi-complement of the funcoid 1FCD
N is not its com-

plement (it is enough by proposition 145). We have:

(1FCD
N )∗ =

l

{
c ∈ FCD(N,N)
c ≍ 1FCD

N

}
⊒

l

{
↑N {α}×FCD ↑N {β}

α, β ∈ N, ↑N {α}×FCD ↑N {β} ≍ 1FCD
N

}
=

l

{
↑N {α}×FCD ↑N {β}
α, β ∈ N, α ̸= β

}
=

↑FCD(N,N)
⋃{ {α} × {β}

α, β ∈ N, α ̸= β

}
=

↑FCD(N,N) (N × N \ idN)

(used corollary 923). But by proved above (1FCD
N )∗ ⊓ 1FCD

N ̸= ⊥F(N). □

Example 1351. There exists a funcoid h such that uph is not a filter.

Proof. Consider the funcoid h = idFCD
Ω(N). We have (from the proof of proposi-

tion 1348) that f ∈ uph and g ∈ uph, but f ⊓ g /∈ uph. □

Example 1352. There exists a funcoid h ̸= ⊥FCD(A,B) such that (RLD)outh =
⊥RLD(A,B).
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Proof. Consider h = idFCD
Ω(N). By proved above h = f ⊓ g where f =

1FCD
N =↑FCD(N,N) idN, g =↑FCD(N,N) (N × N \ idN).

We have idN,N × N \ idN ∈ GR h.
So

(RLD)outh =
RLDl

uph =
RLD(N,N)l

GR h ⊑↑RLD(N,N) (idN ∩(N × N \ idN)) = ⊥RLD(N,N);

and thus (RLD)outh = ⊥RLD(N,N). □

Example 1353. There exists a funcoid h such that (FCD)(RLD)outh ̸= h.

Proof. It follows from the previous example. □

Example 1354. (RLD)in(FCD)f ̸= f for some convex reloid f .

Proof. Let f = 1RLD
N . Then (FCD)f = 1FCD

N . Let a be some non-trivial ultra-
filter on N. Then (RLD)in(FCD)f ⊒ a ×RLD a ̸⊑ 1RLD

N and thus (RLD)in(FCD)f ̸⊑
f . □

Example 1355. There exist composable funcoids f and g such that
(RLD)out(g ◦ f) ⊐ (RLD)outg ◦ (RLD)outf.

Proof. f = idFCD
Ω(N) and g = ⊤F(N)×FCD ↑N {α} for some α ∈ N. Then

(RLD)outf = ⊥RLD(N,N) and thus (RLD)outg ◦ (RLD)outf = ⊥RLD(N,N).
We have g ◦ f = Ω(N)×FCD ↑N {α}.
(RLD)out(Ω(N)×FCD ↑N {α}) = Ω(N)×RLD ↑N {α} by properties of funcoidal

reloids.
Thus (RLD)out(g ◦ f) = Ω(N)×RLD ↑N {α} ≠ ⊥RLD(N,N). □

Conjecture 1356. For every composable funcoids f and g

(RLD)out(g ◦ f) ⊒ (RLD)outg ◦ (RLD)outf.

Example 1357. (FCD) does not preserve binary meets.

Proof. (FCD)(1RLD
N ⊓ (⊤RLD(N,N) \ 1RLD

N )) = (FCD)⊥RLD(N,N) = ⊥FCD(N,N).
On the other hand,

(FCD)1RLD
N ⊓ (FCD)(⊤RLD(N,N) \ 1RLD

N ) =

1FCD
N ⊓ ↑FCD(N,N) (N × N \ idN) = idFCD

Ω(N) ̸= ⊥FCD(N,N)

(used proposition 1058). □

Corollary 1358. (FCD) is not an upper adjoint (in general).

Considering restricting polynomials (considered as reloids) to ultrafilters, it is
simple to prove that each that restriction is injective if not restricting a constant
polynomial. Does this hold in general? No, see the following example:

Example 1359. There exists a monovalued reloid with atomic domain which
is neither injective nor constant (that is not a restriction of a constant function).

Proof. (based on [34]) Consider the function F ∈ NN×N defined by the for-
mula (x, y) 7→ x.

Let ωx be a non-trivial ultrafilter on the vertical line {x} × N for every x ∈ N.
Let T be the collection of such sets Y that Y ∩ ({x} × N) ∈ ωx for all but

finitely many vertical lines. Obviously T is a filter.
Let ω ∈ atomsT .
For every x ∈ N we have some Y ∈ T for which ({x} × N) ∩ Y = ∅ and thus

↑N×N ({x} × N) ⊓ ω = ⊥F(N×N).
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Let g = (↑RLD(N,N) F )|ω. If g is constant, then there exist a constant function
G ∈ up g and F ∩ G is also constant. Obviously dom ↑RLD(N×N,N) (F ∩ G) ⊒ ω.
The function F ∩ G cannot be constant because otherwise ω ⊑ dom ↑RLD(N×N,N)

(F ∩G) ⊑↑N×N ({x} × N) for some x ∈ N what is impossible by proved above. So
g is not constant.

Suppose that g is injective. Then there exists an injection G ∈ up g. F ⊓ G ∈
up g is an injection which depends only on the first argument. So dom(F ⊓ G)
intersects each vertical line by atmost one element that is dom(F ⊓G) inter-
sects every vertical line by the whole line or the line without one element. Thus
dom(F ⊓G) ∈ T ⊒ ω and consequently dom(F ⊓G) /∈ ω what is impossible.

Thus g is neither injective nor constant. □

15.1. Second product. Oblique product

Definition 1360. A ×RLD
F B = (RLD)out(A ×FCD B) for every filters A and B.

I will call it second product of filters A and B.

Remark 1361. The letter F is the above definition is from the word “funcoid”.
It signifies that it seems to be impossible to define A ×RLD

F B directly without
referring to funcoidal product.

Definition 1362. Oblique products of filters A and B are defined as

A ⋉ B =
l{

↑RLD f

f ∈ Rel(Base(A),Base(B)),∃B ∈ up B :↑FCD f ⊒ A×FCD ↑ B

}
;

A ⋊ B =
l{

↑RLD f

f ∈ Rel(Base(A),Base(B)),∃A ∈ up A :↑FCD f ⊒↑ A×FCD B

}
.

Proposition 1363.
1◦. A ⋉B = A ×RLD

F B if A and B are filters and B is principal.
2◦. A⋊ B = A×RLD

F B if A and B are filters and A is principal.

Proof. A⋊B =
dRLD

{
f

f∈Rel,f⊒A×FCDB

}
= A×RLD

F B. The other is analogous.
□

Proposition 1364. A ×RLD
F B ⊑ A ⋉ B ⊑ A ×RLD B for every filters A, B.

Proof.
A ⋉ B ⊑

l{
↑RLD f

f ∈ Rel(Base(A),Base(B)),∃A ∈ up A, B ∈ up B :↑FCD f ⊒↑ A×FCD ↑ B

}
⊑

l{
↑ A×RLD ↑ B

A ∈ up A, B ∈ up B

}
=

A ×RLD B.
A ⋉ B ⊒

l{
↑RLD f

f ∈ Rel(Base(A),Base(B)), ↑FCD f ⊒ A ×FCD B

}
=

l{
↑RLD f

f ∈ up(A ×FCD B)

}
=

(RLD)out(A ×FCD B) =
A ×RLD

F B.
□
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Conjecture 1365. A ×RLD
F B ⊏ A ⋉ B for some filters A, B.

A stronger conjecture:

Conjecture 1366. A ×RLD
F B ⊏ A ⋉ B ⊏ A ×RLD B for some filters A, B.

Particularly, is this formula true for A = B = ∆⊓ ↑R]0; +∞[?

The above conjecture is similar to Fermat Last Theorem as having no value
by itself but being somehow challenging to prove it (not expected to be as hard as
FLT however).

Example 1367. A ⋉ B ⊏ A ×RLD B for some filters A, B.

Proof. It’s enough to prove A ⋉ B ̸= A ×RLD B.
Let ∆+ = ∆⊓ ↑R]0; +∞[. Let A = B = ∆+.
Let K = (≤)|R×R.
Obviously K /∈ up(A ×RLD B).
A ⋉ B ⊑↑RLD(Base(A),Base(B)) K and thus K ∈ up(A ⋉ B) because

↑FCD(Base(A),Base(B)) K ⊒ ∆+×FCD ↑ B = A×FCD ↑ B
for B =]0; +∞[ because for every X ∈ ∂∆+ there is x ∈ X such that x ∈]0; ϵ[ (for
every positive ϵ) and thus ]ϵ; +∞[⊆ ⟨K⟩∗{x} so having

⟨K⟩∗
X =]0; +∞[∈ GR

〈
∆+×FCD ↑ B

〉∗
X.

Thus A ⋉ B ̸= A ×RLD B. □

Example 1368. A ×RLD
F B ⊏ A ×RLD B for some filters A, B.

Proof. This follows from the above example. □

Conjecture 1369. (A ⋉ B) ⊓ (A ⋊ B) ̸= A ×RLD
F B for some filters A, B.

(Earlier I presented a proof of the negation of this conjecture, but it was in
error.)

Example 1370. (A ⋉ B) ⊔ (A ⋊ B) ⊏ A ×RLD B for some filters A, B.

Proof. (based on [8]) Let A = B = Ω(N). It’s enough to prove (A ⋉ B) ⊔
(A ⋊ B) ̸= A ×RLD B.

Let X ∈ up A, Y ∈ up B that is X ∈ Ω(N), Y ∈ Ω(N).
Removing one element x from X produces a set P . Removing one element y

from Y produces a set Q. Obviously P ∈ Ω(N), Q ∈ Ω(N).
Obviously (P × N) ∪ (N ×Q) ∈ up((A ⋉ B) ⊔ (A ⋊ B)).
(P×N)∪(N×Q) ⊉ X×Y because (x, y) ∈ X×Y but (x, y) /∈ (P×N)∪(N×Q)

for every X ∈ up A, Y ∈ up B.
Thus some (P ×N) ∪ (N×Q) /∈ up(A ×RLD B) by properties of filter bases. □

Example 1371. (RLD)out(FCD)f ̸= f for some convex reloid f .

Proof. Let f = A ×RLD B where A and B are from example 1368.
(FCD)(A ×RLD B) = A ×FCD B by proposition 1070.
So (RLD)out(FCD)(A ×RLD B) = (RLD)out(A ×FCD B) = A ×RLD

F B ̸= A ×RLD

B. □



CHAPTER 16

Funcoids are filters

The motto of this chapter is: “Funcoids are filters on a (boolean) lattice.”

16.1. Rearrangement of collections of sets

Let Q be a set of sets.
Let ≡ be the relation on

⋃
Q defined by the formula

a ≡ b ⇔ ∀X ∈ Q : (a ∈ X ⇔ b ∈ X).

Proposition 1372. ≡ is an equivalence relation on
⋃
Q.

Proof.
Reflexivity. Obvious.
Symmetry. Obvious.
Transitivity. Let a ≡ b ∧ b ≡ c. Then a ∈ X ⇔ b ∈ X ⇔ c ∈ X for every X ∈ Q.

Thus a ≡ c.
□

Definition 1373. Rearrangement R(Q) of Q is the set of equivalence classes
of
⋃
Q for ≡.

Obvious 1374.
⋃
R(Q) =

⋃
Q.

Obvious 1375. ∅ /∈ R(Q).

Lemma 1376. cardR(Q) ≤ 2card Q.

Proof. Having an equivalence class C, we can find the set f ∈ PQ of all
X ∈ Q such that a ∈ X, for every a ∈ C.

b ≡ a ⇔ ∀X ∈ Q : (a ∈ X ⇔ b ∈ X) ⇔ ∀X ∈ Q : (X ∈ f ⇔ b ∈ X).

So C =
{

b∈
⋃

Q

b≡a

}
can be restored knowing f . Consequently there are no more than

card PQ = 2card Q classes. □

Corollary 1377. If Q is finite, then R(Q) is finite.

Proposition 1378. If X ∈ Q, Y ∈ R(Q) then X ∩ Y ̸= ∅ ⇔ Y ⊆ X.

Proof. Let X ∩ Y ̸= ∅ and x ∈ X ∩ Y . Then

y ∈ Y ⇔ x ≡ y ⇔ ∀X ′ ∈ Q : (x ∈ X ′ ⇔ y ∈ X ′) ⇒ (x ∈ X ⇔ y ∈ X) ⇔ y ∈ X

for every y. Thus Y ⊆ X.
Y ⊆ X ⇒ X ∩ Y ̸= ∅ because Y ̸= ∅. □

Proposition 1379. If ∅ ̸= X ∈ Q then there exists Y ∈ R(Q) such that
Y ⊆ X ∧X ∩ Y ̸= ∅.

267
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Proof. Let a ∈ X. Then

[a] =
{

b ∈
⋃
Q

∀X ′ ∈ Q : (a ∈ X ′ ⇔ b ∈ X ′)

}
⊆{

b ∈
⋃
Q

a ∈ X ⇔ b ∈ X

}
=
{
b ∈

⋃
Q

b ∈ X

}
= X.

But [a] ∈ R(Q).
X ∩ Y ̸= ∅ follows from Y ⊆ X by the previous proposition. □

Proposition 1380. If X ∈ Q then X =
⋃

(R(Q) ∩ PX).

Proof.
⋃

(R(Q) ∩ PX) ⊆ X is obvious.
Let x ∈ X. Then there is Y ∈ R(Q) such that x ∈ Y . We have Y ⊆ X that

is Y ∈ PX by a proposition above. So x ∈ Y where Y ∈ R(Q) ∩ PX and thus
x ∈

⋃
(R(Q) ∩ PX). We have X ⊆

⋃
(R(Q) ∩ PX). □

16.2. Finite unions of Cartesian products

Let A, B be sets.
I will denote X = A \X.
Let denote Γ(A,B) the set of all finite unions X0 × Y0 ∪ . . . ∪Xn−1 × Yn−1 of

Cartesian products, where n ∈ N and Xi ∈ PA, Yi ∈ PB for every i = 0, . . . , n−1.

Proposition 1381. The following sets are pairwise equal:
1◦. Γ(A,B);
2◦. the set of all sets of the form

⋃
X∈S(X×YX) where S are finite collections

on A and YX ∈ PB for every X ∈ S;
3◦. the set of all sets of the form

⋃
X∈S(X×YX) where S are finite partitions

of A and YX ∈ PB for every X ∈ S;
4◦. the set of all finite unions

⋃
(X,Y )∈σ(X×Y ) where σ is a relation between

a partition of A and a partition of B (that is dom σ is a partition of A
and im σ is a partition of B).

5◦. the set of all finite intersections
⋂

i=0,...,n−1
(
Xi × Yi ∪Xi ×B

)
where n ∈

N and Xi ∈ PA, Yi ∈ PB for every i = 0, . . . , n− 1.

Proof.
1◦⊇2◦, 2◦⊇3◦. Obvious.
1◦⊆2◦. Let Q ∈ Γ(A,B). Then Q = X0 × Y0 ∪ . . . ∪ Xn−1 × Yn−1. Denote S =

{X0, . . . , Xn−1}. We have Q =
⋃

X′∈S

(
X ′ ×

⋃
i=0,...,n−1

{
Yi

Xi=X′

})
∈ 2◦.

2◦⊆3◦. Let Q =
⋃

X∈S(X × YX) where S is a finite collection on A and YX ∈ PB
for every X ∈ S. Let

P =
⋃

X′∈R(S)

(
X ′ ×

⋃
X∈S

{
YX

∃X ∈ S : X ′ ⊆ X

})
.

To finish the proof let’s show P = Q.
⟨P ⟩∗{x} =

⋃
X∈S

{
YX

∃X∈S:X′⊆X

}
where x ∈ X ′.

Thus ⟨P ⟩∗{x} =
⋃{ YX

∃X∈S:x∈X

}
= ⟨Q⟩∗{x}. So P = Q.

4◦⊆3◦.
⋃

(X,Y )∈σ(X × Y ) =
⋃

X∈dom σ

(
X ×

⋃{
Y ∈PB

(X,Y )∈σ

})
∈ 3◦.
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3◦⊆4◦.⋃
X∈S

(X × YX) =
⋃

X∈S

(
X ×

⋃(
R

({
YX

X ∈ S

})
∩ PYX

))
=

⋃
X∈S

(
X ×

⋃{Y ′ ∈ R
({

YX

X∈S

})
Y ′ ⊆ YX

})
=

⋃
X∈S

(
X ×

⋃{Y ′ ∈ R
({

YX

X∈S

})
(X,Y ′) ∈ σ

})
=

⋃
(X,Y )∈σ

(X × Y )

where σ is a relation between S and R
({

YX

X∈S

})
, and (X,Y ′) ∈ σ ⇔ Y ′ ⊆

YX .
5◦⊆1◦. Obvious.
3◦⊆5◦. Let Q =

⋃
X∈S(X × YX) =

⋃
i=0,...,n−1(Xi × Yi) for a partition S =

{X0, . . . , Xn−1} of A. Then Q =
⋂

i=0,...,n−1
(
Xi × Yi ∪Xi ×B

)
.

□

Exercise 1382. Formulate the duals of these sets.
Proposition 1383. Γ(A,B) is a boolean lattice, a sublattice of the lattice

P(A×B).
Proof. That it’s a sublattice is obvious. That it has complement, is also

obvious. Distributivity follows from distributivity of P(A×B). □

16.3. Before the diagram

Next we will prove the below theorem 1399 (the theorem with a diagram).
First we will present parts of this theorem as several lemmas, and then then state
a statement about the diagram which concisely summarizes the lemmas (and their
easy consequences).

Below for simplicity we will equate reloids with their graphs (that is with filters
on binary cartesian products).

Obvious 1384. upΓ(Src f,Dst f) f = (up f) ∩ Γ for every reloid f .
Conjecture 1385. ⇈F(B) upA X is not a filter for some filter X ∈ FΓ(A,B)

for some sets A, B.
Remark 1386. About this conjecture see also:

• http://goo.gl/DHyuuU
• http://goo.gl/4a6wY6

Lemma 1387. Let A, B be sets. The following are mutually inverse order
isomorphisms between FΓ(A,B) and FCD(A,B):

1◦. A 7→
dFCD up A;

2◦. f 7→ upΓ(A,B) f .
Proof. Let’s prove that upΓ(A,B) f is a filter for every funcoid f . We need to

prove that P ∩Q ∈ up f whenever

P =
⋂

i=0,...,n−1

(
Xi × Yi ∪Xi ×B

)
and Q =

⋂
j=0,...,m−1

(
X ′

j × Y ′
j ∪X ′

j ×B
)
.

This follows from P ∈ up f ⇔ ∀i ∈ 0, . . . , n − 1 : ⟨f⟩Xi ⊆ Yi and likewise for Q,
so having ⟨f⟩(Xi ∩ X ′

j) ⊆ Yi ∩ Y ′
j for every i = 0, . . . , n − 1 and j = 0, . . . ,m − 1.

From this it follows
((Xi ∩X ′

j) × (Yi ∩ Y ′
j )) ∪

(
Xi ∩X ′

j ×B
)

⊇ f

http://goo.gl/DHyuuU
http://goo.gl/4a6wY6
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and thus P ∩Q ∈ up f .
Let A, B be filters on Γ. Let

dFCD up A =
dFCD up B. We need to prove A = B.

(The rest follows from proof of the lemma 924). We have:

A =
FCDl{

X × Y ∪X ×B ∈ up A
X ∈ PA, Y ∈ PB

}
=

FCDl{
X × Y ∪X ×B

X ∈ PA, Y ∈ PB, ∃P ∈ up A : P ⊆ X × Y ∪X ×B

}
=

FCDl{
X × Y ∪X ×B

X ∈ PA, Y ∈ PB, ∃P ∈ up A : ⟨P ⟩∗
X ⊆ Y

}
= (*)

FCDl
 X × Y ∪X ×B

X ∈ PA, Y ∈ PB,
d{ ⟨P ⟩∗X

X∈up A

}
⊑ Y

 =

FCDl
 X × Y ∪X ×B

X ∈ PA, Y ∈ PB,
d{ ⟨P ⟩∗X

X∈up
dRLD up A

}
⊑ Y

 =

FCDl
 X × Y ∪X ×B

X ∈ PA, Y ∈ PB,
〈

(FCD)
dRLD up A

〉
X ⊑ Y

 = (**)

FCDl
 X × Y ∪X ×B

X ∈ PA, Y ∈ PB,
〈dFCD up

dRLD up A
〉
X ⊑ Y

 =

FCDl
 X × Y ∪X ×B

X ∈ PA, Y ∈ PB,
〈dFCD up A

〉
X ⊑ Y

.
(*) by properties of generalized filter bases, because

{
⟨P ⟩∗X

P ∈up A

}
is a filter base.

(**) by theorem 1060.
Similarly

B =
FCDl
 X × Y ∪X ×B

X ∈ PA, Y ∈ PB,
〈dFCD up B

〉
X ⊑ Y

.
Thus A = B. □

Proposition 1388. g ◦ f ∈ Γ(A,C) if f ∈ Γ(A,B) and g ∈ Γ(B,C) for some
sets A, B, C.

Proof. Because composition of Cartesian products is a Cartesian product. □

Definition 1389. g ◦ f =
dFΓ(A,C)

{
G◦F

F ∈up f,G∈up g

}
for f ∈ FΓ(A,B) and

g ∈ FΓ(B,C) (for every sets A, B, C).

We define f−1 for f ∈ FΓ(A,B) similarly to f−1 for reloids and similarly derive
the formulas:

1◦. (f−1)−1 = f ;
2◦. (g ◦ f)−1 = f−1 ◦ g−1.
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16.4. Associativity over composition

Lemma 1390.
dRLD upΓ(A,C)(g ◦ f) =

(dRLD upΓ(B,C) g
)

◦
(dRLD upΓ(B,C)

)
for every f ∈ F(Γ(A,B)), g ∈ F(Γ(B,C)) (for every sets A, B, C).

Proof. If K ∈ up
dRLD upΓ(A,C)(g◦f) then K ⊇ G◦F for some F ∈ f , G ∈ g.

But F ∈ upΓ(A,B) f , thus

F ∈
RLDl

upΓ(A,B) f

and similarly

G ∈
RLDl

upΓ(B,C) g.

So we have

K ⊇ G ◦ F ∈ up
((RLDl

upΓ(B,C) g

)
◦

(RLDl
upΓ(A,B) f

))
.

Let now

K ∈ up
((RLDl

upΓ(B,C) g

)
◦

(RLDl
upΓ(A,B) f

))
.

Then there exist F ∈ up
dRLD upΓ(A,B) f and G ∈ up

dRLD upΓ(B,C) g such that
K ⊇ G◦F . By properties of generalized filter bases we can take F ∈ upΓ(A,B) f and
G ∈ upΓ(B,C) g. Thus K ∈ upΓ(A,C)(g ◦f) and so K ∈ up

dRLD upΓ(A,C)(g ◦f). □

Lemma 1391. (RLD)inX = X for X ∈ Γ(A,B).

Proof. X = X0 ×Y0 ∪. . .∪Xn ×Yn = (X0 ×FCDY0)⊔FCD . . .⊔FCD (Xn ×FCDYn).

(RLD)inX =
(RLD)in(X0 ×FCD Y0) ⊔RLD . . . ⊔RLD (RLD)in(Xn ×FCD Y ) =

(X0 ×RLD Y0) ⊔RLD . . . ⊔RLD (Xn ×RLD Yn) =
X0 × Y0 ∪ . . . ∪Xn × Yn = X.

□

Lemma 1392.
dRLD

f = (RLD)in
dFCD

f for every filter f ∈ FΓ(A,B).

Proof.

(RLD)in

FCDl
f =

RLDl
⟨(RLD)in⟩∗

f = (by the previous lemma) =
RLDl

f.

□

Lemma 1393.
1◦. f 7→

dRLD up f and A 7→ Γ(A,B) ∩ up A are mutually inverse bijections
between FΓ(A,B) and a subset of reloids.

2◦. These bijections preserve composition.

Proof.
1◦. That they are mutually inverse bijections is obvious.
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2◦.(RLDl
up g

)
◦

(RLDl
up f

)
=

RLDl
{

G ◦ F
F ∈

dRLD
f,G ∈

dRLD
g

}
=

RLDl{
G ◦ F

F ∈ f,G ∈ g

}
=

RLDl FΓ(Src f,Dst g)l {
G ◦ F

F ∈ f,G ∈ g

}
=

RLDl
(g ◦ f).

So
dRLD preserves composition. That A 7→ Γ(A,B) ∩ up A preserves composition

follows from properties of bijections.
□

Lemma 1394. Let A, B, C be sets.

1◦.
(dFCD up g

)
◦
(dFCD up f

)
=

dFCD up(g ◦ f) for every f ∈ FΓ(A,B),
g ∈ FΓ(B,C);

2◦. (upΓ(B,C) g) ◦ (upΓ(A,B) f) = upΓ(A,B)(g ◦ f) for every funcoids f ∈
FCD(A,B) and g ∈ FCD(B : C).

Proof. It’s enough to prove only the first formula, because of the bijection
from lemma 1387.

Really:

FCDl
up(g ◦ f) =

FCDl
up

RLDl
up(g ◦ f) =

FCDl
up
(RLDl

up g ◦
RLDl

up f
)

= (FCD)
(RLDl

up g ◦
RLDl

up f
)

=(
(FCD)

RLDl
up g

)
◦

(
(FCD)

RLDl
up f

)
=(FCDl

up
RLDl

up g
)

◦

(FCDl
up

RLDl
up f

)
=(FCDl
up g

)
◦

(FCDl
up f

)
.

□

Corollary 1395. (h◦g)◦f = h◦(g◦f) for every f ∈ F(Γ(A,B)), g ∈ FΓ(B,C),
h ∈ FΓ(C,D) for every sets A, B, C, D.

Lemma 1396. Γ(A,B) ∩ GR f is a filter on the lattice Γ(A,B) for every reloid
f ∈ RLD(A,B).

Proof. That it is an upper set, is obvious. If A,B ∈ Γ(A,B) ∩ GR f then
A,B ∈ Γ(A,B) and A,B ∈ GR f . Thus A ∩B ∈ Γ(A,B) ∩ GR f . □

Proposition 1397. If Y ∈ up⟨f⟩X for a funcoid f then there exists A ∈ up X
such that Y ∈ up⟨f⟩A.

Proof. Y ∈ up
dF

A∈up a⟨f⟩A. So by properties of generalized filter bases, there
exists A ∈ up a such that Y ∈ up⟨f⟩A. □

Lemma 1398. (FCD)f =
dFCD(Γ(A,B)∩GR f) for every reloid f ∈ RLD(A,B).
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Proof. Let a be an an atomic filter object. We need to prove

⟨(FCD)f⟩a =
〈FCDl

(Γ(A,B) ∩ GR f)
〉
a

that is 〈FCDl
up f

〉
a =

〈FCDl
(Γ(A,B) ∩ GR f)

〉
a

that is
Fl

F ∈up f

⟨F ⟩a =
Fl

F ∈Γ(A,B)∩up f

⟨F ⟩a.

For this it’s enough to prove that Y ∈ up⟨F ⟩a for some F ∈ up f implies Y ∈
up⟨F ′⟩a for some F ′ ∈ Γ(A,B) ∩ GR f .

Let Y ∈ up⟨F ⟩a. Then (proposition above) there exists A ∈ up a such that
Y ∈ up⟨F ⟩A.

Y ∈ up
〈
A×FCD Y ⊔A×FCD ⊤

〉
a;
〈
A×FCD Y ⊔A×FCD ⊤

〉
X = Y ∈ up⟨F ⟩X if

⊥ ≠ X ⊑ A and
〈
A×FCD Y ⊔A×FCD ⊤

〉
X = ⊤ ∈ up⟨F ⟩X if X ̸⊑ A.

Thus A ×FCD Y ⊔ A ×FCD ⊤ ⊒ F . So A ×FCD Y ⊔ A ×FCD ⊤ is the sought
for F ′. □

16.5. The diagram

Theorem 1399. The diagram at the figure 10 is a commutative diagram (in
category Set), every arrow in this diagram is an isomorphism. Every cycle in
this diagram is an identity (therefore “parallel” arrows are mutually inverse). The
arrows preserve order, composition, and reversal (f 7→ f−1).

funcoids

funcoidal reloids filters on Γ

upΓ

(RLD)in

(FCD)

f 7→f∩Γ

dFCD

dRLD

Figure 10

Proof. First we need to show that
dRLD

f is a funcoidal reloid. But it follows
from lemma 1392.

Next, we need to show that all morphisms depicted on the diagram are bijec-
tions and the depicted “opposite” morphisms are mutually inverse.

That (FCD) and (RLD)in are mutually inverse was proved above in the book.
That

dRLD and f 7→ f ∩ Γ are mutually inverse was proved above.
That

dFCD and upΓ are mutually inverse was proved above.
That the morphisms preserve order and composition was proved above. That

they preserve reversal is obvious.
So it remains to apply lemma 196 (taking into account lemma 1392). □

Another proof that (FCD)(RLD)inf = f for every funcoid f :
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Proof. For every filter X ∈ F (Src f) we have ⟨(FCD)(RLD)inf⟩X =dF
F ∈up(RLD)inf ⟨F ⟩X =

dF
F ∈upΓ(Src f,Dst f) f ⟨F ⟩X .

Obviously
dF

F ∈upΓ(Src f,Dst f) f ⟨F ⟩X ⊒ ⟨f⟩X . So (FCD)(RLD)inf ⊒ f .
Let Y ∈ up⟨f⟩X . Then (proposition above) there exists A ∈ up X such that

Y ∈ up⟨f⟩A.
Thus A×Y ⊔A×⊤ ∈ up f . So ⟨(FCD)(RLD)inf⟩X =

dF
F ∈upΓ(Src f,Dst f) f ⟨F ⟩X ⊑〈

A× Y ⊔A× ⊤
〉
X = Y . So Y ∈ up⟨(FCD)(RLD)inf⟩X that is ⟨f⟩X ⊒

⟨(FCD)(RLD)inf⟩X that is f ⊒ (FCD)(RLD)inf . □

16.6. Some additional properties

Proposition 1400. For every funcoid f ∈ FCD(A,B) (for sets A, B):

1◦. dom f =
dF(A)⟨dom⟩∗ upΓ(A,B) f ;

2◦. im f =
dF(B)⟨im⟩∗ upΓ(A,B) f .

Proof. Take
{

X×Y
X∈PA,Y ∈PB,X×Y ⊇f

}
⊆ upΓ(A,B) f . I leave the rest reasoning

as an exercise. □

Theorem 1401. For every reloid f and X ∈ F (Src f), Y ∈ F (Dst f):

1◦. X [(FCD)f ] Y ⇔ ∀F ∈ upΓ(Src f,Dst f) f : X [F ] Y;
2◦. ⟨(FCD)f⟩X =

dF
F ∈upΓ(Src f,Dst f) f ⟨F ⟩X .

Proof.

1◦.

∀F ∈ upΓ(Src f,Dst f) f : X [F ] Y ⇔

∀F ∈ upΓ(Src f,Dst f) f : (X ×FCD Y) ⊓ F ̸= ⊥ ⇔ (*)

(X ×FCD Y) ⊓
FCDl

upΓ(Src f,Dst f) f ̸= ⊥ ⇔

X

[FCDl
upΓ(Src f,Dst f) f

]
Y ⇔ X [(FCD)f ] Y.

(*) by properties of generalized filter bases, taking into account that funcoids
are isomorphic to filters.

2◦.
dF

F ∈upΓ(Src f,Dst f) f ⟨F ⟩a =
〈dFCD upΓ(Src f,Dst f) f

〉
a = ⟨(FCD)f⟩a for every

ultrafilter a.
It remains to prove that the function

φ = λX ∈ F (Src f) :
Fl

F ∈upΓ(Src f,Dst f) f

⟨F ⟩X

is a component of a funcoid (from what follows that φ = ⟨(FCD)f⟩). To prove this,
it’s enough to show that it preserves finite joins and filtered meets.
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φ⊥ = ⊥ is obvious. φ(I ⊔ J ) =
dF

F ∈upΓ(Src f,Dst f) f (⟨F ⟩I ⊔ ⟨F ⟩J ) =
dF

F ∈upΓ(Src f,Dst f) f ⟨F ⟩I ⊔
dF

F ∈upΓ(Src f,Dst f) f ⟨F ⟩J = φI ⊔ φJ . If S is a general-
ized filter base of Src f , then

φ

Fl
S =

Fl

F ∈upΓ(Src f,Dst f) f

⟨F ⟩
Fl
S =

Fl

F ∈upΓ(Src f,Dst f) f

Fl
⟨⟨F ⟩⟩∗

S =

Fl

F ∈upΓ(Src f,Dst f) f

Fl

X ∈S

⟨F ⟩X =
Fl

X ∈S

Fl

F ∈upΓ(Src f,Dst f) f

⟨F ⟩X =
Fl

X ∈S

φX =
Fl

⟨φ⟩∗
S.

So φ is a component of a funcoid.
□

Definition 1402. �f =
dRLD upΓ(Src f,Dst f) f for reloid f .

Conjecture 1403. �f = (RLD)in(FCD)f for every reloid f .

Obvious 1404. �f ⊒ f for every reloid f .

Example 1405. (RLD)inf ̸= �(RLD)outf for some funcoid f .

Proof. Take f = idFCD
Ω(N). Then, as it was shown above, (RLD)outf = ⊥

and thus �(RLD)outf = ⊥. But (RLD)inf ⊒ (RLD)inf ̸= ⊥. So (RLD)inf ̸=
�(RLD)outf . □

Another proof of the theorem “dom(RLD)inf = dom f and im(RLD)inf = im f
for every funcoid f .”:

Proof. We have for every filter X ∈ F (Src f):

X ⊒ dom(RLD)inf ⇔ X ×RLD ⊤ ⊒ (RLD)inf ⇔

∀a ∈ F (Src f), b ∈ F (Dst f) : (a×FCD b ⊑ f ⇒ a×RLD b ⊑ X ×RLD ⊤) ⇔

∀a ∈ F (Src f), b ∈ F (Dst f) : (a×FCD b ⊑ f ⇒ a ⊑ X )
and

X ⊒ dom f ⇔ X ×FCD ⊤ ⊒ f ⇔

∀a ∈ F (Src f), b ∈ F (Dst f) : (a×FCD b ⊑ f ⇒ a×FCD b ⊑ X ×FCD ⊤) ⇔

∀a ∈ F (Src f), b ∈ F (Dst f) : (a×FCD b ⊑ f ⇒ a ⊑ X ).
Thus dom(RLD)inf = dom f . The rest follows from symmetry. □

Another proof that dom(RLD)inf = dom f and im(RLD)inf = im f for every
funcoid f :

Proof. dom(RLD)inf ⊒ dom f and im(RLD)inf ⊒ im f because (RLD)inf ⊒
(RLD)in and dom(RLD)inf = dom f and im(RLD)inf = im f .

It remains to prove (as the rest follows from symmetry) that dom(RLD)inf ⊑
dom f .

Really,

dom(RLD)inf ⊑
Fl{

X ∈ up dom f

X × ⊤ ∈ up f

}
=

Fl{
X ∈ up dom f

X ∈ up dom f

}
=

Fl
up dom f = dom f.

□
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16.7. More on properties of funcoids

Proposition 1406. Γ(A,B) is the center of lattice FCD(A,B).

Proof. Theorem 613. □

Proposition 1407. upΓ(A,B)(A ×FCD B) is defined by the filter base{
A×B

A∈up A,B∈up B

}
on the lattice Γ(A,B).

Proof. It follows from the fact that A ×FCD B =
dFCD

{
A×B

A∈up A,B∈up B

}
. □

Proposition 1408. upΓ(A,B)(A ×FCD B) = F(Γ(A,B)) ∩ up(A ×RLD B).

Proof. It follows from the fact that A ×FCD B =
dFCD

{
A×B

A∈up A,B∈up B

}
. □

Proposition 1409. For every f ∈ F(Γ(A,B)):

1◦. f ◦ f is defined by the filter base
{

F ◦F
F ∈up f

}
(if A = B);

2◦. f−1 ◦ f is defined by the filter base
{

F −1◦F
F ∈up f

}
;

3◦. f ◦ f−1 is defined by the filter base
{

F ◦F −1

F ∈up f

}
.

Proof. I will prove only 1◦ and 2◦ because 3◦ is analogous to 2◦.
1◦. It’s enough to show that ∀F,G ∈ up f∃H ∈ up f : H ◦ H ⊑ G ◦ F . To

prove it take H = F ⊓G.
2◦. It’s enough to show that ∀F,G ∈ up f∃H ∈ up f : H−1 ◦ H ⊑ G−1 ◦ F .

To prove it take H = F ⊓G. Then H−1 ◦H = (F ⊓G)−1 ◦ (F ⊓G) ⊑ G−1 ◦ F .
□

Theorem 1410. For every sets A, B, C if g, h ∈ FΓ(A,B) then
1◦. f ◦ (g ⊔ h) = f ◦ g ⊔ f ◦ h;
2◦. (g ⊔ h) ◦ f = g ◦ f ⊔ h ◦ f .

Proof. It follows from the order isomorphism above, which preserves compo-
sition. □

Theorem 1411. f ∩ g = f ⊓FCD g if f, g ∈ Γ(A,B).

Proof. Let f = X0 × Y0 ∪ . . . ∪Xn × Yn and g = X ′
0 × Y ′

0 ∪ . . . ∪X ′
m × Y ′

m.
Then

f ∩ g =
⋃

i=0,...,n,j=0,...,m

((Xi × Yi) ∩ (X ′
j × Y ′

j )) =

⋃
i=0,...,n,j=0,...,m

((Xi ∩X ′
j) × (Yi ∩ Y ′

j )).

But f = X0 ×Y0 ⊔FCD . . .⊔FCDXn ×Yn and g = X ′
0 ×Y ′

0 ⊔FCD . . .⊔FCDX ′
m ×Y ′

m;

f ⊓FCD g = l

i=0,...,n,j=0,...,m

((Xi × Yi) ⊓FCD (X ′
j × Y ′

j )) =

l

i=0,...,n,j=0,...,m

((Xi ⊓X ′
j) ×FCD (Yi ⊓ Y ′

j )).

Now it’s obvious that f ∩ g = f ⊓FCD g. □

Corollary 1412. If X and Y are finite binary relations, then
1◦. X ⊓FCD Y = X ⊓ Y ;
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2◦. (⊤ \X) ⊓FCD (⊤ \ Y ) = (⊤ \X) ⊓ (⊤ \ Y );
3◦. X ⊓FCD (⊤ \ Y ) = X ⊓ (⊤ \ Y ).

Theorem 1413. The set of funcoids (from a given set A to a given set B) is
with separable core.

Proof. Let f, g ∈ FCD(A,B) (for some sets A,B).
Because filters on distributive lattices are with separable core, there exist F,G ∈

Γ(A,B) such that F ∩G = ∅. Then by the previous theorem F ⊓FCD G = ⊥. □

Theorem 1414. The coatoms of funcoids from a set A to a set B are exactly
(A×B) \ ({x} × {y}) for x ∈ A, y ∈ B.

Proof. That coatoms of Γ(A,B) are exactly (A×B) \ ({x} × {y}) for x ∈ A,
y ∈ B, is obvious. To show that coatoms of funcoids are the same, it remains to
apply proposition 560. □

Theorem 1415. The set of funcoids (for given A and B) is coatomic.

Proof. Proposition 562. □

Exercise 1416. Prove that in general funcoids are not coatomistic.

16.8. Funcoid bases

This section will present mainly a counter-example against a statement you
have not thought about anyway.

Lemma 1417. If S is an upper set of principal funcoids, then
dFCD(S ∩ Γ) =dFCD

S.

Proof.
dFCD(S ∩ Γ) ⊒

dFCD
S is obvious.dFCD

S =
dFCD dFCD

K∈S TK ⊒
dFCD(S∩Γ). where TK ∈ P(S∩Γ). So

dFCD(S∩
Γ) =

dFCD
S. □

Theorem 1418. If S is a filter base on the set of binary relations then S is a
base of

dFCD
S.

First prove a special case of our theorem to get the idea:

Example 1419. Take the filter base S =
{{ (x,y)

|x−y|<ε

}
ε>0

}
and K =

{
(x,y)

|x−y|<exp x

}
where x and y range real numbers. Then K /∈ up

dFCD
S.

Proof. Take a nontrivial ultrafilter x on R. We can for simplicity assume
x ⊑ Z.

〈FCDl
S

〉
x =

Fl

L∈S

⟨L⟩x =
Fl

L∈S,X∈up x

⟨L⟩∗
X =

Fl

ε>0,X∈up x

l

α∈X

]α− ε;α+ ε[.

⟨K⟩x =
dF

X∈up x⟨K⟩∗
X =

dF
X∈up x dα∈X ]α− expα;α+ expα[.

Suppose for the contrary that ⟨K⟩x ⊒
〈dFCD

S
〉
x.

Then

dα∈X ]α−expα;α+expα[ ⊒
dF

ε>0,X∈up x dα∈X ]α−ε;α+ε[ for every X ∈ upx;
thus by properties of generalized filter bases (

{

dα∈X ]α−ε;α+ε[
ε>0

}
is a filter base

and even a chain)
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dα∈X ]α− expα;α+ expα[ ⊒
dF

X∈up x dα∈X ]α− ε;α+ ε[ for some ε > 0 and
thus by properties of generalized filter bases (

{

dα∈X ]α−ε;α+ε[
X∈up x

}
is a filter base) for

some X ′ ∈ upx

l

α∈X

]α− expα;α+ expα[ ⊒ l

α∈X′

]α− ε;α+ ε[

what is impossible by the fact that expα goes infinitely small as α → −∞ and the
fact that we can take X = Z for some x. □

Now prove the general case:

Proof. Suppose that K ∈ up
dFCD

S and thus ⟨K⟩x ⊒
〈dFCD

S
〉
x. We need

to prove that there is some L ∈ S such that K ⊒ L.
Take an ultrafilter x.〈dFCD

S
〉
x =

dF
L∈S⟨L⟩x =

dF
L∈S,X∈up x⟨L⟩∗

X.

⟨K⟩x =
dF

X∈up x⟨K⟩∗
X.

Then ⟨K⟩∗
X ⊒

dF
L∈S,X∈up x⟨L⟩∗

X for every X ∈ upx; thus by properties of
generalized filter bases (

{
⟨L⟩∗X
L∈S

}
is a filter base);

⟨K⟩∗
X ⊒

dF
X∈up x⟨L⟩∗

X for some L ∈ S and thus by properties of generalized
filter bases (

{
⟨L⟩∗X

X∈up x

}
is a filter base) for some X ′ ∈ upx

⟨K⟩∗
X ⊒ ⟨L⟩∗

X ′ ⊒ ⟨L⟩x.
So ⟨K⟩x ⊒ ⟨L⟩x because this equality holds for every X ∈ upx. Therefore

K ⊒ L. □

Example 1420. A base of a funcoid which is not a filter base.

Proof. Consider f = idFCD
Ω . We know that up f is not a filter base. But it is

a base of a funcoid. □

Exercise 1421. Prove that a set S is a filter (on some set) iff
∀X0, . . . , Xn ∈ S : up(X0 ⊓ · · · ⊓Xn) ⊆ S

for every natural n.

A similar statement does not hold for funcoids:

Example 1422. For an upper set S of binary relations
∀X0, . . . , Xn ∈ S : up(X0 ⊓FCD · · · ⊓FCD Xn) ⊆ S

does not imply that there exists funcoid f such that S = up f .

Proof. Take S0 = up 1FCD (where 1FCD is the identity funcoid on any infinite
set) and S1 =

⋃
F ∈S0

{
up G

G∈upΓ F

}
(that is S1 =

⋃
F ∈upΓ 1FCD upF ).

Both S0 and S1 are upper sets. S0 ̸= S1 because 1FCD ∈ S0 and 1FCD /∈ S1.
The formula in the example works for S = S0 because X0, . . . , Xn ∈ up 1FCD.

It also holds for S = S1 by the following reason:
Suppose X0, . . . , Xn ∈ S1. Then Xi ⊒ Fi where Fi ∈ S0. Consequently (take

into account that Γ is a sublattice of FCD) X0, . . . , Xn ⊒ F0 ⊓FCD · · · ⊓FCD Fn and
so X0 ⊓FCD · · · ⊓FCD Xn = X0 ⊓ · · · ⊓ Xn ⊒ F0 ⊓FCD · · · ⊓FCD Fn ⊒ 1FCD. Thus
X0 ⊓ · · · ⊓Xn ∈ upΓ 1FCD ⊆ S1; up(X0 ⊓ · · · ⊓Xn) ⊆ S1 as S1 is an upper set.

To finish the proof suppose for the contrary that up f0 = S0 and up f1 = S1
for some funcoids f0 and f1. In this case f0 =

dFCD
S0 = 1FCD =

dFCD upΓ 1FCD =dFCD
S1 = f1 and thus S0 = S1, contradiction. □
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Proposition 1423. For a set S of binary relations

∀X0, . . . , Xn ∈ S : up(X0 ⊓FCD · · · ⊓FCD Xn) ⊆ S

does not imply that S is a funcoid base.

Proof. Suppose for the contrary that it does imply. Then, because S is an
upper set (as follows from the condition, taking n = 0), it implies that S = up f
for a funcoid f , what contradicts to the above example. □

Conjecture 1424. Let ∀X,Y ∈ S : up(X ⊓FCD Y ) ⊆ S.
Then

∀X0, . . . , Xn ∈ S : up(X0 ⊓FCD · · · ⊓FCD Xn) ⊆ S.

Exercise 1425. up(f0 ⊓FCD . . . ⊓FCD fn) ⊆
{

F0⊓...⊓Fn

F0∈up f0∧...∧Fn∈up fn

}
for every

funcoids f0, . . . , fn (n ∈ N).

16.9. Some (example) values

I will do some calculations of particular funcoids and reloids.
First note that ⊓FCD can be decomposed (see below for a short easy proof):

f ⊓FCD g = (FCD)(((RLD)inf ⊓ (RLD)ing).

The above is a more understandable decomposition of the operation ⊓FCD which
behaves in strange way, mapping meet of two binary relations into a funcoid which
is not a binary relation (1FCD ⊓FCD (⊤ \ 1FCD) = 1FCD

Ω ).
The last formula is easy to prove (and proved above in the book) but the result

is counter-intuitive.
More generally:

FCDl
S = (FCD)

RLDl
⟨(RLD)in⟩∗

S.

The above formulas follow from the fact that (FCD) is an upper adjoint and
that (FCD)(RLD)inf = f for every funcoid f .

Let FCD denote funcoids on a set U .
Consider a special case of the above formulas:

1FCD ⊓FCD (⊤ \ 1FCD) = (FCD)((RLD)in1FCD ⊓ (RLD)in(⊤ \ 1FCD)). (17)

We want to calculate terms of the formula (17) and more generally do some
(probably useless) calculations for particular funcoids and reloids related to the
above formula.

The left side is already calculated. The term (RLD)in1FCD which I call “thick
equality” above is well understood. Let’s compute (RLD)in(⊤ \ 1FCD).

Proposition 1426. (RLD)in(⊤ \ 1FCD) = ⊤ \ 1FCD.

Proof. Consider funcoids on a set U . For any filters x and y (or without loss
of generality ultrafilters x and y) we have:

x×FCD y ⊑ ⊤ \ 1FCD ⇔
(theorem 574 and the fact that funcoids are filters) ⇔

x×FCD y ≍ 1FCD ⇔ ¬
(
x [1FCD] y

)
⇔ x ≍ y ⇒

∃X ∈ upx, Y ∈ up y : X ≍ Y.

Thus (RLD)in(⊤ \ 1FCD) = d

{
X×Y

X,Y ∈T U,X≍Y

}
= ⊤ \ 1FCD. □
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So, we have:

1FCD
Ω = 1FCD ⊓FCD (⊤ \ 1FCD) = (RLD)in1FCD ⊓FCD (⊤ \ 1FCD).

Proposition 1427. If X0 ⊔ . . .⊔Xn = ⊤ then (X0 ×X0) ⊔ . . .⊔ (Xn ×Xn) ∈
up(RLD)in1FCD.

Proof. It’s enough to prove (X0 × X0) ⊔ . . . ⊔ (Xn × Xn) ∈ up(x × x) for
every ultrafilter x, what follows from the fact that x ⊑ Xi for some i and thus
x× x ⊑ Xi ×Xi. □

Proposition 1428. For finite tuples X, Y of typed sets

(X0 × Y0) ⊔ . . . ⊔ (Xn × Yn) ⊒ 1 ⇔ (X0 ⊓ Y0) ⊔ . . . ⊔ (Xn ⊓ Yn) = ⊤.

Proof.

(X0 × Y0) ⊔ . . . ⊔ (Xn × Yn) ⊒ 1 ⇔
((X0 × Y0) ⊔ . . . ⊔ (Xn × Yn)) ⊓ 1 = 1 ⇔

((X0 × Y0) ⊓ 1) ⊔ . . . ⊔ ((Xn × Yn) ⊓ 1) = 1 ⇔
idX0⊓Y0 ⊔ . . . ⊔ idXn⊓Yn = 1 ⇔

id(X0⊓Y0)⊔...⊔(Xn⊓Yn) = 1 ⇔
(X0 ⊓ Y0) ⊔ . . . ⊔ (Xn ⊓ Yn) = ⊤.

□

Corollary 1429.

upΓ 1 =
{

(X0 × Y0) ⊔ . . . ⊔ (Xn × Yn)
n ∈ N,∀i ∈ n : Xi, Yi ∈ T U, (X0 ⊓ Y0) ⊔ . . . ⊔ (Xn ⊓ Yn) = ⊤

}
.

Corollary 1430. The predicate (X0 ⊓ Y0) ⊔ . . . ⊔ (Xn ⊓ Yn) = ⊤ for an
element (X0 × Y0) ⊔ . . . ⊔ (Xn × Yn) of Γ does not depend on its representation
(X0 × Y0) ⊔ . . . ⊔ (Xn × Yn).

Proposition 1431.

upΓ 1 =
⋃{ upΓ((X0 ×X0) ⊔ . . . ⊔ (Xn ×Xn))

n ∈ N,∀i ∈ n : Xi ∈ T U,X0 ⊔ . . . ⊔Xn = ⊤

}
.

Proof. If (X0 × Y0) ⊔ . . . ⊔ (Xn × Yn) ∈ upΓ 1 then we have

(X0 × Y0) ⊔ . . . ⊔ (Xn × Yn) ⊒
((X0 ⊓ Y0) × (X0 ⊓ Y0)) ⊔ . . . ⊔ ((Xn ⊓ Yn) × (Xn ⊓ Yn)) ∈ upΓ 1.

Thus

upΓ 1 ⊆
⋃{ upΓ((X0 ×X0) ⊔ . . . ⊔ (Xn ×Xn))

n ∈ N,∀i ∈ n : Xi ∈ T U,X0 ⊔ . . . ⊔Xn = ⊤

}
.

The reverse inclusion is obvious. □

Proposition 1432.

(RLD)in1FCD =
RLDl{

(X0 ×X0) ⊔ . . . ⊔ (Xn ×Xn)
n ∈ N,∀i ∈ n : Xi ∈ T U,X0 ⊔ . . . ⊔Xn = ⊤

}
.

Proof. By the diagram we have (RLD)in1FCD =
dRLD upΓ 1. So it follows from

the previous proposition. □

Proposition 1433. upΓ(RLD)in1FCD = upΓ 1.
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Proof. If K ∈ upΓ 1 then K ∈ upΓ((X0 × X0) ⊔ . . . ⊔ (Xn × Xn)) and thus
K ∈ upΓ(RLD)in1FCD (see proposition 1427). Thus upΓ 1 ⊆ upΓ(RLD)in1FCD. But
upΓ(RLD)in1FCD ⊆ upΓ 1 is obvious. □



CHAPTER 17

Generalized cofinite filters

The following is a straightforward generalization of cofinite filter.

Definition 1434. Ω1a =
dA

X∈coatomsZ X; Ω1b =
dA

X∈coatomsA X.

Proposition 1435. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. Ω1a = Ω1b for this filtrator.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Proposition 560.

□

Proposition 1436. Let (A,Z) be a primary filtrator. Let Z be a subset of PU .
Let it be a meet-semilattice with greatest element. Let also every non-coempty
cofinite set lies in Z. Then

∂Ω =
{

Y ∈ Z

card atomsZ Y ≥ ω

}
. (18)

Proof. Ω exists by corollary 518.

Y ∈ ∂Ω ⇔ Y ̸≍A
Al

X∈coatomsZ
X ⇔

(by properties of filter bases) ⇔

∀S ∈ Pfin coatomsZ : Y ̸≍A
Al
S ⇔

(corollary 536) ⇔ ∀S ∈ Pfin coatomsZ : Y ̸≍
l
S ⇔

∀K ∈ PfinU : Y \K ̸= ∅ ⇔
cardY ≥ ω ⇔ card atomsZ Y ≥ ω.

(Here Pfin denotes the set of finite subsets.) □

Corollary 1437. Formula (18) holds for both reloids and funcoids.

Proof. For reloiods it’s straightforward, for funcoids take that they are iso-
morphic to filters on lattice Γ. □

Corollary 1438. ΩFCD ̸= ⊥FCD (for FCD(A,B) where A × B is an infinite
set).

Proposition 1439. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over an atomic ideal base and ∀α ∈

atomsZ ∃X ∈ coatomsZ : a ̸⊑ X.

282



17. GENERALIZED COFINITE FILTERS 283

3◦. Ω1a and Cor Ω1a are defined, ∀α ∈ atomsZ ∃X ∈ coatomsZ : a ̸⊑ X and Z
is an atomic poset.

4◦. Cor Ω1a = ⊥Z.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Obvious.
3◦⇒4◦. Suppose α ∈ atomsZ Cor Ω. Then ∃X ∈ up Ω : α ̸⊑ X. Therefore α /∈

atomsZ Cor Ω. So atomsZ Cor Ω1a = ∅ and thus by atomicity Cor Ω1a =
⊥Z.

□

Corollary 1440. Cor ΩFCD = ⊥.

Proposition 1441. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over an atomic meet-semilattice with greatest

element such that ∀α ∈ atomsZ ∃X ∈ coatomsZ : a ̸⊑ X.
3◦. A is a complete lattice, ∀α ∈ atomsZ ∃X ∈ coatomsZ : a ̸⊑ X and (A;Z)

is a filtered filtrator over an atomic poset.
4◦. Ω1a = max

{ X ∈A
Cor X =⊥Z

}
Proof.

1◦⇒2◦. Obvious.
2◦⇒3◦. Obvious.
3◦⇒4◦. Due the last proposition, it is enough to show that Cor X = ⊥Z ⇒ X ⊑ Ω1a

for every X ∈ A.
Let Cor X = ⊥Z for some X ∈ A. Because of our filtrator being

filtered, it’s enough to show X ∈ up X for every X ∈ up Ω1a . X = a0 ⊓
. . .⊓ an for ai being coatoms of Z. ai ⊒ X because otherwise ai ̸⊒ Cor X .
So X ∈ up X .

□

Proposition 1442. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice.
3◦. up Ω1a =

{ d
S

S∈Pfin coatomsZ

}
Proof.

1◦⇒2◦. Obvious.
2◦⇒3◦. Because

{ d
S

S∈Pfin coatomsZ

}
is a filter.

□

Corollary 1443. up ΩFCD = up ΩRLD.

Definition 1444. Ω1c = d(atomsA \Z).

Proposition 1445. The following is an implications tuple:
1◦. (A;Z) is a powerset filtrator.
2◦. (A;Z) is a down-aligned filtered complete lattice filtrator over an atomistic

poset and ∀α ∈ atomsZ ∃X ∈ coatomsZ : a ̸⊑ X.
3◦. Ω1c = Ω1a.

Proof.
1◦⇒2◦. Obvious.
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2◦⇒3◦. For x ∈ atomsA \Z we have Corx = ⊥ because otherwise ⊥ ≠ Corx ⊏ x.
Thus by previous x ⊑ Ω1a and so Ω1c = d(atomsA \Z) ⊑ Ω1a.

If x ∈ atoms Ω1a then x /∈ Z because otherwise Corx ̸= ⊥. So

Ω1a = latoms Ω1a = l(atoms Ω1a \ Z) ⊑ l(atomsA \Z) = Ω1c.

□

Theorem 1446. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete atomic boolean lattice.
3◦. All of the following:

(a) A is atomistic complete starrish lattice.
(b) Z is a complete atomistic lattice.
(c) (A,Z) is a filtered down-aligned filtrator with binarily meet-closed

core.
4◦. Cor′ is the lower adjoint of Ω1c ⊔A −.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Obvious.
3◦⇒4◦. It with join-closed core by theorem 534.
We will prove Cor′ X ⊑ Y ⇔ X ⊑ Ω1c ⊔ Y.
By atomisticity it is equivalent to: atomsA Cor′ X ⊆ atomsA Y ⇔ atomsA X ⊆

atomsA(Ω1c ⊔ Y); (theorem 603) atomsA Cor′ X ⊆ atomsA Y ⇔ atomsA X ⊆
atomsA Ω1c ∪ atomsA Y; what by below is equivalent to: atomsZ X ⊆ atomsZ Y ⇔
atomsA X ⊆ atomsA Ω1c ∪ atomsA Y.

Cor′ X ⊑ Y ⇔ atomsA Cor′ X ⊆ atomsA Y ⇒ atomsZ Cor′ X ⊆ atomsZ Y ⇔
atomsZ X ⊆ atomsZ Y;

atomsZ X ⊆ atomsZ Y ⇒ (theorem 599) ⇒ Cor′ X ⊑ Cor′ Y ⇒
(theorem 543) ⇒ Cor′ X ⊑ Y.

Finishing the proof atomsA X ⊆ atomsA Ω1c ∪ atomsA Y ⇔ atomsA X ⊆
(atomsA \Z) ∪ atomsA Y ⇔ atomsZ X ⊆ atomsA Y ⇔ atomsZ X ⊆ atomsZ Y.

□

Next there is an alternative proof of the above theorem. This alternative proof
requires additional condition ∀α ∈ atomsZ ∃X ∈ coatomsZ : a ̸⊑ X however.

Proof. Define Ω = Ω1a = Ω1c.
It with join-closed core by theorem 534.
It’s enough to prove that

X ⊑ Ω ⊔A Cor′ X and Cor′(Ω ⊔A Y) ⊑ Y.
Cor′(Ω ⊔A Y) = (theorem 603) = Cor′ Ω ⊔Z Cor′ Y = (proposition 1439) = ⊥Z ⊔Z

Cor′ Y ⊑ (theorem 543) ⊑ Y.
Ω ⊔A Cor′ X = datoms(Ω ⊔A Cor′ X ) = d(atoms Ω ∪ Cor′ X ) = datoms Ω ⊔

datoms X ) ⊒ d(atoms X \Z)⊔ d(atoms X ∩Z) = d((atoms X \Z)∪(atoms X ∩Z) =

datoms X = X . □

Corollary 1447. Under conditions of the last theorem Cor′

d

A
S =

d

A〈Cor′〉∗
S.

Proposition 1448. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete atomic boolean lattice.
3◦. All of the following:



17. GENERALIZED COFINITE FILTERS 285

(a) A is atomistic complete co-brouwerian lattice.
(b) Z is a complete atomistic lattice.
(c) (A,Z) is a filtered down-aligned filtrator with binarily meet-closed

core.
4◦. Cor′ X = X \∗ Ω1c

Proof.
1◦⇒2◦ Obvious.
2◦⇒3◦ Because complete atomic boolean lattice is isomorphic to a powerset.
3◦⇒4◦ Theorems 1446 and 154.

□

Proposition 1449.
1◦. ⟨ΩFCD⟩{x} = ΩU ;
2◦. ⟨ΩFCD⟩p = ⊤ for every nontrivial atomic filter p.

Proof. ⟨ΩFCD⟩{x} =
dA

y∈U (U \ {y}) = ΩU ; ⟨ΩFCD⟩p =
dA

y∈U ⊤ = ⊤. □

Proposition 1450. (FCD)ΩRLD = ΩFCD.

Proof. (FCD)ΩRLD =
dFCD up ΩRLD = ΩFCD. □

Proposition 1451. (RLD)outΩFCD = ΩRLD.

Proof. (RLD)outΩFCD =
dRLD up ΩFCD =

dRLD up ΩRLD = ΩRLD. □

Proposition 1452. (RLD)inΩFCD = ΩRLD.

Proof.

(RLD)inΩFCD = l

{
a×RLD b

a ∈ atomsF , b ∈ atomsF , a×FCD b ⊑ ΩFCD

}
=

l

{
a×RLD b

a ∈ atomsF , b ∈ atomsF ,not a and b both trivial

}
=

l

{

datoms(a×RLD b)
a ∈ atomsF , b ∈ atomsF ,not a and b both trivial

}
=

l

⋃{ atoms(a×RLD b)
a ∈ atomsF , b ∈ atomsF ,not a and b both trivial

}
=

l(nontrivial atomic reloids under A×B) = ΩRLD.

□



CHAPTER 18

Convergence of funcoids

18.1. Convergence

The following generalizes the well-known notion of a filter convergent to a point
or to a set:

Definition 1453. A filter F ∈ F (Dstµ) converges to a filter A ∈ F (Srcµ)
regarding a funcoid µ (F µ→ A) iff F ⊑ ⟨µ⟩A.

Definition 1454. A funcoid f converges to a filter A ∈ F (Srcµ) regarding
a funcoid µ where Dst f = Dstµ (denoted f

µ→ A) iff im f ⊑ ⟨µ⟩A that is iff
im f

µ→ A.

Definition 1455. A funcoid f converges to a filter A ∈ F (Srcµ) on a filter
B ∈ F (Src f) regarding a funcoid µ where Dst f = Dstµ iff f |B

µ→ A.

Obvious 1456. A funcoid f converges to a filter A ∈ F (Srcµ) on a filter
B ∈ F (Src f) regarding a funcoid µ iff ⟨f⟩B ⊑ ⟨µ⟩A.

Remark 1457. We can define also convergence for a reloid f : f µ→ A ⇔ im f ⊑
⟨µ⟩A or what is the same f µ→ A ⇔ (FCD)f µ→ A.

Theorem 1458. Let f , g be funcoids, µ, ν be endofuncoids, Dst f = Src g =
Obµ, Dst g = Ob ν, A ∈ F (Obµ). If f µ→ A,

g|⟨µ⟩A ∈ C(µ ⊓ (⟨µ⟩A ×FCD ⟨µ⟩A), ν),

and ⟨µ⟩A ⊒ A, then g ◦ f ν→ ⟨g⟩A.

Proof.

im f ⊑ ⟨µ⟩A;
⟨g⟩ im f ⊑ ⟨g⟩⟨µ⟩A;

im(g ◦ f) ⊑
〈
g|⟨µ⟩A

〉
⟨µ⟩A;

im(g ◦ f) ⊑
〈
g|⟨µ⟩A

〉〈
µ ⊓ (⟨µ⟩A ×FCD ⟨µ⟩A)

〉
A;

im(g ◦ f) ⊑
〈
g|⟨µ⟩A ◦ (µ ⊓ (⟨µ⟩A ×FCD ⟨µ⟩A))

〉
A;

im(g ◦ f) ⊑
〈
ν ◦ g|⟨µ⟩A

〉
A;

im(g ◦ f) ⊑ ⟨ν ◦ g⟩A;

g ◦ f ν→ ⟨g⟩A.

□

Corollary 1459. Let f , g be funcoids, µ, ν be endofuncoids, Dst f = Src g =
Obµ, Dst g = Ob ν, A ∈ F (Obµ). If f µ→ A, g ∈ C(µ, ν), and ⟨µ⟩A ⊒ A then
g ◦ f ν→ ⟨g⟩A.

Proof. From the last theorem and theorem 1184. □
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18.2. Relationships between convergence and continuity

Lemma 1460. Let µ, ν be endofuncoids, f ∈ FCD(Obµ,Ob ν), A ∈ F (Obµ),
Src f = Obµ, Dst f = Ob ν. If f ∈ C(µ|A, ν) then

f |⟨µ⟩A
ν→ ⟨f⟩A ⇔ ⟨f ◦ µ|A⟩A ⊑ ⟨ν ◦ f⟩A.

Proof.

f |⟨µ⟩A
ν→ ⟨f⟩A ⇔ im f |⟨µ⟩A ⊑ ⟨ν⟩⟨f⟩A ⇔
⟨f⟩⟨µ⟩A ⊑ ⟨ν⟩⟨f⟩A ⇔ ⟨f ◦ µ⟩A ⊑ ⟨ν ◦ f⟩A ⇔ ⟨f ◦ µ|A⟩A ⊑ ⟨ν ◦ f⟩A.

□

Theorem 1461. Let µ, ν be endofuncoids, f ∈ FCD(Obµ,Ob ν), A ∈
F (Obµ), Src f = Obµ, Dst f = Ob ν. If f ∈ C(µ|A, ν) then f |⟨µ⟩A

ν→ ⟨f⟩A.
Proof.

f |⟨µ⟩A
ν→ ⟨f⟩A ⇔ (by the lemma) ⇔ ⟨f ◦ µ|A⟩A ⊑ ⟨ν ◦ f⟩A ⇐

f ◦ µ|A ⊑ ν ◦ f ⇔ f ∈ C(µ|A, ν).
□

Corollary 1462. Let µ, ν be endofuncoids, f ∈ FCD(Obµ,Ob ν), A ∈
F (Obµ), Src f = Obµ, Dst f = Ob ν. If f ∈ C(µ, ν) then f |⟨µ⟩A

ν→ ⟨f⟩A.
Theorem 1463. Let µ, ν be endofuncoids, f ∈ FCD(Obµ,Ob ν), A ∈ F (Obµ)

be an ultrafilter, Src f = Obµ, Dst f = Ob ν. f ∈ C(µ|A, ν) iff f |⟨µ⟩A
ν→ ⟨f⟩A.

Proof.

f |⟨µ⟩A
ν→ ⟨f⟩A ⇔ (by the lemma) ⇔ ⟨f ◦ µ|A⟩A ⊑ ⟨ν ◦ f⟩A ⇔

(used the fact that A is an ultrafilter)
f ◦ µ|A ⊑ ν ◦ f |A ⇔ f ◦ µ|A ⊑ ν ◦ f ⇔ f ∈ C(µ|A, ν).

□

18.3. Convergence of join

Proposition 1464. dS
µ→ A ⇔ ∀F ∈ S : F µ→ A for every collection S of

filters on Dstµ and filter A on Srcµ, for every funcoid µ.
Proof.

lS
µ→ A ⇔ lS ⊑ ⟨µ⟩A ⇔ ∀F ∈ S : F ⊑ ⟨µ⟩A ⇔ ∀F ∈ S : F µ→ A.

□

Corollary 1465. dF
µ→ A ⇔ ∀f ∈ F : f µ→ A for every collection F of

funcoids f such that Dst f = Dstµ and filter A on Srcµ, for every funcoid µ.
Proof. By corollary 896 we have

lF
µ→ A ⇔ im lF

µ→ A ⇔ l⟨im⟩∗
F

µ→ A ⇔

∀f ∈ ⟨im⟩∗
F : F µ→ A ⇔ ∀f ∈ F : im f

µ→ A ⇔ ∀f ∈ F : f µ→ A.
□

Theorem 1466. f |B0⊔B1

µ→ A ⇔ f |B0

µ→ A ∧ f |B1

µ→ A. for all filters A, B0,
B1 and funcoids µ, f and g on suitable sets.

Proof. As easily follows from distributivity of the lattices of funcoids we have
f |B0⊔B1 = f |B0 ⊔ f |B1 . Thus our theorem follows from the previous corollary. □
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18.4. Limit

Definition 1467. limµ f = a iff f
µ→↑Src µ {a} for a T2-separable funcoid µ

and a non-empty funcoid f such that Dst f = Dstµ.

It is defined correctly, that is f has no more than one limit.

Proof. Let limµ f = a and limµ f = b. Then im f ⊑ ⟨µ⟩∗@{a} and im f ⊑
⟨µ⟩∗@{b}.

Because f ̸= ⊥FCD(Src f,Dst f) we have im f ̸= ⊥F(Dst f); ⟨µ⟩∗@{a}⊓⟨µ⟩∗@{b} ≠
⊥F(Dst f); ↑Src µ {b} ⊓

〈
µ−1〉⟨µ⟩∗@{a} ̸= ⊥F(Src µ); ↑Src µ {b} ⊓

〈
µ−1 ◦ µ

〉
@{a} ≠

⊥F(Src µ); @{a}
[
µ−1 ◦ µ

]
@{b}. Because µ is T2-separable we have a = b. □

Definition 1468. limµ
B f = limµ(f |B).

Remark 1469. We can also in an obvious way define limit of a reloid.

18.5. Generalized limit

18.5.1. Definition. Let µ and ν be endofuncoids. Let G be a transitive per-
mutation group on Obµ.

For an element r ∈ G we will denote ↑ r =↑FCD(Ob µ,Ob µ) r.
We require that µ and every r ∈ G commute, that is

µ◦ ↑ r =↑ r ◦ µ.
We require for every y ∈ Ob ν

ν ⊒ ⟨ν⟩∗@{y} ×FCD ⟨ν⟩∗@{y}. (19)

Proposition 1470. Formula (19) follows from ν ⊒ ν ◦ ν−1.

Proof. Let ν ⊒ ν ◦ ν−1. Then
⟨ν⟩∗@{y} ×FCD ⟨ν⟩∗@{y} =

⟨ν⟩@{y} ×FCD ⟨ν⟩@{y} =
ν ◦ (↑Ob ν {y}×FCD ↑Ob ν {y}) ◦ ν−1 =

ν◦ ↑FCD(Ob ν,Ob ν) ({y} × {y}) ◦ ν−1 ⊑

ν ◦ 1FCD
Ob ν ◦ ν−1 =
ν ◦ ν−1 ⊑ ν.

□

Remark 1471. The formula (19) usually works if ν is a proximity. It does not
work if µ is a pretopology or preclosure.

We are going to consider (generalized) limits of arbitrary functions acting from
Obµ to Ob ν. (The functions in consideration are not required to be continuous.)

Remark 1472. Most typicallyG is the group of translations of some topological
vector space.

Generalized limit is defined by the following formula:

Definition 1473. xlim f
def=
{

ν◦f◦↑r
r∈G

}
for any funcoid f .

Remark 1474. Generalized limit technically is a set of funcoids.

We will assume that dom f ⊒ ⟨µ⟩∗@{x}.

Definition 1475. xlimx f = xlim f |⟨µ⟩∗@{x}.
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Obvious 1476. xlimx f =
{

ν◦f |⟨µ⟩∗@{x}◦↑r

r∈G

}
.

Remark 1477. xlimx f is the same for funcoids µ and Complµ.

The function τ will define an injection from the set of points of the space ν
(“numbers”, “points”, or “vectors”) to the set of all (generalized) limits (i.e. values
which xlimx f may take).

Definition 1478. τ(y) def=
{

⟨µ⟩∗@{x}×FCD⟨ν⟩∗@{y}
x∈D

}
.

Proposition 1479. τ(y) =
{

(⟨µ⟩∗@{x}×FCD⟨ν⟩∗@{y})◦↑r
r∈G

}
for every (fixed) x ∈

D.

Proof.

(⟨µ⟩∗@{x} ×FCD ⟨ν⟩∗@{y})◦ ↑ r =〈
↑ r−1〉⟨µ⟩∗@{x} ×FCD ⟨ν⟩∗@{y} =

⟨µ⟩
〈
↑ r−1〉∗@{x} ×FCD ⟨ν⟩∗@{y} =

⟨µ⟩∗@{r−1x} ×FCD ⟨ν⟩∗@{y} ∈
{

⟨µ⟩∗@{x} ×FCD ⟨ν⟩∗@{y}
x ∈ D

}
.

Reversely ⟨µ⟩∗@{x} ×FCD ⟨ν⟩∗@{y} = (⟨µ⟩∗@{x} ×FCD ⟨ν⟩∗@{y})◦ ↑ e where e
is the identify element of G. □

Proposition 1480. τ(y) = xlim(⟨µ⟩∗@{x}×FCD ↑Base(Ob ν) {y}) (for every x).
Informally: Every τ(y) is a generalized limit of a constant funcoid.

Proof.

xlim(⟨µ⟩∗@{x}×FCD ↑Base(Ob ν) {y}) ={
ν ◦ (⟨µ⟩∗@{x}×FCD ↑Base(Ob ν) {y})◦ ↑ r

r ∈ G

}
={

(⟨µ⟩∗@{x} ×FCD ⟨ν⟩∗@{y})◦ ↑ r
r ∈ G

}
= τ(y).

□

Theorem 1481. If f is a function and f |⟨µ⟩∗@{x} ∈ C(µ, ν) and
⟨µ⟩∗@{x} ⊒↑Ob µ {x} then xlimx f = τ(fx).

Proof. f |⟨µ⟩∗@{x} ◦ µ ⊑ ν ◦ f |⟨µ⟩∗@{x} ⊑ ν ◦ f ; thus ⟨f⟩⟨µ⟩∗@{x} ⊑
⟨ν⟩⟨f⟩∗@{x}; consequently we have

ν ⊒ ⟨ν⟩⟨f⟩∗@{x} ×FCD ⟨ν⟩⟨f⟩∗@{x} ⊒ ⟨f⟩⟨µ⟩∗@{x} ×FCD ⟨ν⟩⟨f⟩∗@{x}.
ν ◦ f |⟨µ⟩∗@{x} ⊒

(⟨f⟩⟨µ⟩∗@{x} ×FCD ⟨ν⟩⟨f⟩∗@{x}) ◦ f |⟨µ⟩∗@{x} =
(f |⟨µ⟩∗{x})−1⟨f⟩⟨µ⟩∗@{x} ×FCD ⟨ν⟩⟨f⟩∗@{x} ⊒〈
idFCD

dom f |⟨µ⟩∗{x}

〉
⟨µ⟩∗@{x} ×FCD ⟨ν⟩⟨f⟩∗@{x} ⊒

dom f |⟨µ⟩∗@{x} ×FCD ⟨ν⟩⟨f⟩∗@{x} =
⟨µ⟩∗@{x} ×FCD ⟨ν⟩⟨f⟩∗@{x}.
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im(ν ◦ f |⟨µ⟩∗@{x}) = ⟨ν⟩⟨f⟩∗@{x};

ν ◦ f |⟨µ⟩∗@{x} ⊑

⟨µ⟩∗@{x} ×FCD im(ν ◦ f |⟨µ⟩∗@{x}) =
⟨µ⟩∗@{x} ×FCD ⟨ν⟩⟨f⟩∗@{x}.

So ν ◦ f |⟨µ⟩∗@{x} = ⟨µ⟩∗@{x} ×FCD ⟨ν⟩⟨f⟩∗@{x}.
Thus xlimx f =

{
(⟨µ⟩∗@{x}×FCD⟨ν⟩⟨f⟩∗@{x})◦↑r

r∈G

}
= τ(fx). □

Remark 1482. Without the requirement of ⟨µ⟩∗@{x} ⊒↑Ob µ {x} the last
theorem would not work in the case of removable singularity.

Theorem 1483. Let ν ⊑ ν ◦ ν. If f |⟨µ⟩∗@{x}
ν→↑Ob µ {y} then xlimx f = τ(y).

Proof. im f |⟨µ⟩∗@{x} ⊑ ⟨ν⟩∗@{y}; ⟨f⟩⟨µ⟩∗@{x} ⊑ ⟨ν⟩∗@{y};

ν ◦ f |⟨µ⟩∗@{x} ⊒

(⟨ν⟩∗@{y} ×FCD ⟨ν⟩∗@{y}) ◦ f |⟨µ⟩∗@{x} =〈
(f |⟨µ⟩∗@{x})−1〉⟨ν⟩∗@{y} ×FCD ⟨ν⟩∗@{y} =〈
idFCD

⟨µ⟩∗{x} ◦f−1
〉

⟨ν⟩∗@{y} ×FCD ⟨ν⟩∗@{y} ⊒〈
idFCD

⟨µ⟩∗{x} ◦f−1
〉

⟨f⟩⟨µ⟩∗@{x} ×FCD ⟨ν⟩∗@{y} =〈
idFCD

⟨µ⟩∗{x}

〉〈
f−1 ◦ f

〉
⟨µ⟩∗@{x} ×FCD ⟨ν⟩∗@{y} ⊒〈

idFCD
⟨µ⟩∗{x}

〉〈
idFCD

⟨µ⟩∗{x}

〉
⟨µ⟩∗@{x} ×FCD ⟨ν⟩∗@{y} =

⟨µ⟩∗@{x} ×FCD ⟨ν⟩∗@{y}.

On the other hand, f |⟨µ⟩∗@{x} ⊑ ⟨µ⟩∗@{x} ×FCD ⟨ν⟩∗@{y};
ν ◦ f |⟨µ⟩∗@{x} ⊑ ⟨µ⟩∗@{x} ×FCD ⟨ν⟩⟨ν⟩∗@{y} ⊑ ⟨µ⟩∗@{x} ×FCD ⟨ν⟩∗@{y}.
So ν ◦ f |⟨µ⟩∗@{x} = ⟨µ⟩∗@{x} ×FCD ⟨ν⟩∗@{y}.
xlimx f =

{
ν◦f |⟨µ⟩∗@{x}◦↑r

r∈G

}
=
{

(⟨µ⟩∗@{x}×FCD⟨ν⟩∗@{y})◦↑r
r∈G

}
= τ(y). □

Corollary 1484. If limν
⟨µ⟩∗@{x} f = y then xlimx f = τ(y) (provided that

ν ⊑ ν ◦ ν).

We have injective τ if ⟨ν⟩∗@{y1} ⊓ ⟨ν⟩∗@{y2} = ⊥F(Ob µ) for every distinct
y1, y2 ∈ Ob ν that is if ν is T2-separable.

18.6. Expressing limits as implications

When you studied limits in the school, you was told that limx→α f(x) = β
when x → α implies f(x) → β. Now let us formalize this.

Proposition 1485. The following are pairwise equivalent for funcoids µ, ν, f
of suitable (“compatible”) sources and destinations:

1◦. f |⟨µ⟩∗{α}
ν→ β;

2◦. ∀x ∈ F (Obµ) :
(
x

µ→ α ⇒ ⟨f⟩x ν→ β
)

;

3◦. ∀x ∈ atomsF(Ob µ) :
(
x

µ→ α ⇒ ⟨f⟩x ν→ β
)

.

Proof.
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1◦⇔2◦.

∀x ∈ F (Obµ) :
(
x

µ→ α ⇒ ⟨f⟩x ν→ β
)

⇔

∀x ∈ F (Obµ) : (x ⊑ ⟨µ⟩α ⇒

⟨f⟩x ⊑ ⟨ν⟩β) ⇔ ⟨f⟩⟨µ⟩α ⊑ ⟨ν⟩β ⇔ f |⟨µ⟩∗{α}
ν→ β.

2◦⇒3◦. Obvious.
3◦⇒2◦. Let 3◦ hold. Then for x ∈ F (Obµ) we have x µ→ α ⇔ x ⊑ ⟨µ⟩α ⇔ ∀x′ ∈

atomsx : x′ ⊑ ⟨µ⟩α ⇔ ∀x′ ∈ atomsx : x′ µ→ α ⇒ ∀x′ ∈ atomsx : ⟨f⟩x′ ν→
β ⇔ ∀x′ ∈ atomsx : ⟨f⟩x′ ⊑ ⟨ν⟩β ⇔ dx′∈atoms x⟨f⟩x′ ⊑ ⟨ν⟩β ⇔ ⟨f⟩x ⊑
⟨ν⟩β ⇔ ⟨f⟩x ν→ β.

□

Lemma 1486. If f is an enterely defined monovalued funcoid and x is an ul-
trafilter, y is a filter, then ⟨f⟩x ⊑ y ⇔ x ⊑ ⟨f−1⟩y.

Proof. ⟨f⟩x is an ultrafilter. ⟨f⟩x ⊑ y ⇔ ⟨f⟩x ̸≍ y ⇔ x ̸≍ ⟨f−1⟩y ⇔ x ⊑
⟨f−1⟩y. □

Proposition 1487. The following are pairwise equivalent for funcoids µ, ν,
f , g of suitable (“compatible”) sources and destinations provided that g is entirely
defined and monovalued:

1◦. (f ◦ g−1)|⟨µ⟩∗{α}
ν→ β;

2◦. ∀x ∈ F (Obµ) :
(

⟨g⟩x µ→ α ⇒ ⟨f⟩x ν→ β
)

;

3◦. ∀x ∈ atomsF(Ob µ) :
(

⟨g⟩x µ→ α ⇒ ⟨f⟩x ν→ β
)

.

Proof.
1◦⇔3◦. Equivalently transforming: (f ◦ g−1)|⟨µ⟩∗{α}

ν→ β; ⟨f⟩⟨g−1⟩∗⟨µ⟩∗{α} ⊑
⟨ν⟩∗{β}; for every x ∈ atomsF(Ob µ) we have x ⊑ ⟨g−1⟩⟨µ⟩∗{α} ⇒ ⟨f⟩x ⊑
⟨ν⟩∗{β}; what by the lemma is equivalent to ⟨g⟩x ⊑ ⟨µ⟩∗{α} ⇒ ⟨f⟩x ⊑
⟨ν⟩∗{β} that is ⟨g⟩x µ→ α ⇒ ⟨f⟩x ν→ β.

3◦⇔2◦. Let x ∈ F (Obµ) and 3◦ holds. Let ⟨g⟩x µ→ α. Then ∀x′ ∈ atomsx :
⟨g⟩x′ µ→ α and thus ⟨f⟩x′ ν→ β that is ⟨f⟩x′ ⊑ ⟨ν⟩β. ⟨f⟩x =

dx′∈atoms x⟨f⟩x′ ⊑ ⟨ν⟩β that is ⟨f⟩x ν→ β.
□

Problem 1488. Can the theorem be strenhtened for: a. non-monovalued; b.
not entirely defined g? (The problem seems easy but I have not checked it.)



CHAPTER 19

Unfixed categories

FiXme: This is a draft not thoroughly checked for errors.
Unfixed categories like my other ideas is a great idea. However, previously I

thought it is also great for studying funcoids and reloids, because unfixed funcoids
is a generalization of funcoids, etc.

Unfixed funcoids are not a so important generalization as I imagined, be-
cause there is a simpler and yet more general generalization of funcoids: Every
Hom-set of small funcoids can be embedded into FCD(

⋃
U ,
⋃

U ) where U is the
Grothendieck universe. Thus in principle it would be enough to study the semigroup
FCD(

⋃
U ,
⋃

U ) rather than all categories of funcoids.
In this chapter I show how to embed one Hom-set into another Hom-set, so

this chapter is indeed important. But the topic after which this chapter was titled,
“Unfixed categories” is not so much important for our book.

19.1. Axiomatics for unfixed morphisms

Definition 1489. Category with restricted identities is defined axiomatically:
Restricted identity idC(A,B)

X and projection A 7→ [A] are described by the axioms:
1◦. C is a category with the set of objects Z;
2◦. every Hom-set C(A,B) is a lattice;
3◦. Z and A are lattices;
4◦. A → [A] is a lattice embedding from Z to A;
5◦. idC(A,B)

X ∈ HomC(A,B) whenever A ∋ X ⊑ [A] ⊓ [B];
6◦. idC(A,A)

[A] = 1C
A;

7◦. idC(B,C)
Y ◦ idC(A,B)

X = idC(A,C)
X⊓Y whenever A ∋ X ⊑ [A] ⊓ [B] and A ∋ Y ⊑

[B] ⊓ [C];
8◦. ∀A ∈ A∃B ∈ Z : A ⊑ [B].

For a partially ordered category with restricted identities introduce additional
axiom X ⊑ Y ⇒ idC(A,B)

X ⊑ idC(A,B)
Y .

For dagger categories with restricted identities introduce additional axiom(
idC(A,B)

X

)†
= idC(B,A)

X .

Definition 1490. I call a category with restricted identities injective when the
axiom X ̸= Y ⇒ idC(A,B)

X ̸= idC(A,B)
Y whenever X,Y ⊑ [A] ⊓ [B] holds.

Definition 1491. Define EA,B
C = idC(A,B)

[A]⊓[B].

Proposition 1492.
1◦. If [A] ⊑ [B] then EA,B

C is a monomorphism.
2◦. If [A] ⊒ [B] then EA,B

C is an epimorphism.

Proof. We’ll prove only the first as the second is dual.
Let EA,B

C ◦f = EA,B
C ◦g. Then EB,A

C ◦EA,B
C ◦f = EB,A

C ◦EA,B
C ◦g; 1A ◦f = 1A ◦g;

f = g. □

292
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Proposition 1493. EB,C
C ◦ EA,B

C = EA,C
C if B ⊒ A ⊓ C (for every sets A, B,

C).

Proof. EB,C
C ◦ EA,B

C = EA,C
C is equivalent to:

idC(B,C)
B⊓C ◦ idC(A,B)

A⊓B = idC(A,C)
A⊓C what is obviously true. □

Definition 1494. idC(A)
X = idC(A,A)

[X] .

19.2. Rectangular embedding-restriction

Definition 1495. ιB0,B1f = EDst f,B1
C ◦ f ◦ EB0,Src f

C for f ∈ HomC(A0, A1).

For brevity ιBf = ιB,Bf .

Obvious 1496. ιB0,B1f ⊑ f .

Proposition 1497. ιSrc f,Dst ff = f .

Proof.

ιSrc f,Dst ff =

EDst f,Dst f
C ◦ f ◦ ESrc f,Src f

C =

1Dst f
C ◦ f ◦ 1Src f

C = f.

□

Proposition 1498. The function ιB0,B1 |f∈HomC(A0,A1) is injective, provided
that A0 ⊑ B0 and A1 ⊑ B1.

Proof. Because EA1,B1
C is a monomorphism and EA0,B0

C is an epimorphism. □

Corollary 1499. The function ιB0,B1 |f∈HomC(A0,A1) is order embedding if
A0 ⊑ B0 ∧A1 ⊑ B1 for ordered categories with restricted identities.

19.3. Image and domain

Let define that S A =
{

K∈Z
∃X∈A:X⊆K

}
holds not only for filters but for any set A

of sets.

Obvious 1500. S A ⊇ A.

Definition 1501.

1◦. IM f =
{

Y ∈Z

EY,Dst f
C ◦EDst f,Y

C ◦f=f

}
;

2◦. DOM f =
{

X∈Z

f◦ESrc f,X
C ◦EX,Src f

C =f

}
.

Obvious 1502.

1◦. IM f =
{

Y ∈Z

idC(Dst f,Dst f)
[Y ]⊓[Dst f] ◦f=f

}
=
{

Y ∈Z

idC(Dst f)
Y ⊓Dst f

◦f=f

}
;

2◦. DOM f =
{

X∈Z

f◦idC(Src f,Src f)
[X]⊓[Src f] =f

}
=
{

X∈Z

f◦idC(Src f,Src f)
X⊓Src f

=f

}
.

Definition 1503.
1◦. Im f =

{
Y ∈IM f
Y ⊑Dst f

}
;

2◦. Dom f =
{

X∈DOM f
X⊑Src f

}
.

Proposition 1504.
1◦. IM f = S Im f ;
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2◦. DOM f = S Dom f ;
3◦. Im f = ⟨Dst f∩⟩∗ IM f ;
4◦. Dom f = ⟨Dst f∩⟩∗ DOM f .

Proof. IM f =
{

Y ∈Z

idC(Dst f,Dst f)
[Y ]⊓[Dst f] ◦f=f

}
.

Suppose Y ∈ IM f . Then take Y ′ = Y ⊓Dst f . We have Y ⊒ Y ′ and Y ′ ∈ Im f .
So Y ∈ S Im f . If Y ∈ S Im f then Y ∈ IM f obviously. So IM f = S Im f .

⟨Dst f∩⟩∗ IM f ⊆ Im f is obvious. If Im f ⊆ ⟨Dst f∩⟩∗ IM f is also obvious.
The rest follows from symmetry. □

Conjecture 1505. Im f may be not a filter for an injective category with
restricted morphisms.

Proposition 1506. Dom f =
{

X∈Z

X⊑Src f,f◦idC(Dst f)
X

=f

}
.

Proof. Dom f = ⟨Dst f∩⟩∗
{

X∈Z

f◦idC(Src f,Src f)
[X]⊓[Src f] =f

}
=
{

X∈Z

X⊑Src f,f◦idC(Dst f)
X

=f

}
.

□

Proposition 1507. Dst f ∈ Im f ; Src f ∈ Dom f for every morphism f of a
category with restricted identities.

Proof. Prove Dst f ∈ Im f (the other is similar): We need to prove that
EDst f,Dst f

C ◦EDst f,Dst f
C ◦f = f what follows from EDst f,Dst f

C ◦EDst f,Dst f
C = 1Dst f . □

Proposition 1508. IM f , Im f , DOM f , Dom f are upper sets.

Proof. For Im f , Dom f it follows from the previous proposition.
For IM f , DOM f it follows from the thesis for Im f , Dom f . □

Definition 1509.
1◦. An ordered category with restricted identities is with ordered image iff

f ⊑ g ⇒ IM f ⊆ IM g.
2◦. An ordered category with restricted identities is with ordered domain iff

f ⊑ g ⇒ DOM f ⊆ DOM g.
3◦. An ordered category with restricted identities is with ordered domain and

image iff it is both with ordered domain and with ordered image.

Obvious 1510.
1◦. An ordered category with restricted identities is with ordered image iff

f ⊑ g ⇒ Im f ⊆ Im g.
2◦. An ordered category with restricted identities is with ordered domain iff

f ⊑ g ⇒ Dom f ⊆ Dom g.
3◦. An ordered category with restricted identities is with ordered domain and

image iff it is both with ordered domain and with ordered image.

Obvious 1511.
1◦. For an ordered category C with restricted identities to be with ordered

image it’s enough that idC(Dst f,Dst f)
[X] ◦f = f ∧g ⊑ f ⇒ idC(Dst f,Dst f)

[X] ◦g =
g for every parallel morphisms f and g and Z ∋ X ⊑ Dst f .

2◦. For an ordered category C with restricted identities to be with ordered
domain it’s enough that f ◦idC(Src f,Src f)

[X] = f∧g ⊑ f ⇒ g◦idC(Src f,Src f)
[X] =

g for every parallel morphisms f and g and Z ∋ X ⊑ Src f .

Conjecture 1512. There exists a category with restricted identities which is
not with ordered image.
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Obvious 1513. For an ordered category with restricted identities with ordered
domain and image we have ιSrc f,Dst f ιA,Bf = f ∧ g ⊑ f ⇒ ιSrc f,Dst f ιA,Bg = g for
parallel morphisms f and g.

Definition 1514.
1◦. imf = min Im f ;
2◦. domf = min Dom f .

Note 1515. It seems that im and dom are defined not for every category with
restricted identities.

Proposition 1516.
1◦. imf = min IM f ;
2◦. domf = min DOM f .

Proof. It follows from IM f = S Im f (and likewise for domf). □

Theorem 1517. DOM(g◦f) ⊇ DOM f , IM(g◦f) ⊇ IM g, Dom(g◦f) ⊇ Dom f ,
Im(g ◦ f) ⊇ Im g.

Proof. EY,Dst f
C ◦ EDst f,Y

C ◦ g ◦ f = g ◦ f ⇐ EY,Dst f
C ◦ EDst f,Y

C ◦ g = g and it
implies IM(g ◦ f) ⊇ IM g. The rest follows easily. □

Corollary 1518. dom(g ◦ f) ⊑ domf , im(g ◦ f) ⊑ img whenever dom/im are
defined.

19.4. Equivalent morphisms

Proposition 1519. ιA,BιX,Y f = ιA,Bf for every sets A, B, X, Y whenever
DOM f and IM f are filters and X ∈ DOM f , Y ∈ IM f .

Proof.

ιA,Bf = EDst f,B
C ◦ f ◦ EA,Src f

C =
(by definition of IM f and DOM f) =

EDst f,B
C ◦ EY,Dst f

C ◦ EDst f,Y
C ◦ f ◦ EX,Src f

C ◦ ESrc f,X
C ◦ EA,Src f

C =

EY,B
C ◦ EDst f,Y

C ◦ f ◦ EX,Src f
C ◦ EA,X

C =
ιA,BιX,Y f

because

EDst f,B ◦ EY,Dst f ◦ EDst f,Y =

idC(Dst f,B)
Y ⊓Dst f⊓B = idC(Y,B)

Y ⊓B ◦ idC(Dst f,Y )
Y ⊓Dst f =

EY,B ◦ EDst f,Y

and thus EDst f,B
C ◦ EY,Dst f

C ◦ EDst f,Y
C = EY,B

C ◦ EDst f,Y
C and similarly for EX,Src f

C ◦
ESrc f,X

C ◦ EA,Src f
C . □

Definition 1520. I call two morphisms f ∈ C(A0, B0) and g ∈ C(A1, B1) of a
category with restricted morphisms equivalent (and denote f ∼ g) when

ιA0⊔A1,B0⊔B1f = ιA0⊔A1,B0⊔B1g.

Proposition 1521. f ∼ g iff ιA,Bf = ιA,Bg for some A ∈ DOM f ∩
DOM g, B ∈ IM f ∩ IM g.



19.4. EQUIVALENT MORPHISMS 296

Proof. Both
ιA,Bf = ιA,Bg ⇒ ιA0⊔A1,B0⊔B1f = ιA0⊔A1,B0⊔B1g

and
ιA,Bf = ιA,Bg ⇐ ιA0⊔A1,B0⊔B1f = ιA0⊔A1,B0⊔B1g

follow from proposition 1519. □

Theorem 1522. Let f : A0 → B0 and g : A1 → B1 (for a partially ordered
category with restricted identities). The following are pairwise equivalent:

1◦. f ∼ g;
2◦. ιA1,B1f = g and ιA0,B0g = f ;
3◦. ιA1,B1f ⊒ g and ιA0,B0g ⊒ f .

Proof.
1◦⇒2◦. ιA0⊔A1,B0⊔B1f = ιA0⊔A1,B0⊔B1g; ιA1,B1ιA0⊔A1,B0⊔B1f =

ιA1,B1ιA0⊔A1,B0⊔B1g; ιA1,B1f = ιA1,B1g; ιA1,B1f = g. ιA0,B0g = f
is similar.

3◦⇒1◦. Let ιA1,B1f ⊒ g and ιA0,B0g ⊒ f .
ιA1,B1ιA0,B0g ⊒ g;
EB0,B1 ◦ EB1,B0 ◦ g ◦ EA0,A1 ◦ EA1,A0 ⊒ g;
idC(B1,B1)

[B0]⊓[B1] ◦g ◦ idC(A1,A1)
[A0]⊓[A1] ⊒ g; idC(B1,B1)

[B0]⊓[B1] ◦g ⊒ g; idC(B1,B1)
[B0]⊓[B1] ◦g = g;

idC(B0⊓B1,B1)
[B0]⊓[B1] ◦ idC(B1,B0⊓B1)

[B0]⊓[B1] ◦g = g; EB0⊓B1,B1 ◦ EB1,B0⊓B1 ◦ g = g.
Thus B0 ⊓B1 ∈ Im g. Similarly A0 ⊓A1 ∈ Dom g.

So ιA0⊔A1,B0⊔B1f = ιA0⊔A1,B0⊔B1ιA0,B0g = ιA0⊔A1,B0⊔B1g.
2◦⇒3◦. Obvious.

□

Proposition 1523. Above defined equivalence of morphisms (for a small cat-
egory) is an equivalence relation.

Proof.
Reflexivity. Obvious.
Symmetry. Obvious.
Transitivity. Let f ∼ g and g ∼ h for f : A0 → B0, g : A1 → B1, h :

A2 → B2. Then ιA0⊔A1,B0⊔B1f = ιA0⊔A1,B0⊔B1g and ιA1⊔A2,B1⊔B2g =
ιA1⊔A2,B1⊔B2h.

Thus
ιA0⊔A1⊔A2,B0⊔B1⊔B2ιA0⊔A1,B0⊔B1f = ιA0⊔A1⊔A2,B0⊔B1⊔B2ιA0⊔A1,B0⊔B1g

and
ιA0⊔A1⊔A2,B0⊔B1⊔B2ιA1⊔A2,B1⊔B2g = ιA0⊔A1⊔A2,B0⊔B1⊔B2ιA1⊔A2,B1⊔B2h

that is (proposition 1519)
ιA0⊔A1⊔A2,B0⊔B1⊔B2f = ιA0⊔A1⊔A2,B0⊔B1⊔B2g

and
ιA0⊔A1⊔A2,B0⊔B1⊔B2g = ιA0⊔A1⊔A2,B0⊔B1⊔B2h.

Combining, ιA0⊔A1⊔A2,B0⊔B1⊔B2f = ιA0⊔A1⊔A2,B0⊔B1⊔B2h and thus
ιA0⊔A2,B0⊔B2ιA0⊔A1⊔A2,B0⊔B1⊔B2f = ιA0⊔A2,B0⊔B2ιA0⊔A1⊔A2,B0⊔B1⊔B2h;

(again proposition 1519) ιA0⊔A2,B0⊔B2f = ιA0⊔A2,B0⊔B2h that is f ∼ h.
□

Proposition 1524. [f ] =
{

ιA,Bf
A∈DOM f,B∈IM f

}
.
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Proof. If A ∈ DOM f , B ∈ IM f then
ιA⊔Src f,B⊔Dst f ιA,Bf = ιA⊔Src f,B⊔Dst ff.

Thus ιA,Bf ∼ f that is ιA,Bf ∈ [f ].
Let now g ∈ [f ] that is f ∼ g;

ιSrc f⊔Src g,Dst f⊔Dst gf = ιSrc f⊔Src g,Dst f⊔Dst gg.

Take A = Src g, B = Dst g. We have
ιA,BιSrc f⊔Src g,Dst f⊔Dst gf = ιA,BιSrc f⊔Src g,Dst f⊔Dst gg;

ιA,Bf = ιA,Bg = g.

□

Proposition 1525.

1◦. IM f =
{

Y ∈Z

EDst f,Y
C ◦f∼f

}
;

2◦. DOM f =
{

X∈Z

f◦EX,Src f
C ∼f

}
.

Proof.

EDst f,Y
C ◦ f ∼ f ⇔ ιSrc f,Y ⊔Dst f (EDst f,Y

C ◦ f) = ιSrc f,Y ⊔Dst ff ⇔

EY,Y ⊔Dst f ◦ EDst f,Y ◦ f ◦ ESrc f,Src f = EDst f,Y ⊔Dst f ◦ f ◦ ESrc f,Src f ⇔

EY,Y ⊔Dst f ◦ EDst f,Y ◦ f = EDst f,Y ⊔Dst f ◦ f ⇔ (proposition 1492)
⇔ EY ⊔Dst f,Dst f ◦ EY,Y ⊔Dst f ◦ EDst f,Y ◦ f = EY ⊔Dst f,Dst f ◦ EDst f,Y ⊔Dst f ◦ f ⇔

EY,Dst f ◦ EDst f,Y ◦ f = f.

From this our thesis follows obviously. □

Proposition 1526. ιA1,B1ιA0,B0f ⊑ ιA1,B1f .

Proof.

ιA1,B1ιA0,B0f =
EB0,B1 ◦ EDst f,B0 ◦ f ◦ EA0,Src f ◦ EA1,A0 =

idC(B0,B1)
[B0]⊓[B1] ◦ idC(Dst f,B0)

[Dst f ]⊓[B0] ◦f ◦ idC(A0,Src f)
[A0]⊓[Src f ] ◦ idC(A1,A0)

[A1]⊓[A0] =

idC(Dst f,B1)
[Dst f ]⊓[B0]⊓[B1] ◦f ◦ idC(A1,Src f)

[A0]⊓[A1]⊓[Src f ] ⊑

idC(Dst f,B1)
[Dst f ]⊓[B1] ◦f ◦ idC(A1,Src f)

[A1]⊓[Src f ] =
ιA1,B1f.

□

19.5. Binary product

Definition 1527. The category with binary product morphism is a category
with restricted identities and additional axioms

1◦. idC(B,B)
Y ◦f ◦ idC(A,A)

X = f ⊓ (X ×A,B Y ) (holding for every A,B ∈ Z, A ∋
X ⊑ [A], A ∋ Y ⊑ [B], X ×A,B Y ∈ C(A,B) and morphism f ∈ C(A,B));

2◦. ιA1,B1(X ×A0,B0 Y ) = X ×A1,B1 Y whenever X ⊑ [A0] ⊓ [A1] and Y ⊑
[B0] ⊓ [B1].

Proposition 1528. The second axiom is equivalent to the following axiom:
1◦. f ∼ X ×A0,B0 Y ⇔ f = X ×A1,B1 Y whenever X ⊑ [A0] ⊓ [A1] and

Y ⊑ [B0] ⊓ [B1], f : A1 → B1.
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Proof.
⇐. Obvious.
⇒. f ∼ X ×A0,B0 Y ⇐ f = X ×A1,B1 Y because ιA1,B1(X ×A0,B0 Y ) =

X ×A1,B1 Y and ιA0,B0(X ×A1,B1 Y ) = X ×A0,B0 Y .
Let’s prove f ∼ X ×A0,B0 Y ⇒ f = X ×A1,B1 Y . Really, if f ∼ X ×A0,B0 Y

then f = ιA1,B1f ∼ ιA1,B1(X ×A0,B0 Y ) = X ×A1,B1 Y and thus f = X ×A1,B1 Y .
□

Proposition 1529. [A] ×A,B [B] is the greatest morphism ⊤C(A,B) : A → B.

Proof. It’s enough to prove f ⊓ ([A] ×A,B [B]) = f for every f : A → B.
Really, f ⊓ ([A] ×A,B [B]) = idC(B,B)

B ◦f ◦ idC(A,A)
A = 1B ◦ f ◦ 1A = f . □

Proposition 1530. For every category with binary product morphism

X ×A,B Y = idC(B,B)
Y ◦⊤C(A,B) ◦ idC(A,A)

X

Proof. X ×A,B Y ⊒ idC(B,B)
Y ◦⊤C(A,B) ◦ idC(A,A)

X because idC(B,B)
Y ◦⊤C(A,B) ◦

idC(A,A)
X = ⊤C(A,B) ⊓ (X ×A,B Y ).

idC(B,B)
Y ◦⊤C(A,B) ◦ idC(A,A)

X ⊒

idC(B,B)
Y ◦(X ×A,B Y ) ◦ idC(A,A)

X =
(X ×A,B Y ) ⊓ (X ×A,B Y ) = X ×A,B Y.

□

Proposition 1531. ιA,B(f⊓g) = ιA,Bf⊓ιA,Bg for every parallel morphisms f
and g and objects A and B, whenever all EX,Y are metamonovalued and metain-
jective.

Proof.

ιA,B(f ⊓ g) =
EDst f,B ◦ (f ⊓ g) ◦ EA,Src f =

(EDst f,B ◦ f ◦ EA,Src f ) ⊓ (EDst f,B ◦ g ◦ EA,Src f ) =
ιA,Bf ⊓ ιA,Bg.

□

Proposition 1532. (X0 ×A,B Y0) ⊓ (X1 ×A,B Y1) = (X0 ⊓X1) ×A,B (Y0 ⊓ Y1).

Proof. (X0 ×A,B Y0) ⊓ (X1 ×A,B Y1) = idC(B,B)
Y1

◦(X0 ×A,B Y0) ◦ idC(A,A)
X1

=
idC(B,B)

Y1
◦ idC(B,B)

Y0
◦⊤C(A,B) ◦ idC(A,A)

X1
◦ idC(A,A)

X0
= idC(B,B)

Y0⊓Y1
◦⊤C(A,B) ◦ idC(A,A)

X0⊓X1
=

(X0 ⊓X1) ×A,B (Y0 ⊓ Y1). □

Proposition 1533. For a category with binary product morphism Im f ,
Dom f , IM f , and DOM f are filters.

Proof. That they are upper sets was proved above.
To prove that Im f is a filter it remains to show A,B ∈ Im f ⇔ A ⊓B ∈ Im f .

Really,
A,B ∈ Im f ⇔ ⊤ ×A ⊒ f ∧ ⊤ ×B ⊒ f ⇒ ⊤ × (A ⊓B) ⊒ f ⇔ A ⊓B ∈ Im f.

Dom f is similar.
The thesis for IM f , DOM f follows from above proved for Im f , Dom f . □
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Note 1534. For example for below defined category of funcoids (with binary
product morphism), these filters are filters on filters on sets not filters of sets and
thus are not the same as im and dom.

19.6. Operations on the set of unfixed morphisms

19.6.1. Semigroup of unfixed morphisms.

Proposition 1535. Let f : A0 → A1 and g : A1 → A2 and A1 ⊑ B1. Then
ιB0,B2(g ◦ f) = ιB1,B2g ◦ ιB0,B1f .

Proof.

ιB0,B2(g ◦ f) =

EA2,B2
C ◦ g ◦ f ◦ EB0,A0

C =

EA2,B2
C ◦ g ◦ 1A1 ◦ f ◦ EB0,A0

C =

EA2,B2
C ◦ g ◦ idC(Dst f,Src g)

A1
◦f ◦ EB0,A0

C =

EA2,B2
C ◦ g ◦ EB1,A1 ◦ EA1,B1 ◦ f ◦ EB0,A0

C =
ιB1,B2g ◦ ιB0,B1f.

□

Definition 1536. We will turn the category C into a semigroup C/∼ (the semi-
group of unfixed morphisms) by taking the partition regarding the relation ∼ and
the formula for the composition [g] ◦ [f ] = [g ◦ f ] whenever f and g are composable
morphisms.

We need to prove that [g] ◦ [f ] does not depend on choice of f and g (provided
that f and g are composable). We also need to prove that [g] ◦ [f ] is always defined
for every morphisms (not necessarily composable) f and g. That the resulting
structure is a semigroup (that is, ◦ is associative) is then obvious.

Proof. That [g] ◦ [f ] is defined in at least one way for every morphisms f
and g is simple to prove. Just consider the morphisms f ′ = ιSrc f,Dst f⊔Src gf ∼ f
and g′ = ιDst f⊔Src g,Dst gg ∼ g. Then we can take [g] ◦ [f ] = [g′ ◦ f ′].

It remains to prove that [g] ◦ [f ] does not depend on choice of f and g. Really,
take arbitrary composable pairs of morphisms (f0 : A0 → B0, g0 : B0 → C0) and
(f1 : A1 → B1, g1 : B1 → C1) such that f0 ∼ f1 and g0 ∼ g1. It remains to prove
that g0 ◦ f0 ∼ g1 ◦ f1. We have

ιB0⊔B1,C0⊔C1g0 ◦ ιA0⊔A1,B0⊔B1f0 = (proposition 1535) =

EC0,C0⊔C1
C ◦ g0 ◦ f0 ◦ EA0⊔A1,B0

C = ιA0⊔A1,C0⊔C1(g0 ◦ f0).

Similarly

ιB0⊔B1,C0⊔C1g1 ◦ ιA0⊔A1,B0⊔B1f1 = ιA0⊔A1,C0⊔C1(g1 ◦ f1).

But

ιB0⊔B1,C0⊔C1g0 ◦ ιA0⊔A1,B0⊔B1f0 = ιB0⊔B1,C0⊔C1g1 ◦ ιA0⊔A1,B0⊔B1f1

thus having ιA0⊔A1,C0⊔C1(g0◦f0) = ιA0⊔A1,C0⊔C1(g1◦f1) and so g0◦f0 ∼ g1◦f1. □
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19.6.2. Restricted identities.

Definition 1537. Restricted identity for unfixed morphisms is defined as:
idX = [idC(A,B)

X ] for an X ⊑ [A] ⊓ [B].

We need to prove that it does not depend on the choice of A and B.

Proof. Let A ∋ X ⊑ [A0] ⊓ [B0] and A ∋ X ⊑ [A1] ⊓ [B1] for A0, B0, A1, B1 ∈
Z. We need to prove idC(A0,B0)

X ∼ idC(A1,B1)
X .

Really,

ιA1,B1 idC(A0,B0)
X =

EB0,B1 ◦ idC(A0,B0)
X ◦EA1,A0 =

idC(B0,B1)
[B0]⊓[B1] ◦ idC(A0,B0)

X ◦ idC(A1,A0)
[A0]⊓[A1] =

idC(A1,B1)
[A0]⊓[A1]⊓[B0]⊓[B1]⊓X =

idC(A1,B1)
X .

Similarly ιA0,B0 idC(A1,B1)
X = idC(A0,B0)

X .
So idC(A0,B0)

X ∼ idC(A1,B1)
X . □

Proposition 1538. idY ◦ idX = idX⊓Y for every X,Y ∈ A.

Proof. Take arbitrary idC(A,B0)
X ∈ idX and idC(B1,C)

Y ∈ idY .
Obviously, idC(A,B0⊔B1)

X ∈ idX and idC(B0⊔B1,C)
Y ∈ idY . Thus idY ◦ idX =

[idC(B0⊔B1,C)
Y ] ◦ [idC(A,B0⊔B1)

X ] = [idC(A,C)
X⊓Y ] = idX⊓Y . □

19.6.3. Poset of unfixed morphisms.

Lemma 1539. f ⊑ g ⇒ ιA,Bf ⊑ ιA,Bg for every morphisms f and g such that
Src f = Src g and Dst f = Dst g.

Proof.

ιA,Bf ⊑ ιA,Bg ⇔

EDst f,B ◦ f ◦ EA,Src f ⊑ EDst g,B ◦ g ◦ EA,Src g ⇔

idC(Dst f,B)
[B]⊓[Dst f ] ◦f ◦ idC(A,Src f)

[A]⊓[Src f ] ⊑ idC(Dst g,B)
[B]⊓[Dst g] ◦g ◦ idC(A,Src g)

[A]⊓[Src g] ⇐
f ⊑ g

because idC(Dst f,B)
[B]⊓[Dst f ] = idC(Dst g,B)

[B]⊓[Dst g] and idC(A,Src f)
[A]⊓[Src f ] = idC(A,Src g)

[A]⊓[Src g]. □

Corollary 1540.
1◦. f0 ⊑ g0 ∧ f0 ∼ f1 ∧ g0 ∼ g1 ⇒ f1 ⊑ g1 whenever Src f0 = Src g0 and

Dst f0 = Dst g0 and Src f1 = Src g1 and Dst f1 = Dst g1.
2◦. f0 ⊑ g0 ⇔ f1 ⊑ g1 whenever Src f0 = Src g0 and Dst f0 = Dst g0 and

Src f1 = Src g1 and Dst f1 = Dst g1 and f0 ∼ f1 ∧ g0 ∼ g1.

Proof.
1◦. Because f1 = ιSrc f1,Dst f1f0 and g1 = ιSrc g1,Dst g1f0.
2◦. A consequence of the previous.

□

The above corollary warrants validity of the following definition:

Definition 1541. The order on the set of unfixed morphisms is defined by the
formula [f ] ⊑ [g] ⇔ f ⊑ g whenever Src f = Src g ∧ Dst f = Dst g.
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It is really an order:

Proof.
Reflexivity. Obvious.
Transitivity. Obvious.
Antisymmetry. Let [f ] ⊑ [g] and [g] ⊑ [f ] and Src f = Src g ∧ Dst f = Dst g. Then

f ⊑ g and g ⊑ f and thus f = g so having [f ] = [g].
□

Obvious 1542. f 7→ [f ] is an order embedding from the set C(A,B) to unfixed
morphisms, for every objects A, B.

Proposition 1543. If S is a set of parallel morphisms of a partially ordered
category with an equivalence relation respecting the order, then

1◦.
d

X∈S [X] exists and
d

X∈S [X] = [
d
S];

2◦. dX∈S [X] exists and dX∈S [X] = [ dS].

Proof.
1◦. [

d
S] ⊑ [X] for every X ∈ S because

d
S ⊑ X.

Let now L ⊑ [X] for every X ∈ S for an equivalence class L. Then L ⊑ [
d
S]

because l ⊑
d
S for l ∈ L because l ⊑ X for every X ∈ S.

Thus [
d
S] is the greatest lower bound of

{
[X]

X∈S

}
.

2◦. By duality.
□

Proposition 1544.
1◦. If every Hom-set is a join-semilattice, then the poset of unfixed morphism

is a join-semilattice.
2◦. If every Hom-set is a join-semilattice, then the poset of unfixed morphism

is a meet-semilattice.

Proof. Let f and g be arbitrary morphisms.

[f ] ⊔ [g] = [ιSrc f⊔Src g,Dst f⊔Dst gf ] ⊔ [ιSrc f⊔Src g,Dst f⊔Dst gg] =
(obvious 1542) = [ιSrc f⊔Src g,Dst f⊔Dst gf ⊔ ιSrc f⊔Src g,Dst f⊔Dst gg]

and

[f ] ⊓ [g] = [ιSrc f⊔Src g,Dst f⊔Dst gf ] ⊓ [ιSrc f⊔Src g,Dst f⊔Dst gg] =
(obvious 1542) = [ιSrc f⊔Src g,Dst f⊔Dst gf ⊓ ιSrc f⊔Src g,Dst f⊔Dst gg].

□

Corollary 1545. If every Hom-set is a lattice, then the poset of unfixed
morphisms is a lattice.

Theorem 1546. Meet of nonempty set of unfixed morphisms exists provided
that the orders of Hom-sets are posets, every nonempty subset of which has a
meet, and our category is with ordered domain and image and that morphisms E
are metamonovalued and metainjective.

Proof. Let S be a nonempty set of unfixed morphisms. Take an arbitrary
unfixed morphism f ∈ S. Take an arbitrary F ∈ f . Let A = SrcF and B = DstF .
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l
S =

l
⟨f⊓⟩∗

S =
l

⟨[F ]⊓⟩∗
S =

l{
[F ] ⊓ [G]

g ∈ S,G ∈ g

}
=

l{
[ιA⊔Src G,B⊔Dst GF ⊓ ιA⊔Src G,B⊔Dst GG]

g ∈ S,G ∈ g

}
.

We will prove ιA⊔Src G,B⊔Dst GF ⊓ ιA⊔Src G,B⊔Dst GG ∼ F ⊓ ιA,BG.
ιA⊔Src G,B⊔Dst GF ⊓ ιA⊔Src G,B⊔Dst GG ⊑ ιA⊔Src G,B⊔Dst GF and

ιA⊔Src G,B⊔Dst GιA,BιA⊔Src G,B⊔Dst GF = ιA⊔Src G,B⊔Dst GF , thus by being with
ordered domain and image

ιA⊔Src G,B⊔Dst GF ⊓ ιA⊔Src G,B⊔Dst GG =
ιA⊔Src G,B⊔Dst GιA,B(ιA⊔Src G,B⊔Dst GF ⊓ ιA⊔Src G,B⊔Dst GG) =

(by being metamonovalued and metainjective) =
ιA⊔Src G,B⊔Dst G(ιA,BιA⊔Src G,B⊔Dst GF ⊓ ιA,BιA⊔Src G,B⊔Dst GG) =

ιA⊔Src G,B⊔Dst G(ιA,BF ⊓ ιA,BG) ∼ ιA,BF ⊓ ιA,BG = F ⊓ ιA,BG.

Due the proved equivalence we have
d
S =

d{ [F ⊓ιA,BG]
g∈S,G∈g

}
. Now we can apply

proposition 1543:
d
S =

[d{F ⊓ιA,BG
g∈S,G∈g

}]
. We have provided an explicit formula

for
d
S. □

The poset of unfixed morphisms may be not a complete lattice even if every
Hom-set is a complete lattice. We will show this below for funcoids.

19.6.4. Domain and image of unfixed morphisms.

Proposition 1547. IM f =
{

Y ∈Z
idY ◦[f ]=[f ]

}
; DOM f =

{
X∈Z

[f ]◦idX =[f ]

}
.

Proof. We will prove only the first, as the second is similar.

idY ◦[f ] = [f ] ⇔

idC(Y ⊔Dst f,Y ⊔Dst f)
Y ◦EDst f,Y ⊔Dst f ◦ f = EDst f,Y ⊔Dst f ◦ f ⇔

idC(Dst f,Y ⊔Dst f)
[Y ]⊓[Dst f ] ◦f = EDst f,Y ⊔Dst f ◦ f ⇔

EY ⊔Dst f,Dst f ◦ idC(Dst f,Y ⊔Dst f)
[Y ]⊓[Dst f ] ◦f = f ⇔

idC(Dst f,Dst f)
[Y ]⊓[Dst f ] ◦f = fY ∈ IM f.

□

The above proposition allows to define:

Definition 1548. DOM f = DOMF and IM f = IMF for F ∈ f .

Definition 1549. dom f = min DOM f and im f = min IM f for an unfixed
morphism f .

Note 1550. dom f and im f are not always defined.

19.6.5. Rectangular restriction.

Proposition 1551. ιA,Bf = ιA,Bg if f ∼ g.

Proof. Let f ∼ g. Then g = ιSrc g,Dst gf . So ιA,Bg = ιA,BιSrc g,Dst gf ⊑
(proposition 1526) ⊑ ιA,Bf . Similarly, ιA,Bf ⊑ ιA,Bg. So ιA,Bf = ιA,Bg. □

The above proposition allows to define:
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Definition 1552. ιA,BF = ιA,Bf for an unfixed morphism F and arbitrary
f ∈ F .

Definition 1553. F□A,B = [ιA,BF ] for every unfixed morphism F .

Proposition 1554. F□A,B = idB ◦F ◦ idA for every unfixed morphism F and
objects A and B.

Proof. Take f ∈ F . F□A,B = [ιA,BF ] = [ιA,Bf ] = [EDst f,B ◦
f ◦ EA,Src f ] = [idC(Dst f,B)

B⊓Dst f ◦f ◦ idC(A,Src f)
A⊓Src f ] = [idC(Dst f,B)

B ◦ idC(Dst f,Dst f)
Dst f ◦f ◦

idC(Src f,Src f)
Src f ◦ idC(A,Src f)

A ] = [idC(Dst f,B)
B ◦f ◦ idC(A,Src f)

A ] = [idC(Dst f,B)
B ] ◦ [f ] ◦

[idC(A,Src f)
A ] = idB ◦F ◦ idA. □

Proposition 1555. f□A0,B0□A1,B1 = f□A0⊓A1,A1⊓B1 .

Proof. From the previous f□A0,B0□A1,B1 = idB1 ◦ idB0 ◦f ◦ idA0 ◦ idA1 =
idB0⊓B1 ◦f ◦ idA0⊓A1 = f□A0⊓A1,A1⊓B1 . □

Definition 1556. f |X = f ◦ idX for every unfixed morphism f and X ∈ A.

Obvious 1557. (f |X)|Y = fX⊓Y .

19.6.6. Algebraic properties of the lattice of unfixed morphisms. The
following proposition allows to easily prove algebraic properties (cf. distributivity)
of the poset of unfixed morphisms:

Theorem 1558. The following are mutually inverse bijections:
1◦. Let A and B be objects. f 7→ [f ] and F 7→ ιA,BF are mutually inverse

order isomorphisms between
{

f∈unfixed morphisms
A∈DOM f,B∈IM f

}
and C(A,B). If A = B

they are also semigroup isomorphisms.
2◦. Let T be an unfixed morphism. f 7→ [f ] and F 7→ ιSrc t,Dst tF are mutually

inverse order isomorphisms between the lattice DT and Dt whenever t ∈
T .

Proof. We will prove that these functions are mutually inverse bijections.
That they are order-preserving is obvious.

1◦. ιA,BF ∈ C(A,B) is obvious.
We need to prove that [f ] ∈

{
f∈unfixed morphisms

A∈DOM f,B∈IM f

}
. For this it’s enough to prove

A ∈ DOM[f ] ∧B ∈ IM[f ] what is the same as A ∈ DOM f ∧B ∈ IM f what follows
from proposition 1507.

Because f 7→ [f ] is an injection, it is enough1 to prove that ιA,B [f ] = f . Really,
ιA,B [f ] = ιA,Bf = f .

That they are semigroup isomorphisms follows from the already proved formula
[g ◦ f ] = [g] ◦ [f ].

2◦. Because of the previous, it is enough to prove that [f ] ∈ DT ⇔ f ∈ Dt.
Really, it is equivalent to [f ] ⊑ T ⇔ f ⊑ t what is obvious.

□

Proposition 1559. If every Hom-set is a distributive lattice, then the poset
of unfixed morphisms is a distributive lattice.

Proof. It follows from the above isomorphism. □

Proposition 1560. If every Hom-set is a co-brouwerian lattice, then the poset
of unfixed morphisms is a co-brouwerian lattice.

1https://math.stackexchange.com/a/3007051/4876

https://math.stackexchange.com/a/3007051/4876
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Proof. It follows from the above isomorphism and the definition of pseudod-
ifference. □

Proposition 1561. If every Hom-set is a lattice with quasidifference, then the
poset of unfixed morphisms is a lattice with quasidifference.

Proof. It follows from the above isomorphism and the definition of quasidif-
ference. □

Proposition 1562.
1◦. If every Hom-set is an atomic lattice, then the poset of unfixed morphisms

is an atomic lattice.
2◦. If every Hom-set is an atomistic lattice, then the poset of unfixed mor-

phisms is an atomistic lattice.
Proof. Follows from the above isomorphism. □

19.6.7. Binary product morphism.
Definition 1563. For a category C with binary product morphism and X,Y ∈

A define X × Y = [X ×A,B Y ] where A ∈ Z, [A] ⊒ X, B ∈ Z, [B] ⊒ Y . (Such A
and B exist by an axiom of categories with restricted identities.)

We need to prove validity of this definition:

Proof. Let A0 ∈ Z, [A0] ⊒ X, B0 ∈ Z, [B0] ⊒ Y , A1 ∈ Z, [A1] ⊒ X, B1 ∈ Z,
[B1] ⊒ Y . We need to prove X ×A0,B0 Y ∼ X ×A1,B1 Y , but it trivially follows
from an axiom in the definition of category with binary product morphism. □

Proposition 1564. (X0 × Y0) ⊓ (X1 × Y1) = (X0 ⊓X1) × (Y0 ⊓ Y1) for every
X0, X1, Y0, Y1 ∈ A.

Proof. Take A0 ∈ Z, [A0] ⊒ X0, B0 ∈ Z, [B0] ⊒ Y0, A1 ∈ Z, [A1] ⊒ X1,
B1 ∈ Z, [B1] ⊒ Y1.

Then

(X0 × Y0) ⊓ (X1 × Y1) =
[X0 ×A0⊔A1,B0⊔B1 Y0] ⊓ [X1 ×A0⊔A1,B0⊔B1 Y1] =

[(X0 ×A0⊔A1,B0⊔B1 Y0) ⊓ (X1 ×A0⊔A1,B0⊔B1 Y1)] =
[(X0 ⊓X1) ×A0⊔A1,B0⊔B1 (Y0 ⊓ Y1)] =

(X0 ⊓X1) × (Y0 ⊓ Y1).
□

Proposition 1565. f□A,B = f ⊓ (A×B).
Proof. Take F ∈ f . Let F ′ = ιA⊔Src F,B⊔Dst FF . We have F ′ ∈ f .

f□A,B = [ιA,BF
′] =

[EB⊔Dst F,B ◦ F ′ ◦ EA,A⊔Src F ] =

[idC(B⊔Dst F,B)
[B] ◦F ′ ◦ idC(A,A⊔Src F )

[A] ] =

[idC(B⊔Dst F,B)
[B] ] ◦ [F ′] ◦ [idC(A,A⊔Src F )

[A] ] =

[idC(B⊔Dst F,B⊔Dst F )
[B] ] ◦ [F ′] ◦ [idC(A⊔Src F,A⊔Src F )

[A] ] =

[idC(B⊔Dst F,B⊔Dst F )
[B] ◦F ′ ◦ idC(A⊔Src F,A⊔Src F )

[A] ] =
[F ′ ⊓ (A×A⊔Src F,B⊔Dst F B)] =

[F ′] ⊓ [A×A⊔Src F,B⊔Dst F B] = f ⊓ (A×B).
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□

19.7. Examples of categories with restricted identities

19.7.1. Category Rel. Category Rel of relations between small sets can be
considered as a category with restricted identities with Z = A being the set of all
small sets, projection being the identity function and restricted identity being the
identity relation between the given sets.

Moreover it is a category with binary product morphism with usual Cartesian
product.

Proofs of this are trivial.

19.7.2. Category FCD. Category FCD can be considered as a category with
restricted identities with Z being the set of all small sets, A is the set of unfixed
filters, projection being the projection function for the equivalence classes of filters,
restricted identity being defined by the formulas

⟨idFFCD(A,B)⟩X = ([X ] ⊓ F) ÷B;〈
(idFFCD(A,B))−1〉Y = ([Y] ⊓ F) ÷A

(whenever F ⊑ [A] ⊓ [B]).
We need to prove that this really defines a funcoid.

Proof.

Y ̸≍
〈

id FCD(A,B)
F

〉
X ⇔

Y ̸≍ ([X ] ⊓ F) ÷B ⇔ Y ̸≍ (X ÷B) ⊓ (F ÷B) ⇔
[Y] ̸≍ [X ] ⊓ F .

Similarly
〈
(idFFCD(A,B))−1

〉
Y ⇔ [X ] ̸≍ [Y] ⊓ F .

Thus Y ̸≍ ⟨idFFCD(A,B)⟩X ⇔ X ̸≍
〈
(idFFCD(A,B))−1

〉
Y. □

We need to prove that the restricted identities conform to the axioms:

Proof. The first five axioms are obvious. Let’s prove the remaining ones:
idFCD(A,A)

[A] = 1FCD
A because

〈
idFCD(A,A)

[A]

〉
X = ([X ] ⊓ [A]) ÷A = [X ] ÷A = X .

idFCD(B,C)
Y ◦ idFCD(A,B)

X = idFCD(A,C)
X⊓Y because

〈
idFCD(B,C)

Y ◦ idFCD(A,B)
X

〉
X =〈

idFCD(B,C)
Y

〉〈
idFCD(A,B)

X

〉
X =

〈
idFCD(B,C)

Y

〉
(([X ]⊓X)÷B) = ([([X ]⊓X)÷B]⊓Y )÷

C = (([X ]⊓X⊓Y )÷B)÷C = (because [X ] ⊓X ⊓ Y ⊑ [B]) = ([X ]⊓X⊓Y )÷C =〈
idFCD(A,C)

X⊓Y

〉
X .

∀A ∈ A∃B ∈ Z : A ⊑ [B] is obvious. □

Proposition 1566. EA,B
FCD = (A,B, λX ∈ F(A) : X ÷ B, λY ∈ F(B) : Y ÷ A)

for objects A ⊆ B of FCD.

Proof. Take F = [A] ⊓ [B]. Then F ⊒ [X ] and F ⊒ [Y], thus [X ] ⊓ F = [X ]
and [Y] ⊓ F = [Y]. So, it follows from the above. □

Proposition 1567. idFCD(A,A)
X = idFCD

X÷A whenever A ∈ Z and A ∋ X ⊑ [A].

Proof.
〈

idFCD(A,A)
X

〉
X = ([X ]⊓X)÷A = ([X ]÷A)⊓(X÷A) = X ⊓(X÷A) =〈

idFCD
X÷A

〉
X (used bijections for unfixed filters) for every X ∈ F (A). □
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Definition 1568. Category FCD can be considered as a category with binary
product morphism with the binary product defined as: X ×A,B Y = (X ÷A) ×FCD

(Y ÷B) for every unfixed filters X and Y.

It is really a binary product morphism:

Proof. Need to prove the axioms:
1◦. f ⊓ (X ×A,B Y ) = f ⊓ ((X ÷ A) ×FCD (Y ÷ B)) = idFCD

Y ÷B ◦f ◦ idFCD
X÷A =

idFCD(B,B)
Y ◦f ◦ idFCD(A,A)

X .
2◦. Let unfixed filters X ⊑ [A0] ⊓ [A1] and Y ⊑ [B0] ⊓

[B1]. Then for X ∈ F (A1) we have ⟨ιA1,B1(X ×A0,B0 Y )⟩X =〈
EFCD(B0,B1)〉⟨X ×A0,B0 Y ⟩

〈
EFCD(A1,A0)〉X = (⟨X ×A0,B0 Y ⟩(X ÷ A0)) ÷ B1 =

(
〈
(X ÷A0) ×FCD (Y ÷B0)

〉
(X ÷A0)) ÷B1.

On the other hand, ⟨X ×A1,B1 Y ⟩X =
〈
(X ÷A1) ×FCD (Y ÷B1)

〉
X

If [X ] ≍ X then (use isomorphisms) X ≍ X ÷ A1 and X ÷ A0 ≍ X ÷ A0. So
⟨ιA1,B1(X ×A0,B0 Y )⟩X = ⊥ and ⟨X ×A1,B1 Y ⟩X = ⊥.

If [X ] ̸≍ X then (use isomorphisms) X ̸≍ X ÷ A1 and X ÷ A0 ̸≍ X ÷ A0. So
⟨ιA1,B1(X ×A0,B0 Y )⟩X = (Y ÷B0) ÷B1 = Y ÷B1 and ⟨X ×A1,B1 Y ⟩X = Y ÷B1.

So in all cases, ⟨ιA1,B1(X ×A0,B0 Y )⟩X = ⟨X ×A1,B1 Y ⟩X .
□

Lemma 1569. X ÷A = (X ⊓ [A])÷A for every unfixed filter X and small set A.

Proof. (X ⊓ [A]) ÷A = (X ÷A) ⊓ ([A] ÷A) = (X ÷A) ⊓ ⊤F(A) = X ÷A. □

Corollary 1570. There is a pointfree funcoid p such that ⟨p⟩X = X ÷A.

Proof. Let q be the order embedding (see the diargram) from unfixed filters F
such that A ∈ F to filters on A.

Then ⟨X ÷A⟩X = ⟨(X ⊓ [A]) ÷A⟩X =
〈
q ◦ idpFCD(unfixed filters)

[A]

〉
X . □

Let f be a funcoid. Define pointfree funcoid S f between unfixed filters as:

Definition 1571. For every unfixed filters X and Y
⟨S f⟩X = [⟨f⟩(X ÷ Src f)];

〈
(S f)−1〉Y = [

〈
f−1〉(Y ÷ Dst f)].

It is really a pointfree funcoid:

Proof. For an unfixed filter Y we have

Y ̸≍ ⟨S f⟩X ⇔
Y ̸≍ [⟨f⟩(X ÷ Src f)] ⇔

Y ÷ Dst f ̸≍ ⟨f⟩(X ÷ Src f) ⇔
X ÷ Src f ̸≍

〈
f−1〉(Y ÷ Dst f) ⇔

X ̸≍ [
〈
f−1〉(Y ÷ Dst f)] ⇔

X ̸≍
〈
(S f)−1〉Y.

□

Definition 1572. SF = S f for an unfixed funcoid F and f ∈ F .

We need to prove validity of the above definition:

Proof. Let f, g ∈ F , let f : A0 → B0, g : A1 → B1. Need to prove S f = S g.
We have

ιA0⊔A1,B0⊔B1f = ιA0⊔A1,B0⊔B1g.



19.7. EXAMPLES OF CATEGORIES WITH RESTRICTED IDENTITIES 307

⟨S ιA0⊔A1,B0⊔B1f⟩X =
[⟨ιA0⊔A1,B0⊔B1f⟩(X ÷ (A0 ⊔A1)] =[〈

EFCD(B0,B0⊔B1)
〉

⟨f⟩
〈

EFCD(A0⊔A1,A0
〉

(X ÷ (A0 ⊔A1))
]

=

[(⟨f⟩((X ÷ (A0 ⊔A1)) ÷A0)) ÷B0] =
[⟨f⟩(X ÷A0)] =

⟨S f⟩X .

Similarly ⟨S ιA0⊔A1,B0⊔B1g⟩X = ⟨S g⟩X .
So ⟨S f⟩X = ⟨S g⟩X . □

Definition 1573. So, we can define ⟨f⟩X = ⟨S f⟩X for every unfixed funcoid f
and an unfixed filter X .

Proposition 1574.
1◦. S from a Hom-set FCD(A,B) is an order embedding.
2◦. S from the category FCD is a prefunctor.
3◦. S from unfixed funcoids is an order embedding and a prefunctor (= semi-

group homomorphism).

Proof.
1◦. (⟨S f⟩X ) ÷ Dst f = ⟨f⟩X . Thus for different f we have different X 7→

⟨S f⟩X . So it is an injection. That it is a monotone function is obvious.
2◦. ⟨S g ◦ S f⟩X = ⟨S g⟩⟨S f⟩X = ⟨S g⟩[⟨f⟩(X ÷ Src f)] = [⟨g⟩([⟨f⟩(X ÷

Src f)] ÷ Src g)] = [⟨g⟩(⟨f⟩(X ÷ Src f) ÷ Src g)] = [⟨g⟩⟨f⟩(X ÷ Src f)] = [⟨g ◦ f⟩(X ÷
Src f)] = ⟨S (g ◦ f)⟩X for every composable funcoids f and g and an unfixed fil-
ter X . Thus S g ◦ S f = S (g ◦ f).

3◦. To prove that it is an order embedding, it is enough to show that
f ≁ g implies S f ̸= S g (monotonicity is obvious). Let f ≁ g that is
ιA0⊔A1,B0⊔B1f ̸= ιA0⊔A1,B0⊔B1g. Then there exist filter X ∈ F(A0 ⊔ A1) such
that ⟨ιA0⊔A1,B0⊔B1f⟩X ̸= ⟨ιA0⊔A1,B0⊔B1g⟩X .

Consequently, ⟨S f⟩X = ⟨S ιA0⊔A1,B0⊔B1f⟩X ≠ ⟨S ιA0⊔A1,B0⊔B1g⟩X =
⟨S g⟩X .

It remains to prove that SG◦SF = S (G◦F ) but it is equivalent to S g◦S f =
S (g ◦ f) for arbitrarily taken f ∈ F and g ∈ G, what is already proved above.

□

Lemma 1575. For every meet-semilattice a ̸≍ b and c ⊒ b implies a ⊓ c ̸≍ b.

Proof. Suppose a ̸≍ b. Then there is a non-least x such that x ⊑ a, b. Thus
x ⊑ c, so x ⊑ a ⊓ c. We have a ⊓ c ̸≍ b. □

Proposition 1576. S (X × Y ) = X ×pFCD(F(℧)) Y for every unfixed filters X
and Y .

Proof. S (X × Y ) = S (X ×A,B Y ) for arbitrary filters A, and B such that
X ⊑ [A] and Y ⊑ [B]. So for every unfixed filter X we have

⟨S (X × Y )⟩X = ⟨S (X ×A,B Y )⟩X =
[⟨X ×A,B Y ⟩(X ÷A)] = [

〈
(X ÷A) ×FCD (Y ÷B)

〉
(X ÷A)].

Thus if P ̸≍ X then (by the lemma) P ⊓ A ̸≍ X; P ÷ A ̸≍ X ÷ A;
⟨S (X × Y )⟩X = [Y ÷B] = Y .

if P ≍ X then P ⊓A ≍ X; P ÷A ≍ X ÷A; ⟨S (X × Y )⟩X = [⊥] = ⊥.
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So S (X × Y ) = X ×pFCD(F(℧)) Y . □

Proposition 1577. S idX = idpFCD(F(℧))
X for every unfixed filter X.

Proof. For every unfixed filter X we for arbitrary filters A and B such that
X ⊑ [A] ⊓ [B] have

⟨S idX⟩X =
〈
S [idFCD(A,B)

X ]
〉

X =
〈
S idFCD(A,B)

X

〉
X =[〈

idFCD(A,B)
X

〉
(X ÷A)

]
= [([X ÷A] ⊓X) ÷B] =

[(X ⊓X) ÷B] = X ⊓X.

Thus S idX = idpFCD(F(℧))
X . □

19.7.3. Category RLD.

Definition 1578. f ÷D = (A,B, (GR f) ÷D) for every reloid f and a binary
relation D.

Category RLD can be considered as a category with restricted identities with
Z being the set of all small sets, A is the set of unfixed filters, projection being the
projection function for the equivalence classes of filters, restricted identity being
defined by the formula

idRLD(A,B)
F = idRLD

F÷(A∩B) ÷(A×B).

We need to prove that the restricted identities conform to the axioms:

Proof. The first five axioms are obvious. Let’s prove the remaining ones:
idRLD(A,A)

[A] = idRLD
[A]÷A ÷(A×A) = idRLD

A ÷(A×A) = 1RLD
A .

idC(B,C)
Y ◦ idC(A,B)

X =
l

x∈up X,y∈up Y

(idC(B,C)
y ◦ idC(A,B)

x ) =

l

x∈up X,y∈up Y

idC(A,B)
x∩y = idC(A,B)

X⊓Y .

∀A ∈ A∃B ∈ Z : A ⊑ [B] is obvious. □

Obvious 1579. EA,B
RLD =↑RLD(A,B) idA∩B .

Proposition 1580. RLD with X ×A,B Y = (X ÷ A) ×RLD (X ÷ B) for every
unfixed filters X and Y is a category with binary product morphism.

Proof. idC(B,B)
Y ◦f ◦ idC(A,A)

X = f ⊓ (X ×A,B Y) because

idC(B,B)
Y ◦f ◦ idC(A,A)

X =

(idRLD
Y÷B ÷(B ×B)) ◦ f ◦ (idRLD

X ÷A ÷(A×A)) =

idRLD
Y÷B ◦f ◦ idRLD

X ÷A =
f ⊓ ((X ÷A) ×RLD (Y ÷B)) =

f ⊓ (X ×A,B Y).
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ιA1,B1(X ×A0,B0 Y) =
EB0,B1 ◦ (X ×A0,B0 Y) ◦ EA1,A0 =

↑RLD(B0,B1) idB0∩B1((X ÷B0) × (Y ÷A0))◦ ↑RLD(A1,A0) idA0∩A1 =
((X ÷B0) ÷B1) × ((Y ÷A0) ÷A1) = (X ÷B1) × (Y ÷A1) =

X ×A1,B1 Y.

□

Proof.

ιA,Bf =

EDst f,B
RLD ◦ f ◦ EA,Src f

RLD =
RLDl

F ∈up f

(↑Rel(Dst f,B) idDst f∩B ◦F◦ ↑Rel(A,Src f) idA∩Src f ) =

RLDl

F ∈up f

(↑Rel(A,B) (idDst f∩B ◦ GRF ◦ idDst f∩B)) =

RLDl

F ∈up f

↑Rel(A,B) (F ∩ (A×B)) =

f ÷ (A×B).

□

Proposition 1581. idRLD(A,A)
X = idRLD

X÷A whenever A ∈ Z and A ∋ X ⊑ [A].

Proof. idRLD(A,A)
X = idRLD

X÷(A∩A) ÷(A×A) = idRLD
X÷A. □

Definition 1582. Category RLD can be considered as a category with binary
product morphism with the binary product defined as: X ×A,B Y = (X ÷A) ×RLD

(Y ÷B) for every unfixed filters X and Y.

It is really a binary product morphism:

Proof. Need to prove the axioms:
1◦. f ⊓ (X ×A,B Y ) = f ⊓ ((X ÷ A) ×RLD (Y ÷ B)) = idRLD

Y ÷B ◦f ◦ idRLD
X÷A =

idRLD(B,B)
Y ◦f ◦ idRLD(A,A)

X .
2◦. Let unfixed filters X ⊑ [A0] ⊓ [A1] and Y ⊑ [B0] ⊓ [B1]. Then we

have ιA1,B1(X ×A0,B0 Y ) = EC(B0,B1) ◦ (X ×A0,B0 Y ) ◦ EC(A1,A0) =↑RLD(B0,B1)

idB0∩B1 ◦((X ÷A0) ×RLD (Y ÷B0))◦ ↑RLD(A1,A0) idA0∩A1 .
But (X ÷ A0) ×RLD (Y ÷ B0) =

dRLD
x∈up(X÷A0),y∈up(Y ÷B0)(x × y) =

(by the bijection) =
dRLD

x∈up X,y∈up Y ((x÷A0) × (y ÷B0)).
Thus by definition of reloidal product ιA1,B1(X ×A0,B0 Y ) =

dRLD(A1,B1)
x∈up X,y∈up Y (idB0∩B1 ◦((x÷A0)×(y÷B0))◦idA0∩A1) =

dRLD(A1,B1)
x∈up X,y∈up Y ((x÷A0)×

(y÷B0)) =
dRLD(A1,B1)

x∈up(X÷A0),y∈up(Y ÷B0)(x×y) = (X÷A1)×RLD(Y ÷B1) = X×A1,B1Y .
□

Definition 1583. Reloid S f ∈ EndRLD(small sets) is defined by the formula
GR S f = S GR f for every reloid f .
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Definition 1584. Reloid S f ∈ EndRLD(small sets) if defined by the formula
S f = SF for arbitrary F ∈ f for every unfixed reloid f .

That the result does not depend on the choice of F obviously follows from the
corresponding result for filters.

Proposition 1585.
1◦. S from a Hom-set RLD(A,B) to EndRLD(small sets) is an order embed-

ding.
2◦. S from the category RLD to EndRLD(small sets) is a prefunctor.
3◦. S from unfixed reloids is an order embedding and a prefunctor (= semi-

group homomorphism).

Proof.
1◦. That it’s monotone is obvious. That it is an injection follows from S for

filters being an injection.
2◦. Let f and g be composable reloids.
If H ∈ up S (g ◦f) then H ⊇ H ′ ∈ up(g ◦f), H ′ ⊇ G◦F for some H ′, F ∈ up f

and G ∈ up g. Consequently F ∈ GR S f , G ∈ GR S g. So G ◦ F ∈ up(S g ◦ S f)
and thus S (g ◦ f) ⊒ S g ◦ S f .

Whenever H ∈ up(S g ◦ S f), we have H ⊇ G ◦ F where F ∈ up S f , G ∈
up S g. Thus F ⊇ F ′ ∈ up f , G ⊇ G′ ∈ up g; H ⊇ G′ ◦ F ′ ∈ up(g ◦ f) for some F ′,
G′ and so H ∈ up(S (g ◦ f)). So S g ◦ S f ⊒ S (g ◦ f).

So S (g ◦ f) = S g ◦ S f .
3◦. That it is a prefunctor easily follows from the above.
Suppose f , g are unfixed reloids and S f = S g. Let F ∈ f , G ∈ g and thus

SF = SG. It is enough to prove that F ∼ G.
Really, SF = SG ⇒ S GRF = S GRG ⇒ GRF ∼ GRG ⇒ GRG =

(GRF ) ÷ (domG × imG) ⇔ G = F ÷ (domG × imG) = ιdom G,im GF . Similarly
F = ιdom F,im FG. So F ∼ G.

□

I yet failed to generalize propositions 1576 and 1577. The generalization may
require first research pointfree reloids.

19.8. More results on restricted identities

In the next three propositions assume A ∈ Z, A ∋ X ⊑ A.

Proposition 1586. idRel(A)
X = idRel(A,A)

[X] .

Proof. idRel(A,A)
[X] = idRel(A,A)

X = idRel(A)
X . □

Proposition 1587. idFCD(A)
X = idFCD(A,A)

[X] .

Proof.
〈

idFCD(A,A)
[X]

〉
X = ([X ] ⊓ [X]) ÷ A = [X ⊓ X]) ÷ A = X ⊓ X =〈

idFCD(A)
X

〉
X for A ∋ X ⊑ A. □

Proposition 1588. idRLD(A)
X = idRLD(A,A)

[X] .

Proof. idRLD(A,A)
[X] = idRLD

[X]÷(A∩A) ÷(A×A) = idRLD
X ÷(A×A) = idRLD(A)

X . □

Proposition 1589.
{

(A÷A,A⊓A)
A∈F(U)

}
is a function and moreover is an order iso-

morphism for a set A ⊆ U .
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Proof. A ÷ A and A ⊓ A are determined by each other by the following
formulas:

A ÷A = (A ⊓A) ÷A and A ⊓A = (A ÷A) ÷ Base(A).

Prove the formulas: (A ⊓A) ÷A =
d{↑A(X∩A)

X∈A⊓A

}
=

d{↑A(X∩A)
X∈A

}
= A ÷A.

(A ÷A) ÷ Base(A) =
l{

↑A (X ∩A)
X ∈ A

}
÷ Base(A) =

l
↑Base(A) (Y ∩ Base(A))

Y ∈
d{↑A(X∩A)

X∈A

}
 =

(by properties of filter bases) =
l{

↑Base(A) (X ∩A ∩ Base(A))
X ∈

}
=

l{
↑Base(A) (X ∩A)

X ∈ A

}
=

A ⊓A.

That this defines a bijection, follows from A ÷ A ∼ A ⊓ A what easily follows
from the above formulas. □

Proposition 1590.
{

(ιX,Y f,idRel(Dst f)
Y

◦f◦idRel(Src f)
X

)
f∈Rel(A,B)

}
is a function and more-

over is an (order and semigroup) isomorphism, for sets X ⊆ Src f , Y ⊆ Dst f .
Proof. ιX,Y f = (X,Y,GR f∩(X×Y )); idRel

Y ◦f◦idRel
X = (Src f,Dst f,GR f∩

(X × Y )). The isomorphism (both order and semigroup) is evident. □

Proposition 1591.
{

(ιX,Y f,idFCD(Dst f)
Y

◦f◦idFCD(Src f)
X

)
f∈FCD(A,B)

}
is a function and more-

over is an (order and semigroup) isomorphism, for sets X ⊆ Src f , Y ⊆ Dst f .
Proof. From symmetry it follows that it’s enough to prove that{

(EY ◦f,idFCD
Y ◦f)

f∈FCD(A,B)

}
is a function and moreover is an (order and semigroup) isomor-

phism, for a set Y ⊆ Dst f .
Really,

{
(⟨EY ⟩x,⟨idFCD

Y ⟩x)
x∈Dst f

}
=
{

(x÷Y,x⊓Y )
x∈Dst f

}
is an order isomorphism by proved

above. This implies that
{

(EY ◦f,idFCD
Y ◦f)

f∈FCD(A,B)

}
is an isomorphism (both order and

semigroup). □

Proposition 1592.
{

(ιX,Y f,idRLD(Dst f)
Y

◦f◦idRLD(Src f)
X

)
f∈RLD(A,B)

}
is a function and more-

over is an (order and semigroup) isomorphism, for sets X ⊆ Src f , Y ⊆ Dst f .
Proof. ιX,Y f = (X,Y, (up f) ÷ (X × Y )); idRLD

Y ◦f ◦ idRLD
X =

(Src f,Dst f, (up f) ⊓ (X × Y )). They are order isomorphic by proved above.

ιY,Zg ◦ ιX,Y f =
EDst g,Z ◦ g ◦ EY,Src g ◦ EDst f,Y ◦ f ◦ EX,Src f =

EDst g,Z ◦ g ◦ idRLD
Y ◦ idRLD

Y ◦f ◦ EX,Src f



19.8. MORE RESULTS ON RESTRICTED IDENTITIES 312

because EY,Src g ◦ EDst f,Y = idRel
Y = idRel

Y ◦ idRel
Y . Thus by proved above{

(ιY,Zg ◦ ιX,Y f, idRLD
Z ◦g ◦ idRLD

Y ◦ idRLD
Y ◦f ◦ idRLD

X )
f ∈ RLD(A,B)

}
is a bijection. □

Can three last propositions be generalized into one?

Proposition 1593. f ◦ (g ⊔h) = f ◦ g ⊔ f ◦h for unfixed morphisms whenever
the same formula holds for (composable) morpshisms.

Proof. f ◦ (g ⊔ h) = [ιSrc g⊔Src h,Dst f (f ◦ (g ⊔ h))] because dom(f ◦ (g ⊔ h)) ⊑
Src g ⊔ Srch and im(f ◦ (g ⊔ h)) ⊑ Dst f .

So

f ◦ (g ⊔ h) =
[ιSrc g⊔Src h,Dst ff ◦ ιSrc g⊔Src h,Dst f (g ⊔ h)] =

[ιSrc g⊔Src h,Dst ff ◦ (ιSrc g⊔Src h,Dst fg ⊔ ιSrc g⊔Src h,Dst fh)] =
[ιSrc g⊔Src h,Dst ff ◦ ιSrc g⊔Src h,Dst fg ⊔ ιSrc g⊔Src h,Dst ff ◦ ιSrc g⊔Src h,Dst fh] =

[ιSrc g⊔Src h,Dst f (f ◦ g) ⊔ ιSrc g⊔Src h,Dst f (f ◦ h)] =
[ιSrc g⊔Src h,Dst f (f ◦ g ⊔ f ◦ h)] =

f ◦ g ⊔ f ◦ h
because dom(f ◦ g ⊔ f ◦ h) ⊑ Src g ⊔ Srch and im(f ◦ g ⊔ f ◦ h) ⊑ Dst f . □



Part 3

Pointfree funcoids and reloids



CHAPTER 20

Pointfree funcoids

This chapter is based on [30].
This is a routine chapter. There is almost nothing creative here. I just general-

ize theorems about funcoids to the maximum extent for pointfree funcoids (defined
below) preserving the proof idea. The main idea behind this chapter is to find
weakest theorem conditions enough for the same theorem statement as for above
theorems for funcoids.

For these who know pointfree topology: Pointfree topology notions of frames
and locales is a non-trivial generalization of topological spaces. Pointfree funcoids
are different: I just replace the set of filters on a set with an arbitrary poset, this
readily gives the definition of pointfree funcoid, almost no need of creativity here.

Pointfree funcoids are used in the below definitions of products of funcoids.

20.1. Definition

Definition 1594. Pointfree funcoid is a quadruple (A,B, α, β) where A and B
are posets, α ∈ BA and β ∈ AB such that

∀x ∈ A, y ∈ B : (y ̸≍ αx ⇔ x ̸≍ βy).

Definition 1595. The source Src(A,B, α, β) = A and destination
Dst(A,B, α, β) = B for every pointfree funcoid (A,B, α, β).

To every funcoid (A,B, α, β) corresponds pointfree funcoid (PA,PB,α, β).
Thus pointfree funcoids are a generalization of funcoids.

Definition 1596. I will denote pFCD(A,B) the set of pointfree funcoids from
A to B (that is with source A and destination B), for every posets A and B.

⟨(A,B, α, β)⟩ def= α for every pointfree funcoid (A,B, α, β).

Definition 1597. (A,B, α, β)−1 = (B,A, β, α) for every pointfree funcoid
(A,B, α, β).

Proposition 1598. If f is a pointfree funcoid then f−1 is also a pointfree
funcoid.

Proof. It follows from symmetry in the definition of pointfree funcoid. □

Obvious 1599. (f−1)−1 = f for every pointfree funcoid f .

Definition 1600. The relation [f ]∈ P(Src f×Dst f) is defined by the formula
(for every pointfree funcoid f and x ∈ Src f , y ∈ Dst f)

x [f ] y def= y ̸≍ ⟨f⟩x.

Obvious 1601. x [f ] y ⇔ y ̸≍ ⟨f⟩x ⇔ x ̸≍
〈
f−1〉y for every pointfree funcoid

f and x ∈ Src f , y ∈ Dst f .

Obvious 1602.
[
f−1]=[f ]−1 for every pointfree funcoid f .

Theorem 1603. Let A and B be posets. Then:

314
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1◦. If A is separable, for given value of ⟨f⟩ there exists no more than one
f ∈ pFCD(A,B).

2◦. If A and B are separable, for given value of [f ] there exists no more than
one f ∈ pFCD(A,B).

Proof. Let f, g ∈ pFCD(A,B).
1◦. Let ⟨f⟩ = ⟨g⟩. Then for every x ∈ A, y ∈ B we have

x ̸≍
〈
f−1〉y ⇔ y ̸≍ ⟨f⟩x ⇔ y ̸≍ ⟨g⟩x ⇔ x ̸≍

〈
g−1〉y

and thus by separability of A we have
〈
f−1〉y =

〈
g−1〉y that is

〈
f−1〉 =

〈
g−1〉 and

so f = g.
2◦. Let [f ]=[g]. Then for every x ∈ A, y ∈ B we have

x ̸≍
〈
f−1〉y ⇔ x [f ] y ⇔ x [g] y ⇔ x ̸≍

〈
g−1〉y

and thus by separability of A we have
〈
f−1〉y =

〈
g−1〉y that is

〈
f−1〉 =

〈
g−1〉.

Similarly we have ⟨f⟩ = ⟨g⟩. Thus f = g.
□

Proposition 1604. If Src f and Dst f have least elements, then ⟨f⟩⊥Src f =
⊥Dst f for every pointfree funcoid f .

Proof. y ̸≍ ⟨f⟩⊥Src f ⇔ ⊥Src f ̸≍
〈
f−1〉y ⇔ 0 for every y ∈ Dst f . Thus

⟨f⟩⊥Src f ≍ ⟨f⟩⊥Src f . So ⟨f⟩⊥Src f = ⊥Dst f . □

Proposition 1605. If Dst f is strongly separable then ⟨f⟩ is a monotone func-
tion (for a pointfree funcoid f).

Proof.
a ⊑ b ⇒

∀x ∈ Dst f : (a ̸≍
〈
f−1〉x ⇒ b ̸≍

〈
f−1〉x) ⇒

∀x ∈ Dst f : (x ̸≍ ⟨f⟩a ⇒ x ̸≍ ⟨f⟩b) ⇔
⋆⟨f⟩a ⊆ ⋆⟨f⟩b ⇒

⟨f⟩a ⊑ ⟨f⟩b.
□

Theorem 1606. Let f be a pointfree funcoid from a starrish join-semilattice
Src f to a separable starrish join-semilattice Dst f . Then ⟨f⟩(i ⊔ j) = ⟨f⟩i ⊔ ⟨f⟩j
for every i, j ∈ Src f .

Proof.
⋆⟨f⟩(i ⊔ j) ={

y ∈ Dst f
y ̸≍ ⟨f⟩(i ⊔ j)

}
={

y ∈ Dst f
i ⊔ j ̸≍ ⟨f−1⟩y

}
={

y ∈ Dst f
i ̸≍ ⟨f−1⟩y ∨ j ̸≍ ⟨f−1⟩y

}
={

y ∈ Dst f
y ̸≍ ⟨f⟩i ∨ y ̸≍ ⟨f⟩j

}
={

y ∈ Dst f
y ̸≍ ⟨f⟩i ⊔ ⟨f⟩j

}
=

⋆(⟨f⟩i ⊔ ⟨f⟩j).
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Thus ⟨f⟩(i ⊔ j) = ⟨f⟩i ⊔ ⟨f⟩j by separability. □

Proposition 1607. Let f be a pointfree funcoid. Then:

1◦. k [f ] i ⊔ j ⇔ k [f ] i ∨ k [f ] j for every i, j ∈ Dst f , k ∈ Src f if Dst f is a
starrish join-semilattice.

2◦. i ⊔ j [f ] k ⇔ i [f ] k ∨ j [f ] k for every i, j ∈ Src f , k ∈ Dst f if Src f is a
starrish join-semilattice.

Proof.
1◦. k [f ] i ⊔ j ⇔ i ⊔ j ̸≍ ⟨f⟩k ⇔ i ̸≍ ⟨f⟩k ∨ j ̸≍ ⟨f⟩k ⇔ k [f ] i ∨ k [f ] j.
2◦. Similar.

□

20.2. Composition of pointfree funcoids

Definition 1608. Composition of pointfree funcoids is defined by the formula

(B,C, α2, β2) ◦ (A,B, α1, β1) = (A,C, α2 ◦ α1, β1 ◦ β2).

Definition 1609. I will call funcoids f and g composable when Dst f = Src g.

Proposition 1610. If f , g are composable pointfree funcoids then g ◦ f is
pointfree funcoid.

Proof. Let f = (A,B, α1, β1), g = (B,C, α2, β2). For every x, y ∈ A we have

y ̸≍ (α2 ◦ α1)x ⇔ y ̸≍ α2α1x ⇔ α1x ̸≍ β2y ⇔ x ̸≍ β1β2y ⇔ x ̸≍ (β1 ◦ β2)y.

So (A,C, α2 ◦ α1, β1 ◦ β2) is a pointfree funcoid. □

Obvious 1611. ⟨g ◦ f⟩ = ⟨g⟩ ◦ ⟨f⟩ for every composable pointfree funcoids f
and g.

Theorem 1612. (g◦f)−1 = f−1◦g−1 for every composable pointfree funcoids f
and g.

Proof. 〈
(g ◦ f)−1〉 =

〈
f−1〉 ◦

〈
g−1〉 =

〈
f−1 ◦ g−1〉;〈

((g ◦ f)−1)−1〉 = ⟨g ◦ f⟩ =
〈
(f−1 ◦ g−1)−1〉.

□

Proposition 1613. (h ◦ g) ◦ f = h ◦ (g ◦ f) for every composable pointfree
funcoids f , g, h.

Proof. ⟨(h ◦ g) ◦ f⟩ = ⟨h ◦ g⟩ ◦ ⟨f⟩ = ⟨h⟩ ◦ ⟨g⟩ ◦ ⟨f⟩ = ⟨h⟩ ◦ ⟨g ◦ f⟩ =
⟨h ◦ (g ◦ f)⟩;〈

((h ◦ g) ◦ f)−1〉 =
〈
f−1 ◦ (h ◦ g)−1〉 =

〈
f−1 ◦ g−1 ◦ h−1〉 =〈
(g ◦ f)−1 ◦ h−1〉 =

〈
(h ◦ (g ◦ f))−1〉.

□

Exercise 1614. Generalize section 7.4 for pointfree funcoids.
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20.3. Pointfree funcoid as continuation

Proposition 1615. Let f be a pointfree funcoid. Then for every x ∈ Src f ,
y ∈ Dst f we have

1◦. If (Src f,Z) is a filtrator with separable core then x [f ] y ⇔ ∀X ∈ upZ x :
X [f ] y.

2◦. If (Dst f,Z) is a filtrator with separable core then x [f ] y ⇔ ∀Y ∈ upZ y :
x [f ] Y .

Proof. We will prove only the second because the first is similar.

x [f ] y ⇔ y ̸≍Dst f ⟨f⟩x ⇔ ∀Y ∈ upZ y : Y ̸≍ ⟨f⟩x ⇔ ∀Y ∈ upZ y : x [f ] Y.

□

Corollary 1616. Let f be a pointfree funcoid and (Src f,Z0), (Dst f,Z1) be
filtrators with separable core. Then

x [f ] y ⇔ ∀X ∈ upZ0 x, Y ∈ upZ1 y : X [f ] Y.

Proof. Apply the proposition twice. □

Theorem 1617. Let f be a pointfree funcoid. Let (Src f,Z0) be a binarily
meet-closed filtrator with separable core which is a meet-semilattice and ∀x ∈
Src f : upZ0 x ̸= ∅ and (Dst f,Z1) be a primary filtrator over a boolean lattice.

⟨f⟩x =
Dst fl

⟨⟨f⟩⟩∗ upZ0 x.

Proof. By the previous proposition for every y ∈ Dst f :

y ̸≍Dst f ⟨f⟩x ⇔ x [f ] y ⇔ ∀X ∈ upZ0 x : X [f ] y ⇔ ∀X ∈ upZ0 x : y ̸≍Dst f ⟨f⟩X.

Let’s denote W =
{

y⊓Dst f ⟨f⟩X
X∈upZ0 x

}
. We will prove that W is a generalized filter

base over Z1. To prove this enough to show that V =
{

⟨f⟩X
X∈upZ0 x

}
is a generalized

filter base.
Let P,Q ∈ V . Then P = ⟨f⟩A, Q = ⟨f⟩B where A,B ∈ upZ0 x; A ⊓Z0

B ∈ upZ0 x (used the fact that it is a binarily meet-closed and theorem 535) and
R ⊑ P ⊓Dst f Q for R = ⟨f⟩(A ⊓Z0 B) ∈ V because Dst f is strongly separable by
proposition 579. So V is a generalized filter base and thus W is a generalized filter
base.

⊥Dst f /∈ W ⇔ ⊥Dst f /∈
dDst f

W by theorem 572. That is

∀X ∈ upZ0 x : y ⊓Dst f ⟨f⟩X ̸= ⊥Dst f ⇔ y ⊓Dst f

Dst fl
⟨⟨f⟩⟩∗ upZ0 x ̸= ⊥Dst f .

Comparing with the above,

y ⊓Dst f ⟨f⟩x ̸= ⊥Dst f ⇔ y ⊓Dst f

Dst fl
⟨⟨f⟩⟩∗ upZ0 x ̸= ⊥Dst f .

So ⟨f⟩x =
dDst f ⟨⟨f⟩⟩∗ upZ0 x because Dst f is separable (proposition 579 and the

fact that Z1 is a boolean lattice). □

Theorem 1618. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices.

1◦. A function α ∈ BZ0 conforming to the formulas (for every I, J ∈ Z0)

α⊥Z0 = ⊥B, α(I ⊔ J) = αI ⊔ αJ



20.3. POINTFREE FUNCOID AS CONTINUATION 318

can be continued to the function ⟨f⟩ for a unique f ∈ pFCD(A,B);

⟨f⟩X =
Bl

⟨α⟩∗ upZ0 X (20)

for every X ∈ A.
2◦. A relation δ ∈ P(Z0 ×Z1) conforming to the formulas (for every I, J,K ∈

Z0 and I ′, J ′,K ′ ∈ Z1)

¬(⊥Z0 δ I ′), I ⊔ J δ K ′ ⇔ I δ K ′ ∨ J δ K ′,

¬(I δ ⊥Z1), K δ I ′ ⊔ J ′ ⇔ K δ I ′ ∨K δ J ′ (21)

can be continued to the relation [f ] for a unique f ∈ pFCD(A,B);

X [f ] Y ⇔ ∀X ∈ upZ0 X , Y ∈ upZ1 Y : X δ Y (22)

for every X ∈ A, Y ∈ B.

Proof. Existence of no more than one such pointfree funcoids and formulas
(20) and (22) follow from two previous theorems.

2◦.
{

Y ∈Z1
XδY

}
is obviously a free star for every X ∈ Z0. By properties of filters

on boolean lattices, there exist a unique filter αX such that ∂(αX) =
{

Y ∈Z1
XδY

}
for

every X ∈ Z0. Thus α ∈ BZ0 . Similarly it can be defined β ∈ AZ1 by the formula
∂(βY ) =

{
X∈Z0
XδY

}
. Let’s continue the functions α and β to α′ ∈ BA and β′ ∈ AB

by the formulas

α′X =
Bl

⟨α⟩∗ upZ0 X and β′Y =
Al

⟨β⟩∗ upZ1 Y

and δ to δ′ ∈ P(A × B) by the formula

X δ′ Y ⇔ ∀X ∈ upZ0 X , Y ∈ upZ1 Y : X δ Y.

Y ⊓ α′X ≠ ⊥B ⇔ Y ⊓
d

⟨α⟩∗ upZ0 X ≠ ⊥B ⇔
d

⟨Y⊓⟩∗⟨α⟩∗ upZ0 X ̸= ⊥B. Let’s
prove that

W = ⟨Y⊓⟩∗⟨α⟩∗ upZ0 X
is a generalized filter base: To prove it is enough to show that ⟨α⟩∗ upZ0 X is a
generalized filter base.

If A,B ∈ ⟨α⟩∗ upZ0 X then exist X1, X2 ∈ upZ0 X such that A = αX1 and
B = αX2. Then α(X1 ⊓Z0 X2) ∈ ⟨α⟩∗ upZ0 X . So ⟨α⟩∗ upZ0 X is a generalized filter
base and thus W is a generalized filter base.

By properties of generalized filter bases,
d

⟨Y⊓⟩∗⟨α⟩∗ upZ0 X ≠ ⊥B is equiva-
lent to

∀X ∈ upZ0 X : Y ⊓ αX ̸= ⊥B,

what is equivalent to

∀X ∈ upZ0 X , Y ∈ upZ1 Y : Y ⊓B αX ̸= ⊥B ⇔
∀X ∈ upZ0 X , Y ∈ upZ1 Y : Y ∈ ∂(αX) ⇔

∀X ∈ upZ0 X , Y ∈ upZ1 Y : X δ Y.

Combining the equivalencies we get Y ⊓ α′X ≠ ⊥B ⇔ X δ′ Y. Analogously
X ⊓β′Y ̸= ⊥A ⇔ X δ′ Y. So Y ⊓α′X ̸= ⊥B ⇔ X ⊓β′Y ̸= ⊥A, that is (A,B, α′, β′)
is a pointfree funcoid. From the formula Y ⊓ α′X ̸= ⊥B ⇔ X δ′ Y it follows that
[(A,B, α′, β′)] is a continuation of δ.

1◦. Let define the relation δ ∈ P(Z0×Z1) by the formula X δ Y ⇔ Y ⊓BαX ̸=
⊥B.

That ¬(⊥Z0 δ I ′) and ¬(I δ ⊥Z1) is obvious. We have



20.3. POINTFREE FUNCOID AS CONTINUATION 319

K δ I ′ ⊔Z1 J ′ ⇔
(I ′ ⊔Z1 J ′) ⊓B αK ̸= ⊥B ⇔

(I ′ ⊔B J ′) ⊓ αK ̸= ⊥B ⇔
(I ′ ⊓B αK) ⊔ (J ′ ⊓B αK) ̸= ⊥B ⇔

I ′ ⊓B αK ̸= ⊥B ∨ J ′ ⊓B αK ̸= ⊥B ⇔
K δ I ′ ∨K δ J ′

and

I ⊔Z0 J δ K ′ ⇔
K ′ ⊓B α(I ⊔Z0 J) ̸= ⊥B ⇔
K ′ ⊓B (αI ⊔ αJ) ̸= ⊥B ⇔

(K ′ ⊓B αI) ⊔ (K ′ ⊓B αJ) ̸= ⊥B ⇔
K ′ ⊓B αI ̸= ⊥B ∨K ′ ⊓B αJ ̸= ⊥B ⇔

I δ K ′ ∨ J δ K ′.

That is the formulas (21) are true.
Accordingly the above δ can be continued to the relation [f ] for some f ∈

pFCD(A,B).
∀X ∈ Z0, Y ∈ Z1 : (Y ⊓B ⟨f⟩X ̸= ⊥B ⇔ X [f ] Y ⇔ Y ⊓B αX ̸= ⊥B),

consequently ∀X ∈ Z0 : αX = ⟨f⟩X because our filtrator is with separable core.
So ⟨f⟩ is a continuation of α.

□

Theorem 1619. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. If α ∈ BZ0 , β ∈ AZ1 are functions such that Y ̸≍ αX ⇔ X ̸≍ βY for every
X ∈ Z0, Y ∈ Z1, then there exists exactly one pointfree funcoid f : A → B such
that ⟨f⟩|Z0 = α,

〈
f−1〉|Z1 = β.

Proof. Prove α(I ⊔ J) = αI ⊔ αJ . Really, Y ̸≍ α(I ⊔ J) ⇔ I ⊔ J ̸≍ βY ⇔
I ̸≍ βY ∨ J ̸≍ βY ⇔ Y ̸≍ αI ∨ Y ̸≍ αJ ⇔ Y ̸≍ αI ⊔ αJ . So α(I ⊔ J) = αI ⊔ αJ
by star-separability. Similarly β(I ⊔ J) = βI ⊔ βJ .

Thus by the theorem above there exists a pointfree funcoid f such that ⟨f⟩|Z0 =
α,
〈
f−1〉|Z1 = β.
That this pointfree funcoid is unique, follows from the above. □

Proposition 1620. Let (Src f,Z0) be a primary filtrator over a bounded dis-
tributive lattice and (Dst f,Z1) be a primary filtrator over boolean lattice. If S is a
generalized filter base on Src f then ⟨f⟩

dSrc f
S =

dDst f ⟨⟨f⟩⟩∗
S for every pointfree

funcoid f .

Proof. First the meets
dSrc f

S and
dDst f ⟨⟨f⟩⟩∗

S exist by corollary 518.
(Src f,Z0) is a binarily meet-closed filtrator by corollary 536 and with separable

core by theorem 537; thus we can apply theorem 1617 (upx ̸= ∅ is obvious).
⟨f⟩

dSrc f
S ⊑ ⟨f⟩X for every X ∈ S because Dst f is strongly separable by

proposition 579 and thus ⟨f⟩
dSrc f

S ⊑
dDst f ⟨⟨f⟩⟩∗

S.
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Taking into account properties of generalized filter bases:

⟨f⟩
Src fl

S =
Dst fl

⟨⟨f⟩⟩∗ up
l
S =

Dst fl
⟨⟨f⟩⟩∗

{
X

∃P ∈ S : X ∈ up P

}
=

Dst fl {
⟨f⟩∗

X

∃P ∈ S : X ∈ up P

}
⊒ (because Dst f is a strongly separable poset)

Dst fl {
⟨f⟩P
P ∈ S

}
=

Dst fl
⟨⟨f⟩⟩∗

S.

□

Proposition 1621. X [f ]
d
S ⇔ ∃Y ∈ S : X [f ] Y if f is a pointfree funcoid,

Dst f is a meet-semilattice with least element and S is a generalized filter base on
Dst f .

Proof.

X [f ]
l
S ⇔

l
S ⊓ ⟨f⟩X ̸= ⊥ ⇔

l
⟨⟨f⟩X ⊓⟩∗S ̸= ⊥ ⇔

(by properties of generalized filter bases) ⇔
∃Y ∈ ⟨⟨f⟩X ⊓⟩∗S : Y ̸= ⊥ ⇔ ∃Y ∈ S : ⟨f⟩X ⊓ Y ≠ ⊥ ⇔ ∃Y ∈ S : X [f ] Y.

□

Theorem 1622. A function φ : A → B, where (A,Z0) and (B,Z1) are primary
filtrators over boolean lattices, preserves finite joins (including nullary joins) and
filtered meets iff there exists a pointfree funcoid f such that ⟨f⟩ = φ.

Proof. Backward implication follows from above.
Let ψ = φ|Z0 . Then ψ preserves bottom element and binary joins. Thus there

exists a funcoid f such that ⟨f⟩∗ = ψ.
It remains to prove that ⟨f⟩ = φ.
Really, ⟨f⟩X =

d
⟨⟨f⟩⟩∗ up X =

d
⟨ψ⟩∗ up X =

d
⟨φ⟩∗ up X = φ

d
up X = φX

for every X ∈ F (Src f). □

Corollary 1623. Pointfree funcoids f from a lattice A of fitlters on a boolean
lattice to a lattice B of fitlters on a boolean lattice bijectively correspond by the
formula ⟨f⟩ = φ to functions φ : A → B preserving finite joins and filtered meets.

Theorem 1624. The set of pointfree funcoids between sets of filters on boolean
lattices is a co-frame.

Proof. Theorems 1618 and 533. □

20.4. The order of pointfree funcoids

Definition 1625. The order of pointfree funcoids pFCD(A,B) is defined by
the formula:

f ⊑ g ⇔ ∀x ∈ A : ⟨f⟩x ⊑ ⟨g⟩x ∧ ∀y ∈ B :
〈
f−1〉y ⊑

〈
g−1〉y.

Proposition 1626. It is really a partial order on the set pFCD(A,B).
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Proof.

Reflexivity. Obvious.
Transitivity. It follows from transitivity of the order relations on A and B.
Antisymmetry. It follows from antisymmetry of the order relations on A and B.

□

Remark 1627. It is enough to define order of pointfree funcoids on every set
pFCD(A,B) where A and B are posets. We do not need to compare pointfree
funcoids with different sources or destinations.

Obvious 1628. f ⊑ g ⇒[f ]⊆[g] for every f, g ∈ pFCD(A,B) for every posets
A and B.

Theorem 1629. If A and B are separable posets then f ⊑ g ⇔[f ]⊆[g].

Proof. From the theorem 1603. □

Proposition 1630. If A and B have least elements, then pFCD(A,B) has least
element.

Proof. It is (A,B,A × {⊥B},B × {⊥A}). □

Theorem 1631. If A and B are bounded posets, then pFCD(A,B) is bounded.

Proof. That pFCD(A,B) has least element was proved above. I will demon-
strate that (A,B, α, β) is the greatest element of pFCD(A,B) for

αX =
{

⊥B if X = ⊥A

⊤B if X ̸= ⊥A
; βY =

{
⊥A if Y = ⊥B

⊤A if Y ̸= ⊥B
.

First prove Y ̸≍ αX ⇔ X ̸≍ βY .
If ⊤B = ⊥B then Y ̸≍ αX ⇔ Y ̸≍ ⊥B ⇔ 0 ⇔ X ̸≍ ⊥A ⇔ X ̸≍ β⊥A

(proposition 1604). The case ⊤A = ⊥A is similar. So we can assume ⊤A ̸= ⊥A and
⊤B ̸= ⊥B.

Consider all variants:

X = ⊥A and Y = ⊥B. Y ̸≍ αX ⇔ 0 ⇔ X ̸≍ βY .
X ̸= ⊥A and Y ̸= ⊥B. αX = ⊤B and βY = ⊤A; Y ̸≍ αX ⇔ Y ̸≍ ⊤B ⇔ 1 ⇔

X ̸≍ ⊤A ⇔ X ̸≍ βY (used that ⊤A ̸= ⊥A and ⊤B ̸= ⊥B).
X = ⊥A and Y ̸= ⊥B. αX = ⊥B (proposition 1604) and βY = ⊤A; Y ̸≍ αX ⇔

Y ̸≍ ⊥B ⇔ 0 ⇔ ⊥A ̸≍ βY ⇔ X ̸≍ βY .
X = ⊥A and Y ̸= ⊥B. Similar.

It’s easy to show that both α and β are the greatest possible components of a
pointfree funcoid taking into account proposition 1604. □

Theorem 1632. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. Then for R ∈ PpFCD(A,B) and X ∈ Z0, Y ∈ Z1 we have:

1◦. X [ dR] Y ⇔ ∃f ∈ R : X [f ] Y ;
2◦. ⟨ dR⟩X = df∈R⟨f⟩X.

Proof.
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2◦. αX
def= df∈R⟨f⟩X (by corollary 518 all joins on B exist). We have α⊥A =

⊥B;
α(I ⊔Z0 J) =

l

{
⟨f⟩(I ⊔Z0 J)

f ∈ R

}
=

l

{
⟨f⟩(I ⊔A J)
f ∈ R

}
=

l

{
⟨f⟩I ⊔B ⟨f⟩J

f ∈ R

}
=

l

{
⟨f⟩I
f ∈ R

}
⊔B

l

{
⟨f⟩J
f ∈ R

}
=

αI ⊔B αJ

(used theorem 1606). By theorem 1618 the function α can be continued to ⟨h⟩ for
an h ∈ pFCD(A,B). Obviously

∀f ∈ R : h ⊒ f. (23)
And h is the least element of pFCD(A,B) for which the condition (23) holds. So
h = dR.

1◦.
X
[

lR
]
Y ⇔

Y ⊓B
〈

lR
〉
X ̸= ⊥B ⇔

Y ⊓B

l

{
⟨f⟩X
f ∈ R

}
̸= ⊥B ⇔

∃f ∈ R : Y ⊓B ⟨f⟩X ̸= ⊥B ⇔
∃f ∈ R : X [f ] Y

(used theorem 610).
□

Corollary 1633. If (A,Z0) and (B,Z1) are primary filtrators over boolean
lattices then pFCD(A,B) is a complete lattice.

Proof. Apply [27]. □

Theorem 1634. Let A and B be starrish join-semilattices. Then for f, g ∈
pFCD(A,B):

1◦. ⟨f ⊔ g⟩x = ⟨f⟩x ⊔ ⟨g⟩x for every x ∈ A;
2◦. [f ⊔ g]=[f ] ∪ [g].

Proof. □

1◦. Let αX def= ⟨f⟩x ⊔ ⟨g⟩x; βY def=
〈
f−1〉y ⊔

〈
g−1〉y for every x ∈ A, y ∈ B.

Then
y ̸≍B αx ⇔

y ̸≍ ⟨f⟩x ∨ y ̸≍ ⟨g⟩x ⇔
x ̸≍

〈
f−1〉y ∨ x ̸≍

〈
g−1〉y ⇔

x ̸≍
〈
f−1〉y ⊔

〈
g−1〉y ⇔

x ̸≍ βy.
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So h = (A,B, α, β) is a pointfree funcoid. Obviously h ⊒ f and h ⊒ g. If p ⊒ f
and p ⊒ g for some p ∈ pFCD(A,B) then ⟨p⟩x ⊒ ⟨f⟩x ⊔ ⟨g⟩x = ⟨h⟩x and

〈
p−1〉y ⊒〈

f−1〉y ⊔
〈
g−1〉y =

〈
h−1〉y that is p ⊒ h. So f ⊔ g = h.

2◦.
x [f ⊔ g] y ⇔

y ̸≍ ⟨f ⊔ g⟩x ⇔
y ̸≍ ⟨f⟩x ⊔ ⟨g⟩x ⇔

y ̸≍ ⟨f⟩x ∨ y ̸≍ ⟨g⟩x ⇔
x [f ] y ∨ x [g] y

for every x ∈ A, y ∈ B.

20.5. Domain and range of a pointfree funcoid

Definition 1635. Let A be a poset. The identity pointfree funcoid 1pFCD
A =

(A,A, idA, idA).

It is trivial that identity funcoid is really a pointfree funcoid.
Let now A be a meet-semilattice.

Definition 1636. Let a ∈ A. The restricted identity pointfree funcoid
idpFCD(A)

a = (A,A, a⊓A, a⊓A).

Proposition 1637. The restricted pointfree funcoid is a pointfree funcoid.

Proof. We need to prove that (a ⊓A x) ̸≍A y ⇔ (a ⊓A y) ̸≍A x what is
obvious. □

Obvious 1638. (idpFCD(A)
a )−1 = idpFCD(A)

a .

Obvious 1639. x
[
idpFCD(A)

a

]
y ⇔ a ̸≍A x ⊓A y for every x, y ∈ A.

Definition 1640. I will define restricting of a pointfree funcoid f to an element
a ∈ Src f by the formula f |a

def= f ◦ idpFCD(Src f)
a .

Definition 1641. Let f be a pointfree funcoid whose source is a set with
greatest element. Image of f will be defined by the formula im f = ⟨f⟩⊤.

Proposition 1642. im f ⊒ ⟨f⟩x for every x ∈ Src f whenever Dst f is a
strongly separable poset with greatest element.

Proof. ⟨f⟩⊤ is greater than every ⟨f⟩x (where x ∈ Src f) by proposition 1605.
□

Definition 1643. Domain of a pointfree funcoid f is defined by the formula
dom f = im f−1.

Proposition 1644. ⟨f⟩ dom f = im f if f is a pointfree funcoid and Src f is a
strongly separable poset with greatest element and Dst f is a separable poset with
greatest element.

Proof. For every y ∈ Dst f

y ̸≍ ⟨f⟩ dom f ⇔ dom f ̸≍
〈
f−1〉y ⇔

〈
f−1〉⊤ ̸≍

〈
f−1〉y ⇔

(by strong separability of Src f)〈
f−1〉y is not least ⇔ ⊤ ̸≍

〈
f−1〉y ⇔ y ̸≍ ⟨f⟩⊤ ⇔ y ̸≍ im f.

So ⟨f⟩ dom f = im f by separability of Dst f . □
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Proposition 1645. ⟨f⟩x = ⟨f⟩(x ⊓ dom f) for every x ∈ Src f for a pointfree
funcoid f whose source is a bounded separable meet-semilattice and destination is
a bounded separable poset.

Proof. Src f is strongly separable by theorem 225. For every y ∈ Dst f we
have

y ̸≍ ⟨f⟩(x ⊓ dom f) ⇔ x ⊓ dom f ⊓
〈
f−1〉y ̸= ⊥Src f ⇔

x ⊓ im f−1 ⊓
〈
f−1〉y ̸= ⊥Src f ⇔

(by strong separability of Src f)
x ⊓

〈
f−1〉y ̸= ⊥Src f ⇔ y ̸≍ ⟨f⟩x.

Thus ⟨f⟩x = ⟨f⟩(x ⊓ dom f) by separability of Dst f . □

Proposition 1646. x ̸≍ dom f ⇔ (⟨f⟩x is not least) for every pointfree fun-
coid f and x ∈ Src f if Dst f has greatest element ⊤.

Proof. x ̸≍ dom f ⇔ x ̸≍
〈
f−1〉⊤Dst f ⇔ ⊤Dst f ̸≍ ⟨f⟩x ⇔

(⟨f⟩x is not least). □

Proposition 1647. dom f = d

{
a∈atomsSrc f

⟨f⟩a ̸=⊥Dst f

}
for every pointfree funcoid f

whose destination is a bounded strongly separable poset and source is an atomistic
poset.

Proof. For every a ∈ atomsSrc f we have

a ̸≍ dom f ⇔ a ̸≍
〈
f−1〉⊤Dst f ⇔ ⊤Dst f ̸≍ ⟨f⟩a ⇔ ⟨f⟩a ̸= ⊥Dst f .

So dom f = d

{
a∈atomsSrc f

a̸≍dom f

}
= d

{
a∈atomsSrc f

⟨f⟩a ̸=⊥Dst f

}
. □

Proposition 1648. dom(f |a) = a ⊓ dom f for every pointfree funcoid f and
a ∈ Src f where Src f is a meet-semilattice and Dst f has greatest element.

Proof.

dom(f |a) = im(idpFCD(Src f)
a ◦f−1) =〈

idpFCD(Src f)
a

〉〈
f−1〉⊤Dst f = a ⊓

〈
f−1〉⊤Dst f = a ⊓ dom f.

□

Proposition 1649. For every composable pointfree funcoids f and g

1◦. If im f ⊒ dom g then im(g ◦ f) = im g, provided that the posets Src f ,
Dst f = Src g and Dst g have greatest elements and Src g and Dst g are
strongly separable.

2◦. If im f ⊑ dom g then dom(g ◦ f) = dom g, provided that the posets Dst g,
Dst f = Src g and Src f have greatest elements and Dst f and Src f are
strongly separable.

Proof.
1◦. im(g ◦ f) = ⟨g ◦ f⟩⊤Src f = ⟨g⟩⟨f⟩⊤Src f ⊑ im g by strong separability of

Dst g; im(g◦f) = ⟨g ◦ f⟩⊤Src f = ⟨g⟩ im f ⊒ ⟨g⟩ dom g = im g by strong separability
of Dst g and proposition 1644.

2◦. dom(g ◦ f) = im(f−1 ◦ g−1) what by the proved is equal to im f−1 that is
dom f .

□
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20.6. Specifying funcoids by functions or relations on atomic filters

Theorem 1650. Let A be an atomic poset and (B,Z1) is a primary filtrator
over a boolean lattice. Then for every f ∈ pFCD(A,B) and X ∈ A we have

⟨f⟩X =
B

l⟨⟨f⟩⟩∗ atomsA X .

Proof. For every Y ∈ Z1 we have

Y ̸≍B ⟨f⟩X ⇔ X ̸≍A
〈
f−1〉Y ⇔

∃x ∈ atomsA X : x ̸≍A
〈
f−1〉Y ⇔ ∃x ∈ atomsA X : Y ̸≍B ⟨f⟩x.

Thus ∂⟨f⟩X =
⋃

⟨∂⟩∗⟨⟨f⟩⟩∗ atomsA X = ∂ d

B⟨⟨f⟩⟩∗ atomsA X (used corol-
lary 569). Consequently ⟨f⟩X = d

B⟨⟨f⟩⟩∗ atomsA X by the corollary 568. □

Proposition 1651. Let f be a pointfree funcoid. Then for every X ∈ Src f
and Y ∈ Dst f

1◦. X [f ] Y ⇔ ∃x ∈ atoms X : x [f ] Y if Src f is an atomic poset.
2◦. X [f ] Y ⇔ ∃y ∈ atoms Y : X [f ] y if Dst f is an atomic poset.

Proof. I will prove only the second as the first is similar.
If X [f ] Y, then Y ̸≍ ⟨f⟩X , consequently exists y ∈ atoms Y such that y ̸≍

⟨f⟩X , X [f ] y. The reverse is obvious. □

Corollary 1652. If f is a pointfree funcoid with both source and destination
being atomic posets, then for every X ∈ Src f and Y ∈ Dst f

X [f ] Y ⇔ ∃x ∈ atoms X , y ∈ atoms Y : x [f ] y.

Proof. Apply the theorem twice. □

Corollary 1653. If A is a separable atomic poset and B is a separable poset
then f ∈ pFCD(A,B) is determined by the values of ⟨f⟩X for X ∈ atomsA.

Proof.

y ̸≍ ⟨f⟩x ⇔ x ̸≍
〈
f−1〉y ⇔

∃X ∈ atomsx : X ̸≍
〈
f−1〉y ⇔

∃X ∈ atomsx : y ̸≍ ⟨f⟩X.

Thus by separability of B we have ⟨f⟩ is determined by ⟨f⟩X for X ∈ atomsx.
By separability of A we infer that f can be restored from ⟨f⟩ (theorem 1603).

□

Theorem 1654. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices.

1◦. A function α ∈ BatomsA such that (for every a ∈ atomsA)

αa ⊑
l〈

l◦⟨α⟩∗ ◦ atomsA
〉∗

upZ0 a (24)

can be continued to the function ⟨f⟩ for a unique f ∈ pFCD(A,B);

⟨f⟩X = l⟨α⟩∗ atomsA X (25)

for every X ∈ A.
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2◦. A relation δ ∈ P(atomsA × atomsB) such that (for every a ∈ atomsA,
b ∈ atomsB)

∀X ∈ upZ0 a, Y ∈ upZ1 b∃x ∈ atomsAX, y ∈ atomsB Y : x δ y ⇒ a δ b (26)

can be continued to the relation [f ] for a unique f ∈ pFCD(A,B);

X [f ] Y ⇔ ∃x ∈ atoms X , y ∈ atoms Y : x δ y (27)

for every X ∈ A, Y ∈ B.

Proof. Existence of no more than one such funcoids and formulas (25) and
(27) follow from theorem 1650 and corollary 1652 and the fact that our filtrators
are separable.

1◦. Consider the function α′ ∈ BZ0 defined by the formula (for every X ∈ Z0)

α′X = l⟨α⟩∗ atomsAX.

Obviously α′⊥Z0 = ⊥B. For every I, J ∈ Z0

α′(I ⊔ J) =

l⟨α⟩∗ atomsA(I ⊔ J) =

l⟨α⟩∗(atomsA I ∪ atomsA J) =

l(⟨α⟩∗ atomsA I ∪ ⟨α⟩∗ atomsA J) =

l⟨α⟩∗ atomsA I ⊔ l⟨α⟩∗ atomsA J =

α′I ⊔ α′J.

Let continue α′ till a pointfree funcoid f (by the theorem 1618): ⟨f⟩X =d
⟨α′⟩∗ upZ0 X .

Let’s prove the reverse of (24):
l〈

l◦⟨α⟩∗ ◦ atomsA
〉∗

upZ0 a =
l〈

l◦⟨α⟩∗
〉∗〈

atomsA
〉∗ upZ0 a ⊑

l〈

l◦⟨α⟩∗
〉∗

{{a}} =
l{(

l◦⟨α⟩∗
)

{a}
}

=
l{

l⟨α⟩∗{a}
}

=
l{

l{αa}
}

=
l

{αa} = αa.

Finally,

αa =
l〈

l◦⟨α⟩∗ ◦ atomsA
〉∗

upZ0 a =
l

⟨α′⟩∗ upZ0 a = ⟨f⟩a,

so ⟨f⟩ is a continuation of α.
2◦. Consider the relation δ′ ∈ P(Z0 × Z1) defined by the formula (for every

X ∈ Z0, Y ∈ Z1)

X δ′ Y ⇔ ∃x ∈ atomsAX, y ∈ atomsB Y : x δ y.
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Obviously ¬(X δ′ ⊥Z1) and ¬(⊥Z0 δ′ Y ).

I ⊔ J δ′ Y ⇔
∃x ∈ atomsA(I ⊔ J), y ∈ atomsB Y : x δ y ⇔

∃x ∈ atomsA I ∪ atomsA J, y ∈ atomsB Y : x δ y ⇔
∃x ∈ atomsA I, y ∈ atomsB Y : x δ y ∨ ∃x ∈ atomsA J, y ∈ atomsB Y : x δ y ⇔

I δ′ Y ∨ J δ′ Y ;

similarly X δ′ I ⊔ J ⇔ X δ′ I ∨ X δ′ J . Let’s continue δ′ till a funcoid f (by the
theorem 1618):

X [f ] Y ⇔ ∀X ∈ upZ0 X , Y ∈ upZ1 Y : X δ′ Y.

The reverse of (26) implication is trivial, so

∀X ∈ upZ0 a, Y ∈ upZ1 b∃x ∈ atomsAX, y ∈ atomsB Y : x δ y ⇔ a δ b;

∀X ∈ upZ0 a, Y ∈ upZ1 b∃x ∈ atomsAX, y ∈ atomsB Y : x δ y ⇔
∀X ∈ upZ0 a, Y ∈ upZ1 b : X δ′ Y ⇔

a [f ] b.

So a δ b ⇔ a [f ] b, that is [f ] is a continuation of δ.
□

Theorem 1655. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. If R ∈ PpFCD(A,B) and x ∈ atomsA, y ∈ atomsB, then

1◦. ⟨
d
R⟩x =

d
f∈R⟨f⟩x;

2◦. x [
d
R] y ⇔ ∀f ∈ R : x [f ] y.

Proof.
2◦. Let denote x δ y ⇔ ∀f ∈ R : x [f ] y.

∀X ∈ upZ0 a, Y ∈ upZ1 b∃x ∈ atomsAX, y ∈ atomsB Y : x δ y ⇒
∀f ∈ R,X ∈ upZ0 a, Y ∈ upZ1 b∃x ∈ atomsAX, y ∈ atomsB Y : x [f ] y ⇒

∀f ∈ R,X ∈ upZ0 a, Y ∈ upZ1 b : X [f ] Y ⇒
∀f ∈ R : a [f ] b ⇔

a δ b.

So by theorem 1654, δ can be continued till [p] for some p ∈ pFCD(A,B).
For every q ∈ pFCD(A,B) such that ∀f ∈ R : q ⊑ f we have x [q] y ⇒ ∀f ∈

R : x [f ] y ⇔ x δ y ⇔ x [p] y, so q ⊑ p. Consequently p =
d
R.

From this x [
d
R] y ⇔ ∀f ∈ R : x [f ] y.

1◦. From the former

y ∈ atomsB
〈l

R
〉
x ⇔ y ⊓

〈l
R
〉
x ̸= ⊥B ⇔ ∀f ∈ R : y ⊓ ⟨f⟩x ̸= ⊥B ⇔

y ∈
⋂〈

atomsB
〉∗
{

⟨f⟩x
f ∈ R

}
⇔ y ∈ atoms

l{
⟨f⟩x
f ∈ R

}
for every y ∈ atomsB.

B is atomically separable by the corollary 582. Thus ⟨
d
R⟩x =

d
f∈R⟨f⟩x.

□
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20.7. More on composition of pointfree funcoids

Proposition 1656. [g ◦ f ] = [g] ◦ ⟨f⟩ =
〈
g−1〉−1 ◦ [f ] for every composable

pointfree funcoids f and g.

Proof. For every x ∈ A, y ∈ B

x [g ◦ f ] y ⇔ y ̸≍ ⟨g ◦ f⟩x ⇔ y ̸≍ ⟨g⟩⟨f⟩x ⇔ ⟨f⟩x [g] y ⇔ x ([g] ◦ ⟨f⟩) y.

Thus [g ◦ f ] = [g] ◦ ⟨f⟩.

[g ◦ f ] =
[
(f−1 ◦ g−1)−1] =

[
f−1 ◦ g−1]−1 = (

[
f−1] ◦

〈
g−1〉)−1 =

〈
g−1〉−1 ◦ [f ].

□

Theorem 1657. Let f and g be pointfree funcoids and A = Dst f = Src g be
an atomic poset. Then for every X ∈ Src f and Z ∈ Dst g

X [g ◦ f ] Z ⇔ ∃y ∈ atomsA : (X [f ] y ∧ y [g] Z).

Proof.

∃y ∈ atomsA : (X [f ] y ∧ y [g] Z) ⇔
∃y ∈ atomsA : (Z ̸≍ ⟨g⟩y ∧ y ̸≍ ⟨f⟩X ) ⇔

∃y ∈ atomsA : (y ̸≍
〈
g−1〉Z ∧ y ̸≍ ⟨f⟩X ) ⇔〈

g−1〉Z ̸≍ ⟨f⟩X ⇔
X [g ◦ f ] Z.

□

Theorem 1658. Let A, B, C be separable starrish join-semilattices and B is
atomic. Then:

1◦. f ◦ (g ⊔ h) = f ◦ g ⊔ f ◦ h for g, h ∈ pFCD(A,B) and f ∈ pFCD(B,C).
2◦. (g ⊔ h) ◦ f = g ◦ f ⊔ h ◦ f for f ∈ pFCD(A,B) and g, h ∈ pFCD(B,C).

Proof. I will prove only the first equality because the other is analogous.
We can apply theorem 1634.
For every X ∈ A, Y ∈ C

X [f ◦ (g ⊔ h)] Z ⇔
∃y ∈ atomsB : (X [g ⊔ h] y ∧ y [f ] Z) ⇔

∃y ∈ atomsB : ((X [g] y ∨ X [h] y) ∧ y [f ] Z) ⇔
∃y ∈ atomsB : ((X [g] y ∧ y [f ] Z) ∨ (X [h] y ∧ y [f ] Z)) ⇔

∃y ∈ atomsB : (X [g] y ∧ y [f ] Z) ∨ ∃y ∈ atomsB : (X [h] y ∧ y [f ] Z) ⇔
X [f ◦ g] Z ∨ X [f ◦ h] Z ⇔

X [f ◦ g ⊔ f ◦ h] Z.

Thus f ◦ (g ⊔ h) = f ◦ g ⊔ f ◦ h by theorem 1603. □

Theorem 1659. Let A, B, C be posets of filters over some boolean lattices,
f ∈ pFCD(A,B), g ∈ pFCD(B,C), h ∈ pFCD(A,C). Then

g ◦ f ̸≍ h ⇔ g ̸≍ h ◦ f−1.
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Proof.

g ◦ f ̸≍ h ⇔
∃a ∈ atomsA, c ∈ atomsC : a [(g ◦ f) ⊓ h] c ⇔

∃a ∈ atomsA, c ∈ atomsC : (a [g ◦ f ] c ∧ a [h] c) ⇔
∃a ∈ atomsA, b ∈ atomsB, c ∈ atomsC : (a [f ] b ∧ b [g] c ∧ a [h] c) ⇔

∃b ∈ atomsB, c ∈ atomsC : (b [g] c ∧ b
[
h ◦ f−1] c) ⇔

∃b ∈ atomsB, c ∈ atomsC : b
[
g ⊓ (h ◦ f−1)

]
c ⇔

g ̸≍ h ◦ f−1.

□

20.8. Funcoidal product of elements

Definition 1660. Funcoidal product A×FCD B where A ∈ A, B ∈ B and A and
B are posets with least elements is a pointfree funcoid such that for every X ∈ A,
Y ∈ B〈
A ×FCD B

〉
X =

{
B if X ̸≍ A;
⊥B if X ≍ A; and

〈
(A ×FCD B)−1〉Y =

{
A if Y ̸≍ B;
⊥A if Y ≍ B.

Proposition 1661. A ×FCD B is really a pointfree funcoid and

X
[
A ×FCD B

]
Y ⇔ X ̸≍ A ∧ Y ̸≍ B.

Proof. Obvious. □

Proposition 1662. Let A and B be posets with least elements, f ∈
pFCD(A,B), A ∈ A, B ∈ B. Then

f ⊑ A ×FCD B ⇒ dom f ⊑ A ∧ im f ⊑ B.

Proof. If f ⊑ A×FCD B then dom f ⊑ dom(A×FCD B) ⊑ A, im f ⊑ im(A×FCD

B) ⊑ B. □

Theorem 1663. Let A and B be strongly separable bounded posets, f ∈
pFCD(A,B), A ∈ A, B ∈ B. Then

f ⊑ A ×FCD B ⇔ dom f ⊑ A ∧ im f ⊑ B.

Proof. One direction is the proposition above. The other:
If dom f ⊑ A ∧ im f ⊑ B then X [f ] Y ⇒ Y ̸≍ ⟨f⟩X ⇒ Y ̸≍ im f ⇒ Y ̸≍ B

(strong separability used) and similarly X [f ] Y ⇒ X ̸≍ A.
So [f ] ⊆

[
A ×FCD B

]
and thus using separability f ⊑ A ×FCD B. □

Theorem 1664. Let A, B be bounded separable meet-semilattices. For every
f ∈ pFCD(A,B) and A ∈ A, B ∈ B

f ⊓ (A ×FCD B) = idpFCD(B)
B ◦f ◦ idpFCD(A)

A .

Proof. h def= idpFCD(B)
B ◦f ◦ idpFCD(A)

A . For every X ∈ A

⟨h⟩X =
〈

idpFCD(B)
B

〉
⟨f⟩
〈

idpFCD(A)
A

〉
X = B ⊓ ⟨f⟩(A ⊓ X )

and 〈
h−1〉X =

〈
idpFCD(A)

A

〉〈
f−1〉〈idpFCD(B)

B

〉
X = A ⊓

〈
f−1〉(B ⊓ X ).



20.8. FUNCOIDAL PRODUCT OF ELEMENTS 330

From this, as easy to show, h ⊑ f and h ⊑ A ×FCD B. If g ⊑ f ∧ g ⊑ A ×FCD B
for a g ∈ pFCD(A,B) then dom g ⊑ A. A and B are are strongly separable by
theorem 225. Thus by propositions 1645 we have:

⟨g⟩X = ⟨g⟩(X ⊓ dom g) = ⟨g⟩(X ⊓ A) = B ⊓ ⟨g⟩(A ⊓ X ) ⊑

B ⊓ ⟨f⟩(A ⊓ X ) =
〈

idpFCD(B)
B

〉
⟨f⟩
〈

idpFCD(A)
A

〉
X = ⟨h⟩X ,

and similarly
〈
g−1〉Y ⊑

〈
h−1〉Y. Thus g ⊑ h.

So h = f ⊓ (A ×FCD B). □

Corollary 1665. Let A, B be bounded separable meet-semilattices. For
every f ∈ pFCD(A,B) and A ∈ A we have f |A = f ⊓ (A ×FCD ⊤B).

Proof. f ⊓ (A ×FCD ⊤B) = idpFCD(B)
⊤B ◦f ◦ idpFCD(A)

A = f ◦ idpFCD(A)
A = f |A. □

Corollary 1666. Let A, B be bounded separable meet-semilattices. For
every f ∈ pFCD(A,B) and A ∈ A, B ∈ B we have

f ̸≍ A ×FCD B ⇔ A [f ] B.

Proof. Existence of f ⊓ (A ×FCD B) follows from the above theorem.
f ̸≍ A ×FCD B ⇔

f ⊓ (A ×FCD B) ̸= ⊥pFCD(A,B) ⇔〈
f ⊓ (A ×FCD B)

〉
⊤A ̸= ⊥B ⇔〈

idpFCD(B)
B ◦f ◦ idpFCD(A)

A

〉
⊤A ̸= ⊥B ⇔〈

idpFCD(B)
B

〉
⟨f⟩
〈

idpFCD(A)
A

〉
⊤A ̸= ⊥B ⇔

B ⊓ ⟨f⟩(A ⊓ ⊤A) ̸= ⊥B ⇔
B ⊓ ⟨f⟩A ≠ ⊥B ⇔

A [f ] B.
□

Theorem 1667. Let A, B be bounded separable meet-semilattices. Then the
poset pFCD(A,B) is separable.

Proof. Let f, g ∈ pFCD(A,B) and f ̸= g. By the theorem 1603 [f ] ̸= [g].
That is there exist x, y ∈ A such that x [f ] y ⇎ x [g] y that is f ⊓ (x ×FCD y) ̸=
⊥pFCD(A,B) ⇎ g ⊓ (x×FCD y) ̸= ⊥pFCD(A,B). Thus pFCD(A,B) is separable. □

Corollary 1668. Let A, B be atomic bounded separable meet-semilattices.
The poset pFCD(A,B) is:

1◦. separable;
2◦. strongly separable;
3◦. atomically separable;
4◦. conforming to Wallman’s disjunction property.

Proof. By the theorem 233. □

Remark 1669. For more ways to characterize (atomic) separability of the
lattice of pointfree funcoids see subsections “Separation subsets and full stars” and
“Atomically Separable Lattices”.

Corollary 1670. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. The poset pFCD(A,B) is an atomistic lattice.
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Proof. By the corollary 1633 pFCD(A,B) is a complete lattice. We can use
theorem 231. □

Theorem 1671. Let A and B be posets of filters over boolean lattices. If
S ∈ P(A × B) then

l

(A,B)∈S

(A ×FCD B) =
l

domS ×FCD
l

imS.

Proof. If x ∈ atomsA then by the theorem 1655〈
l

(A,B)∈S

(A ×FCD B)
〉
x =

l
{〈

A ×FCD B
〉
x

(A,B) ∈ S

}
.

If x ⊓
d

domS ̸= ⊥A then

∀(A,B) ∈ S : (x ⊓ A ≠ ⊥A ∧
〈
A ×FCD B

〉
x = B);{〈

A ×FCD B
〉
x

(A,B) ∈ S

}
= imS;

if x ⊓
d

domS = ⊥A then

∃(A,B) ∈ S : (x ⊓ A = ⊥A ∧
〈
A ×FCD B

〉
x = ⊥B);{〈

A ×FCD B
〉
x

(A,B) ∈ S

}
∋ ⊥B.

So 〈
l

(A,B)∈S

(A ×FCD B)
〉
x =

{d
imS if x ⊓

d
domS ̸= ⊥A;

⊥B if x ⊓
d

domS = ⊥A.

From this by theorem 1654 the statement of our theorem follows. □

Corollary 1672. Let A and B be posets of filters over boolean lattices.
For every A0,A1 ∈ A and B0,B1 ∈ B

(A0 ×FCD B0) ⊓ (A1 ×FCD B1) = (A0 ⊓ A1) ×FCD (B0 ⊓ B1).

Proof. (A0 ×FCD B0) ⊓ (A1 ×FCD B1) =
d

{A0 ×FCD B0,A1 ×FCD B1} what is
by the last theorem equal to (A0 ⊓ A1) ×FCD (B0 ⊓ B1). □

Theorem 1673. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. If A ∈ A then A×FCD is a complete homomorphism from the lattice A to
the lattice pFCD(A,B), if also A ≠ ⊥A then it is an order embedding.

Proof. Let S ∈ PA, X ∈ Z0, x ∈ atomsA.〈

l

〈
A×FCD〉∗

S
〉
X =

l

B∈S

〈
A ×FCD B

〉
X ={

dS if X ⊓A A ≠ ⊥A

⊥B if X ⊓A A = ⊥A
=〈

A ×FCD

lS
〉
X.
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Thus d

〈
A×FCD〉∗

S = A ×FCD dS by theorem 1617.〈l〈
A×FCD〉∗

S
〉
x =

l

B∈S

〈
A ×FCD B

〉
x ={d

S if X ⊓A A ≠ ⊥A

⊥B if X ⊓A A = ⊥A
=〈

A ×FCD
l
S
〉
x.

Thus
d〈

A×FCD〉∗
S = A ×FCD d

S by theorem 1650.
If A ≠ ⊥A then obviously A×FCD X ⊑ A×FCD Y ⇔ X ⊑ Y, because im(A×FCD

X ) = X and im(A ×FCD Y) = Y. □

Proposition 1674. Let A be a meet-semilattice with least element and B be
a poset with least element. If a is an atom of A, f ∈ pFCD(A,B) then f |a =
a×FCD ⟨f⟩a.

Proof. Let X ∈ A.

X ⊓ a ̸= ⊥A ⇒ ⟨f |a⟩X = ⟨f⟩a, X ⊓ a = ⊥A ⇒ ⟨f |a⟩X = ⊥B.

□

Proposition 1675. f ◦ (A ×FCD B) = A ×FCD ⟨f⟩B for elements A ∈ A and
B ∈ B of some posets A, B, C with least elements and f ∈ pFCD(B,C).

Proof. Let X ∈ A, Y ∈ B.〈
f ◦ (A ×FCD B)

〉
X =

({
⟨f⟩B if X ̸≍ A
⊥ if X ≍ A

)
=
〈
A ×FCD ⟨f⟩B

〉
X ;〈

(f ◦ (A ×FCD B))−1〉Y =〈
(B ×FCD A) ◦ f−1〉Y =({
A if

〈
f−1〉Y ̸≍ B

⊥ if
〈
f−1〉Y ≍ B

)
=({

A if Y ̸≍ ⟨f⟩B
⊥ if Y ≍ ⟨f⟩B

)
=〈

⟨f⟩B ×FCD A
〉
Y =〈

(A ×FCD ⟨f⟩B)−1〉Y.
□

20.9. Category of pointfree funcoids

I will define the category pFCD of pointfree funcoids:
• The class of objects are small posets.
• The set of morphisms from A to B is pFCD(A,B).
• The composition is the composition of pointfree funcoids.
• Identity morphism for an object A is (A,A, idA, idA).

To prove that it is really a category is trivial.
The category of pointfree funcoid quintuples is defined as follows:

• Objects are pairs (A,A) where A is a small meet-semilattice and A ∈ A.
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• The morphisms from an object (A,A) to an object (B,B) are tuples
(A,B,A,B, f) where f ∈ pFCD(A,B) and

∀x ∈ A : ⟨f⟩x ⊑ A, ∀y ∈ B :
〈
f−1〉y ⊑ B. (28)

• The composition is defined by the formula

(B,C,B, C, g) ◦ (A,B,A,B, f) = (A,C,A, C, g ◦ f).

• Identity morphism for an object (A,A) is idpFCD(A)
A . (Note: this is defined

only for meet-semilattices.)
To prove that it is really a category is trivial.

Proposition 1676. For strongly separated and bounded A and B formula (28)
is equivalent to each of the following:

1◦. dom f ⊑ A ∧ im f ⊑ B;
2◦. f ⊑ A ×FCD B.

Proof. Because ⟨f⟩x ⊑ im f ,
〈
f−1〉y ⊑ dom f , and theorem 1663. □

20.10. Atomic pointfree funcoids

Theorem 1677. Let A, B be atomic bounded separable meet-semilattices. An
f ∈ pFCD(A,B) is an atom of the poset pFCD(A,B) iff there exist a ∈ atomsA and
b ∈ atomsB such that f = a×FCD b.

Proof.
⇒. Let f be an atom of the poset pFCD(A,B). Let’s get elements a ∈ atoms dom f

and b ∈ atoms⟨f⟩a. Then for every X ∈ A

X ≍ a ⇒
〈
a×FCD b

〉
X = ⊥B ⊑ ⟨f⟩X , X ̸≍ a ⇒

〈
a×FCD b

〉
X = b ⊑ ⟨f⟩X .

So
〈
a×FCD b

〉
X ⊑ ⟨f⟩X and similarly

〈
b×FCD a

〉
Y ⊑

〈
f−1〉Y for ev-

ery Y ∈ B thus a×FCD b ⊑ f ; because f is atomic we have f = a×FCD b.
⇐. Let a ∈ atomsA, b ∈ atomsB, f ∈ pFCD(A,B). If b ≍B ⟨f⟩a then ¬(a [f ] b),

f ⊓ (a ×FCD b) = ⊥pFCD(A,B) (by corollary 1666 because A and B are
bounded meet-semilattices); if b ⊑ ⟨f⟩a, then for every X ∈ A

X ≍ a ⇒
〈
a×FCD b

〉
X = ⊥B ⊑ ⟨f⟩X , X ̸≍ a ⇒

〈
a×FCD b

〉
X = b ⊑ ⟨f⟩X

that is
〈
a×FCD b

〉
X ⊑ ⟨f⟩X and likewise

〈
b×FCD a

〉
Y ⊑

〈
f−1〉Y for every

Y ∈ B, so f ⊒ a×FCD b. Consequently f ⊓ (a×FCD b) = ⊥pFCD(A,B) ∨ f ⊒
a×FCD b; that is a×FCD b is an atomic pointfree funcoid.

□

Theorem 1678. Let A, B be atomic bounded separable meet-semilattices.
Then pFCD(A,B) is atomic.

Proof. Let f ∈ pFCD(A,B) and f ̸= ⊥pFCD(A,B). Then dom f ̸= ⊥A, thus
exists a ∈ atoms dom f . So ⟨f⟩a ̸= ⊥B thus exists b ∈ atoms⟨f⟩a. Finally the
atomic pointfree funcoid a×FCD b ⊑ f . □

Proposition 1679. Let A, B be starrish bounded separable lattices.
atoms(f ⊔ g) = atoms f ∪ atoms g for every f, g ∈ pFCD(A,B).
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Proof.

(a×FCD b) ⊓ (f ⊔ g) ̸= ⊥pFCD(A,B) ⇔ (corollary 1666) ⇔
a [f ⊔ g] b ⇔ (theorem 1634) ⇔

a [f ] b ∨ a [g] b ⇔ (corollary 1666) ⇔

(a×FCD b) ⊓ f ̸= ⊥pFCD(A,B) ∨ (a×FCD b) ⊓ g ̸= ⊥pFCD(A,B)

for every a ∈ atomsA and b ∈ atomsB. □

Theorem 1680. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. Then pFCD(A,B) is a co-frame.

Proof. Theorems 1618 and 533. □

Corollary 1681. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. Then pFCD(A,B) is a co-brouwerian lattice.

Proposition 1682. Let A, B, C be atomic bounded separable meet-
semilattices, and f ∈ pFCD(A,B), g ∈ pFCD(B,C). Then

atoms(g ◦ f) =
x×FCD z

x ∈ atomsA, z ∈ atomsC,
∃y ∈ atomsB : (x×FCD y ∈ atoms f ∧ y ×FCD z ∈ atoms g)

.
Proof.

(x×FCD z) ⊓ (g ◦ f) ̸= ⊥pFCD(A,C) ⇔
x [g ◦ f ] z ⇔

∃y ∈ atomsB : (x [f ] y ∧ y [g] z) ⇔

∃y ∈ atomsB : ((x×FCD y) ⊓ f ̸= ⊥pFCD(A,B) ∧ (y ×FCD z) ⊓ g ̸= ⊥pFCD(B,C))

(were used corollary 1666 and theorem 1657). □

Theorem 1683. Let f be a pointfree funcoid between atomic bounded sepa-
rable meet-semilattices A and B.

1◦. X [f ] Y ⇔ ∃F ∈ atoms f : X [F ] Y for every X ∈ A, Y ∈ B;
2◦. ⟨f⟩X = dF ∈atoms f ⟨F ⟩X for every X ∈ A provided that B is a complete

lattice.

Proof.
1◦.

∃F ∈ atoms f : X [F ] Y ⇔

∃a ∈ atomsA, b ∈ atomsB : (a×FCD b ̸≍ f ∧ X
[
a×FCD b

]
Y) ⇔

∃a ∈ atomsA, b ∈ atomsB : (a×FCD b ̸≍ f ∧ a×FCD b ̸≍ X ×FCD Y) ⇔

∃F ∈ atoms f : (F ̸≍ f ∧ F ̸≍ X ×FCD Y) ⇔
(by theorem 1678)

f ̸≍ X ×FCD Y ⇔
X [f ] Y.
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2◦. Let Y ∈ B. Suppose Y ̸≍ ⟨f⟩X . Then X [f ] Y; ∃F ∈ atoms f : X [F ] Y;
∃F ∈ atoms f : Y ̸≍ ⟨F ⟩X ; and (taking into account that B is strongly separable
by theorem 225) Y ̸≍ dF ∈atoms f ⟨F ⟩X . So ⟨f⟩X ⊑ dF ∈atoms f ⟨F ⟩X by strong
separability. The contrary ⟨f⟩X ⊒ dF ∈atoms f ⟨F ⟩X is obvious.

□

20.11. Complete pointfree funcoids

Definition 1684. Let A and B be posets. A pointfree funcoid f ∈ pFCD(A,B)
is complete, when for every S ∈ PA whenever both dS and d⟨⟨f⟩⟩∗

S are defined
we have

⟨f⟩ lS = l⟨⟨f⟩⟩∗
S.

Definition 1685. Let (A,Z0) and (B,Z1) be filtrators. I will call a co-complete
pointfree funcoid a pointfree funcoid f ∈ pFCD(A,B) such that ⟨f⟩X ∈ Z1 for every
X ∈ Z0.

Proposition 1686. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. Co-complete pointfree funcoids pFCD(A,B) bijectively correspond to func-
tions ZZ0

1 preserving finite joins, where the bijection is f 7→ ⟨f⟩|Z0 .

Proof. It follows from the theorem 1618. □

Theorem 1687. Let (A,Z0) be a down-aligned, with join-closed, binarily meet-
closed and separable core which is a complete boolean lattice.

Let (B,Z1) be a star-separable filtrator.
The following conditions are equivalent for every pointfree funcoid f ∈

pFCD(A,B):

1◦. f−1 is co-complete;
2◦. ∀S ∈ PA, J ∈ Z1 : ( d

A
S [f ] J ⇒ ∃I ∈ S : I [f ] J);

3◦. ∀S ∈ PZ0, J ∈ Z1 : ( d

Z0 S [f ] J ⇒ ∃I ∈ S : I [f ] J);
4◦. f is complete;
5◦. ∀S ∈ PZ0 : ⟨f⟩ d

Z0 S = d

B⟨⟨f⟩⟩∗
S.

Proof. First note that the theorem 583 applies to the filtrator (A,Z0).

3◦⇒1◦. For every S ∈ PZ0, J ∈ Z1

Z0

lS ⊓A
〈
f−1〉J ̸= ⊥A ⇒ ∃I ∈ S : I ⊓A

〈
f−1〉J ̸= ⊥A, (29)

consequently by the theorem 583 we have
〈
f−1〉J ∈ Z0.

1◦⇒2◦. For every S ∈ PA, J ∈ Z1 we have
〈
f−1〉J ∈ Z0, consequently

∀S ∈ PA, J ∈ Z1 :
(

A

lS ̸≍
〈
f−1〉J ⇒ ∃I ∈ S : I ̸≍

〈
f−1〉J).

From this follows 2◦.
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2◦⇒4◦. Let ⟨f⟩ d

Z0 S and d

B⟨⟨f⟩⟩∗
S be defined. We have ⟨f⟩ d

A
S = ⟨f⟩ d

Z0 S.

J ⊓B ⟨f⟩
A

lS ̸= ⊥B ⇔
A

lS [f ] J ⇔
∃I ∈ S : I [f ] J ⇔

∃I ∈ S : J ⊓B ⟨f⟩I ≠ ⊥B ⇔

J ⊓B
B

l⟨⟨f⟩⟩∗
S ̸= ⊥B

(used theorem 583). Thus ⟨f⟩ d

A
S = d

B⟨⟨f⟩⟩∗
S by star-separability of

(B,Z1).
5◦⇒3◦. Let ⟨f⟩ d

Z0 S be defined. Then d

B⟨⟨f⟩⟩∗
S is also defined because

⟨f⟩ d

Z0 S = d

B⟨⟨f⟩⟩∗
S. Then

Z0

lS [f ] J ⇔ J ⊓B ⟨f⟩
Z0

lS ̸= ⊥B ⇔ J ⊓B
B

l⟨⟨f⟩⟩∗
S ̸= ⊥B

what by theorem 583 is equivalent to ∃I ∈ S : J ⊓B ⟨f⟩I ̸= ⊥B that is
∃I ∈ S : I [f ] J .

2◦⇒3◦, 4◦⇒5◦. By join-closedness of the core of (A,Z0).
□

Theorem 1688. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. If R is a set of co-complete pointfree funcoids in pFCD(A,B) then dR is
a co-complete pointfree funcoid.

Proof. Let R be a set of co-complete pointfree funcoids. Then for every
X ∈ Z0 〈

lR
〉
X =

B

l

f∈R

⟨f⟩X =
Z1

l

f∈R

⟨f⟩X ∈ Z1

(used the theorems 1632 and 534). □

Let A and B be posets with least elements. I will denote ComplpFCD(A,B) and
CoComplpFCD(A,B) the sets of complete and co-complete funcoids correspondingly
from a poset A to a poset B.

Proposition 1689.
1◦. Let f ∈ ComplpFCD(A,B) and g ∈ ComplpFCD(B,C) where A and C are

posets with least elements and B is a complete lattice. Then g ◦ f ∈
ComplpFCD(A,C).

2◦. Let f ∈ CoComplpFCD(A,B) and g ∈ CoComplpFCD(B,C) where (A,Z0),
(B,Z1), (C,Z2) are filtrators. Then g ◦ f ∈ CoComplpFCD(A,C).

Proof.
1◦. Let dS and d⟨⟨g ◦ f⟩⟩∗

S be defined. Then

⟨g ◦ f⟩ lS = ⟨g⟩⟨f⟩ lS = ⟨g⟩ l⟨⟨f⟩⟩∗
S = l⟨⟨g⟩⟩∗⟨⟨f⟩⟩∗

S = l⟨⟨g ◦ f⟩⟩∗
S.

2◦. ⟨g ◦ f⟩Z0 = ⟨g⟩⟨f⟩Z0 ∈ Z2 because ⟨f⟩Z0 ∈ Z1.
□

Proposition 1690. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. Then CoComplpFCD(A,B) (with induced order) is a complete lattice.
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Proof. Follows from the theorem 1688. □

Theorem 1691. Let (A,Z0) and (B,Z1) be primary filtrators where Z0 and
Z1 are boolean lattices. Let R be a set of pointfree funcoids from A to B.

g◦( dR) = dg∈R(g◦f) = d⟨g◦⟩∗
R if g is a complete pointfree funcoid from B.

Proof. For every X ∈ A 〈
g ◦
(

lR
)〉
X =

⟨g⟩
〈

lR
〉
X =

⟨g⟩ l

f∈R

⟨f⟩X =

l

f∈R

⟨g⟩⟨f⟩X =

l

f∈R

⟨g ◦ f⟩X =

〈

l

f∈R

(g ◦ f)
〉
X =

〈

l⟨g◦⟩∗
R
〉
X.

So g ◦ ( dR) = d⟨g◦⟩∗
R. □

20.12. Completion and co-completion

Definition 1692. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices and Z1 is a complete atomistic lattice.

Co-completion of a pointfree funcoid f ∈ pFCD(A,B) is pointfree funcoid
CoCompl f defined by the formula (for every X ∈ Z0)

⟨CoCompl f⟩X = Cor⟨f⟩X.

Proposition 1693. Above defined co-completion always exists.

Proof. Existence of Cor⟨f⟩X follows from completeness of Z1.
We may apply the theorem 1618 because

Cor⟨f⟩(X ⊔Z0 Y ) = Cor(⟨f⟩X ⊔B ⟨f⟩Y ) = Cor⟨f⟩X ⊔Z1 Cor⟨f⟩Y
by theorem 603. □

Obvious 1694. Co-completion is always co-complete.

Proposition 1695. For above defined always CoCompl f ⊑ f .

Proof. By proposition 542. □

20.13. Monovalued and injective pointfree funcoids

Definition 1696. Let A and B be posets. Let f ∈ pFCD(A,B).
The pointfree funcoid f is:

• monovalued when f ◦ f−1 ⊑ 1pFCD
B .

• injective when f−1 ◦ f ⊑ 1pFCD
A .

Monovaluedness is dual of injectivity.

Proposition 1697. Let A and B be posets. Let f ∈ pFCD(A,B).
The pointfree funcoid f is:
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• monovalued iff f ◦ f−1 ⊑ idpFCD(B)
im f , if A has greatest element and B is a

strongly separable meet-semilattice;
• injective iff f−1 ◦ f ⊑ idpFCD(A)

dom f , if B has greatest element and A is a
strongly separable meet-semilattice.

Proof. It’s enough to prove f ◦ f−1 ⊑ 1pFCD
B ⇔ f ◦ f−1 ⊑ idpFCD(B)

im f . im f

is defined because A has greatest element. idpFCD(B)
im f is defined because B is a

meet-semilattice.
⇐. Obvious.
⇒. Let f ◦ f−1 ⊑ 1pFCD

B . Then
〈
f ◦ f−1〉x ⊑ x;

〈
f ◦ f−1〉x ⊑ im f (proposi-

tion 1605). Thus
〈
f ◦ f−1〉x ⊑ x ⊓ im f =

〈
idpFCD(B)

im f

〉
x.〈

(f ◦ f−1)−1〉x ⊑ x and
〈
(f ◦ f−1)−1〉x =

〈
f ◦ f−1〉x ⊑ im f . Thus〈

(f ◦ f−1)−1〉x ⊑ x ⊓ im f =
〈

idpFCD(B)
im f

〉
x.

Thus f ◦ f−1 ⊑ idpFCD(B)
im f .

□

Theorem 1698. Let A be an atomistic meet-semilattice with least element, B
be an atomistic bounded meet-semilattice. The following statements are equivalent
for every f ∈ pFCD(A,B):

1◦. f is monovalued.
2◦. ∀a ∈ atomsA : ⟨f⟩a ∈ atomsB ∪{⊥B}.
3◦. ∀i, j ∈ B :

〈
f−1〉(i ⊓ j) =

〈
f−1〉i ⊓

〈
f−1〉j.

Proof.
2◦⇒3◦. Let a ∈ atomsA, ⟨f⟩a = b. Then because b ∈ atomsB ∪{⊥B}

(i ⊓ j) ⊓ b ̸= ⊥B ⇔ i ⊓ b ̸= ⊥B ∧ j ⊓ b ̸= ⊥B;
a [f ] i ⊓ j ⇔ a [f ] i ∧ a [f ] j;

i ⊓ j
[
f−1] a ⇔ i

[
f−1] a ∧ j

[
f−1] a;

a ⊓A
〈
f−1〉(i ⊓ j) ̸= ⊥A ⇔ a ⊓

〈
f−1〉i ̸= ⊥A ∧ a ⊓

〈
f−1〉j ̸= ⊥A;

a ⊓A
〈
f−1〉(i ⊓ j) ̸= ⊥A ⇔ a ⊓

〈
f−1〉i ⊓

〈
f−1〉j ̸= ⊥A;〈

f−1〉(i ⊓ j) =
〈
f−1〉i ⊓

〈
f−1〉j.

3◦⇒1◦.
〈
f−1〉a ⊓

〈
f−1〉b =

〈
f−1〉(a ⊓ b) =

〈
f−1〉⊥B = ⊥A (by proposition 1604)

for every two distinct a, b ∈ atomsB. This is equivalent to ¬(
〈
f−1〉a [f ]

b); b ⊓ ⟨f⟩
〈
f−1〉a = ⊥B; b ⊓

〈
f ◦ f−1〉a = ⊥B; ¬(a

[
f ◦ f−1] b). So

a
[
f ◦ f−1] b ⇒ a = b for every a, b ∈ atomsB. This is possible only

(corollary 1652 and the fact that B is atomic) when f ◦ f−1 ⊑ 1pFCD
B .

¬2◦⇒ ¬1◦. Suppose ⟨f⟩a /∈ atomsB ∪{⊥B} for some a ∈ atomsA. Then there exist
two atoms p ̸= q such that ⟨f⟩a ⊒ p ∧ ⟨f⟩a ⊒ q. Consequently p ⊓ ⟨f⟩a ̸=
⊥B; a ⊓

〈
f−1〉p ̸= ⊥A; a ⊑

〈
f−1〉p; 〈f ◦ f−1〉p = ⟨f⟩

〈
f−1〉p ⊒ ⟨f⟩a ⊒ q

(by proposition 1605 because B is separable by proposition 234 and thus
strongly separable by theorem 225);

〈
f ◦ f−1〉p ̸⊑ p and

〈
f ◦ f−1〉p ̸= ⊥B.

So it cannot be f ◦ f−1 ⊑ 1pFCD
B .

□

Theorem 1699. The following is equivalent for primary filtrators (A,Z0) and
(B,Z1) over boolean lattices and pointfree funcoids f : A → B:

1◦. f is monovalued.
2◦. f is metamonovalued.
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3◦. f is weakly metamonovalued.

Proof.
2◦⇒3◦. Obvious.
1◦⇒2◦.〈(l

G
)

◦ f
〉
x =

〈(l
G
)〉

⟨f⟩x =
l

g∈G

⟨g⟩⟨f⟩x =
l

g∈G

⟨g ◦ f⟩x =
〈

l

g∈G

(g ◦ f)
〉
x

for every atomic filter object x ∈ atomsA. Thus (
d
G) ◦ f =

d
g∈G(g ◦ f).

3◦⇒1◦. Take g = a×FCD y and h = b×FCD y for arbitrary atomic filter objects a ̸= b
and y. We have g ⊓ h = ⊥; thus (g ◦ f) ⊓ (h ◦ f) = (g ⊓ h) ◦ f = ⊥ and
thus impossible x [f ] a ∧ x [f ] b as otherwise x [g ◦ f ] y and x [h ◦ f ] y so
x [(g ◦ f) ⊓ (h ◦ f)] y. Thus f is monovalued.

□

Theorem 1700. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. A pointfree funcoid f ∈ pFCD(A,B) is monovalued iff

∀I, J ∈ Z1 :
〈
f−1〉(I ⊓Z1 J) =

〈
f−1〉I ⊓

〈
f−1〉J.

Proof. A and B are complete lattices (corollary 518).
(B,Z1) is a filtrator with separable core by theorem 537.
(B,Z1) is binarily meet-closed by corollary 536.
A and B are starrish by corollary 531.
(A,Z0) is with separable core by theorem 537.
We are under conditions of theorem 1617 for the pointfree funcoid f−1.

⇒. Obvious (taking into account that (B,Z1) is binarily meet-closed).
⇐. 〈

f−1〉(I ⊓ J ) =
l〈〈

f−1〉〉∗ upZ1(I ⊓ J ) =
l〈〈

f−1〉〉∗
{

I ⊓Z1 J

I ∈ up I, J ∈ up J

}
=

l
{ 〈

f−1〉(I ⊓Z1 J)
I ∈ up I, J ∈ up J

}
=

l
{ 〈

f−1〉I ⊓
〈
f−1〉J

I ∈ up I, J ∈ up J

}
=

l
{ 〈

f−1〉I
I ∈ up I

}
⊓

l
{ 〈

f−1〉J
J ∈ up J

}
=〈

f−1〉I ⊓A
〈
f−1〉J

(used theorem 1617, corollary 521, theorem 1606).
□

Proposition 1701. Let A be an atomistic meet-semilattice with least element,
B be an atomistic bounded meet-semilattice. Then if f , g are pointfree funcoids
from A to B, f ⊑ g and g is monovalued then g|dom f = f .

Proof. Obviously g|dom f ⊒ f . Suppose for contrary that g|dom f ⊏ f . Then
there exists an atom a ∈ atoms dom f such that ⟨g|dom f ⟩a ̸= ⟨f⟩a that is ⟨g⟩a ⊏
⟨f⟩a what is impossible. □
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20.14. Elements closed regarding a pointfree funcoid

Let A be a poset. Let f ∈ pFCD(A,A).

Definition 1702. Let’s call closed regarding a pointfree funcoid f such element
a ∈ A that ⟨f⟩a ⊑ a.

Proposition 1703. If i and j are closed (regarding a pointfree funcoid f ∈
pFCD(A,A)), S is a set of closed elements (regarding f), then

1◦. i ⊔ j is a closed element, if A is a separable starrish join-semilattice;
2◦.

d
S is a closed element if A is a strongly separable complete lattice.

Proof. ⟨f⟩(i⊔ j) = ⟨f⟩i⊔ ⟨f⟩j ⊑ i⊔ j (theorem 1606), ⟨f⟩
d
S ⊑

d
⟨⟨f⟩⟩∗

S ⊑d
S (used strong separability of A twice). Consequently the elements i⊔ j and

d
S

are closed. □

Proposition 1704. If S is a set of elements closed regarding a complete point-
free funcoid f with strongly separable destination which is a complete lattice, then
the element dS is also closed regarding our funcoid.

Proof. ⟨f⟩ dS = d⟨⟨f⟩⟩∗
S ⊑ dS. □

20.15. Connectedness regarding a pointfree funcoid

Let A be a poset with least element. Let µ ∈ pFCD(A,A).

Definition 1705. An element a ∈ A is called connected regarding a pointfree
funcoid µ over A when

∀x, y ∈ A \ {⊥A} : (x ⊔ y = a ⇒ x [µ] y).

Proposition 1706. Let (A,Z) be a co-separable filtrator with finitely join-
closed core. An A ∈ Z is connected regarding a funcoid µ iff

∀X,Y ∈ Z \ {⊥Z} : (X ⊔Z Y = A ⇒ X [µ] Y ).

Proof.
⇒. Obvious.
⇐. Follows from co-separability.

□

Obvious 1707. For A being a set of filters over a boolean lattice, an element
a ∈ A is connected regarding a pointfree funcoid µ iff it is connected regarding the
funcoid µ ⊓ (a×FCD a).

Exercise 1708. Consider above without requirement of existence of least ele-
ment.

20.16. Boolean funcoids

I call boolean funcoids pointfree funcoids between boolean lattices.

Proposition 1709. Every pointfree funcoid, whose source is a complete and
completely starrish and whose destination is complete and completely starrish and
separable, is complete.

Proof. It’s enough to prove ⟨f⟩ dS = d⟨⟨f⟩⟩∗S for our pointfree funcoid f
for every S ∈ P Src f .

Really, Y ̸≍ ⟨f⟩ dS ⇔ dS ̸≍
〈
f−1〉Y ⇔ ∃X ∈ S : X ̸≍

〈
f−1〉Y ⇔ ∃X ∈

S : Y ̸≍ ⟨f⟩X ⇔ Y ̸≍ d⟨⟨f⟩⟩∗
S for every Y ∈ Dst f and thus we have ⟨f⟩ dS =

d⟨⟨f⟩⟩∗
S because Dst f is separable. □
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Remark 1710. It seems that this theorem can be generalized for non-complete
lattices.

Corollary 1711. Every boolean funcoid is complete and co-complete.

Proof. Using proposition 226 and corollary 89. □

Theorem 1712. Let A, B be complete boolean lattices.
A function α ∈ BA is equal to the component ⟨f⟩ of a pointree funcoid f ∈

pFCD(A,B) iff α is preserving all joins (= lower adjoint).

Proof. Let α ∈ BA and preserves all joins. Then α ∈ F (B)A (We equate
principal filters of the set FA of filters on A with elements of A). Thus (theo-
rem 1618) α = ⟨g⟩∗ for some g ∈ pFCD(FA,FB).

⟨g−1⟩ ∈ F (A)F(B).
Let y ∈ B. We need to prove ⟨g−1⟩y ∈ A that is dS ̸≍ ⟨g−1⟩y ⇔ ∃x ∈ S :

⟨g−1⟩y ̸≍ x for every S ∈ PA.
Really, dS ̸≍ ⟨g−1⟩y ⇔ y ̸≍ ⟨g⟩ dS ⇔ y ̸≍ d⟨⟨g⟩⟩∗S ⇔ ∃x ∈ S : y ̸≍ ⟨g⟩x ⇔

∃x ∈ S : ⟨g−1⟩y ̸≍ x.
Take β = ⟨g−1⟩∗. We have β ∈ AB.
x ̸≍ βy ⇔ x ̸≍ ⟨g−1⟩y ⇔ y ̸≍ ⟨g⟩x ⇔ y ̸≍ αx.
So (A,B, α, β) is a pointfree funcoid.
The other direction: Let now f ∈ pFCD(A,B). We need to prove that it

preserves all joins. But it was proved above. □

Conjecture 1713. Let A, B be boolean lattices.
A function α ∈ BA is equal to the component ⟨f⟩ of a pointfree funcoid f ∈

pFCD(A,B) iff α is a lower adjoint.

It is tempting to conclude that ⟨f⟩ is a lower adjoint to
〈
f−1〉. But that’s false:

We should disprove that ⟨f⟩X ⊑ Y ⇔ X ⊑
〈
f−1〉Y .

For a counter-example, take f = {0} × N. Then our condition takes form
Y = N ⇔ X ⊑ {0} for X ∋ 0, Y ∋ 0 what obviously does not hold.

20.17. Binary relations are pointfree funcoids

Below for simplicity we will equate T A with PA.

Theorem 1714. Pointfree funcoids f between powerset posets T A and T B
bijectively (moreover this bijection is an order-isomorphism) correspond to mor-
phisms p ∈ Rel(A,B) by the formulas:

⟨f⟩ = ⟨p⟩∗
,
〈
f−1〉 =

〈
p−1〉∗; (30)

(x, y) ∈ GR p ⇔ y ∈ ⟨f⟩{x} ⇔ x ∈
〈
f−1〉{y}. (31)

Proof. Suppose p ∈ Rel(A,B) and prove that there is a pointfree funcoid f
conforming to (30). Really, for every X ∈ T A, Y ∈ T B

Y ̸≍ ⟨f⟩X ⇔ Y ̸≍ ⟨p⟩∗
X ⇔ Y ̸≍ ⟨p⟩X ⇔

X ̸≍
〈
p−1〉Y ⇔ X ̸≍

〈
p−1〉∗

Y ⇔ X ̸≍
〈
f−1〉Y.

Now suppose f ∈ pFCD(T A,T B) and prove that the relation defined by the
formula (31) exists. To prove it, it’s enough to show that y ∈ ⟨f⟩{x} ⇔ x ∈〈
f−1〉{y}. Really,

y ∈ ⟨f⟩{x} ⇔ {y} ̸≍ ⟨f⟩{x} ⇔ {x} ̸≍
〈
f−1〉{y} ⇔ x ∈

〈
f−1〉{y}.

It remains to prove that functions defined by (30) and (31) are mutually inverse.
(That these functions are monotone is obvious.)
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Let p0 ∈ Rel(A,B) and f ∈ pFCD(T A,T B) corresponds to p0 by the for-
mula (30); let p1 ∈ Rel(A,B) corresponds to f by the formula (31). Then p0 = p1
because

(x, y) ∈ GR p0 ⇔ y ∈ ⟨p0⟩∗{x} ⇔ y ∈ ⟨f⟩{x} ⇔ (x, y) ∈ GR p1.

Let now f0 ∈ pFCD(T A,T B) and p ∈ Rel(A,B) corresponds to f0 by the
formula (31); let f1 ∈ pFCD(T A,T B) corresponds to p by the formula (30). Then
(x, y) ∈ GR p ⇔ y ∈ ⟨f0⟩{x} and ⟨f1⟩ = ⟨p⟩∗; thus

y ∈ ⟨f1⟩{x} ⇔ y ∈ ⟨p⟩∗{x} ⇔ (x, y) ∈ GR p ⇔ y ∈ ⟨f0⟩{x}.
So ⟨f0⟩ = ⟨f1⟩. Similarly

〈
f−1

0
〉

=
〈
f−1

1
〉
. □

Proposition 1715. The bijection defined by the theorem 1714 preserves com-
position and identities, that is is a functor between categories Rel and (A,B) 7→
pFCD(T A,T B).

Proof. Let ⟨f⟩ = ⟨p⟩∗ and ⟨g⟩ = ⟨q⟩∗. Then ⟨g ◦ f⟩ = ⟨g⟩ ◦ ⟨f⟩ = ⟨q⟩∗ ◦ ⟨p⟩∗ =
⟨q ◦ p⟩∗. Likewise

〈
(g ◦ f)−1〉 =

〈
(q ◦ p)−1〉∗. So it preserves composition.

Let p = 1A
Rel for some set A. Then ⟨f⟩ = ⟨p⟩∗ =

〈
1A

Rel
〉∗ = idPA and likewise〈

f−1〉 = idPA, that is f is an identity pointfree funcoid. So it preserves identities.
□

Proposition 1716. The bijection defined by theorem 1714 preserves reversal.

Proof.
〈
f−1〉 =

〈
p−1〉∗. □

Proposition 1717. The bijection defined by theorem 1714 preserves monoval-
uedness and injectivity.

Proof. Because it is a functor which preserves reversal. □

Proposition 1718. The bijection defined by theorem 1714 preserves domain
an image.

Proof. im f = ⟨f⟩⊤ = ⟨p⟩∗⊤ = im p, likewise for domain. □

Proposition 1719. The bijection defined by theorem 1714 maps cartesian
products to corresponding funcoidal products.

Proof.
〈
A×FCD B

〉
X =

{
B if X ̸≍ A

⊥ if X ≍ A
= ⟨A×B⟩∗

X. Likewise〈
(A×FCD B)−1〉Y =

〈
(A×B)−1〉∗

Y . □

»»»> master



CHAPTER 21

Alternative representations of binary relations

Theorem 1720. Let A and B be fixed sets. The diagram at the figure 11
is a commutative diagram (in category Set), every arrow in this diagram is an
isomorphism. Every cycle in this diagram is an identity. All “parallel” arrows are
mutually inverse.

For a Galois connection f I denote f0 the lower adjoint and f1 the upper adjoint.
For simplicity, in the diagram I equate PA and T A.

Proof. First, note that despite we use the notation Ψ−1
i , it is not yet proved

that Ψ−1
i is the inverse of Ψi. We will prove it below.

Now prove a list of claims. First concentrate on the upper “triangle” of the
diagram (the lower one will be considered later).
Claim:

{
(x,y)

y∈f0{x}

}
=
{

(x,y)
x∈f1{y}

}
when f is an antitone Galois connection be-

tween PA and PB.
Proof: y ∈ f0{x} ⇔ {y} ⊑ f0{x} ⇔ {x} ⊑ f1{y} ⇔ x ∈ f1{y}. ■
Claim: (X 7→

d
x∈T X\{⊥}⟨f⟩x,Y 7→

d
y∈T Y \{⊥}⟨f−1⟩y)=(X 7→

d
x∈X ⟨f⟩{x},Y 7→

d
y∈Y ⟨f−1⟩{y})

when f is a pointfree funcoid between PA and PB.
Proof: It is enough to prove

d
x∈T X\{⊥}⟨f⟩x =

d
x∈X⟨f⟩{x} (the rest follows

from symmetry).
d

x∈T X\{⊥}⟨f⟩x ⊑
d

x∈X⟨f⟩{x} because T X \ {⊥} ⊇
{

{x}
x∈X

}
.

d
x∈T X\{⊥}⟨f⟩x ⊒

d
x∈X⟨f⟩{x} because if x ∈ T X \ {⊥} then we can take

x′ ∈ x that is {x′} ⊆ x and thus ⟨f⟩x ⊒ ⟨f⟩{x′}, so
d

x∈T X\{⊥}⟨f⟩x ⊒d
x∈T X\{⊥}⟨f⟩{x′} ⊒

d
x∈X⟨f⟩{x}. ■

Claim:
(
PA,PB,X 7→ dx∈T X\{⊥} f0x, Y 7→ dy∈T Y \{⊥} f1y

)
=(

PA,PB,X 7→ dx∈X f0{x}, Y 7→ dy∈Y f1{y}
)

when f is an antitone Galois
connection between PA and PB.

Proof: It is enough to prove dx∈T X\{⊥} f0x = dx∈X f0{x} (the rest follows from
symmetry). We have dx∈T X\{⊥} f0x ⊒ dx∈X f0{x} because {x} ∈ T X\{⊥}. Let
x ∈ T X \ {⊥}. Take x′ ∈ X. We have f0x ⊑ f0{x′} and thus f0x ⊑ dx∈X f0{x}.
So dx∈T X\{⊥} f0x ⊑ dx∈X f0{x}. ■

Claim: Ψ−1
3 = Ψ2 ◦ Ψ1.

Proof: Ψ2Ψ1f =
(
PA,PB,X 7→

{
y

∃x∈X:(x,y)∈Ψ1f

}
, Y 7→

{
x

∃y∈Y :(x,y)∈Ψ1f

})
=(

PA,PB,X 7→
{

y
∃x∈X:y∈f0{x}

}
, Y 7→

{
x

∃y∈Y :x∈f1{y}

})
=(

PA,PB,X 7→ dx∈X f0{x}, Y 7→ dy∈Y f1{y}
)

= Ψ−1
3 f . ■

Claim: Ψ3 = Ψ−1
1 ◦ Ψ−1

2 .
Proof: Ψ−1

1 Ψ−1
2 f =

(
X 7→

{
y∈B

∀x∈X:{x}[f ]{y}

}
, Y 7→

{
x∈A

∀y∈Y :{x}[f ]{y}

})
=(

X 7→
{

y∈B
∀x∈X:y∈⟨f⟩{x}

}
, Y 7→

{
x∈A

∀y∈Y :x∈⟨f−1⟩{y}

})
=(

X 7→
d

x∈X⟨f⟩{x}, Y 7→
d

y∈Y

〈
f−1〉{y}

)
= Ψ3f . ■

343
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binary relations
between A and B

pointfree funcoids
between

PA and PB

antitone Galois
connections

between
PA and PB

Galois connections
between PA and PB

Ψ−1
1

Ψ2

Ψ−1
2

Ψ3

Ψ4

Ψ1

Ψ−1
3

Ψ5=Ψ−1
5

Ψ−1
4

Ψ1. f 7→
{

(x,y)
y∈f0{x}

}
=
{

(x,y)
x∈f1{y}

}
Ψ−1

1 . r 7→
(
X 7→

{
y∈B

∀x∈X:xry

}
, Y 7→

{
x∈A

∀y∈Y :xry

})
Ψ2. r 7→ (PA,PB, ⟨r⟩∗

,
〈
r−1〉∗)

Ψ−1
2 . f 7→

{
(x,y)

{x}[f ]{y}

}
Ψ3. f 7→

(
X 7→

d
x∈T X\{⊥}⟨f⟩x, Y 7→

d
y∈T Y \{⊥}

〈
f−1〉y) =(

X 7→
d

x∈X⟨f⟩{x}, Y 7→
d

y∈Y

〈
f−1〉{y}

)
Ψ−1

3 . f 7→
(
PA,PB,X 7→ dx∈T X\{⊥} f0x, Y 7→ dy∈T Y \{⊥} f1y

)
=(

PA,PB,X 7→ dx∈X f0{x}, Y 7→ dy∈Y f1{y}
)

Ψ4. f 7→
(
X 7→ ¬

d
x∈T X\{⊥}⟨f⟩x, Y 7→

d
y∈T Y \{⊥}

〈
f−1〉¬y) =(

X 7→ dx∈T X\{⊥} ¬⟨f⟩x, Y 7→
d

y∈T Y \{⊥}
〈
f−1〉¬y) =(

X 7→ ¬
d

x∈X⟨f⟩{x}, Y 7→
d

y∈Y

〈
f−1〉¬{y}

)
=(

X 7→ dx∈X ¬⟨f⟩{x}, Y 7→
d

y∈Y

〈
f−1〉¬{y}

)
Ψ−1

4 . f 7→
(
PA,PB,X 7→ dx∈T X\{⊥} ¬f0x, Y 7→ dy∈T Y \{⊥} f1¬y

)
=(

PA,PB,X 7→ ¬
d

x∈T X\{⊥} f0x, Y 7→ dy∈T Y \{⊥} f1¬y
)

=(
PA,PB,X 7→ dx∈X ¬f0{x}, Y 7→ dy∈Y f1¬{y}

)
=(

PA,PB,X 7→ ¬
d

x∈X f0{x}, Y 7→ dy∈Y f1¬{y}
)

Ψ5 = Ψ−1
5 . f 7→ (¬ ◦ f0, f1 ◦ ¬)

Figure 11

Claim: Ψ1 maps antitone Galois connections between PA and PB into binary
relations between A and B.
Proof: Obvious. ■
Claim: Ψ−1

1 maps binary relations between A and B into antitone Galois connec-
tions between PA and PB.
Proof: We need to prove Y ⊆

{
y∈B

∀x∈X:xry

}
⇔ X ⊆

{
x∈A

∀y∈Y :xry

}
. After we equiva-

lently rewrite it:
∀y ∈ Y ∀x ∈ X : x r y ⇔ ∀x ∈ X∀y ∈ Y : x r y
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it becomes obvious. ■
Claim: Ψ2 maps binary relations between A and B into pointfree funcoids be-
tween PA and PB.
Proof: We need to prove that f = (PA,PB, ⟨f⟩,

〈
f−1〉) is a pointfree funcoids

that is Y ̸≍ ⟨f⟩X ⇔ X ̸≍
〈
f−1〉Y . Really, for every X ∈ T A, Y ∈ T B

Y ̸≍ ⟨f⟩X ⇔ Y ̸≍ ⟨r⟩∗
X ⇔ Y ̸≍ ⟨r⟩X ⇔

X ̸≍
〈
r−1〉Y ⇔ X ̸≍

〈
r−1〉∗

Y ⇔ X ̸≍
〈
f−1〉Y.

■
Claim: Ψ−1

2 maps pointfree funcoids between PA and PB into binary relations
between A and B.
Proof: Suppose f ∈ pFCD(T A,T B) and prove that the relation defined by the
formula Ψ−1

2 exists. To prove it, it’s enough to show that y ∈ ⟨f⟩{x} ⇔ x ∈〈
f−1〉{y}. Really,

y ∈ ⟨f⟩{x} ⇔ {y} ̸≍ ⟨f⟩{x} ⇔ {x} ̸≍
〈
f−1〉{y} ⇔ x ∈

〈
f−1〉{y}.

■
Claim: Ψ3 maps pointfree funcoids between PA and PB into antitone Galois
connections between PA and PB.
Proof: Because Ψ3 = Ψ−1

1 ◦ Ψ−1
2 . ■

Claim: Ψ−1
3 maps antitone Galois connections between PA and PB into pointfree

funcoids between PA and PB.
Proof: Because Ψ−1

3 = Ψ2 ◦ Ψ1. ■
Claim: Ψ2 and Ψ−1

2 are mutually inverse.
Proof: Let r0 ∈ P(A × B) and f ∈ pFCD(T A,T B) corresponds to r0 by the
formula Ψ2; let r1 ∈ P(A×B) corresponds to f by the formula Ψ−1

2 . Then r0 = r1
because

(x, y) ∈ r0 ⇔ y ∈ ⟨r0⟩∗{x} ⇔ y ∈ ⟨f⟩{x} ⇔ (x, y) ∈ r1.

Let now f0 ∈ pFCD(T A,T B) and r ∈ P(A × B) corresponds to f0 by the
formula Ψ−1

2 ; let f1 ∈ pFCD(T A,T B) corresponds to r by the formula Ψ2. Then
(x, y) ∈ r ⇔ y ∈ ⟨f0⟩{x} and ⟨f1⟩ = ⟨r⟩∗; thus

y ∈ ⟨f1⟩{x} ⇔ y ∈ ⟨r⟩∗{x} ⇔ (x, y) ∈ r ⇔ y ∈ ⟨f0⟩{x}.
So ⟨f0⟩ = ⟨f1⟩. Similarly

〈
f−1

0
〉

=
〈
f−1

1
〉
. ■

Claim: Ψ1 and Ψ−1
1 are mutually inverse.

Proof: Let r0 ∈ P(A×B) and f ∈ T A⊗T B corresponds to r0 by the formula Ψ−1
1 ;

let r1 ∈ P(A×B) corresponds to f by the formula Ψ1. Then r0 = r1 because

(x, y) ∈ r1 ⇔ y ∈ f0{x} ⇔ y ∈
{
y ∈ B

x r0 y

}
⇔ x r0 y.

Let now f0 ∈ T A⊗T B and r ∈ P(A×B) corresponds to f0 by the formula Ψ1;
let f1 ∈ T A⊗ T B corresponds to r by the formula Ψ−1

1 . Then f0 = f1 because

f10X =
{

y ∈ B

∀x ∈ X : x r y

}
=
{

y ∈ B

∀x ∈ X : y ∈ f00{x}

}
=

l

x∈X

f00{x} = (obvious 142) = f00X.

■
Claim: Ψ3 and Ψ−1

3 are mutually inverse.
Proof: Because Ψ−1

3 = Ψ2 ◦ Ψ1 and Ψ3 = Ψ−1
1 ◦ Ψ−1

2 and that Ψ−1
2 is the inverse of

Ψ2 and Ψ−1
3 is the inverse of Ψ3 were proved above. ■

Now switch to the lower “triangle”:
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Claim:
(
X 7→ dx∈T X\{⊥} ¬f0x, Y 7→ dy∈T Y \{⊥} f1¬y

)
=(

X 7→ dx∈X ¬f0{x}, Y 7→ dy∈Y f1¬{y}
)

.

Proof: It is enough to prove dx∈T X\{⊥} ¬f0x = dx∈X ¬f0{x} for a Galois connec-
tion f (the rest follows from symmetry).

dx∈T X\{⊥} ¬f0x ⊒ dx∈X ¬f0{x} because {x} ∈ T X \ {⊥}. If x ∈ T X \ {⊥}
then there exists x′ ∈ {x} and thus ¬f0{x′} ⊒ ¬f0x. Thus ¬f0x ⊑ dx∈X ¬f0{x}
and so dx∈T X\{⊥} ¬f0x ⊑ dx∈X ¬f0{x}. ■
Claim: Ψ5 is self-inverse.
Proof: Obvious. ■
Claim: Ψ4 = Ψ5 ◦ Ψ3.
Proof: Easily follows from symmetry. ■
Claim: Ψ−1

4 = Ψ−1
3 ◦ Ψ−1

5 .
Proof: Easily follows from symmetry. ■
Claim: Ψ4 and Ψ−1

4 are mutually inverse.
Proof: From two above claims and the fact that Ψ−1

3 is the inverse of Ψ3 and Ψ−1
5

is the inverse of Ψ5 proved above. ■
Note that now we have proved that Ψi and Ψ−1

i are mutually inverse for all
i = 1, 2, 3, 4, 5.
Claim: For every path of the diagram on figure 12 started with the circled node,
the corresponding morphism is with which the node is labeled.

1

Ψ2 Ψ−1
1

Ψ5 ◦ Ψ−1
1

Ψ−1
1

Ψ2

Ψ−1
2

Ψ3

Ψ4

Ψ1

Ψ−1
3

Ψ5=Ψ−1
5Ψ−1

4

Figure 12

Proof: Take into account that Ψ−1
3 = Ψ2 ◦Ψ1, Ψ4 = Ψ5 ◦Ψ3 and thus also Ψ4 ◦Ψ2 =

Ψ5 ◦ Ψ−1
1 . Now prove it by induction on path length. ■

Claim: Every cycle in the diagram at figure 11 is identity.
Proof: For cycles starting at the top node it follows from the previous claim. For
arbitrary cycles it follows from theorem 195. ■
Claim: The diagram at figure 11 is commutative.
Proof: From the previous claim. ■

□

Proposition 1721. We equate the set of binary relations between A and B
with Rld(A,B). Ψ2 and Ψ−1

2 from the diagram at figure 11 preserve compo-
sition and identities (that are functors between categories Rel and (A,B) 7→
pFCD(T A,T B)) and also reversal (f 7→ f−1).

Proof. Let ⟨f⟩ = ⟨p⟩∗ and ⟨g⟩ = ⟨q⟩∗. Then ⟨g ◦ f⟩ = ⟨g⟩ ◦ ⟨f⟩ = ⟨q⟩∗ ◦ ⟨p⟩∗ =
⟨q ◦ p⟩∗. Likewise

〈
(g ◦ f)−1〉 =

〈
(q ◦ p)−1〉∗. So Φ2 preserves composition.

Let p = 1A
Rel for some set A. Then ⟨f⟩ = ⟨p⟩∗ =

〈
1A

Rel
〉∗ = idPA and likewise〈

f−1〉 = idPA, that is f is an identity pointfree funcoid. So Φ2 preserves identities.
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That Φ−1
2 preserves composition and identities follows from the fact that it is

an isomorphism.
That is preserves reversal follows from the formula

〈
f−1〉 =

〈
p−1〉∗. □

Proposition 1722. The bijections Ψ2 and Ψ−1
2 from the diagram at figure 11

preserves monovaluedness and injectivity.

Proof. Because it is a functor which preserves reversal. □

Proposition 1723. The bijections Ψ2 and Ψ−1
2 from the diagram at figure 11

preserves domain an image.

Proof. im f = ⟨f⟩⊤ = ⟨p⟩∗⊤ = im p, likewise for domain. □

Proposition 1724. The bijections Ψ2 and Ψ−1
2 from the diagram at figure 11

maps cartesian products to corresponding funcoidal products.

Proof.
〈
A×FCD B

〉
X =

{
B if X ̸≍ A

⊥ if X ≍ A
= ⟨A×B⟩∗

X. Likewise〈
(A×FCD B)−1〉Y =

〈
(A×B)−1〉∗

Y . □

Let Φ map a pointfree funcoid whose first component is c into the Galois con-
nection whose lower adjoint is c. Then Φ is an isomorphism (theorem 1712) and
Φ−1 maps a Galois connection whose lower adjoint is c into the pointfree funcoid
whose first component is c.

Informally speaking, Φ replaces a relation r with its complement relations ¬r.
Formally:

Proposition 1725.
1◦. For every path P in the diagram at figure 11 from binary relations between

A and B to pointfree funcoids between PA and PB and every path Q in
the diagram at figure 11 from Galois connections between PA and PB
to binary relations between A and B, we have QΦPr = ¬r.

2◦. For every path Q in the diagram at figure 11 from binary relations between
A and B to pointfree funcoids between PA and PB and every path P in
the diagram at figure 11 from Galois connections between PA and PB
to binary relations between A and B, we have PΦ−1Qr = ¬r.

Proof. We will prove only the second (P ◦ Φ−1 ◦ Q = ¬), because the first
(Q ◦ Φ ◦ P = ¬) can be obtained from it by inverting the morphisms (and variable
replacement).

Because the diagram is commutative, it is enough to prove it for some fixed P
and Q. For example, we will prove Ψ−1

2 Φ−1Ψ4Ψ2r = ¬r.
Ψ4Ψ2r =

(
X 7→ ¬

d
x∈X⟨r⟩∗{x}, Y 7→

d
y∈Y ⟨r⟩∗¬{y}

)
.

Φ−1Ψ4Ψ2r is pointfree funcoid f with ⟨f⟩ = X 7→ ¬
d

x∈X⟨r⟩∗{x}.
Ψ−1

2 Φ−1Ψ4Ψ2r is the relation consisting of (x, y) such that {x} [f ] {y} what is
equivalent to: {y} ̸≍ ⟨f⟩{x}; {y} ̸≍ ¬⟨r⟩∗{x}; {y} ̸⊑ ⟨r⟩∗{x}; y /∈ ⟨r⟩∗{x}.

So Ψ−1
2 Φ−1Ψ4Ψ2r = ¬r. □

Proposition 1726. Φ and Φ−1 preserve composition.

Proof. By definitions of compositions and the fact that both pointfree fun-
coids and Galois connections are determined by the first component. □



Part 4

Staroids and multifuncoids



CHAPTER 22

Disjoint product

I remind that
∐
X =

⋃
i∈dom X(i,Xi) for every indexed family X of sets.

Obvious 1727.
∐
X ∈ Set(domX, imX).

Definition 1728. I will call disjoint join of an indexed family X of filters the
following reloid:

∐
X = di∈dom f ({i} ×RLD Xi).

22.1. Some funcoids

Proposition 1729. ⟨x 7→ (i, x)⟩X = {i} ×RLD X for every filter X .

Proof. ⟨x 7→ (i, x)⟩X =
d{ ⟨x 7→(i,x)⟩∗X

X∈up X

}
=

d{ {i}×X
X∈up X

}
= {i} ×RLD X . □

Proposition 1730.
〈
(x 7→ (i, x))−1〉X = im(X |{i}) for a filter X on the set

U ∪ {U } where U is a Grothendieck universe.

Proof.
〈
(x 7→ (i, x))−1〉X =

d
{

⟨(x 7→(i,x))−1⟩∗
X

X∈up X

}
=

d
{{

x
(i,x)∈X

}
X∈up X

}
=

d{x∈im X|{i}
X∈up X

}
= im

d{x∈X|{i}
X∈up X

}
= im(X |{i}). □

22.2. Cartesian product of funcoids

22.2.1. Definition and basic properties.

Definition 1731. Cartesian product of an indexed family f of funcoids is a
funcoid

(J)∏
f = l

i∈dom f

((x 7→ (i, x)) ◦ fi ◦ (x 7→ (i, x)−1).

Proposition 1732.
〈∏(J)

f
〉

X =
∐

i∈dom f

〈
fi ◦ (x 7→ (i, x)−1〉X .

Proof.∐
i∈dom f

〈
fi ◦ (x 7→ (i, x)−1〉X =

l

i∈dom f

({i} ×RLD 〈fi ◦ (x 7→ (i, x)−1〉X ) =

l

i∈dom f

(⟨x 7→ (i, x)⟩
〈
fi ◦ (x 7→ (i, x)−1〉X ) =

〈(J)∏
f

〉
X .

□

349
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22.2.2. Projections.

Theorem 1733. fi can be restored from the value of
∏(J)

f = fi.

Proof. fi = (x 7→ (i, x)−1) ◦
∏(J)

f ◦ (x 7→ (i, x)−1) (taken into account that
x 7→ (i, x)−1 is a principal funcoid). □

22.3. Arrow product of funcoids

Definition 1734. Arrow product of an indexed family f of funcoids is a funcoid
→∏
f = l

i∈dom f

((x 7→ (i, x)) ◦ fi.

Proposition 1735. ⟨
∏→

f⟩X =
∐

i∈dom f ⟨fi⟩X .

Proof.∐
i∈dom f

⟨fi⟩X =

l

i∈dom f

({i} ×RLD ⟨fi⟩X ) =

l

i∈dom f

(⟨x 7→ (i, x)⟩⟨fi⟩X ) =

〈 →∏
f

〉
X .

□

22.3.1. Projections.

Definition 1736. Arrow projections π→
i = (x 7→ (i, x))−1.

Theorem 1737. π→
i ◦

∏→
f = fi

Proof. Because π→
i is a principal funcoid, we have

π→
i ◦

→∏
f = l

j∈dom f

((x 7→ (i, x))−1 ◦ (x 7→ (j, x)) ◦ fj).

But (x 7→ (i, x))−1 ◦ (x 7→ (j, x)) is the idenitity if i = j or empty otherwise. So
π→

i ◦
∏→

f = fi. □

22.4. Cartesian product of reloids

22.4.1. Definition and basic properties.

Definition 1738. Cartesian product of an indexed family f of reloids is a
reloid

(J)∏
f = l

i∈dom f

((x 7→ (i, x)) ◦ fi ◦ (x 7→ (i, x)−1).

Conjecture 1739.
∏(J)(g ◦ f) =

∏(J)
g ◦
∏(J)

f .

22.4.2. Projections.

Theorem 1740. fi can be restored from the value of
∏(J)

f = fi.

Proof. fi = (x 7→ (i, x)−1) ◦
∏(J)

f ◦ (x 7→ (i, x)−1). □
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22.5. Arrow product of reloids

Definition 1741. Arrow product of an indexed family f of reloids is a reloid
→∏
f = l

i∈dom f

((x 7→ (i, x)) ◦ fi.

22.5.1. Projections.

Definition 1742. Arrow projections π→
i = (x 7→ (i, x))−1.

Proposition 1743. π→
i ◦

∏→
f = fi.

Proof. Because x 7→ (i, x) is a pricipal funcoid, we have π→
i ◦

∏→
f = π→

i ◦

di∈dom f ((x 7→ (i, x)) ◦ fi = dj∈dom f ((x 7→ (i, x))−1 ◦ (x 7→ (j, x)) ◦ fi.
But (x 7→ (i, x))−1 ◦ (x 7→ (j, x) is the identity if i = j or empty otherwise. So

π→
i ◦

∏→
f = fi. □



CHAPTER 23

Multifuncoids and staroids

23.1. Product of two funcoids

23.1.1. Definition.

Definition 1744. I will call a quasi-invertible category a partially ordered
dagger category such that it holds

g ◦ f ̸≍ h ⇔ g ̸≍ h ◦ f† (32)
for every morphisms f ∈ Hom(A,B), g ∈ Hom(B,C), h ∈ Hom(A,C), where A,
B, C are objects of this category.

Inverting this formula, we get f† ◦ g† ̸≍ h† ⇔ g† ̸≍ f ◦h†. After replacement of
variables, this gives: f† ◦ g ̸≍ h ⇔ g ̸≍ f ◦ h.

Exercise 1745. Prove that every ordered groupoid is quasi-invertible category
if we define the dagger as the inverse morphism.

As it follows from above, the categories Rel of binary relations (proposi-
tion 283), FCD of funcoids (theorem 882) and RLD of reloids (theorem 1004) are
quasi-invertible (taking f† = f−1). Moreover the category of pointfree funcoids
between lattices of filters on boolean lattices is quasi-invertible (theorem 1659).

Definition 1746. The cross-composition product of morphisms f and g
of a quasi-invertible category is the pointfree funcoid Hom(Src f, Src g) →
Hom(Dst f,Dst g) defined by the formulas (for every a ∈ Hom(Src f, Src g) and
b ∈ Hom(Dst f,Dst g)):〈

f ×(C) g
〉
a = g ◦ a ◦ f† and

〈
(f ×(C) g)−1

〉
b = g† ◦ b ◦ f.

We need to prove that it is really a pointfree funcoid that is that

b ̸≍
〈
f ×(C) g

〉
a ⇔ a ̸≍

〈
(f ×(C) g)−1

〉
b.

This formula means b ̸≍ g ◦a◦f† ⇔ a ̸≍ g† ◦b◦f and can be easily proved applying
formula (32) twice.

Proposition 1747. a
[
f ×(C) g

]
b ⇔ a ◦ f† ̸≍ g† ◦ b.

Proof. From the definition. □

Proposition 1748. a
[
f ×(C) g

]
b ⇔ f

[
a×(C) b

]
g.

Proof. f
[
a×(C) b

]
g ⇔ f ◦a† ̸≍ b† ◦g ⇔ a◦f† ̸≍ g† ◦ b ⇔ a

[
f ×(C) g

]
b. □

Theorem 1749. (f ×(C) g)−1 = f† ×(C) g†.

Proof. For every morphisms a ∈ Hom(Src f, Src g) and b ∈ Hom(Dst f,Dst g)
we have:〈

(f ×(C) g)−1〉b = g† ◦ b ◦ f =
〈
f† ×(C) g†〉b.〈

((f ×(C) g)−1)−1〉a =
〈
f ×(C) g

〉
a = g ◦ a ◦ f† =

〈
(f† ×(C) g†)−1〉a. □

352



23.2. DEFINITION OF STAROIDS 353

Theorem 1750. Let f , g be pointfree funcoids between filters on boolean
lattices. Then for every filters A0 ∈ F (Src f), B0 ∈ F (Src g)〈

f ×(C) g
〉

(A0 ×FCD B0) = ⟨f⟩A0 ×FCD ⟨g⟩B0.

Proof. For every atom a1 ×FCD b1 (a1 ∈ atomsDst f , b1 ∈ atomsDst g) (see
theorem 1677) of the lattice of funcoids we have:

a1 ×FCD b1 ̸≍
〈
f ×(C) g

〉
(A0 ×FCD B0) ⇔

A0 ×FCD B0

[
f ×(C) g

]
a1 ×FCD b1 ⇔

(A0 ×FCD B0) ◦ f−1 ̸≍ g−1 ◦ (a1 ×FCD b1) ⇔

⟨f⟩A0 ×FCD B0 ̸≍ a1 ×FCD 〈g−1〉b1 ⇔
⟨f⟩A0 ̸≍ a1 ∧

〈
g−1〉b1 ̸≍ B0 ⇔

⟨f⟩A0 ̸≍ a1 ∧ ⟨g⟩B0 ̸≍ b1 ⇔

⟨f⟩A0 ×FCD ⟨g⟩B0 ̸≍ a1 ×FCD b1.

Thus
〈
f ×(C) g

〉
(A0 ×FCD B0) = ⟨f⟩A0 ×FCD ⟨g⟩B0 because the lattice

pFCD(F (Dst f),F (Dst g)) is atomically separable (corollary 1668). □

Corollary 1751. A0 ×FCD B0
[
f ×(C) g

]
A1 ×FCD B1 ⇔ A0 [f ] A1 ∧ B0 [g] B1

for every A0 ∈ F (Src f), A1 ∈ F (Dst f), B0 ∈ F (Src g), B1 ∈ F (Dst g) where
Src f , Dst f , Src g, Dst g are boolean lattices.

Proof.

A0 ×FCD B0

[
f ×(C) g

]
A1 ×FCD B1 ⇔

A1 ×FCD B1 ̸≍
〈
f ×(C) g

〉
A0 ×FCD B0 ⇔

A1 ×FCD B1 ̸≍ ⟨f⟩A0 ×FCD ⟨g⟩B0 ⇔
A1 ̸≍ ⟨f⟩A0 ∧ B1 ̸≍ ⟨g⟩B0 ⇔

A0 [f ] A1 ∧ B0 [g] B1.

□

23.2. Definition of staroids

It follows from the above theorem 831 that funcoids are essentially the same as
relations δ between sets A and B, such that

{
Y ∈PB

∃X∈PA:XδY

}
and

{
X∈PA

∃Y ∈PB:XδY

}
are

free stars. This inspires the below definition of staroids (switching from two sets X
and Y to a (potentially infinite) family of posets).

Whilst I have (mostly) thoroughly studied basic properties of funcoids, staroids
(defined below) are yet much a mystery. For example, we do not know whether the
set of staroids on powersets is atomic.

Let n be a set. As an example, n may be an ordinal, n may be a natural
number, considered as a set by the formula n = {0, . . . , n− 1}. Let A = Ai∈n be a
family of posets indexed by the set n.

Definition 1752. I will call an anchored relation a pair f = (form f,GR f) of
a family form(f) of relational structures indexed by some index set and a relation
GR(f) ∈ P

∏
form(f). I call GR(f) the graph of the anchored relation f . I denote

Anch(A) the set of anchored relations of the form A.
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Definition 1753. Infinitary anchored relation is such an anchored relation
whose arity is infinite; finitary anchored relation is such an anchored relation whose
arity is finite.

Definition 1754. An anchored relation on powersets is an anchored relation
f such that every (form f)i is a powerset.

I will denote arity f = dom form f .
Definition 1755. [f ]∗ is the relation between typed elements T(form f)i (for

i ∈ arity f) defined by the formula L ∈[f ]∗⇔ T ◦ L ∈ GR f .
Every set of anchored relations of the same form constitutes a poset by the

formula f ⊑ g ⇔ GR f ⊆ GR g.
Definition 1756. An anchored relation is an anchored relation between posets

when every (form f)i is a poset.

Definition 1757. (val f)iL =
{

X∈(form f)i

L∪{(i,X)}∈GR f

}
.

Proposition 1758. f can be restored knowing form(f) and (val f)i for some
i ∈ arity f .

Proof.

GR f =
{
K ∈

∏
form f

K ∈ GR f

}
={

L ∪ {(i,X)}
L ∈

∏
(form f)|(arity f)\{i}, X ∈ (form f)i, L ∪ {(i,X)} ∈ GR f

}
={

L ∪ {(i,X)}
L ∈

∏
(form f)|(arity f)\{i}, X ∈ (val f)iL

}
.

□

Definition 1759. A prestaroid is an anchored relation f between posets such
that (val f)iL is a free star for every i ∈ arity f , L ∈

∏
(form f)|(arity f)\{i}.

Definition 1760. A staroid is a prestaroid whose graph is an upper set (on
the poset

∏
form(f)).

Definition 1761. A (pre)staroid on power sets is such a (pre)staroid f that
every (form f)i is a lattice of all subsets of some set.

Proposition 1762. If L ∈
∏

form f and Li = ⊥(form f)i for some i ∈ arity f
then L /∈ GR f if f is a prestaroid.

Proof. Let K = L|(arity f)\{i}. We have ⊥ /∈ (val f)iK; K ∪ {(i,⊥)} /∈ GR f ;
L /∈ GR f . □

Next we will define completary staroids. First goes the general case, next sim-
pler case for the special case of join-semilattices instead of arbitrary posets.

Definition 1763. A completary staroid is an anchored relation between posets
conforming to the formulas:

1◦. ∀K ∈
∏

form f : (K ⊒ L0 ∧ K ⊒ L1 ⇒ K ∈ GR f) is equivalent to
∃c ∈ {0, 1}n : (λi ∈ n : Lc(i)i) ∈ GR f for every L0, L1 ∈

∏
form f .

2◦. If L ∈
∏

form f and Li = ⊥(form f)i for some i ∈ arity f then L /∈ GR f .
Lemma 1764. Every graph of completary staroid is an upper set.
Proof. Let f be a completary staroid. Let L0 ⊑ L1 for some L0, L1 ∈∏

form f and L0 ∈ GR f . Then taking c = n × {0} we get λi ∈ n : Lc(i)i =
λi ∈ n : L0i = L0 ∈ GR f and thus L1 ∈ GR f because L1 ⊒ L0 ∧ L1 ⊒ L1. □
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Proposition 1765. An anchored relation f between posets whose form is a
family of join-semilattices is a completary staroid iff both:

1◦. L0 ⊔ L1 ∈ GR f ⇔ ∃c ∈ {0, 1}n : (λi ∈ n : Lc(i)i) ∈ GR f for every
L0, L1 ∈

∏
form f .

2◦. If L ∈
∏

form f and Li = ⊥(form f)i for some i ∈ arity f then L /∈ GR f .

Proof. Let the formulas 1◦ and 2◦ hold. Then f is an upper set: Let L0 ⊑ L1
for some L0, L1 ∈

∏
form f and L0 ∈ f . Then taking c = n × {0} we get λi ∈ n :

Lc(i)i = λi ∈ n : L0i = L0 ∈ GR f and thus L1 = L0 ⊔ L1 ∈ GR f .
Thus to finish the proof it is enough to show that

L0 ⊔ L1 ∈ GR f ⇔ ∀K ∈
∏

form f : (K ⊒ L0 ∧K ⊒ L1 ⇒ K ∈ GR f)

under condition that GR f is an upper set. But this equivalence is obvious in both
directions. □

Proposition 1766. Every completary staroid is a staroid.

Proof. Let f be a completary staroid.
Let i ∈ arity f , K ∈

∏
i∈(arity f)\{i}(form f)i. Let L0 = K ∪ {(i,X0)}, L1 =

K ∪ {(i,X1)} for some X0, X1 ∈ Ai.
Let

∀Z ∈ Ai : (Z ⊒ X0 ∧ Z ⊒ X1 ⇒ Z ∈ (val f)iK);

then

∀Z ∈ Ai : (Z ⊒ X0 ∧ Z ⊒ X1 ⇒ K ∪ {(i, Z)} ∈ GR f).

If z ⊒ L0 ∧ z ⊒ L1 then z ⊒ K ∪ {(i, zi)}, thus taking into account that GR f is an
upper set,

∀z ∈
∏

A : (z ⊒ L0 ∧ z ⊒ L1 ⇒ K ∪ {(i, zi)} ∈ GR f).

∀z ∈
∏

A : (z ⊒ L0 ∧ z ⊒ L1 ⇒ z ∈ GR f).

Thus, by the definition of completary staroid, L0 ∈ GR f ∨ L1 ∈ GR f that is

X0 ∈ (val f)iK ∨X1 ∈ (val f)iK.

So (val f)iK is a free star (taken into account that zi = ⊥(form f)i ⇒ z /∈ GR f and
that (val f)iK is an upper set). □

Exercise 1767. Write a simplified proof for the case if every (form f)i is a
join-semilattice.

Lemma 1768. Every finitary prestaroid is completary.
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Proof.
∃c ∈ {0, 1}n : (λi ∈ n : Lc(i)i) ∈ GR f ⇔

∃c ∈ {0, 1}n−1 :
(

({(n− 1, L0(n− 1))} ∪ (λi ∈ n− 1 : Lc(i)i)) ∈ GR f∨
({(n− 1, L1(n− 1))} ∪ (λi ∈ n− 1 : Lc(i)i)) ∈ GR f

)
⇔

∃c ∈ {0, 1}n−1 :
(
L0(n− 1) ∈ (val f)n−1(λi ∈ n− 1 : Lc(i)i)∨
L1(n− 1) ∈ (val f)n−1(λi ∈ n− 1 : Lc(i)i)

)
⇔

∃c ∈ {0, 1}n−1∀K ∈ (form f)i :
(

K ⊒ L0(n− 1) ∨K ⊒ L1(n− 1) ⇒
K ∈ (val f)n−1(λi ∈ n− 1 : Lc(i)i)

)
⇔

∃c ∈ {0, 1}n−1∀K ∈ (form f)i :
(

K ⊒ L0(n− 1) ∨K ⊒ L1(n− 1) ⇒
{(n− 1,K)} ∪ (λi ∈ n− 1 : Lc(i)i) ∈ GR f

)
⇔

. . .

∀K ∈
∏

form f : (K ⊒ L0 ∧K ⊒ L1 ⇒ K ∈ GR f).

□

Exercise 1769. Prove the simpler special case of the above theorem when the
form is a family of join-semilattices.

Theorem 1770. For finite arity the following are the same:
1◦. prestaroids;
2◦. staroids;
3◦. completary staroids.

Proof. f is a finitary prestaroid ⇒ f is a finitary completary staroid.
f is a finitary completary staroid ⇒ f is a finitary staroid.
f is a finitary staroid ⇒ f is a finitary prestaroid. □

Definition 1771. We will denote the set of staroids of a form A as Strd(A).

23.3. Upgrading and downgrading a set regarding a filtrator

Let fix a filtrator (A,Z).

Definition 1772. ⇊ f = f ∩ Z for every f ∈ PA (downgrading f).

Definition 1773. ⇈ f =
{

L∈A
up L⊆f

}
for every f ∈ PZ (upgrading f).

Obvious 1774. a ∈⇈ f ⇔ up a ⊆ f for every f ∈ PZ and a ∈ A.

Proposition 1775. ⇊⇈ f = f if f is an upper set for every f ∈ PZ.

Proof. ⇊⇈ f =⇈ f ∩ Z =
{

L∈Z
up L⊆f

}
=
{

L∈Z
L∈f

}
= f ∩ Z = f . □

23.3.1. Upgrading and downgrading staroids. Let fix a family (A,Z) of
filtrators.

For a graph f of an anchored relation between posets define ⇊ f and ⇈ f
taking the filtrator of (

∏
A,
∏

Z).
For a anchored relation between posets f define:

form ⇊ f = Z and GR ⇊ f =⇊ GR f ;
form ⇈ f = A and GR ⇈ f =⇈ GR f.

Below we will show that under certain conditions upgraded staroid is a staroid,
see theorem 1800.



23.4. PRINCIPAL STAROIDS 357

Proposition 1776. (val ⇊ f)iL = (val f)iL∩Zi for every L ∈
∏

Z|(arity f)\{i}.

Proof. (val ⇊ f)iL =
{

X∈Zi

L∪{(i,X)}∈GR f∩
∏

Z

}
=

{
X∈Zi

L∪{(i,X)}∈GR f

}
=

(val f)iL ∩ Zi. □

Proposition 1777. Let (Ai,Zi) be binarily join-closed filtrators with both the
base and the core being join-semilattices. If f is a staroid of the form A, then ⇊ f
is a staroid of the form Z.

Proof. Let f be a staroid.
We need to prove that (val ⇊ f)iL is a free star. It follows from the last

proposition and the fact that it is binarily join-closed. □

Proposition 1778. Let each (Ai,Zi) for i ∈ n (where n is an index set) be a
binarily join-closed filtrator, such that each Ai and each Zi are join-semilattices. If
f is a completary staroid of the form A then ⇊ f is a completary staroid of the
form Z.

Proof.

L0 ⊔Z L1 ∈ GR ⇊ f ⇔ L0 ⊔Z L1 ∈ GR f ⇔ L0 ⊔A L1 ∈ GR f ⇔
∃c ∈ {0, 1}n : (λi ∈ n : Lc(i)i) ∈ GR f ⇔

∃c ∈ {0, 1}n : (λi ∈ n : Lc(i)i) ∈ GR ⇊ f

for every L0, L1 ∈
∏

Z. □

23.4. Principal staroids

Definition 1779. The staroid generated by an anchored relation F is the
staroid f =↑Strd F on powersets such that ↑ ◦L ∈ GR f ⇔

∏
L ̸≍ F and (form f)i =

T (formF )i for every L ∈
∏

i∈arity f T (formF )i.

Remark 1780. Below we will prove that staroid generated by an anchored
relation is a staroid and moreover a completary staroid.

Definition 1781. A principal staroid is a staroid generated by some anchored
relation.

Proposition 1782. Every principal staroid is a completary staroid.

Proof. That L /∈ GR f if Li = ⊥(form f)i for some i ∈ arity f is obvious. It
remains to prove

∏
(L0 ⊔ L1) ̸≍ F ⇔ ∃c ∈ {0, 1}arity f :

∏
i∈n

Lc(i)i ̸≍ F.
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Really ∏
(L0 ⊔ L1) ̸≍ F ⇔

∃x ∈
∏

(L0 ⊔ L1) : x ∈ F ⇔

∃x ∈
∏

i∈arity f

(form f)i∀i ∈ arity f : (xi ∈ L0i ⊔ L1i ∧ x ∈ F ) ⇔

∃x ∈
∏

i∈arity f

(form f)i∀i ∈ arity f : ((xi ∈ L0i ∨ xi ∈ L1i) ∧ x ∈ F ) ⇔

∃x ∈
∏

i∈arity f

(form f)i

∃c ∈ {0, 1}arity f : x ∈
∏

i∈arity f

Lc(i)i ∧ x ∈ F

 ⇔

∃c ∈ {0, 1}arity f :
∏
i∈n

Lc(i)i ̸≍ F.

□

Definition 1783. The upgraded staroid generated by an anchored relation F
is the anchored relation ⇈↑Strd F .

Proposition 1784. ↑Strd F =⇊⇈↑Strd F .

Proof. Because GR ↑Strd F is an upper set. □

Example 1785. There is such anchored relation f that ⇈↑ f is not a com-
pletary staroid. This also proves existence of non-completary staroids (but not on
powersets).

Proof. (based on an Andreas Blass’s proof) Take f the set of functions

x : N → N where x0 is an arbitrary natural number and xi =
{

0 if n ⩽ x0
1 if n > x0

for i = 1, 2, 3, . . .. Thus f is the graph of a staroid of the form λi ∈ N : PN (on
powersets).

Let L0(0) = L1(0) = Ω(N), L0(i) =↑ {0} and L1(i) =↑ {1} for i > 0.
Let X ∈ up(L0 ⊔ L1) that is X ∈ up L0 ∩ up L1.
X0 contains all but finitely many elements of N.
For i > 0 we have {0, 1} ⊆ Xi.
Evidently,

∏
X contains an element of f , that is up(L0 ⊔ L1) ∈ f what means

L0 ⊔ L1 ∈⇈↑ f .
Now consider any fixed c ∈ {0, 1}N. There is at most one k ∈ N such that

the sequence x = Jk, c(1), c(2), . . .K (i.e. c with c(0) replaced by k) is in f . Let
Q = N \ {k} if there is such a k and Q = N otherwise.

Take Yi =
{
Q if i = 0
{c(i)} if i > 0 for i = 0, 1, 2, . . .. We have Y ∈ up(λi ∈ N :

Lc(i)(i)) for every c ∈ {0, 1}n.
But evidently

∏
Y does not contain an element of f . Thus,

∏
Y ≍ f that is

Y /∈ f ; upY ⊈ f ; Y /∈ GR ⇈↑ f what is impossible if ⇈↑ f is completary. □

Example 1786. There exists such an (infinite) set N and N -ary relation f
that P ∈ GR ⇈↑ f but there is no indexed family a ∈

∏
i∈N atoms Pi of atomic

filters such that a ∈ GR ⇈↑ f that is ∀A ∈ up a : f ̸≍
∏
A.

Proof. Take L0, L1 and f from the proof of example 1785. Take P = L0 ⊔L1.
If a ∈

∏
i∈N atoms Pi then there exists c ∈ {0, 1}N such that ai ⊑ Lc(i)(i) (because

Lc(i)(i) ̸= ⊥). Then from that example it follows that (λi ∈ N : Lc(i)(i)) /∈ GR ⇈↑
f and thus a /∈ GR ⇈↑ f . □
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Conjecture 1787. Filtrators of staroids on powersets are join-closed.

23.5. Multifuncoids

Definition 1788. Let (Ai,Zi) (where i ∈ n for an index set n) be an indexed
family of filtrators.

I call a mult f of the form (Ai,Zi) the triple f = (base f, core f, ⟨f⟩∗) of n-
indexed families of posets base f and core f and ⟨f⟩∗ of functions where for every
i ∈ n

⟨f⟩∗
i :
∏

(core f)i|(dom A)\{i} → (base f)i.

I call (base f, core f) the form of the mult f .

Remark 1789. I call it mult because it comprises multiple functions ⟨f⟩∗
i .

Definition 1790. A mult on powersets is a mult such that every
((base f)i, (core f)i) is a powerset filtrator.

Definition 1791. I will call a relational mult a mult f such that every (base f)i

is a set and for every i, j ∈ n and L ∈
∏

core f
Li ∈ ⟨f⟩∗

iL|(dom L)\{i} ⇔ Lj ∈ ⟨f⟩∗
jL|(dom L)\{j}.

I denote arity f = n.

Definition 1792. Prestaroidal mult is a relational mult of the form (A, λi ∈
domA : S(Ai)) (where A is a poset), that is such that ⟨f⟩∗

iL is a free star for every
i ∈ n and L ∈

∏
i∈(dom L)\{i} core fi.

Definition 1793. I will call a multifuncoid a mult f such that (core f)i ⊆
(base f)i (thus having a filtrator ((base f)i, (core f)i)) for each i ∈ n and for every
i, j ∈ n and L ∈

∏
core f

Li ̸≍ ⟨f⟩∗
iL|(dom L)\{i} ⇔ Lj ̸≍ ⟨f⟩∗

jL|(dom L)\{j}. (33)

I denote the set of multifuncoids for a family (A,Z) of filtrators as pFCD(A,Z) or
just pFCD(A) when Z is clear from context.

Definition 1794. To every multifuncoid f corresponds an anchored relation g
by the formula (with arbitrary i ∈ arity f)

L ∈ GR g ⇔ Li ̸≍ ⟨f⟩∗
iL|(dom L)\{i}.

Proposition 1795. Prestaroidal mults Λg = f of the form (Z, λi ∈ domZ :
S(Zi)) bijectively correspond to pre-staroids g of the form Z by the formulas (for
every K ∈

∏
Z, i ∈ domZ, L ∈

∏
j∈(dom A)\{i} Zj , X ∈ Zi)

K ∈ GR g ⇔ Ki ∈ ⟨f⟩∗
iK|(dom L)\{i}; (34)

X ∈ ⟨f⟩∗
iL ⇔ L ∪ {(i,X)} ∈ GR g. (35)

Proof. If f is a prestaroidal mult, then obviously formula (34) defines an
anchored relation between posets. (val g)i = ⟨f⟩∗

iL is a free star. Thus g is a
prestaroid.

If g is a prestaroid, then obviously formula (35) defines a relational mult. This
mult is obviously prestaroidal.

It remains to prove that these correspondences are inverse of each other.
Let f0 be a prestaroidal mult, g be the pre-staroid corresponding to f by

formula (34), and f1 be the prestaroidal mult corresponding to g by formula (35).
Let’s prove f0 = f1. Really,

X ∈ ⟨f1⟩∗
iL ⇔ L ∪ {(i,X)} ∈ GR g ⇔ X ∈ ⟨f0⟩∗

iL.
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Let now g0 be a prestaroid, f be a prestaroidal mult corresponding to g0 by
formula (35), and g1 be a prestaroid corresponding to f by formula (34). Let’s
prove g0 = g1. Really,
K ∈ GR g1 ⇔ Ki ∈ ⟨f⟩∗

iK|(dom L)\{i} ⇔ K|(dom L)\{i}∪{(i,Ki)} ∈ GR g0 ⇔ K ∈ GR g0.

□

Definition 1796. I will denote [f ]∗= GR g for the prestaroidal mult f corre-
sponding to anchored relation g.

Proposition 1797. For a form (Z, λi ∈ domZ : S(Zi)) where each Zi is a
boolean lattice, relational mults are the same as multifuncoids (if we equate poset
elements with principal free stars).

Proof.

(Li ̸≍ ⟨f⟩∗
iL|(dom L)\{i} ⇔ Lj ̸≍ ⟨f⟩∗

jL|(dom L)\{j}) ⇔
(Li ∈ ∂⟨f⟩∗

iL|(dom L)\{i} ⇔ Lj ∈ ∂⟨f⟩∗
jL|(dom L)\{j}) ⇔

(Li ∈ ⟨f⟩∗
iL|(dom L)\{i} ⇔ Lj ∈ ⟨f⟩∗

jL|(dom L)\{j}).
□

Theorem 1798. Fix some indexed family Z of join semi-lattices.
(val f)j(L ∪ {(i,X ⊔ Y )}) = (val f)j(L ∪ {(i,X)}) ⊔ (val f)j(L ∪ {(i, Y )})

for every prestaroid f of the form Z and i, j ∈ arity f , i ̸= j, L ∈
∏

k∈L\{i,j} Zk,
X,Y ∈ Zi.

Proof. Let i, j ∈ arity f , i ̸= j and L ∈
∏

k∈L\{i,j} Zk. Let Z ∈ Zi.

Z ∈ (val f)j(L ∪ {(i,X ⊔ Y )}) ⇔
L ∪ {(i,X ⊔ Y ), (j, Z)} ∈ GR f ⇔
X ⊔ Y ∈ (val f)i(L ∪ {(j, Z)}) ⇔

X ∈ (val f)i(L ∪ {(j, Z)}) ∨ Y ∈ (val f)i(L ∪ {(j, Z)}) ⇔
L ∪ {(i,X), (j, Z)} ∈ GR f ∨ L ∪ {(i, Y ), (j, Z)} ∈ GR f ⇔
Z ∈ (val f)j(L ∪ {(i,X)}) ∨ Z ∈ (val f)j(L ∪ {(i, Y )}) ⇔

Z ∈ (val f)j(L ∪ {(i,X)}) ∪ (val f)j(L ∪ {(i, Y )}) ⇔
Z ∈ (val f)j(L ∪ {(i,X)}) ⊔ (val f)j(L ∪ {(i, Y )})

Thus (val f)j(L∪ {(i,X ⊔Y )}) = (val f)j(L∪ {(i,X)}) ⊔ (val f)j(L∪ {(i, Y )}). □

Let us consider the filtrator
(∏

i∈arity f S((form f)i),
∏

i∈arity f (form f)i

)
.

Conjecture 1799. A finitary anchored relation between join-semilattices is a
staroid iff (val f)j(L∪ {(i,X ⊔Y )}) = (val f)j(L∪ {(i,X)}) ⊔ (val f)j(L∪ {(i, Y )})
for every i, j ∈ arity f (i ̸= j) and X,Y ∈ (form f)i.

Theorem 1800. Let (Ai,Zi) be a family of join-closed down-aligned filtrators
whose both base and core are join-semilattices. Let f be a staroid of the form Z.
Then ⇈ f is a staroid of the form A.

Proof. First prove that ⇈ f is a prestaroid. We need to prove that ⊥ /∈
(GR ⇈ f)i (that is up ⊥ ⊈ (GR f)i that is ⊥ /∈ (GR f)i what is true by the
theorem conditions) and that for every X ,Y ∈ Ai and L ∈

∏
i∈(arity f)\{i} Ai where

i ∈ arity f
L ∪ {(i,X ⊔ Y)} ∈ GR ⇈ f ⇔ L ∪ {(i,X )} ∈ GR ⇈ f ∨ L ∪ {(i,Y)} ∈ GR ⇈ f.
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The reverse implication is obvious. Let L ∪ {(i,X ⊔ Y)} ∈ GR ⇈ f . Then for every
L ∈ up L and X ∈ up X , Y ∈ up Y we have L ∪ {(i,X ⊔Zi Y )} ∈ GR f and thus

L ∪ {(i,X)} ∈ GR f ∨ L ∪ {(i, Y )} ∈ GR f

consequently L ∪ {(i,X )} ∈ GR ⇈ f ∨ L ∪ {(i,Y)} ∈ GR ⇈ f .
It is left to prove that ⇈ f is an upper set, but this is obvious. □

There is a conjecture similar to the above theorems:

Conjecture 1801. L ∈⇈ [f ]∗ ⇒⇈ [f ]∗ ∩
∏

i∈dom A atomsLi ̸= ∅ for every
multifuncoid f for the filtrator (F n,Zn).

Conjecture 1802. Let (A,Z) be a powerset filtrator, let n be an index set.
Consider the filtrator (F n,Zn). Then if f is a completary staroid of the form Zn,
then ⇈ f is a completary staroid of the form An.

Example 1803. There is such an anchored relation f that for some k ∈ dom f

⟨⇈↑ f⟩∗
kL ≠ l

a∈
∏

i∈(dom f)\{k}
atoms Li

⟨⇈↑ f⟩∗
ka.

Proof. Take P ∈ GR f from the counter-example 1786. We have

∀a ∈
∏

i∈dom f

atoms Pi : a /∈ GR P.

Take k = 1.
Let L = P|(dom f)\{k}. Then a /∈ GR ⇈↑ f and thus ak ≍ ⟨⇈↑ f⟩∗

ka|(dom f)\{k}.
Consequently Pk ≍ ⟨⇈↑ f⟩∗

ka|(dom f)\{k} and thus Pk ≍

da∈
∏

i∈(dom f)\{k}
atoms Li

⟨⇈↑ f⟩∗
ka because Pk is principal.

But Pk ̸≍ ⟨⇈↑ f⟩∗
kL. Thus follows ⟨⇈↑ f⟩∗

kL ̸=

da∈
∏

i∈(dom f)\{k}
atoms Li

⟨⇈↑ f⟩∗
ka. □

23.6. Join of multifuncoids

Mults are ordered by the formula f ⊑ g ⇔ ⟨f⟩∗ ⊑ ⟨g⟩∗ where ⊑ in the right
part of this formula is the product order. I will denote ⊓, ⊔,

d
, d(without an

index) the order poset operations on the poset of mults.

Remark 1804. To describe this, the definition of product order is used twice.
Let f and g be mults of the same form (A,Z)

⟨f⟩∗ ⊑ ⟨g⟩∗ ⇔ ∀i ∈ domZ : ⟨f⟩∗
i ⊑ ⟨g⟩∗

i ;

⟨f⟩∗
i ⊑ ⟨g⟩∗

i ⇔ ∀L ∈
∏

Z|(dom Z)\{i} : ⟨f⟩∗
iL ⊑ ⟨g⟩∗

iL.

Obvious 1805. ( dF )K = df∈F fK for every set F of mults of the same form
Z and K ∈

∏
Z whenever every df∈F fK is defined.

Theorem 1806. f ⊔pFCD(A) g = f ⊔ g for every multifuncoids f and g for the
same indexed family of starrish join-semilattices filtrators.

Proof. αix
def= ⟨fi⟩∗

x⊔ ⟨gi⟩∗
x. It is enough to prove that α is a multifuncoid.

We need to prove:

Li ̸≍ αiL|(dom L)\{i} ⇔ Lj ̸≍ αjL|(dom L)\{j}.
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Really,
Li ̸≍ αiL|(dom L)\{i} ⇔

Li ̸≍ ⟨fi⟩∗
L|(dom L)\{i} ⊔ ⟨gi⟩∗

L|(dom L)\{i} ⇔
Li ̸≍ ⟨fi⟩∗

L|(dom L)\{i} ∨ Li ̸≍ ⟨gi⟩∗
L|(dom L)\{i} ⇔

Lj ̸≍ ⟨fj⟩∗
L|(dom L)\{j} ∨ Lj ̸≍ ⟨gj⟩∗

L|(dom L)\{j} ⇔
Lj ̸≍ ⟨fj⟩∗

L|(dom L)\{j} ⊔ ⟨gj⟩∗
L|(dom L)\{j} ⇔

Lj ̸≍ αjL|(dom L)\{j}.

□

Theorem 1807. d

pFCD(A)
F = dF for every set F of multifuncoids for the

same indexed family of join infinite distributive complete lattices filtrators.

Proof. αix
def= df∈F ⟨f⟩∗

i x. It is enough to prove that α is a multifuncoid.
We need to prove:

Li ̸≍ αiL|(dom L)\{i} ⇔ Lj ̸≍ αjL|(dom L)\{j}.

Really,
Li ̸≍ αiL|(dom L)\{i} ⇔

Li ̸≍ l

f∈F

⟨fi⟩∗
L|(dom L)\{i} ⇔

∃f ∈ F : Li ̸≍ ⟨fi⟩∗
L|(dom L)\{i} ⇔

∃f ∈ F : Lj ̸≍ ⟨fj⟩∗
L|(dom L)\{j} ⇔

Lj ̸≍ l

f∈F

⟨fj⟩∗
L|(dom L)\{j} ⇔

Lj ̸≍ αjL|(dom L)\{j}.

□

Theorem 1808. If f , g are multifuncoids for a primary filtrator (Ai,Zi) where
Zi are separable starrish posets, then f ⊔pFCD(A) g ∈ pFCD(A).

Proof. Let A ∈
[
f ⊔pFCD(A) g

]∗ and B ⊒ A. Then for every k ∈ domA

Ak ̸≍
〈
f ⊔pFCD(A) g

〉∗
A|(dom A)\{k}; Ak ̸≍ ⟨f ⊔ g⟩∗

A|(dom A)\{k}; Ak ̸≍
⟨f⟩∗(A|(dom A)\{k}) ⊔ ⟨g⟩∗(A|(dom A)\{k}).

Thus Ak ̸≍ ⟨f⟩∗(A|(dom A)\{k}) ∨Ak ̸≍ ⟨g⟩∗(A|(dom A)\{k}); A ∈ [f ]∗ ∨A ∈ [g]∗;
B ∈ [f ]∗ ∨B ∈ [g]∗; Bk ̸≍ ⟨f⟩∗(B|(dom A)\{k}) ∨Bk ̸≍ ⟨g⟩∗(B|(dom A)\{k});

Bk ̸≍ ⟨f⟩∗(B|(dom A)\{k}) ⊔ ⟨g⟩∗(B|(dom A)\{k}); Bk ̸≍ ⟨f ⊔ g⟩∗
B|(dom A)\{k} =〈

f ⊔pFCD(A) g
〉∗
B|(dom A)\{k}.

Thus B ∈
[
f ⊔pFCD(A) g

]∗. □

Theorem 1809. If F is a set of multifuncoids for the same indexed family of
join infinite distributive complete lattices filtrators, then d

pFCD(A)
F ∈ pFCD(A).

Proof. Let A ∈
[

d

pFCD(A)
F
]∗

and B ⊒ A. Then for every k ∈ domA

Ak ̸≍
〈

d

pFCD(A)
F
〉∗
A|(dom A)\{k} = ⟨ dF ⟩∗

A|(dom A)\{k} =

df∈F ⟨f⟩∗(A|(dom A)\{k}).
Thus ∃f ∈ F : Ak ̸≍ ⟨f⟩∗(A|(dom A)\{k}); ∃f ∈ F : A ∈[f ]∗; B ∈[f ]∗ for some

f ∈ F ; ∃f ∈ F : Bk ̸≍ ⟨f⟩∗(B|(dom A)\{k}); Bk ̸≍ df∈F ⟨f⟩∗(B|(dom A)\{k}) =〈

d

pFCD(A)
F
〉∗
B|(dom A)\{k}. Thus B ∈

[

d

pFCD(A)
F
]∗

. □
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23.7. Infinite product of poset elements

Let Ai be a family of elements of a family Ai of posets. The staroidal product∏Strd(A)
A is defined by the formula (for every L ∈

∏
A)

form
Strd(A)∏

A = A and L ∈ GR
Strd(A)∏

A ⇔ ∀i ∈ domA : Ai ̸≍ Li.

Proposition 1810. If Ai are powerset algebras, staroidal product of principal
filters is essentially equivalent to Cartesian product. More precisely,

∏Strd
i∈dom A ↑F

Ai =⇈↑Strd ∏A for an indexed family A of sets.
Proof.

L ∈ GR ⇈↑Strd
∏

A ⇔

upL ⊆ GR ↑Strd
∏

A ⇔

∀X ∈ upL :
∏

X ̸≍
∏

A ⇔
∀X ∈ upL, i ∈ domA : Xi ̸≍ Ai ⇔

∀i ∈ domA : Li ̸≍↑F Ai ⇔

L ∈ GR
Strd∏

i∈dom A

↑F Ai.

□

Corollary 1811. Staroidal product of principal filters is an upgraded princi-
pal staroid.

Proposition 1812.
∏Strd

a =⇈⇊
∏Strd

a if each ai ∈ Ai (for i ∈ n where n is
some index set) where each (Ai∈n,Zi∈n) is a filtrator with separable core.

Proof.

GR ⇈⇊
Strd∏

a ={
L ∈

∏
A

upL ⊆ Z ∩ GR
∏Strd

a

}
={

L ∈
∏

A

upL ⊆ GR
∏Strd

a

}
={

L ∈
∏

A

∀K ∈ upL : K ∈ GR
∏Strd

a

}
={

L ∈
∏

A

∀K ∈ upL, i ∈ n : Ki ̸≍ ai

}
={

L ∈
∏

A

∀i ∈ n,K ∈ upL : Ki ̸≍ ai

}
={

L ∈
∏

A

∀i ∈ n : Li ̸≍ ai

}
=

GR
Strd∏

a

(taken into account that our filtrators are with a separable core). □

Theorem 1813. Staroidal product is a completary staroid (if our posets are
starrish join-semilattices).
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Proof. We need to prove

∀i ∈ domA : Ai ̸≍ (L0i ⊔ L1i) ⇔ ∃c ∈ {0, 1}n∀i ∈ domA : Ai ̸≍ Lc(i)i.

Really,

∀i ∈ domA : Ai ̸≍ (L0i ⊔ L1i) ⇔ ∀i ∈ domA : (Ai ̸≍ L0i ∨Ai ̸≍ L1i) ⇔
∃c ∈ {0, 1}dom A∀i ∈ domA : Ai ̸≍ Lc(i)i.

□

Definition 1814. Let (Ai,Zi) be an indexed family of filtrators and every Ai

has least element.
Then for every A ∈

∏
A funcoidal product is multifuncoid

∏FCD(A)
A defined

by the formula (for every L ∈
∏

Z):

〈FCD(A)∏
A

〉∗

k

L =
{
Ak if ∀i ∈ (domA) \ {k} : Ai ̸≍ Li

⊥A otherwise.

Proposition 1815. GR
∏Strd(A)

A =
[∏FCD(A)

A
]∗

.

Proof.

L ∈ GR
Strd(A)∏

A ⇔
∀i ∈ domA : Ai ̸≍ Li ⇔

∀i ∈ (domA) \ {k} : Ai ̸≍ Li ∧ Lk ̸≍ Ak ⇔

Lk ̸≍

〈FCD(A)∏
A

〉∗

k

L|(dom A)\{k} ⇔

L ∈

FCD(A)∏
A

∗

.

□

Corollary 1816. Funcoidal product is a completary multifuncoid.

Proof. It is enough to prove that funcoidal product is a multifuncoid. Really,

Li ̸≍

〈FCD(A)∏
A

〉∗

i

L|(dom A)\{i} ⇔

∀i ∈ domA : Ai ̸≍ Li ⇔ Lj ̸≍

〈FCD(A)∏
A

〉∗

j

L|(dom A)\{j}.

□

Theorem 1817. If our each filtrator (Ai,Zi) is with separable core and A ∈∏
Z, then ⇈

∏Strd(Z)
A =

∏Strd(A)
A.
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Proof.

GR ⇈
Strd(Z)∏

A ={
L ∈

∏
A

upL ⊆
∏Strd(Z)

A

}
={

L ∈
∏

A

∀K ∈ upL, i ∈ domA : Ai ̸≍ Ki

}
={

L ∈
∏

A

∀i ∈ domA,K ∈ upLi : Ai ̸≍ K

}
={

L ∈
∏

A

∀i ∈ domA : Ai ̸≍ Li

}
=

GR
Strd(A)∏

A.

□

Proposition 1818. Let (
∏

A,
∏

Z) be a meet-closed filtrator, A ∈
∏

Z. Then
⇊
∏Strd(A)

A =
∏Strd(Z)

A.

Proof.

GR ⇊
Strd(A)∏

A =

⇊ GR
Strd(A)∏

A =

⇊

{
L ∈

∏
A

∀i ∈ domA : Ai ̸≍ Li

}
={

L ∈
∏

A

∀i ∈ domA : Ai ̸≍ Li

}
∩
∏

Z ={
L ∈

∏
Z

∀i ∈ domA : Ai ̸≍ Li

}
=

GR
Strd(Z)∏

A.

□

Corollary 1819. If each (Ai,Zi) is a powerset filtrator and A ∈
∏

Z, then
⇊
∏Strd(A)

A is a principal staroid.

Proof. Use the “obvious” fact above. □

Theorem 1820. Let F be a family of sets of filters on meet-semilattices with
least elements. Let a ∈

∏
F , S ∈ P

∏
F , and every Pri S be a generalized filter

base,
d
S = a. Then

Strd(F)∏
a =

l

A∈S

Strd(F)∏
A.

Proof. That
∏Strd(F)

a is a lower bound for
{∏Strd(F)

A

A∈S

}
is obvious.

Let f be a lower bound for
{∏Strd(F)

A

A∈S

}
. Thus ∀A ∈ S : GR f ⊆

GR
∏Strd(F)

A. Thus for every A ∈ S we have L ∈ GR f implies ∀i ∈ domA :
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Ai ̸≍ Li. Then, by properties of generalized filter bases, ∀i ∈ domA : ai ̸≍ Li that
is L ∈ GR

∏Strd(F)
a. So f ⊑

∏Strd(F)
a and thus

∏Strd(F)
a is the greatest lower

bound of
{∏Strd(F)

A

A∈S

}
. □

Conjecture 1821. Let F be a family of sets of filters on meet-semilattices
with least elements. Let a ∈

∏
F , S ∈ P

∏
F be a generalized filter base,d

S = a, f is a staroid of the form
∏

F . Then
Strd(F)∏

a ̸≍ f ⇔ ∀A ∈ S :
Strd(Z)∏

A ̸≍ f.

23.8. On products of staroids

Definition 1822.
∏(D)

F =
{

uncurry z

z∈
∏

F

}
(reindexation product) for every in-

dexed family F of relations.

Definition 1823. Reindexation product of an indexed family F of anchored
relations is defined by the formulas:

form
(D)∏

F = uncurry(form ◦F ) and GR
(D)∏

F =
(D)∏

(GR ◦F ).

Obvious 1824.
1◦. form

∏(D)
F =

{
((i,j),(form Fi)j)

i∈dom F,j∈arity Fi

}
;

2◦. GR
∏(D)

F =
{{ ((i,j),(zi)j)

i∈dom F,j∈arity Fi

}
z∈
∏

(GR ◦F )

}
.

Proposition 1825.
∏(D)

F is an anchored relation if every Fi is an anchored
relation.

Proof. We need to prove GR
∏(D)

F ∈ P
∏

form
(∏(D)

F
)

that is

GR
∏(D)

F ⊆
∏

form
(∏(D)

F
)

;
{{ ((i,j),(zi)j)

i∈dom F,j∈arity Fi

}
z∈
∏

(GR ◦F )

}
⊆∏{ ((i,j),(form Fi)j)

i∈dom F,j∈arity Fi

}
;

∀z ∈
∏

(GR ◦F ), i ∈ domF, j ∈ arityFi : (zi)j ∈ (formFi)j .
Really, zi ∈ GRFi ⊆

∏
(formFi) and thus (zi)j ∈ (formFi)j . □

Obvious 1826. arity
∏(D)

F =
∐

i∈dom F arityFi =
{

(i,j)
i∈dom F,j∈arity Fi

}
.

Definition 1827. f ×(D) g =
∏(D)Jf, gK.

Lemma 1828.
∏(D)

F is an upper set if every Fi is an upper set.

Proof. We need to prove that
∏(D)

F is an upper set. Let a ∈
∏(D)

F and
an anchored relation b ⊒ a of the same form as a. We have a = uncurry z for some
z ∈

∏
F that is a(i, j) = (zi)j for all i ∈ domF and j ∈ domFi where zi ∈ Fi.

Also b(i, j) ⊒ a(i, j). Thus (curry b)i ⊒ zi; curry b ∈
∏
F because every Fi is an

upper set and so b ∈
∏(D)

F . □

Proposition 1829. Let F be an indexed family of anchored relations and
every (formF )i be a join-semilattice.

1◦.
∏(D)

F is a prestaroid if every Fi is a prestaroid.
2◦.

∏(D)
F is a staroid if every Fi is a staroid.

3◦.
∏(D)

F is a completary staroid if every Fi is a completary staroid.
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Proof.
1◦. Let q ∈ arity

∏(D)
F that is q = (i, j) where i ∈ domF , j ∈ arityFi; let

L ∈
∏form

(D)∏
F

|(arity
∏(D)

F
)

\{q}


that is L(i′,j′) ∈

(
form

∏(D)
F
)

(i′,j′)
for every (i′, j′) ∈

(
arity

∏(D)
F
)

\ {q}, that

is L(i′,j′) ∈ (formFi′)j′ . We have X ∈
(

form
∏(D)

F
)

(i,j)
⇔ X ∈ (formFi)j . Soval

(D)∏
F


(i,j)

L =
{

X ∈ (formFi)j

L ∪ {((i, j), X)} ∈ GR
∏(D)

F

}
=

{
X ∈ (formFi)j

∃z ∈
∏

(GR ◦F ) : L ∪ {((i, j), X)} = uncurry z

}
=

X ∈ (formFi)j

∃z∈
∏(

(GR ◦F )|(
arity
∏(D)

F

)
\{(i,j)}

)
,v∈GR Fi:(L=uncurry z∧vj=X)

 =


X ∈ (formFi)j

∃z∈
∏(

(GR ◦F )|(
arity
∏(D)

F

)
\{(i,j)}

)
:L=uncurry z∧∃v∈GR Fi:vj=X

.
If ∃z ∈

∏(
(GR ◦F )|(arity

∏(D)
F
)

\{(i,j)}

)
: L = uncurry z is false then(

val
∏(D)

F
)

(i,j)
L = ∅ is a free star. We can assume it is true. Soval

(D)∏
F


(i,j)

L =
{

X ∈ (formFi)j

∃v ∈ GRFi : vj = X

}
=

{
X ∈ (formFi)j

∃K ∈ (formFi)|(arity Fi)\{j} : K ∪ {(j,X)} ∈ GRFi

}
={

X ∈ (formFi)j

∃K ∈ (formFi)|(arity Fi)\{j} : X ∈ (valFi)jK

}
.

Thus

A ⊔B ∈

val
(D)∏

F


(i,j)

L ⇔

∃K ∈ (formFi)|(arity Fi)\{j} : A ⊔B ∈ (valFi)jK ⇔
∃K ∈ (formFi)|(arity Fi)\{j} : (A ∈ (valFi)jK ∨B ∈ (valFi)jK) ⇔

∃K ∈ (formFi)|(arity Fi)\{j} : A ∈ (valFi)jK∨
∃K ∈ (formFi)|(arity Fi)\{j} : B ∈ (valFi)jK

⇔

A ∈

val
(D)∏

F


(i,j)

L ∨B ∈

val
(D)∏

F


(i,j)

L.

Least element ⊥ is not in
(

val
∏(D)

F
)

(i,j)
L because K ∪ {(j,⊥)} /∈ GRFi.
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2◦. From the lemma.
3◦. We need to prove

L0 ⊔ L1 ∈ GR
(D)∏

F ⇔

∃c ∈ {0, 1}arity
∏(D)

F :

λi ∈ arity
(D)∏

F : Lc(i)i

 ∈ GR
(D)∏

F

for every L0, L1 ∈
∏

form
∏(D)

F that is L0, L1 ∈
∏

uncurry(form ◦F ).

Really L0 ⊔ L1 ∈ GR
∏(D)

F ⇔ L0 ⊔ L1 ∈
{

uncurry z

z∈
∏

(GR ◦F )

}
.

∃c ∈ {0, 1}arity
∏(D)

F :

λi ∈ arity
(D)∏

F : Lc(i)i

 ∈ GR
(D)∏

F ⇔

∃c ∈ {0, 1}arity
∏(D)

F :

λi ∈ arity
(D)∏

F : Lc(i)i

 ∈
{

uncurry z
z ∈

∏
(GR ◦F )

}
⇔

∃c ∈ {0, 1}arity
∏(D)

F : curry

λi ∈ arity
(D)∏

F : Lc(i)i

 ∈
∏

(GR ◦F ) ⇔

∃c ∈ {0, 1}arity
∏(D)

F : curry

λ(i, j) ∈ arity
(D)∏

F : Lc(i,j)(i, j)

 ∈
∏

(GR ◦F ) ⇔

∃c ∈ {0, 1}arity
∏(D)

F : (λi ∈ domF : (λj ∈ domFi : Lc(i,j)(i, j))) ∈
∏

(GR ◦F ) ⇔

∃c ∈ {0, 1}arity
∏(D)

F ∀i ∈ domF : (λj ∈ domFi : Lc(i,j)(i, j)) ∈ GRFi ⇔
∀i ∈ domF∃c ∈ {0, 1}dom Fi : (λj ∈ domFi : Lc(j)(i, j)) ∈ GRFi ⇔

∀i ∈ domF∃c ∈ {0, 1}dom Fi : (λj ∈ domFi : (curry(Lc(j))i)j) ∈ GRFi ⇔
∀i ∈ domF : curry(L0)i ⊔ curry(L1)i ∈ GRFi ⇔

∀i ∈ domF : (curry(L0) ⊔ curry(L1))i ∈ GRFi ⇔
∀i ∈ domF : curry(L0 ⊔ L1)i ∈ GRFi ⇔

L0 ⊔ L1 ∈
{

uncurry z
z ∈

∏
(GR ◦F )

}
⇔

L0 ⊔ L1 ∈ GR
(D)∏

F.

□

For staroids it is defined ordinated product
∏(ord) as defined in the section 3.7.4

above.

Obvious 1830. If f and g are anchored relations and there exists a bijection
φ from arity g to arity f such that

{
F ◦φ

F ∈GR f

}
= GR g, then:

1◦. f is a prestaroid iff g is a prestaroid.
2◦. f is a staroid iff g is a staroid.
3◦. f is a completary staroid iff g is a completary staroid.

Corollary 1831. Let F be an indexed family of anchored relations and every
(formF )i be a join-semilattice.
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1◦.
∏(ord)

F is a prestaroid if every Fi is a prestaroid.
2◦.

∏(ord)
F is a staroid if every Fi is a staroid.

3◦.
∏(ord)

F is a completary staroid if every Fi is a completary staroid.

Proof. Use the fact that GR
∏(ord)

F =
{

F ◦(
⊕

(dom ◦F ))−1

F ∈GR
∏(D)

f

}
. □

Definition 1832. f ×(ord) g =
∏(ord)Jf, gK.

Remark 1833. If f and g are binary funcoids, then f ×(ord) g is ternary.

23.9. Star categories

Definition 1834. A semicategory with star-morphisms consists of
1◦. a semicategory C (the base semicategory);
2◦. a set M (star-morphisms);
3◦. a function “arity” defined on M (how many objects are connected by this

star-morphism);
4◦. a function Objm : aritym → Obj(C) defined for every m ∈ M ;
5◦. a function (star composition) (m, f) 7→ StarComp(m, f) defined for

m ∈ M and f being an (aritym)-indexed family of morphisms of C such
that ∀i ∈ aritym : Src fi = Objm i (Src fi is the source object of the
morphism fi) such that

such that it holds:
1◦. StarComp(m, f) ∈ M ;
2◦. arity StarComp(m, f) = aritym;
3◦. ObjStarComp(m,f) i = Dst fi;
4◦. (associativity law)

StarComp(StarComp(m, f), g) = StarComp(m,λi ∈ aritym : gi ◦ fi).

The meaning of the set M is an extension of C having as morphisms things
with arbitrary (possibly infinite) indexed set Objm of objects, not just two objects
as morphisms of C have only source and destination.

Definition 1835. I will call Objm the form of the star-morphism m.

(Having fixed a semicategory with star-morphisms) I will denote StarHom(P )
the set of star-morphisms of the form P .

Proposition 1836. The sets StarHom(P ) are disjoint (for different P ).

Proof. If two star-morphisms have different forms, they are clearly not equal.
□

Definition 1837. A category with star-morphisms is a semicategory with star-
morphisms whose base is a category and the following equality (the law of compo-
sition with identity) holds for every star-morphism m:

StarComp(m,λi ∈ aritym : 1Objm i) = m.

Definition 1838. A partially ordered semicategory with star-morphisms is a
category with star-morphisms, whose base semicategory is a partially ordered sem-
icategory and every set StarHom(X) is partially ordered for every X, such that:

m0 ⊑ m1 ∧ f0 ⊑ f1 ⇒ StarComp(m0, f0) ⊑ StarComp(m1, f1)
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for every m0,m1 ∈ M such that Objm0 = Objm1 and indexed families f0 and f1 of
morphisms such that

∀i ∈ aritym : Src f0i = Src f1i = Objm0 i = Objm1 i;
∀i ∈ aritym : Dst f0i = Dst f1i.

Definition 1839. A partially ordered category with star-morphisms is a cate-
gory with star-morphisms which is also a partially ordered semicategory with star-
morphisms.

Definition 1840. A quasi-invertible semicategory with star-morphisms is a
partially ordered semicategory with star-morphisms whose base semicategory is a
quasi-invertible semicategory, such that for every index set n, star-morphisms a
and b of arity n, and an n-indexed family f of morphisms of the base semicategory
it holds

b ̸≍ StarComp(a, f) ⇔ a ̸≍ StarComp(b, f†).
(Here f† = λi ∈ dom f : (fi)†.)

Definition 1841. A quasi-invertible category with star-morphisms is a quasi-
invertible semicategory with star-morphisms which is a category with star-
morphisms.

Each category with star-morphisms gives rise to a category (abrupt category,
see a remark below why I call it “abrupt”), as described below. Below for simplicity
I assume that the set M and the set of our indexed families of functions are disjoint.
The general case (when they are not necessarily disjoint) may be easily elaborated
by the reader.

• Objects are indexed (by aritym for some m ∈ M) families of objects of
the category C and an (arbitrarily chosen) object None not in this set.

• There are the following disjoint sets of morphisms:
1◦. indexed (by aritym for some m ∈ M) families of morphisms of C;
2◦. elements of M ;
3◦. the identity morphism 1None on None.

• Source and destination of morphisms are defined by the formulas:
– Src f = λi ∈ dom f : Src fi;
– Dst f = λi ∈ dom f : Dst fi;
– Srcm = None;
– Dstm = Objm.

• Compositions of morphisms are defined by the formulas:
– g ◦ f = λi ∈ dom f : gi ◦ fi for our indexed families f and g of

morphisms;
– f◦m = StarComp(m, f) for m ∈ M and a composable indexed family
f ;

– m ◦ 1None = m for m ∈ M ;
– 1None ◦ 1None = 1None.

• Identity morphisms for an object X are:
– λi ∈ X : 1Xi

if X ̸= None;
– 1None if X = None.

Proof. We need to prove it is really a category.
We need to prove:
1◦. Composition is associative.
2◦. Composition with identities complies with the identity law.

Really:
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1◦. (h◦g)◦f = λi ∈ dom f : (hi◦gi)◦fi = λi ∈ dom f : hi◦(gi◦fi) = h◦(g◦f);

g ◦ (f ◦m) = StarComp(StarComp(m, f), g) =
StarComp(m,λi ∈ aritym : gi ◦ fi) = StarComp(m, g ◦ f) = (g ◦ f) ◦m;

f ◦ (m ◦ 1None) = f ◦m = (f ◦m) ◦ 1None.
2◦. m ◦ 1None = m; 1Dst m ◦m = StarComp(m,λi ∈ aritym : 1Objm i) = m.

□

Remark 1842. I call the above defined category abrupt category because (ex-
cluding identity morphisms) it allows composition with an m ∈ M only on the left
(not on the right) so that the morphism m is “abrupt” on the right.

By Jx0, . . . , xn−1K I denote an n-tuple.

Definition 1843. Semicategory with star morphisms induced by a dagger sem-
icategory C is:

• The base category is C.
• Star-morphisms are morphisms of C.
• arity f = {0, 1}.
• Objm = JSrcm,DstmK.
• StarComp(m, Jf, gK) = g ◦m ◦ f†.

Let prove it is really a semicategory with star-morphisms.

Proof. We need to prove the associativity law:
StarComp(StarComp(m, Jf, gK), Jp, qK) = StarComp(m, Jp ◦ f, q ◦ gK).

Really,

StarComp(StarComp(m, Jf, gK), Jp, qK) = StarComp(g ◦m ◦ f†, Jp, qK) =
q ◦ g ◦m ◦ f† ◦ p† = q ◦ g ◦m ◦ (p ◦ f)† = StarComp(m, Jp ◦ f, q ◦ gK).

□

Definition 1844. Category with star morphisms induced by a dagger cate-
gory C is the above defined semicategory with star-morphisms.

That it is a category (the law of composition with identity) is trivial.

Remark 1845. We can carry definitions (such as below defined cross-
composition product) from categories with star-morphisms into plain dagger cat-
egories. This allows us to research properties of cross-composition product of in-
dexed families of morphisms for categories with star-morphisms without separately
considering the special case of dagger categories and just binary star-composition
product.

23.9.1. Abrupt of quasi-invertible categories with star-morphisms.

Definition 1846. The abrupt partially ordered semicategory of a partially
ordered semicategory with star-morphisms is the abrupt semicategory with the
following order of morphisms:

• Indexed (by aritym for some m ∈ M) families of morphisms of C are
ordered as function spaces of posets.

• Star-morphisms (which are morphisms None → Objm for some m ∈ M)
are ordered in the same order as in the semicategory with star-morphisms.

• Morphisms None → None which are only the identity morphism ordered
by the unique order on this one-element set.
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We need to prove it is a partially ordered semicategory.

Proof. It trivially follows from the definition of partially ordered semicategory
with star-morphisms. □

23.10. Product of an arbitrary number of funcoids

In this section it will be defined a product of an arbitrary (possibly infinite)
indexed family of funcoids.

23.10.1. Mapping a morphism into a pointfree funcoid.

Definition 1847. Let’s define the pointfree funcoid χf for every morphism f
of a quasi-invertible category:

⟨χf⟩a = f ◦ a and
〈
(χf)−1〉b = f† ◦ b.

We need to prove it is really a pointfree funcoid.

Proof. b ̸≍ ⟨χf⟩a ⇔ b ̸≍ f ◦ a ⇔ a ̸≍ f† ◦ b ⇔ a ̸≍
〈
(χf)−1〉b. □

Remark 1848. ⟨χf⟩ = (f ◦−) is the Hom-functor Hom(f,−) and we can apply
Yoneda lemma to it. (See any category theory book for definitions of these terms.)

Obvious 1849. ⟨χ(g ◦ f)⟩a = g ◦ f ◦ a for composable morphisms f and g or
a quasi-invertible category.

23.10.2. General cross-composition product.

Definition 1850. Let fix a quasi-invertible category with with star-morphisms.
If f is an indexed family of morphisms from its base category, then the pointfree
funcoid

∏(C)
f (cross-composition product of f) from StarHom(λi ∈ dom f : Src fi)

to StarHom(λi ∈ dom f : Dst fi) is defined by the formulas (for all star-morphisms
a and b of these forms):〈(C)∏

f

〉
a = StarComp(a, f) and

〈(C)∏
f

−1〉
b = StarComp(b, f†).

It is really a pointfree funcoid by the definition of quasi-invertible category with
star-morphisms.

Theorem 1851.
(∏(C)

g
)

◦
(∏(C)

f
)

=
∏(C)

i∈n(gi ◦ fi) for every n-indexed
families f and g of composable morphisms of a quasi-invertible category with star-
morphisms.

Proof.
〈∏(C)

i∈n(gi ◦ fi)
〉
a = StarComp(a, λi ∈ n : gi ◦ fi) =

StarComp(StarComp(a, f), g) and〈(C)∏
g

 ◦

(C)∏
f

〉a =
〈(C)∏

g

〉〈(C)∏
f

〉
a = StarComp(StarComp(a, f), g).

The rest follows from symmetry. □

Corollary 1852.
(∏(C)

fk−1

)
◦ . . . ◦

(∏(C)
f0

)
=
∏(C)

i∈n(fk−1 ◦ . . . ◦ f0) for
every n-indexed families f0, . . . , fn−1 of composable morphisms of a quasi-invertible
category with star-morphisms.

Proof. By math induction. □
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23.10.3. Star composition of binary relations. First define star compo-
sition for an n-ary relation a and an n-indexed family f of binary relations as an
n-ary relation complying with the formulas:

ObjStarComp(a,f) = {∗}n;
L ∈ StarComp(a, f) ⇔ ∃y ∈ a∀i ∈ n : yi fi Li

where ∗ is a unique object of the group of small binary relations considered as a
category.

Proposition 1853. b ̸≍ StarComp(a, f) ⇔ ∃x ∈ a, y ∈ b∀j ∈ n : xj fj yj .

Proof.

b ̸≍ StarComp(a, f) ⇔ ∃y : (y ∈ b ∧ y ∈ StarComp(a, f)) ⇔
∃y : (y ∈ b ∧ ∃x ∈ a∀j ∈ n : xj fj yj) ⇔ ∃x ∈ a, y ∈ b∀j ∈ n : xj fj yj .

□

Theorem 1854. The group of small binary relations considered as a category
together with the set of of all small n-ary relations (for every small n) and the above
defined star-composition form a quasi-invertible category with star-morphisms.

Proof. We need to prove:

1◦. StarComp(StarComp(m, f), g) = StarComp(m,λi ∈ n : gi ◦ fi);
2◦. StarComp(m,λi ∈ aritym : 1Objm i) = m;
3◦. b ̸≍ StarComp(a, f) ⇔ a ̸≍ StarComp(b, f†) (the rest is obvious).

Really,

1◦. L ∈ StarComp(a, f) ⇔ ∃y ∈ a∀i ∈ n : yi fi Li.
Define the relation R(f) by the formula x R(f) y ⇔ ∀i ∈ n : xi fi yi. Obviously

R(λi ∈ n : gi ◦ fi) = R(g) ◦R(f).

L ∈ StarComp(a, f) ⇔ ∃y ∈ a : y R(f) L.

L ∈ StarComp(StarComp(a, f), g) ⇔ ∃p ∈ StarComp(a, f) : p R(g) L ⇔
∃p, y ∈ a : (y R(f) p ∧ p R(g) L) ⇔ ∃y ∈ a : y (R(g) ◦R(f)) L ⇔

∃y ∈ a : y R(λi ∈ n : gi ◦ fi) L ⇔ L ∈ StarComp(a, λi ∈ n : gi ◦ fi)

because p ∈ StarComp(a, f) ⇔ ∃y ∈ a : y R(f) p.
2◦. Obvious.
3◦. It follows from the proposition above.

□

Obvious 1855. StarComp(a ∪ b, f) = StarComp(a, f) ∪ StarComp(b, f) for
n-ary relations a, b and an n-indexed family f of binary relations.

Theorem 1856.
〈∏(C)

f
〉∏

a =
∏

i∈n⟨fi⟩∗
ai for every family f = fi∈n of

binary relations and a = ai∈n where ai is a small set (for each i ∈ n).



23.10. PRODUCT OF AN ARBITRARY NUMBER OF FUNCOIDS 374

Proof.

L ∈

〈(C)∏
f

〉∏
a ⇔

L ∈ StarComp
(∏

a, f
)

⇔

∃y ∈
∏

a∀i ∈ n : yi fi Li ⇔

∃y ∈
∏

a∀i ∈ n : {yi} ̸≍
〈
f−1

i

〉∗{Li} ⇔

∀i ∈ n∃y ∈ ai : {y} ̸≍
〈
f−1

i

〉∗{Li} ⇔

∀i ∈ n : ai ̸≍
〈
f−1

i

〉∗{Li} ⇔
∀i ∈ n : {Li} ̸≍ ⟨fi⟩∗

ai ⇔
∀i ∈ n : Li ∈ ⟨fi⟩∗

ai ⇔

L ∈
∏
i∈n

⟨fi⟩∗
ai.

□

23.10.4. Star composition of Rel-morphisms. Define star composition for
an n-ary anchored relation a and an n-indexed family f of Rel-morphisms as an
n-ary anchored relation complying with the formulas:

ObjStarComp(a,f) = λi ∈ arity a : Dst fi;
arity StarComp(a, f) = arity a;

L ∈ GR StarComp(a, f) ⇔ L ∈ StarComp(GR a,GR ◦f).

(Here I denote GR(A,B, f) = f for every Rel-morphism f .)

Proposition 1857.

b ̸≍ StarComp(a, f) ⇔ ∃x ∈ a, y ∈ b∀j ∈ n : xj GR(fj) yj .

Proof. From the previous section. □

Theorem 1858. Relations with above defined compositions form a quasi-
invertible category with star-morphisms.

Proof. We need to prove:
1◦. StarComp(StarComp(m, f), g) = StarComp(m,λi ∈ aritym : gi ◦ fi);
2◦. StarComp(m,λi ∈ aritym : 1Objm i) = m;
3◦. b ̸≍ StarComp(a, f) ⇔ a ̸≍ StarComp(b, f†)

(the rest is obvious).
It follows from the previous section. □

Proposition 1859. StarComp(a ⊔ b, f) = StarComp(a, f) ⊔ StarComp(b, f)
for an n-ary anchored relations a, b and an n-indexed family f of Rel-morphisms.

Proof. It follows from the previous section. □

Theorem 1860. Cross-composition product of a family of Rel-morphisms is a
principal funcoid.

Proof. By the proposition and symmetry
∏(C)

f is a pointfree funcoid. Ob-
viously it is a funcoid

∏
i∈n Src fi →

∏
i∈n Dst fi. Its completeness (and dually

co-completeness) is obvious. □
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23.10.5. Cross-composition product of funcoids. Let a be a an anchored
relation of the form A and domA = n.

Let every fi (for all i ∈ n) be a pointfree funcoid with Src fi = Ai.
The star-composition of a with f is an anchored relation of the form λi ∈

domA : Dst fi defined by the formula

L ∈ GR StarComp(a, f) ⇔ (λi ∈ n : ⟨f−1
i ⟩Li) ∈ GR a.

Theorem 1861. Let Src fi be separable starrish join-semilattice and Dst fi be
a starrish join-semilattice for every i ∈ n for a set n. Let form a =

∏
i∈n(Src fi).

1◦. If a is a prestaroid then StarComp(a, f) is a prestaroid.
2◦. If a is a staroid and Src fi are strongly separable then StarComp(a, f) is

a staroid.
3◦. If a is a completary staroid and then StarComp(a, f) is a completary

staroid.

Proof. We have
〈
f−1

i

〉
(X ⊔ Y ) =

〈
f−1

i

〉
X ⊔

〈
f−1

i

〉
Y by theorem 1606.

1◦. Let L ∈
∏

i∈(arity f)\{k}(form fi) for some k ∈ n and X,Y ∈ form fk. Then

X ⊔ Y ∈ ⟨StarComp(a, f)⟩∗
kL ⇔(

λi ∈ dom f :
〈
f−1

i

〉({ X ⊔ Y if i = k
Li if i ̸= k

)
i

)
∈ GR a ⇔(

λi ∈ dom f :
({ 〈

f−1
i

〉
X ⊔

〈
f−1

i

〉
Y if i = k〈

f−1
i

〉
Li if i ̸= k

)
i

)
∈ GR a ⇔〈

f−1
i

〉
X ⊔

〈
f−1

i

〉
Y ∈ ⟨a⟩∗

k(λi ∈ (dom f) \ {k} : ⟨f−1
i ⟩Li) ⇔〈

f−1
i

〉
X ∈ ⟨a⟩∗

k(λi ∈ n \ {k} :
〈
f−1

i

〉
Li) ∨ ⟨f−1

i ⟩Y ∈ ⟨a⟩∗
k(λi ∈ n \ {k} :

〈
f−1

i

〉
Li) ⇔(

λi ∈ dom f :
({ 〈

f−1
i

〉
X if i = k〈

f−1
i

〉
Li if i ̸= k

)
i

)
∈ GR a∨(

λi ∈ dom f :
({ 〈

f−1
i

〉
Y if i = k〈

f−1
i

〉
Li if i ̸= k

)
i

)
∈ GR a

⇔

(
λi ∈ dom f :

〈
f−1

i

〉({ X if i = k
Li if i ̸= k

)
i

)
∈ GR a∨(

λi ∈ dom f :
〈
f−1

i

〉({ Y if i = k
Li if i ̸= k

)
i

)
∈ GR a

⇔

X ∈ ⟨StarComp(a, f)⟩∗
kL ∨ Y ∈ ⟨StarComp(a, f)⟩∗

kL.

Thus StarComp(a, f) is a pre-staroid.
2◦.

〈
f−1

i

〉
are monotone functions by the proposition 1605. Thus

〈
f−1

i

〉
Xi ⊑〈

f−1
i

〉
Yi if X,Y ∈

∏
i∈(arity f)\{k}(form fi) and X ⊑ Y . So if a is a staroid and

X ∈ GR StarComp(a, f) then (λi ∈ dom f : ⟨f−1
i ⟩Xi) ∈ GR a then (λi ∈ dom f :

⟨f−1
i ⟩Yi) ∈ GR a that is Y ∈ GR StarComp(a, f).

3◦.

L0 ⊔ L1 ∈ GR StarComp(a, f) ⇔
(λi ∈ n :

〈
f−1

i

〉
(L0 ⊔ L1)i) ∈ GR a ⇔

(λi ∈ n :
〈
f−1

i

〉
L0i ⊔ ⟨f−1

i ⟩L1i) ∈ GR a ⇔
∃c ∈ {0, 1} : (λi ∈ n :

〈
f−1

i

〉
Lc(i)i) ∈ GR a ⇔

∃c ∈ {0, 1} : (λi ∈ n : Lc(i)i) ∈ GR StarComp(a, f).

□
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Conjecture 1862. b ̸≍Anch(A) StarComp(a, f) ⇔ ∀A ∈ GR a,B ∈ GR b, i ∈
n : Ai [fi] Bi for anchored relations a and b on powersets.

It’s consequence:

Conjecture 1863. b ̸≍Anch(A) StarComp(a, f) ⇔ a ̸≍Anch(A) StarComp(b, f†)
for anchored relations a and b on powersets.

Conjecture 1864. b ̸≍Strd(A) StarComp(a, f) ⇔ a ̸≍Strd(A) StarComp(b, f†)
for pre-staroids a and b on powersets.

Proposition 1865. Anchored relations with objects being posets with above
defined star-morphisms is a category with star morphisms.

Proof. We need to prove:
1◦. StarComp(StarComp(m, f), g) = StarComp(m,λi ∈ aritym : gi ◦ fi);
2◦. StarComp(m,λi ∈ aritym : 1Objm i) = m.

(the rest is obvious). Really,

L ∈ GR StarComp(StarComp(m, f), g) ⇔
(λi ∈ aritym :

〈
g−1

i

〉
Li) ∈ GR StarComp(m, f) ⇔

(λi ∈ n :
〈
f−1

i

〉
(λj ∈ n :

〈
g−1

j

〉
Lj)i) ∈ GRm ⇔

(λi ∈ aritym : ⟨f−1
i ⟩
〈
g−1

i

〉
Li) ∈ GRm ⇔

(λi ∈ aritym : ⟨(gi ◦ fi)−1⟩Li) ∈ GRm ⇔
L ∈ GR StarComp(m,λi ∈ aritym : gi ◦ fi);

and

L ∈ GR StarComp(m,λi ∈ aritym : 1Objm i) ⇔
(λi ∈ n :

〈
1Objm i

〉
Li) ∈ GRm ⇔

(λi ∈ aritym :
〈
1Objm i

〉
Li) ∈ GRm ⇔

(λi ∈ aritym : Li) ∈ GRm ⇔ L ∈ GRm.

□

Conjecture 1866. StarComp(a ⊔ b, f) = StarComp(a, f) ⊔ StarComp(b, f)
for anchored relations a, b of a form A, where every Ai is a distributive lattice, and
an indexed family f of pointfree funcoids with Src fi = Ai.

23.10.6. Cross-composition product of funcoids through atoms. Let
a be a an anchored relation of the form A and domA = n.

Let every fi (for all i ∈ n) be a pointfree funcoid with Src fi = Ai.
The atomary star-composition of a with f is an anchored relation of the form

λi ∈ domA : Dst fi defined by the formula

L ∈ GR StarComp(a)(a, f) ⇔ ∃y ∈ GR a ∩
∏
i∈n

atomsAi ∀i ∈ n : yi [fi] Li.

Theorem 1867. Let Dst fi be a starrish join-semilattice for every i ∈ n.
1◦. If a is a prestaroid then StarComp(a)(a, f) is a staroid.
2◦. If a is a completary staroid and then StarComp(a)(a, f) is a completary

staroid.

Proof.
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1◦. First prove that StarComp(a)(a, f) is a prestaroid. We need to prove that
(val StarComp(a)(a, f))jL (for every j ∈ n) is a free star, that is{

X ∈ (form f)j

L ∪ {(j,X)} ∈ GR StarComp(a)(a, f)

}
is a free star, that is the following is a free star{

X ∈ (form f)j

R(X)

}
whereR(X) ⇔ ∃y ∈

∏
i∈n atomsAi : (∀i ∈ n \ {j} : yi [fi] Li ∧ yj [fj ] X ∧ y ∈ GR a).

R(X) ⇔

∃y ∈
∏
i∈n

atomsAi : (∀i ∈ n \ {j} : yi [fi] Li ∧ yj [fj ] X ∧ yj ∈ (val a)j(y|n\{j})) ⇔

∃y ∈
∏

i∈n\{j}

atomsAi , y′ ∈ atomsAj :
(

∀i ∈ n \ {j} : yi [fi] Li∧
y′ [fj ] X ∧ y′ ∈ (val a)j(y|n\{j})

)
⇔

∃y ∈
∏

i∈n\{j}

atomsAi ∀i ∈ n \ {j} : yi [fi] Li∧

∃y′ ∈ atomsAj : (y′ [fj ] X ∧ y′ ∈ (val a)j(y|n\{j})).

If ∃y ∈
∏

i∈n\{j} atomsAi ∀i ∈ n \ {j} : yi [fi] Li is false our statement is
obvious. We can assume it is true.

So it is enough to prove that{
X ∈ (form f)j

∃y ∈
∏

i∈n\{j} atomsAi , y′ ∈ atomsAj : (y′ [fj ] X ∧ y′ ∈ (val a)j(y|n\{j}))

}
is a free star. That is

Q =
{

X ∈ (form f)j

∃y ∈
∏

i∈n\{j} atomsAi , y′ ∈ (atomsAj ) ∩ (val a)j(y|n\{j}) : y′ [fj ] X

}

is a free star. ⊥(form f)j /∈ Q is obvious. ThatQ is an upper set is obvious. It remains
to prove that X0 ⊔ X1 ∈ Q ⇒ X0 ∈ Q ∨ X1 ∈ Q for every X0, X1 ∈ (form f)j .
Let X0 ⊔ X1 ∈ Q. Then there exist y ∈

∏
i∈n\{j} atomsAi , y′ ∈ (atomsAj ) ∩

(val a)j(y|n\{j}) such that y′ [fj ] X0 ⊔X1. Consequently (proposition 1607) y′ [fj ]
X0 ∨ y′ [fj ] X1. But then X0 ∈ Q ∨X1 ∈ Q.

To finish the proof we need to show that GR StarComp( a)(a, f) is an upper
set, but this is obvious.

2◦. Let a be a completary staroid. Let L0 ⊔L1 ∈ GR StarComp(a)(a, f) that is
∃y ∈

∏
i∈n atomsAi : (∀i ∈ n : yi [fi] L0i ⊔ L1i ∧ y ∈ GR a) that is ∃c ∈ {0, 1}n, y ∈∏

i∈n atomsAi :
(
∀i ∈ n : yi [fi] Lc(i)i ∧ y ∈ GR a

)
(taken into account that Dst fi

is starrish) that is ∃c ∈ {0, 1}n : (λi ∈ n : Lc(i)i) ∈ GR StarComp(a)(a, f). So
StarComp(a)(a, f) is a completary staroid.

□

Lemma 1868. b ̸≍Anch(B) StarComp(a)(a, f) ⇔ ∀A ∈ GR a,B ∈ GR b, i ∈ n :
Ai [fi] Bi for anchored relations a and b, provided that Src fi are atomic posets.

Proof.
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b ̸≍Anch(B) StarComp(a)(a, f) ⇔

∃x ∈ Anch(B) \ {⊥} : (x ⊑ b ∧ x ⊑ StarComp(a)(a, f)) ⇔

∃x ∈ Anch(B) \ {⊥} : (x ⊑ b ∧ ∀B ∈ GR x : B ∈ GR StarComp(a)(a, f)) ⇔
∃x ∈ Anch(B) \ {⊥} :(

x ⊑ b ∧ ∀B ∈ GR x∃A ∈
∏

i∈dom B

atomsBi : (∀i ∈ n : Ai [fi] Bi ∧A ∈ GR a)
)

⇔

∃x ∈ Anch(B) \ {⊥} : (x ⊑ b ∧ ∀B ∈ GR x,A ∈ GR a, i ∈ n : Ai [fi] Bi) ⇔
∃x ∈ Anch(B) : (x ⊑ b ∧ ∀B ∈ GR x,A ∈ GR a, i ∈ n : Ai [fi] Bi) ⇔

∀B ∈ GR b, A ∈ GR a, i ∈ n : Ai [fi] Bi.

□

Definition 1869. I will denote the cross-composition product for the star-
composition StarComp(a) as

∏(a).

Theorem 1870. a
[∏(a)

f
]
b ⇔ ∀A ∈ GR a,B ∈ GR b, i ∈ n : Ai [fi] Bi for

anchored relations a and b, provided that Src fi and Dst fi are atomic posets.

Proof. From the lemma. □

Conjecture 1871. b ̸≍Strd(B) StarComp(a, f) ⇔ a ̸≍Strd(A) StarComp(b, f†)
for staroids a and b on indexed families A and B of filters on powersets.

Theorem 1872. Anchored relations with objects being atomic posets and
above defined compositions form a quasi-invertible semicategory with star-
morphisms.

Remark 1873. It seems that this semicategory with star-morphisms isn’t a
category with star-morphisms.

Proof. We need to prove:

1◦. StarComp(a)(StarComp(a)(m, f), g) = StarComp(a)(m,λi ∈ aritym : gi ◦
fi);

2◦. b ̸≍ StarComp(a)(a, f) ⇔ a ̸≍ StarComp(a)(b, f†)

(the rest is obvious).
Really, let a be a star morphism and Ai = (Obja)i for every i ∈ arity a;

1◦. L ∈ GR StarComp(a)(a, f) ⇔ ∃y ∈ GR a∩
∏

i∈n atomsAi ∀i ∈ n : yi [fi] Li.
Define the relation R(f) by the formula x R(f) y ⇔ ∀i ∈ n : xi [fi] yi.

Obviously

R(λi ∈ n : gi ◦ fi) = R(g) ◦R(f).
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L ∈ GR StarComp(a)(a, f) ⇔ ∃y ∈ GR a ∩
∏

i∈n atomsAi : y R(f) L.

L ∈ GR StarComp(a)(StarComp(a, f), g) ⇔

∃p ∈ GR StarComp(a)(a, f) ∩
∏
i∈n

atoms(Dst f)i : p R(g) L ⇔

∃p ∈
∏
i∈n

atoms(Dst f)i , y ∈ GR a ∩
∏
i∈n

atoms(Src f)i : (y R(f) p ∧ p R(g) L) ⇔

∃y ∈ GR a ∩
∏
i∈n

atoms(Src f)i : y (R(g) ◦R(f)) L ⇔

∃y ∈ GR a ∩
∏
i∈n

atoms(Src f)i : y R(λi ∈ n : gi ◦ fi) L ⇔

∃y ∈ GR a ∩
∏
i∈n

atoms(Src f)i y∀i ∈ n : yi [gi ◦ fi] Li ⇔

L ∈ GR StarComp(a)(a, λi ∈ n : gi ◦ fi)

because p ∈ GR StarComp(a)(a, f) ⇔ ∃y ∈ GR a ∩
∏

i∈n atoms(Src f)i y : y R(f) p.
2◦. It follows from the lemma above.

□

Theorem 1874.
〈∏(a)

f
〉∏Strd

a =
∏Strd

i∈n⟨fi⟩ai for every family f = fi∈n of
pointfree funcoids between atomic posets and a = ai∈n where ai ∈ Src fi.

Proof.

L ∈ GR
〈 (a)∏

f

〉 Strd∏
a ⇔

L ∈ GR StarComp(a)

(Strd∏
a, f

)
⇔

∃y ∈
∏

i∈dom A

atomsAi ∀i ∈ n : (yi [fi] Li ∧ yi ̸≍ ai) ⇔

∀i ∈ n∃y ∈ atomsAi : (y [fi] Li ∧ y ̸≍ ai) ⇔
∀i ∈ n : ai [fi] Li ⇔

∀i ∈ n : Li ̸≍ ⟨fi⟩ai ⇔

L ∈ GR
Strd∏
i∈n

⟨fi⟩ai.

□

Conjecture 1875. StarComp(a)(a ⊔ b, f) = StarComp(a)(a, f) ⊔
StarComp(a)(b, f) for anchored relations a, b of a form A, where every Ai

is a distributive lattice, and an indexed family f of pointfree funcoids with
Src fi = Ai.

23.10.7. Simple product of pointfree funcoids.

Definition 1876. Let f be an indexed family of pointfree funcoids with every
Src fi and Dst fi (for all i ∈ dom f) being a poset with least element. Simple product
of f is
(S)∏

f =

λx ∈
∏

i∈dom f

Src fi : λi ∈ dom f : ⟨fi⟩xi, λy ∈
∏

i∈dom f

Dst fi : λi ∈ dom f :
〈
f−1

i

〉
yi

.
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Proposition 1877. Simple product is a pointfree funcoid
(S)∏

f ∈ pFCD

 ∏
i∈dom f

Src fi,
∏

i∈dom f

Dst fi

.
Proof. Let x ∈

∏
i∈dom f Src fi and y ∈

∏
i∈dom f Dst fi. Then (take into

account that Src fi and Dst fi are posets with least elements)

y ̸≍

λx ∈
∏

i∈dom f

Src fi : λi ∈ dom f : ⟨fi⟩xi

x ⇔

y ̸≍ λi ∈ dom f : ⟨fi⟩xi ⇔
∃i ∈ dom f : yi ̸≍ ⟨fi⟩xi ⇔

∃i ∈ dom f : xi ̸≍
〈
f−1

i

〉
yi ⇔

x ̸≍ λi ∈ dom f :
〈
f−1

i

〉
yi ⇔

x ̸≍

λy ∈
∏

i∈dom f

Dst fi : λi ∈ dom f :
〈
f−1

i

〉
yi

y.
□

Obvious 1878.
〈∏(S)

f
〉
x = λi ∈ dom f : ⟨fi⟩xi for x ∈

∏
Src fi.

Obvious 1879.
(〈∏(S)

f
〉
x
)

i
= ⟨fi⟩xi for x ∈

∏
Src fi.

Proposition 1880. fi can be restored if we know
∏(S)

f if fi is a family of
pointfree funcoids between posets with least elements.

Proof. Let’s restore the value of ⟨fi⟩x where i ∈ dom f and x ∈ Src fi.
Let x′

i = x and x′
j = ⊥ for j ̸= i.

Then ⟨fi⟩x = ⟨fi⟩x′
i =

(〈∏(S)
f
〉
x′
)

i
.

We have restored the value of ⟨fi⟩. Restoring the value of
〈
f−1

i

〉
is similar. □

Remark 1881. In the above proposition it is not required that fi are non-zero.

Proposition 1882.
(∏(S)

g
)

◦
(∏(S)

f
)

=
∏(S)

i∈n(gi ◦fi) for n-indexed families
f and g of composable pointfree funcoids between posets with least elements.

Proof.〈(S)∏
i∈n

(gi ◦ fi)
〉
x = λi ∈ dom f : ⟨gi ◦ fi⟩xi = λi ∈ dom f : ⟨gi⟩⟨fi⟩xi =

〈(S)∏
g

〉
λi ∈ dom f : ⟨fi⟩xi =

〈(S)∏
g

〉〈(S)∏
f

〉
x =

〈(S)∏
g

 ◦

(S)∏
f

〉x.
Thus

〈∏(S)
i∈n(gi ◦ fi)

〉
=
〈(∏(S)

g
)

◦
(∏(S)

f
)〉

.〈(∏(S)
i∈n(gi ◦ fi)

)−1
〉

=
〈((∏(S)

g
)

◦
(∏(S)

f
))−1

〉
is similar. □

Corollary 1883.
(∏(S)

fk−1

)
◦. . .◦

(∏(S)
f0

)
=
∏(S)

i∈n(fk−1◦. . .◦f0) for every
n-indexed families f0, . . . , fn−1 of composable pointfree funcoids between posets
with least elements.
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23.11. Multireloids

Definition 1884. I will call a multireloid of the form A = Ai∈n, where every
each Ai is a set, a pair (f,A) where f is a filter on the set

∏
A.

Definition 1885. I will denote Obj(f,A) = A and GR(f,A) = f for every
multireloid (f,A).

I will denote RLD(A) the set of multireloids of the form A.
The multireloid ↑RLD(A) F for a relation F is defined by the formulas:

Obj ↑RLD(A) F = A and GR ↑RLD(A) F =↑
∏

A F.

For an anchored relation f I define Obj ↑ f = form f and GR ↑ f =↑
∏

form f

GR f .
Let a be a multireloid of the form A and domA = n.
Let every fi be a reloid with Src fi = Ai.
The star-composition of a with f is a multireloid of the form λi ∈ domA : Dst fi

defined by the formulas:

arity StarComp(a, f) = n;

GR StarComp(a, f) =
RLD(A)l {

GR StarComp(A,F )
A ∈ GR a, F ∈

∏
i∈n GR fi

}
;

Objm StarComp(a, f) = λi ∈ n : Dst fi.

Theorem 1886. Multireloids with above defined compositions form a quasi-
invertible category with star-morphisms.

Proof. We need to prove:

1◦. StarComp(StarComp(m, f), g) = StarComp(m,λi ∈ aritym : gi ◦ fi);
2◦. StarComp(m,λi ∈ aritym : 1Objm i) = m;
3◦. b ̸≍ StarComp(a, f) ⇔ a ̸≍ StarComp(b, f†)

(the rest is obvious).
Really,

1◦. Using properties of generalized filter bases,

StarComp(StarComp(a, f), g) =
RLDl{

StarComp(B,G)
B ∈ GR StarComp(a, f), G ∈

∏
i∈n GR gi

}
=

RLDl{
StarComp(StarComp(A,F ), G)

A ∈ GR a, F ∈
∏

i∈n GR fi, G ∈
∏

i∈n GR gi

}
=

RLDl{
StarComp(A,G ◦ F )

A ∈ GR a, F ∈
∏

i∈n GR fi, G ∈
∏

i∈n GR gi

}
=

RLDl{
StarComp(A,H)

A ∈ GR a,H ∈
∏

i∈n GR(gi ◦ fi)

}
=

StarComp(a, λi ∈ arityn : gi ◦ fi).
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2◦.
StarComp(m,λi ∈ aritym : 1Objm i) =

RLD(A)l
{

StarComp(A,H)
A ∈ GRm,H ∈

∏
i∈arity m GR 1Objm i

}
=

RLD(A)l
{

StarComp(A, λi ∈ aritym : Hi)
A ∈ GRm,H ∈

∏
i∈arity m GR 1Objm i

}
=

RLD(A)l
{

StarComp(A, λi ∈ aritym : 1Xi
)

A ∈ GRm,X ∈
∏

i∈arity m Objm i

}
=

RLD(A)l
{

(A ∩
∏
X)

A ∈ GRm,X ∈
∏

i∈arity m Objm i

}
=

RLD(A)l {
A

A ∈ GRm

}
= m.

3◦. Using properties of generalized filter bases,
b ̸≍ StarComp(a, f) ⇔

∀A ∈ GR a,B ∈ GR b, F ∈
∏
i∈n

GR fi : B ̸≍ StarComp(A,F ) ⇔

∀A ∈ GR a,B ∈ GR b, F ∈
∏
i∈n

GR fi : B ̸≍

〈(C)∏
F

〉
A ⇔

∀A ∈ GR a,B ∈ GR b, F ∈
∏
i∈n

GR fi : A ̸≍

〈(C)∏
F

−1〉
B ⇔

∀A ∈ GR a,B ∈ GR b, F ∈
∏
i∈n

GR fi : A ̸≍ StarComp(B,F †) ⇔

a ̸≍ StarComp(b, f†).
□

Definition 1887. Let f be a multireloid of the form A. Then for i ∈ domA

RLD
Pr

i
f =

Fl〈
Pr

i

〉∗
GR f.

Proposition 1888. up PrRLD
i f = ⟨Pri⟩∗ GR f for every multireloid f and i ∈

arity f .

Proof. It’s enough to show that ⟨Pri⟩∗ GR f is a filter.
That ⟨Pri⟩∗ GR f is an upper set is obvious.
Let X,Y ∈ ⟨Pri⟩∗ GR f . Then there exist F,G ∈ GR f such that X = Pri F ,

Y = Pri G. Then X ∩ Y ⊇ Pri(F ∩G) ∈ ⟨Pri⟩∗ GR f . Thus X ∩ Y ∈ ⟨Pri⟩∗ GR f .
□

Definition 1889.
∏RLD X =

dRLD(λi∈dom X :Base(Xi))
X∈up

∏
X

∏
X for every indexed

family X of filters on powersets.

Proposition 1890. PrRLD
k

∏RLD
x = xk for every indexed family x of proper

filters.

Proof. up PrRLD
k

∏RLD
x = ⟨Prk⟩∗∏RLD

x = upxk. □
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Conjecture 1891. GR StarComp(a ⊔ b, f) = GR StarComp(a, f) ⊔
GR StarComp(b, f) if f is a reloid and a, b are multireloids of the same form,
composable with f .

Theorem 1892.
∏RLD

A = d

{ ∏RLD
a

a∈
∏

i∈dom A
atoms Ai

}
for every indexed family

A of filters on powersets.

Proof. Obviously
∏RLD

A ⊒ d

{ ∏RLD
a

a∈
∏

i∈dom A
atoms Ai

}
.

Reversely, let K ∈ GR d

{ ∏RLD
a

a∈
∏

i∈dom A
atoms Ai

}
.

Consequently K ∈ GR
∏RLD

a for every a ∈
∏

i∈dom A atomsAi; K ⊇
∏
X and

thus K ⊇
⋃

a∈
∏

i∈dom a
atoms Ai

∏
Xa for some Xa ∈

∏
i∈dom a atomsAi.

But
⋃

a∈
∏

i∈dom a
atoms Ai

∏
Xa =

∏
i∈dom A

⋃
a∈atoms Ai

⟨Pri⟩∗
Xa ⊇∏

j∈dom A Zj for some Zj ∈ upAj because ⟨Pri⟩∗
X ∈ up ai and our lattice

is atomistic. So K ∈ GR
∏RLD

A. □

Theorem 1893. Let a, b be indexed families of filters on powersets of the same
form A. Then

RLD∏
a ⊓

RLD∏
b =

RLD∏
i∈dom A

(ai ⊓ bi).

Proof.

up
(RLD∏

a ⊓
RLD∏

b

)
=

RLD(A)l
{

P ∩Q

P ∈ GR
∏RLD

a,Q ∈
∏RLD

b

}
=

RLD(A)l { ∏
p ∩

∏
q

p ∈ up
∏
a, q ∈ up

∏
b

}
=

RLD(A)l { ∏
i∈dom A(pi ∩ qi)

p ∈
∏

up a, q ∈
∏

up b

}
=

RLD(A)l { ∏
r

r ∈ up
∏

i∈dom A(ai ⊓ bi)

}
=

up
RLD∏

i∈dom A

(ai ⊓ bi).

□

Theorem 1894. If S ∈ P
∏

i∈domZ F (Zi) where Z is an indexed family of
sets, then

l

a∈S

RLD∏
a =

RLD∏
i∈dom Z

F(Zi)l
Pr

i
S.

Proof. If S = ∅ then
d

a∈S

∏RLD
a =

d
∅ = ⊤RLD(Z) and

RLD∏
i∈dom Z

F(Zi)l
Pr

i
S =

RLD∏
i∈dom Z

F(Zi)l
∅ =

RLD∏
i∈dom Z

⊤F(Zi) = ⊤RLD(Z),
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thus
d

a∈S

∏RLD
a =

∏RLD
i∈dom Z

dF(Zi) Pri S.
Let S ̸= ∅.dF(Zi) Pri S ⊑

dF(Zi){ai} = ai for every a ∈ S because ai ∈ Pri S. Thus∏RLD
i∈dom Z

dF(Zi) Pri S ⊑
∏RLD

a;

l

a∈S

RLD∏
a ⊒

RLD∏
i∈dom Z

F(Zi)l
Pr

i
S.

Now suppose F ∈ GR
∏RLD

i∈dom Z

dF(Zi) Pri S. Then there exists X ∈
up
∏

i∈dom Z

dF(Zi) Pri S such that F ⊇
∏
X. It is enough to prove that there

exist a ∈ S such that F ∈ GR
∏RLD

a. For this it is enough
∏
X ∈ GR

∏RLD
a.

Really, Xi ∈ up
dF(Zi) Pri S thus Xi ∈ up ai for every A ∈ S because Pri S ⊇

{ai}.
Thus

∏
X ∈ GR

∏RLD
a. □

Definition 1895. I call a multireloid principal iff its graph is a principal filter.

Definition 1896. I call a multireloid convex iff it is a join of reloidal products.

Theorem 1897. StarComp(a ⊔ b, f) = StarComp(a, f) ⊔ StarComp(b, f) for
multireloids a, b and an indexed family f of reloids with Src fi = (form a)i =
(form b)i.

Proof.
GR(StarComp(a, f) ⊔ StarComp(b, f)) =

l{
↑RLD(form a) StarComp(A,F )
A ∈ GR a, F ∈

∏
i∈n GR fi

}
⊔

l{
↑RLD(form b) StarComp(B,F )
B ∈ GR b, F ∈

∏
i∈n GR fi

}
=

l{
↑RLD(form a) StarComp(A,F )⊔ ↑RLD(form b) StarComp(B,F )

A ∈ GR a,B ∈ GR b, F ∈
∏

i∈n GR fi

}
=

l{
↑RLD(form a) (StarComp(A,F ) ∪ StarComp(B,F ))

A ∈ GR a,B ∈ GR b, F ∈
∏

i∈n GR fi

}
=

l{
↑RLD(form a) StarComp(A ∪B,F )

A ∈ GR a,B ∈ GR b, F ∈
∏

i∈n GR fi

}
=

l{
↑RLD(form a) StarComp(C,F )

C ∈ GR(a ⊔ b), F ∈
∏

i∈n GR fi

}
=

GR StarComp(a ⊔ b, f).
□

23.11.1. Starred reloidal product. Tychonoff product of topological spaces
inspired me the following definition, which seems possibly useful just like Tychonoff
product:

Definition 1898. Let a be an n-indexed (n is an arbitrary index set) fam-
ily of filters on sets.

∏RLD∗
a (starred reloidal product) is the reloid of the form∏

i∈n Base(ai) induced by the filter base
∏

i∈n

({
Ai if i ∈ m

Base(ai) if i ∈ n \m

)
m is a finite subset of n,A ∈

∏
(a|m)

.
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Obvious 1899. It is really a filter base.

Obvious 1900.
∏RLD∗

a ⊒
∏RLD

a.

Proposition 1901.
∏RLD∗

a =
∏RLD

a if n is finite.

Proof. Take m = n to show that
∏RLD∗

a ⊑
∏RLD

a. □

Proposition 1902.
∏RLD∗

a = ⊥RLD(λi∈n:Base(ai)) if ai is the non-proper filter
for some i ∈ n.

Proof. Take Ai = ⊥ and m = {i}. Then
∏

i∈n

({
Ai if i ∈ m

Base(ai) if i ∈ n \m

)
=

⊥. □

Example 1903. There exists an indexed family a of principal filters such that∏RLD∗
a is non-principal.

Proof. Let n be infinite and Base(ai) is a set of at least two elements. Let
each ai be a trivial ultrafilter.

Every
∏

i∈n

({
Ai if i ∈ m

Base(ai) if i ∈ n \m

)
has at least 2n elements.

There are elements up
∏RLD

a with cardinality 1. They can’t be elements of
up
∏RLD∗

a because of cardinality issues. □

Corollary 1904. There exists an indexed family a of principal filters such
that

∏RLD∗
a ̸=

∏RLD
a.

Proof. Because
∏RLD

a is principal. □

Proposition 1905. PrRLD
k

∏RLD∗
x = xk for every indexed family x of proper

filters.

Proof. PrRLD
k

∏RLD∗
x = ⟨Prk⟩∗ GR

∏RLD∗
x = xk. □

Theorem 1906. PrRLD
i f ⊑ Ai for all i ∈ n iff f ⊑

∏RLD∗ A (for every reloid f
of arity n and n-indexed family A of filters on sets).

Proof. f ⊑
∏RLD∗ A ⇒ PrRLD

i f ⊑ PrRLD
i

∏RLD∗ A ⊑ Ai.
Let now PrRLD

i f ⊑ Ai.

f ⊑
∏({PrRLD

i f if i ∈ m

Base(form f)i if i /∈ m

)
for finite m ⊆ n, as it can be easily be

proved by induction.
It follows f ⊑

∏RLD∗ A. □

23.12. Subatomic product of funcoids

Definition 1907. Let f be an indexed family of funcoids. Then
∏(A)

f (sub-
atomic product) is a funcoid

∏
i∈dom f Src fi →

∏
i∈dom f Dst fi such that for every

a ∈ atomsRLD(λi∈dom f :Src fi), b ∈ atomsRLD(λi∈dom f :Dst fi)

a

(A)∏
f

 b ⇔ ∀i ∈ dom f :
RLD
Pr

i
a [fi]

RLD
Pr

i
b.

Proposition 1908. The funcoid
∏(A)

f exists.
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Proof. To prove that
∏(A)

f exists we need to prove (for every a ∈
atomsRLD(λi∈dom f :Src fi), b ∈ atomsRLD(λi∈dom f :Dst fi))

∀X ∈ GR a, Y ∈ GR b

∃x ∈ atoms ↑RLD(λi∈dom f :Src fi) X, y ∈ atoms ↑RLD(λi∈dom f :Dst fi) Y : x

(A)∏
f

 y ⇒

a

(A)∏
f

 b.
Let

∀X ∈ GR a, Y ∈ GR b

∃x ∈ atoms ↑RLD(λi∈dom f :Src fi) X, y ∈ atoms ↑RLD(λi∈dom f :Dst fi) Y : x

(A)∏
f

 y.
Then

∀X ∈ GR a, Y ∈ GR b

∃x ∈ atoms ↑RLD(λi∈dom f :Src fi) X, y ∈ atoms ↑RLD(λi∈dom f :Dst fi) Y

∀i ∈ dom f :
RLD
Pr

i
x [fi]

RLD
Pr

i
y.

Then because PrRLD
i x ∈ atoms ↑Src fi Pri X and likewise for y:

∀X ∈ GR a, Y ∈ GR b∀i ∈ dom f

∃x ∈ atoms ↑Src fi Pr
i
X, y ∈ atoms ↑Dst fi Pr

i
Y : x [fi] y.

Thus ∀X ∈ GR a, Y ∈ GR b∀i ∈ dom f :↑Src fi Pri X [fi]↑Dst fi Pri Y ;
∀X ∈ GR a, Y ∈ GR b∀i ∈ dom f : Pri X [fi]∗ Pri Y .
Then ∀X ∈ ⟨Pri⟩∗ GR a, Y ∈ ⟨Pri⟩∗ GR b : X [fi]∗ Y .
Thus PrRLD

i a [fi] PrRLD
i b. So

∀i ∈ dom f :
RLD
Pr

i
a [fi]

RLD
Pr

i
b

and thus a
[∏(A)

f
]
b. □

Remark 1909. It seems that the proof of the above theorem can be simplified
using cross-composition product.

Theorem 1910.
∏(A)

i∈n(gi ◦ fi) =
∏(A)

g ◦
∏(A)

f for indexed (by an index set
n) families f and g of funcoids such that ∀i ∈ n : Dst fi = Src gi.
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Proof. Let a, b be ultrafilters on
∏

i∈n Src fi and
∏

i∈n Dst gi correspondingly,

a

(A)∏
i∈n

(gi ◦ fi)

 b ⇔

∀i ∈ dom f :
〈

Pr
i

〉∗
a [gi ◦ fi]

〈
Pr

i

〉∗
b ⇔

∀i ∈ dom f∃C ∈ atomsF(Dst fi) :
(〈

Pr
i

〉∗
a [fi] C ∧ C [gi]

〈
Pr

i

〉∗
b
)

⇔

∀i ∈ dom f∃c ∈ atomsRLD(λi∈n:Dst f) :
(〈

Pr
i

〉∗
a [fi]

〈
Pr

i

〉∗
c ∧
〈

Pr
i

〉∗
c [gi]

〈
Pr

i

〉∗
b
)

⇐

∃c ∈ atomsRLD(λi∈n:Dst f) ∀i ∈ dom f :
(〈

Pr
i

〉∗
a [fi]

〈
Pr

i

〉∗
c ∧
〈

Pr
i

〉∗
c [gi]

〈
Pr

i

〉∗
b
)

⇔

∃c ∈ atomsRLD(λi∈n:Dst f) :

a
(A)∏

f

 c ∧ c

(A)∏
g

 b
 ⇔

a

(A)∏
g ◦

(A)∏
f

 b.
But

∀i ∈ dom f∃C ∈ atomsF(Dst fi) :
(〈

Pr
i

〉∗
a [fi] C ∧ C [gi]

〈
Pr

i

〉∗
b
)

implies

∃C ∈
∏
i∈n

atomsF(Dst fi) ∀i ∈ dom f :
(〈

Pr
i

〉∗
a [fi] Ci ∧ Ci [gi]

〈
Pr

i

〉∗
b
)
.

Take c ∈ atoms
∏RLD

C. Then

∀i ∈ dom f :
(〈

Pr
i

〉∗
a [fi] Pr

i
c ∧ Pr

i
c [gi]

〈
Pr

i

〉∗
b
)

that is

∀i ∈ dom f :
(〈

Pr
i

〉∗
a [fi]

〈
Pr

i

〉∗
c ∧
〈

Pr
i

〉∗
[gi]

〈
Pr

i

〉∗
b
)

We have a
[∏(A)

i∈n(gi ◦ fi)
]
b ⇔ a

[∏(A)
g ◦
∏(A)

f
]
b. □

Corollary 1911.
(∏(A)

fk−1

)
◦ . . . ◦

(∏(A)
f0

)
=
∏(A)

i∈n(fk−1 ◦ . . . ◦ f0) for
every n-indexed families f0, . . . , fn−1 of composable funcoids.

Proposition 1912.
∏RLD

a
[∏(A)

f
] ∏RLD

b ⇔ ∀i ∈ dom f : ai [fi] bi for
an indexed family f of funcoids and indexed families a and b of filters where ai ∈
F (Src fi), bi ∈ F (Dst fi) for every i ∈ dom f .

Proof. If ai = ⊥ or bi = ⊥ for some i our theorem is obvious. We will take
ai ̸= ⊥ and bi ̸= ⊥, thus there exist

x ∈ atoms
RLD∏

a, y ∈ atoms
RLD∏

b.



23.13. ON PRODUCTS AND PROJECTIONS 388

RLD∏
a

(A)∏
f

 RLD∏
b ⇔

∃x ∈ atoms
RLD∏

a, y ∈ atoms
RLD∏

b : x

(A)∏
f

 y ⇔

∃x ∈ atoms
RLD∏

a, y ∈ atoms
RLD∏

b∀i ∈ dom f :
〈

Pr
i

〉∗
x [fi]

〈
Pr

i

〉∗
y ⇔

∀i ∈ dom f∃x ∈ atoms ai, y ∈ atoms bi : x [fi] y ⇔
∀i ∈ dom f : ai [fi] bi.

□

Theorem 1913.
〈∏(A)

f
〉
x =

∏RLD
i∈dom f ⟨fi⟩ PrRLD

i x for an indexed family f of
funcoids and x ∈ atomsRLD(λi∈dom f :Src fi) for every n ∈ dom f .

Proof. For every ultrafilter y ∈ F
(∏

i∈dom f Dst fi

)
we have:

y ̸≍
RLD∏

i∈dom f

⟨fi⟩
RLD
Pr

i
x ⇔

∀i ∈ dom f :
RLD
Pr

i
y ̸≍ ⟨fi⟩

RLD
Pr

i
x ⇔

∀i ∈ dom f :
RLD
Pr

i
x [fi]

RLD
Pr

i
y ⇔

x

(A)∏
f

 y ⇔

y ̸≍

〈(A)∏
f

〉
x.

Thus
〈∏(A)

f
〉
x =

∏RLD
i∈dom f ⟨fi⟩ PrRLD

i x. □

Corollary 1914. ⟨f ×(A) g⟩x = ⟨f⟩(dom x) ×RLD ⟨g⟩(im x) for atomic x.

23.13. On products and projections

Conjecture 1915. For principal funcoids
∏(C)and

∏(A) coincide with the
conventional product of binary relations.

23.13.1. Staroidal product. Let f be a staroid, whose form components are
boolean lattices.

Definition 1916. Staroidal projection of a staroid f is the filter PrStrd
k f cor-

responding to the free star

(val f)k(λi ∈ (arity f) \ {k} : ⊤(form f)i).

Proposition 1917. Prk GR
∏Strd

x = ⋆xk if x is an indexed family of proper
filters, and k ∈ dom x.
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Proof.

Pr
k

GR
Strd∏

x =

Pr
k

{
L ∈ form x

∀i ∈ dom x : xi ̸≍ Li

}
=

(used the fact that xi are proper filters){
l ∈ (form x)k

xk ̸≍ l

}
= ⋆xk.

□

Proposition 1918. PrStrd
k

∏Strd
x = xk if x is an indexed family of proper

filters, and k ∈ dom x.

Proof.

∂
Strd
Pr
k

Strd∏
x =(

val
Strd∏

x

)
k

(λi ∈ (dom x) \ {k} : ⊤(form x)i) =

 X ∈
(

form
∏Strd

x
)

k

(λi ∈ (dom x) \ {k} : ⊤(form x)i) ∪ {(k,X)} ∈ GR
∏Strd

x

 =

{
X ∈ Basexk

(∀i ∈ (dom x) \ {k} : ⊤(form x)i ̸≍ xi) ∧X ̸≍ xk

}
={

X ∈ Basexk

X ̸≍ xk

}
= ∂xk.

Consequently PrStrd
k

∏Strd
x = xk. □

23.13.2. Cross-composition product of pointfree funcoids.

Definition 1919. Zero pointfree funcoid ⊥pFCD(A,B) from a poset A to to a
poset B is the least pointfree funcoid in the set pFCD(A,B).

Proposition 1920. A pointfree funcoid f is zero iff [f ]= ∅.

Proof. Direct implication is obvious.
Let now [f ]= ∅. Then ⟨f⟩x ≍ y for every x ∈ Src f , y ∈ Dst f and thus

⟨f⟩x ≍ ⟨f⟩x. It is possible only when ⟨f⟩x = ⊥Dst f . □

Corollary 1921. A pointfree funcoid is zero iff its reverse is zero.

Proposition 1922. Values xi (for every i ∈ dom x) can be restored from the
value of

∏(C)
x provided that x is an indexed family of non-zero pointfree funcoids,

Src fi (for every i ∈ n) is an atomic lattice and every Dst fi is an atomic poset with
greatest element.

Proof.
〈∏(C)

x
〉∏Strd

p =
∏Strd

i∈n⟨xi⟩pi by theorem 1874.
Since xi is non-zero there exist p such that ⟨xi⟩pi is non-least. Take k ∈ n,

p′
i = pi for i ̸= k and p′

k = q for an arbitrary value q; then (using the staroidal
projections from the previous subsection)

⟨xk⟩q =
Strd
Pr
k

Strd∏
i∈n

⟨xi⟩p′
i =

Strd
Pr
k

〈(C)∏
x

〉 Strd∏
p′.
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So the value of x can be restored from
∏(C)

x by this formula. □

23.13.3. Subatomic product.

Proposition 1923. Values xi (for every i ∈ dom x) can be restored from the
value of

∏(A)
x provided that x is an indexed family of non-zero funcoids.

Proof. Fix k ∈ dom f . Let for some filters X and Y

a =
{

⊤F(Base(x)) if i ̸= k;
X if i = k

and b =
{

⊤F(Base(y)) if i ̸= k;
Y if i = k.

Then X [xk] Y ⇔ ak [xk] bk ⇔ ∀i ∈ dom f : ai [xi] bi ⇔
∏RLD

a
[∏(A)

x
] ∏RLD

b.

So we have restored xk from
∏(A)

x. □

Definition 1924. For every funcoid f :
∏
A →

∏
B (where A and B are

indexed families of typed sets) consider the funcoid Pr(A)
k f defined by the formula

X

[
(A)
Pr
k
f

]∗

Y ⇔
RLD∏

i∈dom A

({
⊤F(Ai) if i ̸= k;
↑Ai X if i = k

)
[f ]

RLD∏
i∈dom B

({
⊤F(Bi) if i ̸= k;
↑Bi Y if i = k

)
.

Proposition 1925. Pr(A)
k f is really a funcoid.

Proof. ¬
(

⊥
[
Pr(A)

k f
]∗
Y
)

is obvious.

I ⊔ J

[
(A)
Pr
k
f

]∗

Y ⇔

RLD∏
i∈dom A

({
⊤F(Ai) if i ̸= k;
↑Ai (I ⊔ J) if i = k

)
[f ]

RLD∏
i∈dom B

({
⊤F(Bi) if i ̸= k;
↑Bi Y if i = k

)
⇔

RLD∏
i∈dom A

({
⊤F(Ai) if i ̸= k;
↑Ai I⊔ ↑Ai J if i = k

)
[f ]

RLD∏
i∈dom B

({
⊤F(Bi) if i ̸= k;
↑Bi Y if i = k

)
⇔

RLD∏
i∈dom A

({
⊤F(Ai) if i ̸= k;
↑Ai I if i = k

)
⊔

RLD∏
i∈dom A

({
⊤F(Ai) if i ̸= k;
↑Ai J if i = k

)
[f ]

RLD∏
i∈dom B

({
⊤F(Bi) if i ̸= k;
↑Bi Y if i = k

) ⇔

RLD∏
i∈dom A

({
⊤F(Ai) if i ̸= k;
↑Ai I if i = k

)
[f ]

RLD∏
i∈dom B

({
⊤F(Bi) if i ̸= k;
↑Bi Y if i = k

)
∨

RLD∏
i∈dom A

({
⊤F(Ai) if i ̸= k;
↑Ai J if i = k

)
[f ]

RLD∏
i∈dom B

({
⊤F(Bi) if i ̸= k;
↑Bi Y if i = k

) ⇔

I

[
(A)
Pr
k
f

]∗

Y ∨ J

[
(A)
Pr
k
f

]∗

Y.

The rest follows from symmetry. □

Proposition 1926. For every funcoid f :
∏
A →

∏
B (where A and B are

indexed families of typed sets) the funcoid Pr(A)
k f conforms to the formula

X

[
(A)
Pr
k
f

]
Y ⇔

RLD∏
i∈dom A

({
⊤F(Ai) if i ̸= k;
X if i = k

)
[f ]

RLD∏
i∈dom B

({
⊤F(Bi) if i ̸= k;
Y if i = k

)
.
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Proof.

X

[
(A)
Pr
k
f

]
Y ⇔

∀X ∈ up X , Y ∈ up Y : X
[

(A)
Pr
k
f

]∗

Y ⇔

∀X ∈ up X , Y ∈ up Y :
RLD∏

i∈dom A

({
⊤F(Ai) if i ̸= k;
↑Ai X if i = k

)
[f ]

RLD∏
i∈dom B

({
⊤F(Bi) if i ̸= k;
↑Bi Y if i = k

)
⇔

∀X ∈ up
RLD∏

i∈dom A

({
⊤F(Ai) if i ̸= k;
X if i = k

)
, Y ∈ up

RLD∏
i∈dom B

({
⊤F(Bi) if i ̸= k;
Y if i = k

)
:

X [f ]∗ Y ⇔
RLD∏

i∈dom A

({
⊤F(Ai) if i ̸= k;
X if i = k

)
[f ]

RLD∏
i∈dom B

({
⊤F(Bi) if i ̸= k;
Y if i = k

)
.

□

Remark 1927. Reloidal product above can be replaced with starred reloidal
product, because of finite number of non-maximal multipliers in the products.

Obvious 1928. Pr(A)
k

∏(A)
x = xk provided that x is an indexed family of

non-zero funcoids.

23.13.4. Other.

Definition 1929. Displaced product
∏(DP )

f =⇊
∏(C)

f for every indexed
family of pointfree funcoids, where downgrading is defined for the filtrator(

FCD(StarHom(Src ◦f),StarHom(Dst ◦f)),Rel
(∏

(Src ◦f),
∏

(Dst ◦f)
))
.

Remark 1930. Displaced product is a funcoid (not just a pointfree funcoid).

Conjecture 1931. Values xi (for every i ∈ dom x) can be restored from the
value of

∏(DP )
x provided that x is an indexed family of non-zero funcoids.

Definition 1932. Let f ∈ P
(
Z
∐

Y
)

where Z is a set and Y is a function.

(D)
Pr
k
f = Pr

k

{
curry z
z ∈ f

}
.

Proposition 1933. Pr(D)
k

∏(D)
F = Fk for every indexed family F of non-

empty relations.

Proof. Obvious. □

Corollary 1934. GR Pr(D)
k

∏(D)
F = GRFk and form Pr(D)

k

∏(D)
F =

formFk for every indexed family F of non-empty anchored relations.

23.14. Relationships between cross-composition and subatomic
products

Proposition 1935. a
[
f ×(C) g

]
b ⇔ dom a [f ] dom b ∧ im a [g] im b for fun-

coids f and g and atomic funcoids a ∈ FCD(Src f, Src g) and b ∈ FCD(Dst f,Dst g).
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Proof.

a
[
f ×(C) g

]
b ⇔

a ◦ f−1 ̸≍ g−1 ◦ b ⇔

(dom a×FCD im a) ◦ f−1 ̸≍ g−1 ◦ (dom b×FCD im b) ⇔

⟨f⟩ dom a×FCD im a ̸≍ dom b×FCD 〈g−1〉 im b ⇔
⟨f⟩ dom a ̸≍ dom b ∧ im a ̸≍

〈
g−1〉 im b ⇔

dom a [f ] dom b ∧ im a [g] im b.

□

Proposition 1936. X
[∏(A)

f
]

Y ⇔ ∀i ∈ dom f : PrRLD
i X [fi] PrRLD

i Y for
every indexed family f of funcoids and X ∈ RLD(Src ◦f), Y ∈ RLD(Dst ◦f).

Proof.

X

(A)∏
f

 Y ⇔

∃a ∈ atoms X , b ∈ atoms Y : a

(A)∏
f

 b ⇔

∃a ∈ atoms X , b ∈ atoms Y∀i ∈ dom f :
RLD
Pr

i
a [fi]

RLD
Pr

i
b ⇔

∀i ∈ dom f∃x ∈ atoms
RLD
Pr

i
X , y ∈ atoms

RLD
Pr

i
Y : xi [fi] yi ⇔

∀i ∈ dom f :
RLD
Pr

i
X [fi]

RLD
Pr

i
Y.

□

Corollary 1937. X
[
f ×(A) g

]
Y ⇔ dom X [f ] dom Y ∧ im X [g] im Y for

funcoids f , g and reloids X ∈ RLD(Src f, Src g), and Y ∈ RLD(Dst f,Dst g).

Lemma 1938. For every A ∈ Rel(X,Y ) (for every sets X, Y ) we have:{
(dom a, im a)

a ∈ atoms ↑FCD A

}
=
{

(dom a, im a)
a ∈ atoms ↑RLD A

}
.

Proof. Let x ∈
{

(dom a,im a)
a∈atoms↑RLDA

}
. Take x0 = dom a and x1 = im a where

a ∈ atoms ↑RLD A.
Then x0 = dom(FCD)a and x1 = im(FCD)a and obviously (FCD)a ∈

atoms ↑FCD A. So x ∈
{

(dom a,im a)
a∈atoms↑FCDA

}
.

Let now x ∈
{

(dom a,im a)
a∈atoms↑FCDA

}
. Take x0 = dom a and x1 = im a where a ∈

atoms ↑FCD A.
x0
[
↑FCD A

]
x1 ⇔ x0

[
(FCD) ↑RLD A

]
x1 ⇔ x0 ×RLD x1 ̸≍↑RLD A. Thus there

exists atomic reloid x′ such that x′ ∈ atoms ↑RLD A and dom x′ = x0, im x′ = x1.
So x ∈

{
(dom a′,im a′)

a′∈atoms↑RLDA

}
. □

Theorem 1939. ↑FCD A
[
f ×(C) g

]
↑FCD B ⇔↑RLD A

[
f ×(A) g

]
↑RLD B for

funcoids f , g, and Rld-morphisms A : Src f → Src g, and B : Dst f → Dst g.
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Proof.

↑FCD A
[
f ×(C) g

]
↑FCD B ⇔

∃a ∈ atoms ↑FCD A, b ∈ atoms ↑FCD B : a
[
f ×(C) g

]
b ⇔

∃a ∈ atoms ↑FCD A, b ∈ atoms ↑FCD B : (dom a [f ] dom b ∧ im a [g] im b) ⇒

∃a0 ∈ atoms dom ↑FCD A, a1 ∈ atoms im ↑FCD A,

b0 ∈ atoms dom ↑FCD B, b1 ∈ atoms im ↑FCD B : (a0 [f ] b0 ∧ a1 [g] b1).

On the other hand:

∃a0 ∈ atoms dom ↑FCD A, a1 ∈ atoms im ↑FCD A,

b0 ∈ atoms dom ↑FCD B, b1 ∈ atoms im ↑FCD B : (a0 [f ] b0 ∧ a1 [g] b1) ⇒

∃a0 ∈ atoms dom ↑FCD A, a1 ∈ atoms im ↑FCD A,

b0 ∈ atoms dom ↑FCD B, b1 ∈ atoms im ↑FCD B : (a0 ×FCD b0 ̸≍ f ∧a1 ×FCD b1 ̸≍ g) ⇒

∃a ∈ atoms ↑FCD A, b ∈ atoms ↑FCD B : (dom a [f ] dom b ∧ im a [g] im b).

Also using the lemma we have

∃a ∈ atoms ↑FCD A, b ∈ atoms ↑FCD B : (dom a [f ] dom b ∧ im a [g] im b) ⇔

∃a ∈ atoms ↑RLD A, b ∈ atoms ↑RLD B : (dom a [f ] dom b ∧ im a [g] im b).

So

↑FCD A
[
f ×(C) g

]
↑FCD B ⇔

∃a ∈ atoms ↑RLD A, b ∈ atoms ↑RLD B : (dom a [f ] dom b ∧ im a [g] im b) ⇔

∃a ∈ atoms ↑RLD A, b ∈ atoms ↑RLD B : a
[
f ×(A) g

]
b ⇔

↑RLD A
[
f ×(A) g

]
↑RLD B.

□

Corollary 1940. f ×(A) g =⇈⇊ (f ×(C) g) where downgrading is taken on
the filtrator(

pFCD(FCD(Src ◦f),FCD(Dst ◦f)),FCD
(
P
∏

(Src ◦f),P
∏

(Dst ◦f)
))

and upgrading is taken on the filtrator(
pFCD(RLD(Src ◦f),RLD(Dst ◦f)),FCD

(
P
∏

(Src ◦f),P
∏

(Dst ◦f)
))
.

where we equate n-ary relations with corresponding principal multifuncoids and
principal multireloids, when appropriate.

Proof. Leave as an exercise for the reader. □

Conjecture 1941. ↑FCD A
[∏(C)

f
]
↑FCD B ⇔↑RLD A

[∏(A)
f
]
↑RLD B

for every indexed family f of funcoids and A ∈ P
∏

i∈dom f Src fi, B ∈
P
∏

i∈dom f Dst fi.

Theorem 1942. For every filters a0, a1, b0, b1 we have

a0 ×FCD b0

[
f ×(C) g

]
a1 ×FCD b1 ⇔ a0 ×RLD b0

[
f ×(A) g

]
a1 ×RLD b1.



23.15. CROSS-INNER AND CROSS-OUTER PRODUCT 394

Proof.

a0 ×RLD b0

[
f ×(A) g

]
a1 ×RLD b1 ⇔

∀A0 ∈ a0, B0 ∈ b0, A1 ∈ a1, B1 ∈ b1 : A0 ×B0

[
f ×(A) g

]∗
A1 ×B1.

A0×B0

[
f ×(A) g

]∗
A1×B1 ⇔ A0×B0

[
f ×(C) g

]∗
A1×B1 ⇔ A0 [f ]∗ A1∧B0 [g]∗ B1.

(Here by A0 × B0
[
f ×(C) g

]∗
A1 × B1 I mean ↑FCD(Base a,Base b) (A0 ×

B0)
[
f ×(C) g

]∗↑FCD(Base a,Base b) (A1 ×B1).)
Thus it is equivalent to a0 [f ] a1 ∧ b0 [g] b1 that is a0 ×FCD b0

[
f ×(C) g

]∗
a1 ×FCD b1.

(It was used the corollary 1751.) □

Can the above theorem be generalized for the infinitary case?

23.15. Cross-inner and cross-outer product

Let f be an indexed family of funcoids.

Definition 1943.
∏in

i∈dom f f =
∏(C)

i∈dom f (RLD)infi (cross-inner product).

Definition 1944.
∏out

i∈dom f f =
∏(C)

i∈dom f (RLD)outfi (cross-outer product).

Proposition 1945.
∏in

i∈dom f f and
∏out

i∈dom f f are funcoids (not just pointfree
funcoids).

Proof. They are both morphisms StarHom(λi ∈ dom f : Src fi) →
StarHom(λi ∈ dom f : Src fi) for the category of multireloids with star-morphisms,
that is StarHom(λi ∈ dom f : Src fi) is the set of filters on the cartesian product∏

i∈dom f Src fi and likewise for StarHom(λi ∈ dom f : Src fi). □

Obvious 1946. For every funcoids f and g

1◦. f ×in g = (RLD)inf ×(C) (RLD)ing;
2◦. f ×out g = (RLD)outf ×(C) (RLD)outg.

Corollary 1947.
1◦. ⟨f ×in g⟩a = (RLD)ing ◦ a ◦ (RLD)inf

−1;
2◦. ⟨f ×out g⟩a = (RLD)outg ◦ a ◦ (RLD)outf

−1

Corollary 1948. For every funcoids f and g and filters a and b on suitable
sets:

1◦. a [f ×in g] b ⇔ b ̸≍ (RLD)ing◦a◦(RLD)inf
−1 ⇔ b◦(RLD)inf ̸≍ (RLD)ing◦

a;
2◦. a [f ×out g] b ⇔ b ̸≍ (RLD)outg ◦ a ◦ (RLD)outf

−1 ⇔ b ◦ (RLD)outf ̸≍
(RLD)outg ◦ a.

Proposition 1949. Knowing that every fi is nonzero, we can restore the values
of fi from the value of

∏in
i∈dom f f .

Proof. It follows that every (RLD)infi is nonzero, thus we can restore
each (RLD)infi from

∏(C)
i∈dom f (RLD)infi =

∏in
i∈dom f f and then we know fi =

(FCD)(RLD)infi. □

Example 1950. The values of f and g cannot be restored from f ×out g for
some nonzero funcoids f and g.
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Proof. Obviously idFCD
Ω(N) ̸= idFCD

Ω(R), but idFCD
Ω(N) ×out idFCD

Ω(N) =
(RLD)out idFCD

Ω(N) ×(C)(RLD)out idFCD
Ω(N) = ⊥ ×(C) ⊥ =

(RLD)out idFCD
Ω(R) ×(C)(RLD)out idFCD

Ω(R) = idFCD
Ω(R) ×out idFCD

Ω(R).
That is the product f ×out g is the same if we take f = g = idFCD

Ω(N) and if we
take f = g = idFCD

Ω(R). □

Question 1951. Which of the following are pairwise equal (for a. two funcoids,
b. any (possibly infinite) number of funcoids)?

1◦. subatomic product;
2◦. displaced product;
3◦. cross-inner product.

23.16. Coordinate-wise continuity

Theorem 1952. Let µ and ν be indexed (by some index set n) families of
endomorphisms for a quasi-invertible dagger category with star-morphisms, and
fi ∈ Hom(Obµi,Ob νi) for every i ∈ n. Then:

1◦. ∀i ∈ n : fi ∈ C(µi, νi) ⇒
∏(C)

f ∈ C
(∏(C)

µ,
∏(C)

ν
)

;

2◦. ∀i ∈ n : fi ∈ C′(µi, νi) ⇒
∏(C)

f ∈ C′
(∏(C)

µ,
∏(C)

ν
)

;

3◦. ∀i ∈ n : fi ∈ C′′(µi, νi) ⇒
∏(C)

f ∈ C′′
(∏(C)

µ,
∏(C)

ν
)

.

Proof. Using the corollary 1852:

∀i ∈ n : fi ∈ C(µi, νi) ⇔ ∀i ∈ n : fi ◦ µi ⊑ νi ◦ fi ⇒
(C)∏
i∈n

(fi ◦ µi) ⊑
(C)∏
i∈n

(νi ◦ fi) ⇔(C)∏
f

 ◦

(C)∏
µ

 ⊑

(C)∏
ν

 ◦

(C)∏
f

 ⇔
(C)∏

f ∈ C

(C)∏
µ,

(C)∏
ν

.

∀i ∈ n : fi ∈ C′(µi, νi) ⇔ ∀i ∈ n : µi ⊑ f†
i ◦ νi ◦ fi ⇒

(C)∏
µ ⊑

(C)∏
i∈n

(f†
i ◦ νi ◦ fi) ⇔

(C)∏
µ ⊑

(C)∏
i∈n

f†
i

 ◦

(C)∏
i∈n

νi

 ◦

(C)∏
i∈n

fi

 ⇔

(C)∏
µ ⊑

(C)∏
i∈n

fi

†

◦

(C)∏
i∈n

νi

 ◦

(C)∏
i∈n

fi

 ⇔
(C)∏

f ∈ C′

(C)∏
µ,

(C)∏
ν

.
∀i ∈ n : fi ∈ C′′(µi, νi) ⇔ ∀i ∈ n : fi ◦ µi ◦ f†

i ⊑ νi ⇒
(C)∏
i∈n

(fi ◦ µi ◦ f†
i ) ⊑

(C)∏
i∈n

νi ⇔
(C)∏
i∈n

fi ◦
(C)∏
i∈n

µi ◦
(C)∏
i∈n

f†
i ⊑

(C)∏
i∈n

νi ⇔

(C)∏
i∈n

fi ◦
(C)∏
i∈n

µi ◦

(C)∏
i∈n

fi

†

⊑
(C)∏
i∈n

νi ⇔
(C)∏
i∈n

fi ∈ C′′

(C)∏
µ,

(C)∏
ν

.
□
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Theorem 1953. Let µ and ν be indexed (by some index set n) families of
endofuncoids, and fi ∈ FCD(Obµi,Ob νi) for every i ∈ n. Then:

1◦. ∀i ∈ n : fi ∈ C(µi, νi) ⇒
∏(A)

f ∈ C
(∏(A)

µ,
∏(A)

ν
)

;

2◦. ∀i ∈ n : fi ∈ C′(µi, νi) ⇒
∏(A)

f ∈ C′
(∏(A)

µ,
∏(A)

ν
)

;

3◦. ∀i ∈ n : fi ∈ C′′(µi, νi) ⇒
∏(A)

f ∈ C′′
(∏(A)

µ,
∏(A)

ν
)

.

Proof. Similar to the previous theorem. □

Theorem 1954. Let µ and ν be indexed (by some index set n) families of point-
free endofuncoids between posets with least elements, and fi ∈ pFCD(Obµi,Ob νi)
for every i ∈ n. Then:

1◦. ∀i ∈ n : fi ∈ C(µi, νi) ⇒
∏(S)

f ∈ C
(∏(S)

µ,
∏(S)

ν
)

;

2◦. ∀i ∈ n : fi ∈ C′(µi, νi) ⇒
∏(S)

f ∈ C′
(∏(S)

µ,
∏(S)

ν
)

;

3◦. ∀i ∈ n : fi ∈ C′′(µi, νi) ⇒
∏(S)

f ∈ C′′
(∏(S)

µ,
∏(S)

ν
)

.

Proof. Similar to the previous theorem. □

23.17. Upgrading and downgrading multifuncoids

Lemma 1955.
{

⟨f⟩∗
kX

X∈up

∏
i∈n\{k}

Zi X

}
is a filter base on Ak for every family

(Ai,Zi) of primary filtrators where i ∈ n for some index set n (provided that f is a
multifuncoid of the form Z and k ∈ n and X ∈

∏
i∈n\{k} Ai).

Proof. Let K,L ∈
{

⟨f⟩∗
kX

X∈up X

}
. Then there exist X,Y ∈ up X such that K =

⟨f⟩∗
kX, L = ⟨f⟩∗

kY . We can take Z ∈ up X such that Z ⊑ X,Y . Then evidently
⟨f⟩∗

kZ ⊑ K and ⟨f⟩∗
kZ ⊑ L and ⟨f⟩∗

kZ ∈
{

⟨f⟩∗
kX

X∈up X

}
. □

Definition 1956. Square mult is a mult whose base and core are the same.

Definition 1957. L ∈[f ]⇔ ∀L ∈ up L : L ∈ [f ]∗ for every mult f .

Definition 1958. ⟨f⟩X =
d

X∈up X ⟨f⟩∗
X for every mult f whose base is a

complete lattice.

Definition 1959. Let f be a mult whose base is a complete lattice. Upgrading
of this mult is square mult ⇈ f with base ⇈ f = core ⇈ f = base f and ⟨⇈ f⟩∗X =
⟨f⟩X for every X ∈

∏
base f .

Lemma 1960. Li ̸≍ ⟨⇈ f⟩∗L|(dom L)\{i} ⇔ ∀L ∈ up L : Li ̸≍ ⟨f⟩∗
L|(dom L)\{i},

if every ((base f)i, (core f)i) is a primary filtrator over a meet-semilattice with least
element.
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Proof.
Li ̸≍ ⟨⇈ f⟩∗L|(dom L)\{i} ⇔

Li ̸≍ ⟨f⟩L|(dom L)\{i} ⇔

Li ̸≍
l

X∈up L|(dom L)\{i}

⟨f⟩∗
X ⇔

Li ⊓
l

X∈up L|(dom L)\{i}

⟨f⟩∗
X ̸= ⊥ ⇔

l

X∈up L|(dom L)\{i}

⟨Li⊓⟩∗⟨f⟩∗
X ̸= ⊥ ⇔

l{
Li ⊓ ⟨f⟩∗

X

X ∈ up L|(dom L)\{i}

}
̸= ⊥ ⇔ (*)

⊥ /∈
{

Li ⊓ ⟨f⟩∗
X

X ∈ up L|(dom L)\{i}

}
⇔

∀X ∈ up L|(dom L)\{i} : Li ⊓ ⟨f⟩∗
X ̸= ⊥ ⇔ (**)

∀L ∈ up L : ⟨f⟩∗
L|dom L ⊓ Li ̸= ⊥ ⇔

∀L ∈ up L : Li ̸≍ ⟨f⟩∗
L|dom L.

(*) because
{

Li⊓⟨f⟩∗X
X∈up L|(dom L)\{i}

}
is a filter base (by lemma 1955) of the filter

d{ Li⊓⟨f⟩∗X
X∈up L|(dom L)\{i}

}
.

(**) by theorem 537. □

Proposition 1961. ⇈ f is a square multifuncoid, if every ((base f)i, (core f)i)
is a primary filtrator over a bounded meet-semilattice.

Proof. Our filtrators are with complete base by corollary 518.
Li ̸≍ ⟨⇈ f⟩∗L|(dom L)\{i} ⇔ ∀L ∈ up L : Li ̸≍ ⟨f⟩∗

L|(dom L)\{i} by the lemma.
Similarly Lj ̸≍ ⟨⇈ f⟩∗L|(dom L)\{j} ⇔ ∀L ∈ up L : Lj ̸≍ ⟨f⟩∗

L|(dom L)\{j}.
So Li ̸≍ ⟨⇈ f⟩∗L|(dom L)\{i} ⇔ Lj ̸≍ ⟨⇈ f⟩∗L|(dom L)\{j} because Li ̸≍
⟨f⟩∗

L|(dom L)\{i} ⇔ Lj ̸≍ ⟨f⟩∗
L|(dom L)\{j}. □

Proposition 1962. [⇈ f ]∗ = [f ] if every ((base f)i, (core f)i) is a primary
filtrator over a bounded meet-semilattice.

Proof. Our filtrators are with complete base by corollary 518.
L ∈ [⇈ f ]∗ ⇔

Li ̸≍ ⟨⇈ f⟩∗L|(dom L)\{i} ⇔ (by the lemma)
∀L ∈ up L : Li ̸≍ ⟨f⟩∗

L|(dom L)\{i} ⇔
∀L ∈ up L : L ∈ [f ]∗ ⇔

L ∈ [f ].
□

Proposition 1963. L ∈ [f ] ⇔ Li ̸≍ ⟨f⟩L|(dom L)\{i} if every
((base f)i, (core f)i) is a primary filtrator over a bounded meet-semilattice.

Proof. Our filtrators are with complete base by corollary 518.
The theorem holds because ⇈ f is a multifuncoid and [f ] = [⇈ f ]∗ and ⟨f⟩ =

⟨⇈ f⟩∗. □

Proposition 1964. Λ ⇈ g =⇈ Λg for every prestaroid g on boolean lattices.
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Proof. Our filtrators are with separable core by theorem 537.

Y ∈ ⟨Λ ⇈ g⟩∗
i L ⇔

L ∪ {(i, Y )} ∈ GR ⇈ g ⇔
up(L ∪ {(i, Y )}) ⊆ GR g ⇔

∀K ∈ up(L ∪ {(i, Y )}) : K ∈ GR g ⇔
∀X ∈ up L, P ∈ upY : X ∪ {(i, P )} ∈ GR g ⇔

∀X ∈ up L, P ∈ upY : P ̸≍ (val g)iX ⇔
∀X ∈ up L : Y ̸≍ (val g)iX ⇔
∀X ∈ up L : Y ∈ (val g)iX ⇔

∀X ∈ up L : X ∪ {(i, Y )} ∈ GR g ⇔
∀X ∈ up L : Y ∈ ⟨Λg⟩∗

X ⇔
∀X ∈ up L : Y ⊓ ⟨Λg⟩∗

X ̸= ⊥ ⇔

⊥ /∈
{
Y ⊓ ⟨Λg⟩∗

X

X ∈ up L

}
⇔ (*)

l{
Y ⊓ ⟨Λg⟩∗

X

X ∈ up L

}
̸= ⊥ ⇔

l

X∈up L
⟨Y ⊓⟩∗⟨Λg⟩∗

X ̸= ⊥ ⇔

Y ̸≍
l

X∈up L
⟨Λg⟩∗

X ⇔

Y ∈
l

X∈up L
⟨Λg⟩∗

X ⇔

Y ∈ ⟨Λg⟩iL ⇔
Y ∈ ⟨⇈ Λg⟩∗

i L.

(*) because
{

Y ⊓⟨Λg⟩∗X
X∈up L

}
is a filter base (by the lemma 1955) of

d{Y ⊓⟨Λg⟩∗X
X∈up L

}
.
□

Definition 1965. Fix an indexed family (Ai,Zi) of filtrators. Downgrading of
a square mult f of the form (Ai,Ai) is the mult ⇊ f of the form (Ai,Zi) defined by
the formula ⟨⇊ f⟩∗

i = ⟨f⟩∗
i |Zi

for every i.

Obvious 1966. Downgrading of a square multifuncoid is a multifuncoid.

Obvious 1967. ⇊⇈ f = f for every mult f of the form (Ai,Zi).

Proposition 1968. Let f be a square mult whose base is a complete lattice.
Then ⇈⇊ f = f .

Proof. ⟨⇈⇊ f⟩∗X =
d

X∈up X ⟨⇊ f⟩∗X =
d

X∈up X ⟨f⟩∗X = ⟨f⟩∗X for every
X ∈

∏
i∈arity f (base f)i. □

23.18. On pseudofuncoids

Definition 1969. Pseudofuncoid from a set A to a set B is a relation f between
filters on A and B such that:

¬(I f ⊥), I ⊔ J f K ⇔ I f K ∨ J f K (for every I,J ∈ F (A), K ∈ F (B)),
¬(⊥ f I), K f I ⊔ J ⇔ K f I ∨ K f J (for every I,J ∈ F (B), K ∈ F (A)).



23.18. ON PSEUDOFUNCOIDS 399

Obvious 1970. Pseudofuncoid is just a staroid of the form (F (A),F (B)).

Obvious 1971. [f ] is a pseudofuncoid for every funcoid f .

Example 1972. If A and B are infinite sets, then there exist two different
pseudofuncoids f and g from A to B such that f∩(T A×T B) = g∩(T A×T B) =
[c] ∩ (T A× T B) for some funcoid c.

Remark 1973. Considering a pseudofuncoid f as a staroid, we get f ∩ (T A×
T B) =⇊ f .

Proof. Take

f =
{

(X ,Y)
X ∈ F (A),Y ∈ F (B),

⋂
X and

⋂
Y are infinite

}
and

g = f ∪
{

(X ,Y)
X ∈ F (A),Y ∈ F (B),X ⊒ a,Y ⊒ b

}
where a and b are nontrivial ultrafilters on A and B correspondingly, c is the funcoid
defined by the relation

[c]∗ = δ =
{

(X,Y )
X ∈ PA, Y ∈ PB,X and Y are infinite

}
.

First prove that f is a pseudofuncoid. The formulas ¬(I f ⊥) and ¬(⊥ f I) are
obvious. We have

I ⊔ J f K ⇔
⋂

(I ⊔ J ) and
⋂

Y are infinite ⇔⋂
I ∪
⋂

J and
⋂

Y are infinite ⇔
(⋂

I or
⋂

J is infinite
)

∧
⋂

Y is infinite ⇔(⋂
I and

⋂
Y are infinite

)
∨
(⋂

J and
⋂

Y are infinite
)

⇔

I f K ∨ J f K.

Similarly K f I ⊔ J ⇔ K f I ∨ K f J . So f is a pseudofuncoid.
Let now prove that g is a pseudofuncoid. The formulas ¬(I g ⊥) and ¬(⊥ g I)

are obvious. Let I ⊔J g K. Then either I ⊔J f K and then I ⊔J g K or I ⊔J ⊒ a
and then I ⊒ a∨J ⊒ a thus having I g K∨J g K. So I ⊔J g K ⇒ I g K∨J g K.
The reverse implication is obvious. We have I ⊔ J g K ⇔ I g K ∨ J g K and
similarly K g I ⊔ J ⇔ K g I ∨ K g J . So g is a pseudofuncoid.

Obviously f ̸= g (a g b but not a f b).
It remains to prove f ∩ (T A× T B) = g ∩ (T A× T B) = [c] ∩ (T A× T B).

Really, f ∩ (T A × T B) = [c] ∩ (T A × T B) is obvious. If (↑A X, ↑B Y ) ∈
g ∩ (T A × T B) then either (↑A X, ↑B Y ) ∈ f ∩ (T A × T B) or X ∈ up a,
Y ∈ up b, so X and Y are infinite and thus (↑A X, ↑B Y ) ∈ f ∩ (T A × T B). So
g ∩ (T A× T B) = f ∩ (T A× T B). □

Remark 1974. The above counter-example shows that pseudofuncoids (and
more generally, any staroids on filters) are “second class” objects, they are not
full-fledged because they don’t bijectively correspond to funcoids and the elegant
funcoids theory does not apply to them.

From the above it follows that staroids on filters do not correspond (by restric-
tion) to staroids on principal filters (or staroids on sets).
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23.18.1. More on free stars and principal free stars.

Proposition 1975. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. (A,Z) is a filtrator.
4◦. ∂F =⇊ ⋆F for every F ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Obvious.
3◦⇒4◦. X ∈ ∂F ⇔ X ̸≍A F ⇔ X ∈ ⋆F ⇔ X ∈⇊ ⋆F for every X ∈ Z.

□

Proposition 1976. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice with least element.
3◦. (A,Z) is a filtrator with separable core.
4◦. ⋆F =⇈ ∂F for every F ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Theorem 537.
3◦⇒4◦. X ∈⇈ ∂F ⇔ up X ⊆ ∂F ⇔ ∀X ∈ up X : X ̸≍ F ⇔ X ̸≍ F ⇔ X ∈ ⋆F .

□

Proposition 1977. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
3◦. (A,Z) is a down-aligned, with join-closed, binarily meet-closed and sepa-

rable core which is a complete boolean lattice.
4◦. The following conditions are equivalent for any F ∈ A:

(a) F ∈ Z.
(b) ∂F is a principal free star on Z.
(c) ⋆F is a principal free star on A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. The filtrator (A,Z) is with with join-closed core by theorem 534, binarily

meet-closed core by corollary 536, with separable core by theorem 537.
3◦⇒4◦.

4◦a⇒4◦b. That ∂F does not contain the least element is obvious. That
∂F is an upper set is obvious. So it remains to apply theorem 583.

4◦b⇒4◦c. That ⋆F does not contain the least element is obvious. That
⋆F is an upper set is obvious. So it remains to apply theorem 583.

4◦c⇒4◦a. Apply theorem 583.
□

Proposition 1978. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a join-semilattice.
3◦. The filtrator (A,Z) is weakly down-aligned and with binarily join-closed

core and Z is a join-semilattice.
4◦. If S is a free star on A then ⇊ S is a free star on Z.
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Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is weakly down-aligned by obvious 511 and with join-closed core by

theorem 534.
3◦⇒4◦. For every X,Y ∈ Z we have

X ⊔Z Y ∈⇊ S ⇔ X ⊔Z Y ∈ S ⇔ X ⊔A Y ∈ S ⇔
X ∈ S ∨ Y ∈ S ⇔ X ∈⇊ S ∨ Y ∈⇊ S;

Suppose there is least element ⊥Z ∈⇊ S. Then ⊥A = ⊥Z ∈ S what is impossible.
□

Proposition 1979. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. If S is a free star on Z then ⇈ S is a free star on A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. There exists a filter F such that S = ∂F . For every filters X ,Y ∈ A

X ⊔A Y ∈⇈ S ⇔ up(X ⊔A Y) ⊆ S ⇔ ∀K ∈ up(X ⊔A Y) : K ∈ ∂F ⇔
∀K ∈ up(X ⊔AY) : K ̸≍ F ⇔ X ⊔AY ̸≍ F ⇔ X ⊔AY ∈ ⋆F ⇔ X ∈ ⋆F ∨Y ∈ ⋆F ⇔

X ̸≍ F ∨ Y ̸≍ F ⇔ ∀X ∈ up X : X ̸≍ F ∨ ∀Y ∈ up Y : Y ̸≍ F ⇔
∀X ∈ up X : X ∈ ∂F ∨ ∀Y ∈ up Y : Y ∈ ∂F ⇔

up X ⊆ S ∨ up Y ⊆ S ⇔ X ∈⇈ S ∨ Y ∈⇈ S;

⊥ ∈⇈ S ⇔ up ⊥ ⊆ S ⇔ ⊥ ∈ S what is false.
□

Proposition 1980. The following is an implications tuple:
1◦. (A,Z) is primary filtrator over a complete lattice.
2◦. (A,Z) is down-aligned filtrator with join-closed core over a complete lat-

tice.
3◦. If S is a principal free star on A then ⇊ S is a principal free star on Z.

Proof.
1◦⇒2◦. It is down-aligned by obvious 506 and with join-closed core by theorem 534.
2◦⇒3◦. d

Z
T ∈⇊ S ⇔ d

Z
T ∈ S ⇔ d

A
T ∈ S ⇔ T ∩ S ̸= ∅ ⇔ T∩ ⇊ S ̸= ∅ for

every T ∈ PZ; ⊥ /∈⇊ S is obvious.
□

Proposition 1981. The following is an implications tuple:
1◦. (A,Z) is powerset filtrator.
2◦. (A,Z) is primary filtrator over a boolean lattice.
3◦. If S is a principal free star on Z then ⇈ S is a principal free star on A.

Proof.
1◦⇒2◦. Obvious.
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2◦⇒3◦. There exists a principal filter F such that S = ∂F .

A

lT ∈⇈ S ⇔ up
A

lT ⊆ S ⇔ ∀K ∈ up
A

lT : K ∈ ∂F ⇔

∀K ∈ up
A

lT : K ̸≍ F ⇔
A

lT ̸≍ F ⇔
A

lT ∈ ⋆F ⇔ ∃K ∈ T : K ∈ ⋆F ⇔
∃K ∈ T : K ̸≍ F ⇔ ∃K ∈ T∀K ∈ up K : K ̸≍ F ⇔ ∃K ∈ T∀K ∈ up K : K ∈ ∂F ⇔

∃K ∈ T : up K ⊆ S ⇔ ∃K ∈ T : K ∈⇈ S ⇔ T∩ ⇈ S ̸= ∅.

⊥ ∈⇈ S ⇔ up ⊥ ⊆ S ⇔ ⊥ ∈ S what is false.
□

23.18.2. Complete staroids and multifuncoids.

Definition 1982. Consider an indexed family Z of posets. A pre-staroid f of
the form Z is complete in argument k ∈ arity f when (val f)kL is a principal free
star for every L ∈

∏
i∈(arity f)\{k} Zi.

Definition 1983. Consider an indexed family (Ai,Zi) of filtrators and mul-
tifuncoid f is of the form (A,Z). Then f is complete in argument k ∈ arity f iff
⟨f⟩∗

kL ∈ Zk for every family L ∈
∏

i∈(arity f)\{k} Zi.

Proposition 1984. Consider an indexed family (Ai,Zi) of primary filtrators
over complete boolean lattices. Let f be a multifuncoid of the form (A,Z) and
k ∈ arity f . The following are equivalent:

1◦. Multifuncoid f is complete in argument k.
2◦. Pre-staroid ⇊ [f ]∗ is complete in argument k.

Proof. Let L ∈
∏

Z. We have L ∈ GR [f ]∗⇔ Li ̸≍ ⟨f⟩∗
iL|(dom L)\{i};(

val [f ]∗
)

k
L = ∂⟨f⟩∗

kL by the definition.
So
(
val [f ]∗

)
k
L is a principal free star iff ⟨f⟩∗

kL ∈ Zk (proposition 1977) for
every L ∈

∏
i∈(arity f)\{k} Zi. □

Example 1985. Consider funcoid f = 1FCD
U . It is obviously complete in each

its two arguments. Then [f ]∗ is not complete in each of its two arguments because
(X ,Y) ∈[f ]∗⇔ X ̸≍ Y what does not generate a principal free star if one of the
arguments (say X ) is a fixed nonprincipal filter.

Theorem 1986. Consider an indexed family (A,Z) of filtrators which are down-
aligned, separable, with join-closed, binarily meet-closed and with separable core
which is a complete boolean lattice.

Let f be a multifuncoid of the aforementioned form. Let k, l ∈ arity f and
k ̸= l. The following are equivalent:

1◦. f is complete in the argument k.
2◦. ⟨f⟩∗

l (L ∪ {(k, dX)}) = dx∈X⟨f⟩∗
l (L ∪ {(k, x)}) for every X ∈ PZk, L ∈∏

i∈(arity f)\{k,l} Zi.
3◦. ⟨f⟩∗

l (L ∪ {(k, dX)}) = dx∈X⟨f⟩∗
l (L ∪ {(k, x)}) for every X ∈ PAk, L ∈∏

i∈(arity f)\{k,l} Zi.

Proof.
3◦⇒2◦. Obvious.
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2◦⇒1◦. Let Y ∈ Z.

lX ̸≍ ⟨f⟩∗
k(L ∪ {(l, Y )}) ⇔ Y ̸≍ ⟨f⟩∗

l

(
L ∪

{(
k, lX

)})
⇔

Y ̸≍ l

x∈X

⟨f⟩∗
l (L ∪ {(k, x)}) ⇔ (proposition 583) ⇔

∃x ∈ X : Y ̸≍ ⟨f⟩∗
l (L ∪ {(k, x)}) ⇔ ∃x ∈ X : x ̸≍ ⟨f⟩∗

k(L ∪ (l, Y )).

It is equivalent (proposition 1977 and the fact that [f ]∗ is an upper
set) to ⟨f⟩∗

k(L∪ {(l, Y )}) being a principal filter and thus (val f)kL being
a principal free star.

1◦⇒3◦.

Y ̸≍ ⟨f⟩∗
l

(
L ∪

{(
k, lX

)})
⇔ lX ̸≍ ⟨f⟩k(L ∪ {(l, Y )}) ⇔

∃x ∈ X : x ̸≍ ⟨f⟩∗
k(L ∪ {(l, Y )}) ⇔ ∃x ∈ X : Y ̸≍ ⟨f⟩∗

l (L ∪ {(k, x)}) ⇔

Y ̸≍ l

x∈X

⟨f⟩∗
l (L ∪ {(k, x)})

for every principal Y . Thus ⟨f⟩∗
l (L ∪ {(k, dX)}) = dx∈X⟨f⟩∗

l (L ∪
{(k, x)}) by separability.

□

23.19. Identity staroids and multifuncoids

23.19.1. Identity relations. Denote idA[n] =
{

λi∈n:x
x∈A

}
=
{

n×{x}
x∈A

}
the n-

ary identity relation on a set A (for each index set n).

Proposition 1987.
∏
X ̸≍ idA[n] ⇔

⋂
i∈n Xi ∩ A ̸= ∅ for every indexed

family X of sets.

Proof.∏
X ̸≍ idA[n] ⇔ ∃t ∈ A : n×{t} ∈

∏
X ⇔ ∃t ∈ A∀i ∈ n : t ∈ Xi ⇔

⋂
i∈n

Xi∩A ̸= ∅.

□

23.19.2. General definitions of identity staroids. Consider a filtrator
(A,Z) and A ∈ A.

I will define below small identity staroids idStrd
A[n] and big identity staroids IDStrd

A[n].
That they are really staroids and even completary staroids (under certain condi-
tions) is proved below.

Definition 1988. Consider a filtrator (A,Z). Let Z be a complete lattice. Let
A ∈ A, let n be an index set.

form idStrd
A[n] = Zn; L ∈ GR idStrd

A[n] ⇔
Zl

i∈n

Li ∈ ∂A.

Obvious 1989. X ∈ GR idStrd
A[n] ⇔ ∀A ∈ up A :

dZ
i∈n Xi ⊓A ̸= 0 if our filtrator

is with separable core.

Definition 1990. The subset X of a poset A has a nontrivial lower bound (I
denote this predicate as MEET(X)) iff there is nonleast a ∈ A such that ∀x ∈ X :
a ⊑ x.
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Definition 1991. Staroid IDStrd
A[n] (for any A ∈ A where A is a poset) is defined

by the formulas:

form IDStrd
A[n] = An; L ∈ GR IDStrd

A[n] ⇔ MEET
({

Li

i ∈ n

}
∪ {A}

)
.

Obvious 1992. If A is complete lattice, then L ∈ GR IDStrd
A[n] ⇔

d
L ̸≍ A.

Obvious 1993. If A is complete lattice and a is an atom, then L ∈ GR IDStrd
a[n] ⇔d

L ⊒ a.

Obvious 1994. If A is a complete lattice then there exists a multifuncoid
Λ IDStrd

A[n] such that ⟨Λ IDStrd
A[n]⟩kL =

d
i∈n Li ⊓ A for every k ∈ n, L ∈ An\{k}.

Proposition 1995. Let (A,Z) be a meet-closed filtrator and Z be a complete
lattice and A be a meet-semilattice. There exists a multifuncoid Λ idStrd

A[n] such that
⟨Λ idStrd

A[n]⟩kL =
dZ

i∈n Li ⊓A A for every k ∈ n, L ∈ Zn\{k}.

Proof. We need to prove that L∪{(k,X)} ∈ GR idStrd
A[n] ⇔

dZ
i∈n Li⊓AA ̸≍A X.

But
Zl

i∈n

Li ⊓A A ̸≍A X ⇔
Zl

i∈n

Li ⊓A X ̸≍A A ⇔

Zl

i∈n

(L ∪ {(k,X)})i ̸≍A A ⇔ L ∪ {(k,X)} ∈ GR idStrd
A[n] .

□

23.19.3. Identities are staroids.

Proposition 1996. Let A be a complete meet infinite distributive lattice and
A ∈ A. Then IDStrd

A[n] is a staroid.

Proof. That L /∈ GR IDStrd
A[n] if Lk = ⊥ for some k ∈ n is obvious. It remains

to prove

L∪{(k,X⊔Y )} ∈ GR IDStrd
A[n] ⇔ L∪{(k,X)} ∈ GR IDStrd

A[n] ∨L∪{(k, Y )} ∈ GR IDStrd
A[n] .

It is equivalent to
l

i∈n\{k}

Li ⊓ (X ⊔ Y ) ̸≍ A ⇔
l

i∈n\{k}

Li ⊓X ̸≍ A ∨
l

i∈n\{k}

Li ⊓ Y ̸≍ A.

Really,
l

i∈n\{k}

Li ⊓ (X ⊔ Y ) ̸≍ A ⇔
l

i∈n\{k}

((Li ⊓X) ⊔ (Li ⊓ Y )) ̸≍ A ⇔

 l

i∈n\{k}

Li ⊓X

 ⊔

 l

i∈n\{k}

Li ⊓ Y

 ̸≍ A ⇔

l

i∈n\{k}

Li ⊓X ̸≍ A ∨
l

i∈n\{k}

Li ⊓ Y ̸≍ A.

□

Proposition 1997. Let (A,Z) be a starrish filtrator over a complete meet
infinite distributive lattice and A ∈ A. Then idStrd

A[n] is a staroid.
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Proof. That L /∈ GR idStrd
A[n] if Lk = ⊥ for some k ∈ n is obvious. It remains

to prove
L∪{(k,X⊔Y )} ∈ GR idStrd

A[n] ⇔ L∪{(k,X)} ∈ GR idStrd
A[n] ∨L∪{(k, Y )} ∈ GR idStrd

A[n] .

It is equivalent to
Zl

i∈n\{k}

Li ⊓ (X ⊔ Y ) ̸≍ A ⇔
Zl

i∈n\{k}

Li ⊓X ̸≍ A ∨
Zl

i∈n\{k}

Li ⊓ Y ̸≍ A.

Really,
Zl

i∈n\{k}

Li ⊓ (X ⊔ Y ) ̸≍ A ⇔
Zl

i∈n\{k}

((Li ⊓X) ⊔ (Li ⊓ Y )) ⇔

 Zl

i∈n\{k}

Li ⊓X

 ⊔

 Zl

i∈n\{k}

Li ⊓ Y

 ̸≍ A ⇔

Zl

i∈n\{k}

Li ⊓X ̸≍ A ∨
Zl

i∈n\{k}

Li ⊓ Y ̸≍ A.

□

Proposition 1998. Let (A,Z) be a primary filtrator over a boolean lattice.
IDStrd

A[n] is a completary staroid for every A ∈ A.

Proof. ⋆A is a free star by theorem 614.

L0 ⊔ L1 ∈ GR IDStrd
A[n] ⇔ ∀i ∈ n : (L0 ⊔ L1)i ∈ ⋆A ⇔ ∀i ∈ n : L0i ⊔ L1i ∈ ⋆A ⇔

∀i ∈ n : (L0i ∈ ⋆A ∨ L1i ∈ ⋆A) ⇔ ∃c ∈ {0, 1}n∀i ∈ n : Lc(i)i ∈ ⋆A ⇔

∃c ∈ {0, 1}n : (λi ∈ n : Lc(i)i) ∈ GR IDStrd
A[n].

□

Lemma 1999. X ∈ GR idStrd
A[n] ⇔ Cor′ dA

i∈n Xi ̸≍ A for a join-closed filtrator
(A,Z) such that both A and Z are complete lattices, provided that A ∈ A.

Proof. X ∈ GR idStrd
A[n] ⇔

dZ
i∈n Xi ̸≍ A ⇔ Cor′ dA

i∈n Xi ̸≍ A (theorem 602).
□

Conjecture 2000. idStrd
A[n] is a completary staroid for every set-theoretic fil-

ter A.

Conjecture 2001. ⇈ idStrd
A[n] is a completary staroid if A is a filter on a set

and n is an index set.

23.19.4. Special case of sets and filters.

Proposition 2002. ↑Zn

X ∈ GR idStrd
a[n] ⇔ ∀A ∈ a :

∏
X ̸≍ idA[n] for every

filter a on a powerset and index set n.

Proof.

∀A ∈ a :
∏

X ̸≍ idA[n] ⇔ ∀A ∈ a :
⋂
i∈n

Xi ∩A ̸= ∅ ⇔ ∀A ∈ a :
Zl

i∈n

Xi ̸≍ A ⇔

∀A ∈ a :
Zl

i∈n

Xi ̸≍A A ⇔
Zl

i∈n

↑Z Xi ̸≍A a ⇔
Zl

i∈n

(↑Z
n

X)i ̸≍A a ⇔↑Z
n

X ∈ GR ida[n] .

□
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Proposition 2003. Y ∈ GR idStrd
A[n] ⇔ ∀A ∈ up A : Y ∈ GR ↑Strd idA[n] for

every filter A on a powerset and Y ∈ Zn.
Proof. Take Y =↑Zn

X.

∀A ∈ up A : Y ∈ GR ↑Strd idA[n] ⇔ ∀A ∈ up A :↑Z
n

X ∈ GR ↑Strd idA[n] ⇔

∀A ∈ up A :
∏

X ̸≍ idA[n] ⇔↑Z
n

X ∈ GR idStrd
A[n] ⇔ Y ∈ GR idStrd

A[n] .

□

Proposition 2004. ↑Zn

X ∈ GR idStrd
a[n] ⇔ ∀A ∈ a∃t ∈ A∀i ∈ n : t ∈ Xi.

Proof.
↑Z

n

X ∈ GR idStrd
a[n] ⇔ ∃A ∈ a∃t ∈ A : n×{t} ∈

∏
X ⇔ ∀A ∈ a∃t ∈ A∀i ∈ n : t ∈ Xi.

□

23.19.5. Relationships between big and small identity staroids.

Definition 2005. an
Strd =

∏Strd
i∈n a for every element a of a poset and an index

set n.
Lemma 2006. L ∈ GR IDStrd

a[n] iff
⋃

i∈n up Li∪{a} has finite intersection property
(for primary filtrators over meet semilattices with greatest element).

Proof. The lattice A is complete by corollary 518. L ∈ GR IDStrd
a[n] ⇔d

i∈n up L ⊓ a ̸= ⊥F ⇔ ∀X ∈
d

i∈n up L ⊓ a : X ̸= ⊥ what is equivalent of⋃
i∈n Li ∪ {a} having finite intersection property. □

Proposition 2007. ⇈ idStrd
a[n] ⊑ IDStrd

a[n] ⊑ an
Strd for every filter a (on any dis-

tributive lattice with least element) and an index set n.
Proof.

GR ⇈ idStrd
a[n] ⊆ GR IDStrd

a[n].

L ∈ GR ⇈ idStrd
a[n] ⇔ up L ⊆ GR idStrd

a[n] ⇔ ∀L ∈ up L : L ∈ GR idStrd
a[n] ⇔

(theorem 537) ⇔ ∀L ∈ up L∀A ∈ up a :
Zl

i∈n

Li ̸≍ A ⇔

∀L ∈ up L∀A ∈ up a :
Zl

i∈n

Li ⊓A ̸= ⊥ ⇒⋃
i∈n

up Li ∪ {a} has finite intersection property ⇔ L ∈ GR IDStrd
a[n] .

GR IDStrd
a[n] ⊆ GR an

Strd. L ∈ GR IDStrd
a[n] ⇔ MEET

({ Li

i∈n

}
∪ {a}

)
⇒ ∀i ∈ a : Li ̸≍

a ⇔ L ∈ GR aa
Strd.

□

Proposition 2008. ⇈ idStrd
a[a] ⊏ IDStrd

a[a] = aa
Strd for every nontrivial ultrafilter a

on a set.
Proof. □

GR ⇈ idStrd
a[a] ̸= GR IDStrd

a[a]. Let Li =↑Base(a) i. Then trivially L ∈ GR IDStrd
a[a]. But

to disprove L ∈ GR ⇈ idStrd
a[a] it’s enough to show L /∈ GR idStrd

a[a] for some
L ∈ up L. Really, take Li = Li =↑Base(a) i. Then L ∈ GR idStrd

a[a] ⇔ ∀A ∈
a∃t ∈ A∀i ∈ a : t ∈ i what is clearly false (we can always take i ∈ a such
that t /∈ i for any point t).
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GR IDStrd
a[a] = GR aa

Strd. L ∈ GR IDStrd
a[a] ⇔ ∀i ∈ a : Li ⊒ a ⇔ ∀i ∈ a : Li ̸≍ a ⇔ L ∈

GR aa
Strd.

Corollary 2009. aa
Strd isn’t an atom when a is a nontrivial ultrafilter.

Corollary 2010. Staroidal product of an infinite indexed family of ultrafilters
may be non-atomic.

Proposition 2011. idStrd
a[n] is determined by the value of ⇈ idStrd

a[n] (for every
element a of a filtrator (A,Z) over a complete lattice Z). Moreover idStrd

a[n] =⇊⇈

idStrd
a[n].

Proof. Use general properties of upgrading and downgrading (proposi-
tion 1775). □

Proposition 2012. IDStrd
a[n] is determined by the value of ⇊ IDStrd

a[n], moreover
IDStrd

a[n] =⇈⇊ IDStrd
a[n] (for filter a on a primary filtrator over a meet semilattice with

greatest element).

Proof.

L ∈⇈⇊ IDStrd
a[n] ⇔ up L ⊆⇊ IDStrd

a[n] ⇔ up L ⊆ IDStrd
a[n] ⇔

∀L ∈ up L : L ∈ IDStrd
a[n] ⇔ ∀L ∈ up L :

l

i∈n

Li ⊓ a ̸= ⊥F ⇔⋃
i∈n

up Li ∪ {a} has finite intersection property ⇔ (lemma) ⇔ L ∈ GR IDStrd
a[n] .

□

Proposition 2013. idStrd
a[n] ⊑⇊ IDStrd

a[n] for every filter a and an index set n.

Proof. idStrd
a[n] =⇊⇈ idStrd

a[n] ⊑⇊ IDStrd
a[n]. □

Proposition 2014. idStrd
a[a] ⊏⇊ IDStrd

a[a] for every nontrivial ultrafilter a.

Proof. Suppose idStrd
a[a] =⇊ IDStrd

a[a]. Then IDStrd
a[a] =⇈⇊ IDStrd

a[a] =⇈ idStrd
a[a] what

contradicts to the above. □

Obvious 2015. L ∈ GR IDStrd
a[n] ⇔ a ⊓

d
i∈n Li ̸= ⊥ if a is an element of a

complete lattice.

Obvious 2016. L ∈ GR IDStrd
a[n] ⇔ ∀i ∈ n : Li ⊒ a ⇔ ∀i ∈ n : Li ̸≍ a if a is an

ultrafilter on A.

23.19.6. Identity staroids on principal filters. For principal filter ↑ A
(where A is a set) the above definitions coincide with n-ary identity relation, as
formulated in the following propositions:

Proposition 2017. ↑Strd idA[n] = idStrd
↑A[n].

Proof.

L ∈ GR ↑Strd idA[n] ⇔
∏

L ̸≍ idA[n] ⇔ ∃t ∈ A∀i ∈ n : t ∈ Li ⇔⋂
i∈n

Li ∩A ̸= ∅ ⇔ L ∈ GR idStrd
↑A[n] .

Thus ↑Strd idA[n] = idStrd
↑A[n]. □

Corollary 2018. idStrd
↑A[n] is a principal staroid.
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Question 2019. Is IDStrd
A[n] principal for every principal filter A on a set and

index set n?

Proposition 2020. ↑Strd idA[n] ⊑⇊ IDStrd
↑A[n] for every set A.

Proof.

L ∈ GR ↑Strd idA[n] ⇔ L ∈ GR idStrd
↑A[n] ⇔↑ A ̸≍

Zl

i∈n

Li ⇒

↑ A ̸≍
Al

i∈n

Li ⇔ L ∈⇊ GR IDStrd
↑A[n] .

□

Proposition 2021. ↑Strd idA[n] ⊏⇊ IDStrd
↑A[n] for some set A and index set n.

Proof. L ∈ GR ↑Strd idA[n] ⇔
dZ

i∈n Li ̸≍↑ A what is not implied by
dA

i∈n Li ̸≍↑ A that is L ∈⇊ GR IDStrd
↑A[n]. (For a counter example take n = N,

Li =]0; 1/i[, A = R.) □

Proposition 2022. ⇈↑Strd idA[n] =⇈ idStrd
↑A[n].

Proof. ⇈↑Strd idA[n] =⇈ idStrd
↑A[n] is obvious from the above. □

Proposition 2023. ⇈↑Strd idA[n] ⊑ IDStrd
↑A[n].

Proof.

X ∈ GR ⇈↑Strd idA[n] ⇔ up X ⊆ GR ↑Strd idA[n] ⇔

∀Y ∈ up X : Y ∈ GR ↑Strd idA[n] ⇔ ∀Y ∈ up X : Y ∈ GR idStrd
↑A[n] ⇔

∀Y ∈ up X :
Zl

i∈n

Yi⊓ ↑ A ̸= ⊥ ⇒
Al

i∈n

Xi⊓ ↑ A ̸= ⊥ ⇔ X ∈ GR IDStrd
↑A[n] .

□

Proposition 2024. ⇈↑Strd idA[n] ⊏ IDStrd
↑A[n] for some set A.

Proof. We need to prove ⇈↑Strd idA[n] ̸= IDStrd
↑A[n] that is it’s enough to prove

(see the above proof) that ∀Y ∈ up X :
dZ

i∈n Yi⊓ ↑ A ̸= ⊥ ⇍
dA

i∈n Xi⊓ ↑ A ̸= ⊥.
A counter-example follows:

∀Y ∈ up X :
dZ

i∈n Yi⊓ ↑ A ̸= ⊥ does not hold for n = N, Xi =↑] − 1/i; 0[ for
i ∈ n, A =] − ∞; 0[. To show this, it’s enough to prove

dZ
i∈n Yi⊓ ↑ A = ⊥ for

Yi =↑] − 1/i; 0[ but this is obvious since
dZ

i∈n Yi = ⊥.
On the other hand,

dA
i∈n Xi⊓ ↑ A ̸= ⊥ for the same X and A. □

The above theorems are summarized in the diagram at figure 13:

⇊ IDStrd
↑A[n] ⊒ ↑Strd idA[n] = idStrd

↑A[n]

IDStrd
↑A[n] ⊒ ⇈↑Strd idA[n] =⇈ idStrd

↑A[n]

⇈ ⇊ ⇈ ⇊

Figure 13. Relationships of identity staroids for principal filters.
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Remark 2025. ⊑ on the diagram means inequality which can become strict
for some A and n.

23.19.7. Identity staroids represented as meets and joins.

Proposition 2026. idStrd
a[n] =

dAnch
A∈up a idA[n] =

dStrd
A∈up a idA[n] for every filter a

on a powerset.

Proof. Since idStrd
a[n] is a staroid (proposition 1997), it’s enough to prove that

idStrd
a[n] is the greatest lower bound of

{
↑StrdidA[n]

A∈up a

}
.

That idStrd
a[n] ⊑↑Strd idA[n] for every A ∈ up a is obvious.

Let f ⊑↑Strd idA[n] for every A ∈ up a.

L ∈ GR f ⇒ ∀A ∈ up a : L ∈ GR ↑Strd idA[n] ⇔

∀A ∈ up a :
∏

L ̸≍ idA[n] ⇔ ∀A ∈ up a :
Zl

i∈n

Li ̸≍ A ⇒

∀A ∈ up a :
Al

i∈n

Li ̸≍ A ⇒
Al

i∈n

Li ̸≍ a ⇒ L ∈ GR idStrd
a[n] .

Thus f ⊑ idStrd
a[n]. □

Proposition 2027. IDStrd
A[n] = da∈atoms A IDStrd

a[n] = da∈atoms A a
n
Strd where the

join may be taken on every of the following posets: anchored relations, staroids,
completary staroids, provided that A is a filter on a set.

Proof. IDStrd
A[n] is a completary staroid (proposition 1998). Thus, it’s enough

to prove that IDStrd
A[n] is the lowest upper bound of

{
IDStrd

a[n]
a∈atoms A

}
(also use the fact

that IDStrd
a[n] = an

Strd).
IDStrd

A[n] ⊒ IDStrd
a[n] for every a ∈ atoms A is obvious.

Let f ⊒ IDStrd
a[n] for every a ∈ atoms A. Then ∀L ∈ GR IDStrd

a[n] : L ∈ GR f that is

∀L ∈ form f :
(

MEET
({

Li

i ∈ n

}
∪ {a}

)
⇒ L ∈ GR f

)
.

But

∃a ∈ atoms A : MEET
({

Li

i ∈ n

}
∪ {a}

)
⇔ ∃a ∈ atoms A :

Al

i∈n

Li ̸≍ a ⇐

Al

i∈n

Li ̸≍ A ⇔ L ∈ GR IDStrd
A[n] .

So L ∈ GR IDStrd
A[n] ⇒ L ∈ GR f . Thus f ⊒ IDStrd

A[n]. □

Proposition 2028. idStrd
A[n] = da∈atoms A idStrd

a[n] where the meet may be taken
on every of the following posets: anchored relations, staroids, provided that A is a
filter on a set.

Proof. Since idStrd
A[n] is a staroid (proposition 1997), it’s enough to prove the

result for join on anchored relations.
idStrd

A[n] ⊒ idStrd
a[n] for every a ∈ atoms A is obvious.
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Let f ⊒ idStrd
a[n] for every a ∈ atoms A. Then ∀L ∈ GR idStrd

a[n] : L ∈ GR f that is

∀L ∈ form f :
(

Zl

i∈n

Li ̸≍ a ⇒ L ∈ GR f

)
.

But ∃a ∈ atoms A :
dZ

i∈n Li ̸≍ a ⇐
dZ

i∈n Li ̸≍ A ⇔ L ∈ idStrd
A[n].

So L ∈ idStrd
A[n] ⇒ L ∈ GR f . Thus f ⊒ idStrd

A[n]. □

23.19.8. Finite case.

Theorem 2029. Let n be a finite set.
1◦. idStrd

A[n] =⇊ IDStrd
A[n] if A and Z are meet-semilattices and (A,Z) is a binarily

meet-closed filtrator.
2◦. IDStrd

A[n] =⇈ idStrd
A[n] if (A,Z) is a primary filtrator over a distributive lattice.

Proof.
1◦.

L ∈ GR ⇊ IDStrd
A[n] ⇔ L ∈ GR IDStrd

A[n] ⇔ MEET
({

Li

i ∈ n

}
∪ {A}

)
⇔

Al

i∈n

Li ⊓ A ≠ 0 ⇔ (by finiteness) ⇔
Zl

i∈n

Li ⊓ A ≠ 0 ⇔ L ∈ GR idStrd
A[n]

for every L ∈
∏

Z.
2◦.

L ∈ GR ⇈ idStrd
A[n] ⇔ upL ⊆ GR idStrd

A[n] ⇔ ∀K ∈ upL : K ∈ GR idStrd
A[n] ⇔

∀K ∈ upL :
Zl

i∈n

Ki ∈ ∂A ⇔ ∀K ∈ upL :
Zl

i∈n

Ki ̸≍ A ⇔

(by finiteness and theorem 535) ⇔

∀K ∈ upL :
Al

i∈n

Ki ̸≍ A ⇔ A ∈
⋂

⟨⋆⟩∗

{ dA
i∈n Ki

K ∈ upL

}
⇔

(by the formula for finite meet of filters, theorem 523) ⇔

A ∈
⋂

⟨⋆⟩∗ up
Al

i∈n

Li ⇔ ∀K ∈ up
Al

i∈n

Li : A ∈ ⋆K ⇔ ∀K ∈ up
Al

i∈n

Li : A ̸≍ K ⇔

(by separability of core, theorem 537) ⇔
Al

i∈n

Li ̸≍ A ⇔ L ∈ IDStrd
A[n] .

□

Proposition 2030. Let (A,Z) be a binarily meet closed filtrator whose core
is a meet-semilattice. ⇊ IDStrd

A[n] and idStrd
A[n] are the same for finite n.

Proof. Because
dZ

i∈dom L Li =
dA

i∈dom L Li for finitary L. □

23.20. Counter-examples

Example 2031. ⇈⇊ f ̸= f for some staroid f whose form is an indexed family
of filters on a set.
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Proof. Let f =
{

A∈F(℧)
↑Cor A̸≍∆

}
for some infinite set ℧ where ∆ is some non-

principal filter on ℧.

A ⊔B ∈ f ⇔↑℧ Cor(A ⊔B) ̸≍ ∆ ⇔↑℧ CorA⊔ ↑℧ CorB ̸≍ ∆ ⇔

↑℧ CorA ⊓ ∆ ̸= ⊥F(℧)∨ ↑℧ CorB ⊓ ∆ ̸= ⊥F(℧) ⇔ A ∈ f ∨B ∈ f.

Obviously ⊥F(℧) /∈ f . So f is a free star. But free stars are essentially the
same as 1-staroids.

⇊ f = ∂∆. ⇈⇊ f =
{

Z∈F
up Z⊆∂∆

}
=
{

Z∈F
∀K∈up Z:K ̸≍∆

}
=
{

Z∈F
Z ̸≍∆

}
= ⋆∆ ̸= f . □

For the below counter-examples we will define a staroid ϑ with arityϑ = N and
GR ϑ ∈ P(NN) (based on a suggestion by Andreas Blass):

A ∈ GR ϑ ⇔ sup
i∈N

card(Ai ∩ i) = N ∧ ∀i ∈ N : Ai ̸= ∅.

Proposition 2032. ϑ is a staroid.

Proof. (valϑ)iL = PN \ {∅} for every L ∈ (PN)N\{i} if

sup
j∈N\{i}

card(Aj ∩ j) = N ∧ ∀j ∈ N \ {i} : Lj ̸= ∅.

Otherwise (valϑ)iL = ∅. Thus (valϑ)iL is a free star. So ϑ is a staroid. (That ϑ is
an upper set, is obvious.) □

Proposition 2033. ϑ is a completary staroid.

Proof.

A0 ⊔A1 ∈ GR ϑ ⇔ A0 ∪A1 ∈ GR ϑ ⇔
sup
i∈N

card((A0i ∪A1i) ∩ i) = N ∧ ∀i ∈ N : A0i ∪A1i ̸= ∅ ⇔

sup
i∈N

card((A0i ∩ i) ∪ (A1i ∩ i)) = N ∧ ∀i ∈ N : A0i ∪A1i ̸= ∅.

If A0i = ∅ then A0i ∩ i = ∅ and thus A1i ∩ i ⊒ A0i ∩ i. Thus we can select
c(i) ∈ {0, 1} in such a way that ∀d ∈ {0, 1} : card(Ac(i)i ∩ i) ⊒ card(Adi ∩ i) and
Ac(i)i ̸= ∅. (Consider the case A0i, A1i ̸= ∅ and the similar cases A0i = ∅ and
A1i = ∅.)

So

A0 ⊔A1 ∈ GR ϑ ⇔ sup
i∈N

card(Ac(i)i ∩ i) = N ∧ ∀i ∈ N : Ac(i)i ̸= ∅ ⇔

(λi ∈ n : Ac(i)i) ∈ GR ϑ.

Thus ϑ is completary. □

Obvious 2034. ϑ is non-zero.

Example 2035. There is such a nonzero staroid f on powersets that f ̸⊒∏Strd
a for every family a = ai∈N.

Proof. It’s enough to prove ϑ ̸⊒
∏Strd

a.
Let ↑N Ri = ai if ai is principal and Ri = N \ i if ai is non-principal.
We have ∀i ∈ N : Ri ∈ ai.
We have R /∈ GR ϑ because supi∈N card(Ri ∩ i) ̸= N.
R ∈

∏Strd
a because ∀X ∈ ai : X ∩Ri ̸= ∅.

So ϑ ̸⊒
∏Strd

a. □
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Remark 2036. At http://mathoverflow.net/questions/60925/special-
infinitary-relations-and-ultrafilters there is a proof for arbitrary infinite form,
not just for N.

Conjecture 2037. For every family a = ai∈N of ultrafilters
∏Strd

a is not an
atom nor of the poset of staroids neither of the poset of completary staroids of the
form λi ∈ N : Base(ai).

Conjecture 2038. There exists a non-completary staroid on powersets.
Conjecture 2039. There exists a prestaroid which is not a staroid.
Conjecture 2040. The set of staroids of the form AB where A and B are sets

is atomic.
Conjecture 2041. The set of staroids of the form AB where A and B are sets

is atomistic.
Conjecture 2042. The set of completary staroids of the form AB where A

and B are sets is atomic.
Conjecture 2043. The set of completary staroids of the form AB where A

and B are sets is atomistic.
Example 2044. StarComp(a, f ⊔g) ̸= StarComp(a, f)⊔StarComp(a, g) in the

category of binary relations with star-morphisms for some n-ary relation a and an
n-indexed families f and g of functions.

Proof. Let n = {0, 1}. Let GR a = {(0, 1), (1, 0)} and f = J{(0, 1)}, {(1, 0)}K,
g = J{(1, 0)}, {(0, 1)}K.

For every {0, 1}-indexed family of µ of functions:

L ∈ StarComp(a, µ) ⇔ ∃y ∈ a : (y0 µ0 L0 ∧ y1 µ1 L1) ⇔
∃y0 ∈ domµ0, y1 ∈ domµ1 : (y0 µ0 L0 ∧ y1 µ1 L1)

for every n-ary relation µ.
Consequently

L ∈ StarComp(a, f) ⇔ L0 = 1 ∧ L1 = 0 ⇔ L = (1, 0)
that is StarComp(a, f) = {(1, 0)}. Similarly

StarComp(a, g) = {(0, 1)}.
Also

L ∈ StarComp(a, f ⊔ g) ⇔
∃y0, y1 ∈ {0, 1} : ((y0 f0 L0 ∨ y0 g0 L0) ∧ (y1 f1 L1 ∨ y1 g1 L1)).

Thus
StarComp(a, f ⊔ g) = {(0, 1), (1, 0), (0, 0), (1, 1)}.

□

Corollary 2045. The above inequality is possible also for star-morphisms of
funcoids and star-morphisms of reloids.

Proof. Because finitary funcoids and reloids between finite sets are essentially
the same as finitary relations and our proof above works for binary relations. □

The following example shows that the theorem 1986 can’t be strengthened:
Example 2046. For some multifuncoid f on powersets complete in argument

k the following formula is false:
⟨f⟩l(L ∪ {(k, dX)}) = dx∈X⟨f⟩l(L ∪ {(k, x)}) for every X ∈ PZk, L ∈∏

i∈(arity f)\{k,l} Fi.

http://mathoverflow.net/questions/60925/special-infinitary-relations-and-ultrafilters
http://mathoverflow.net/questions/60925/special-infinitary-relations-and-ultrafilters
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Proof. Consider multifuncoid f = Λ idStrd
↑U [3] where U is an infinite set (of the

form Z3) and L = (Y ) where Y is a nonprincipal filter on U .
⟨f⟩0(L ∪ {(k, dX)}) = Y ⊓ dX;

dx∈X⟨f⟩0(L ∪ {(k, x)}) = dx∈X(Y ⊓ x).
It can be Y ⊓ dX = dx∈X(Y ⊓ x) only if Y is principal: Really: Y ⊓ dX =

dx∈X(Y ⊓ x) implies Y ̸≍ dX ⇒ dx∈X(Y ⊓ x) ̸= ⊥ ⇒ ∃x ∈ X : Y ̸≍ x and thus
Y is principal. But we claimed above that it is nonprincipal. □

Example 2047. There exists a staroid f and an indexed family X of principal
filters (with arity f = domX and (form f)i = Base(Xi) for every i ∈ arity f), such
that f ⊑

∏Strd
X and Y ⊓X /∈ GR f for some Y ∈ GR f .

Remark 2048. Such examples obviously do not exist if both f is a principal
staroid and X and Y are indexed families of principal filters (because for powerset
algebras staroidal product is equivalent to Cartesian product). This makes the
above example inspired.

Proof. (Monroe Eskew) Let a be any (trivial or nontrivial) ultrafilter on
an infinite set U . Let A,B ∈ a be such that A ∩ B ⊂ A,B. In other words, A, B
are arbitrary nonempty sets such that ∅ ≠ A∩B ⊂ A,B and a be an ultrafilter on
A ∩B.

Let f be the staroid whose graph consists of functions p : U → a such that
either p(n) ⊇ A for all but finitely many n or p(n) ⊇ B for all but finitely many n.
Let’s prove f is really a staroid.

It’s obvious px ̸= ∅ for every x ∈ U . Let k ∈ U , L ∈ aU\{k}. It is enough
(taking symmetry into account) to prove that

L ∪ {(k, x ⊔ y)} ∈ GR f ⇔ L ∪ {(k, x)} ∈ GR f ∨ L ∪ {(k, y)} ∈ GR f. (36)
Really, L∪{(k, x⊔y)} ∈ GR f iff x⊔y ∈ a and L(n) ⊇ A for all but finitely many n
or L(n) ⊇ B for all but finitely many n; L∪{(k, x)} ∈ GR f iff x ∈ a and L(n) ⊇ A
for all but finitely many n or L(n) ⊇ B; and similarly for y.

But x ⊔ y ∈ a ⇔ x ∈ a ∨ y ∈ a because a is an ultrafilter. So, the formula (36)
holds, and we have proved that f is really a staroid.

Take X be the constant function with value A and Y be the constant function
with value B.

∀p ∈ GR f : p ̸≍ X because pi ∩ Xi ∈ a; so GR f ⊆ GR
∏Strd

X that is
f ⊑

∏Strd
X.

Finally, Y ⊓X /∈ GR f because X ⊓ Y = λi ∈ U : A ∩B. □

23.21. Conjectures

Remark 2049. Below I present special cases of possible theorems. The theo-
rems may be generalized after the below special cases are proved.

Conjecture 2050. For every two funcoids f and g we have:
1◦. (RLD)ina

[
f ×(DP ) g

]
(RLD)inb ⇔ a

[
f ×(C) g

]
b for every funcoids a ∈

FCD(Src f, Src g), b ∈ FCD(Dst f,Dst g);
2◦. (RLD)outa

[
f ×(DP ) g

]
(RLD)outb ⇔ a

[
f ×(C) g

]
b for every funcoids

a ∈ FCD(Src f, Src g), b ∈ FCD(Dst f,Dst g);
3◦. (FCD)a

[
f ×(C) g

]
(FCD)b ⇔ a

[
f ×(DP ) g

]
b for every reloids a ∈

RLD(Src f, Src g), b ∈ RLD(Dst f,Dst g).

Conjecture 2051. For every two funcoids f and g we have:
1◦. (RLD)ina

[
f ×(A) g

]
(RLD)inb ⇔ a

[
f ×(C) g

]
b for every funcoids a ∈

FCD(Src f, Src g), b ∈ FCD(Dst f,Dst g);
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2◦. (RLD)outa
[
f ×(A) g

]
(RLD)outb ⇔ a

[
f ×(C) g

]
b for every funcoids a ∈

FCD(Src f, Src g), b ∈ FCD(Dst f,Dst g);
3◦. (FCD)a

[
f ×(C) g

]
(FCD)b ⇔ a

[
f ×(A) g

]
b for every reloids a ∈

RLD(Src f, Src g), b ∈ RLD(Dst f,Dst g).

Conjecture 2052.
∏Strd

a ̸≍
∏Strd

b ⇔ b ∈
∏Strd

a ⇔ a ∈
∏Strd

b ⇔ ∀i ∈ n :
ai ̸≍ bi for every n-indexed families a and b of filters on powersets.

Conjecture 2053. Let f be a staroid on powersets and a ∈
∏

i∈arity f Src fi,
b ∈

∏
i∈arity f Dst fi. Then

Strd∏
a

(C)∏
f

 Strd∏
b ⇔ ∀i ∈ n : ai [fi] bi.

Proposition 2054. The conjecture 2053 is a consequence of the conjec-
ture 2052.

Proof.

Strd∏
a

(C)∏
f

 Strd∏
b ⇔

Strd∏
b ̸≍

〈(C)∏
f

〉 Strd∏
a ⇔

Strd∏
b ̸≍

Strd∏
i∈n

⟨fi⟩ai ⇔

∀i ∈ n : bi ̸≍ ⟨fi⟩ai ⇔ ∀i ∈ n : ai [fi] bi.

□

Conjecture 2055. For every indexed families a and b of filters and an indexed
family f of pointfree funcoids we have

Strd∏
a

(C)∏
f

 Strd∏
b ⇔

RLD∏
a

(DP )∏
f

 RLD∏
b.

Conjecture 2056. For every indexed families a and b of filters and an indexed
family f of pointfree funcoids we have

Strd∏
a

(C)∏
f

 Strd∏
b ⇔

RLD∏
a

(A)∏
f

 RLD∏
b.

Strengthening of an above result:

Conjecture 2057. If a is a completary staroid and Dst fi is a starrish poset
for every i ∈ n then StarComp(a, f) is a completary staroid.

Strengthening of above results:

Conjecture 2058.
1◦.

∏(D)
F is a prestaroid if every Fi is a prestaroid.

2◦.
∏(D)

F is a completary staroid if every Fi is a completary staroid.

Conjecture 2059. If f1 and f2 are funcoids, then there exists a pointfree
funcoid f1 × f2 such that

⟨f1 × f2⟩x = l

{
⟨f1⟩X ×FCD ⟨f2⟩X
X ∈ atomsx

}
for every ultrafilter x.
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Conjecture 2060. Let (A,Z) = (A,Z)i∈n be a family of filtrators on boolean
lattices.

A relation δ ∈ P
∏

atomsAi such that for every a ∈
∏

atomsAi

∀A ∈ a : δ ∩
∏
i∈n

atoms ↑Zi Ai ̸= ∅ ⇒ a ∈ δ (37)

can be continued till the function ⇈ f for a unique staroid f of the form λi ∈ n : Ai.
The funcoid f is completary.

Conjecture 2061. For every X ∈
∏

i∈n F (Ai)

X ∈ GR ⇈ f ⇔ δ ∩
∏
i∈n

atoms Xi ̸= ∅. (38)

Conjecture 2062. Let R be a set of staroids of the form λi ∈ n : F (Ai) where
every Ai is a boolean lattice. If x ∈

∏
i∈n atomsF(Ai) then x ∈ GR ⇈

d
R ⇔ ∀f ∈

R : x ∈⇈ f .
There exists a completary staroid f and an indexed family X of principal filters

(with arity f = domX and (form f)i = Base(Xi) for every i ∈ arity f), such that
f ⊑

∏Strd
X and Y ⊓X /∈ GR f for some Y ∈ GR f .

Conjecture 2063. There exists a staroid f and an indexed family x of ultra-
filters (with arity f = dom x and (form f)i = Base(xi) for every i ∈ arity f), such
that f ⊑

∏Strd
x and Y ⊓ x /∈ GR f for some Y ∈ GR f .

Other conjectures:

Conjecture 2064. If staroid ⊥ ≠ f ⊑ an
Strd for an ultrafilter a and an index

set n, then n×{a} ∈ GR f . (Can it be generalized for arbitrary staroidal products?)

Conjecture 2065. The following posets are atomic:
1◦. anchored relations on powersets;
2◦. staroids on powersets;
3◦. completary staroids on powersets.

Conjecture 2066. The following posets are atomistic:
1◦. anchored relations on powersets;
2◦. staroids on powersets;
3◦. completary staroids on powersets.

The above conjectures seem difficult, because we know almost nothing about
structure of atomic staroids.

Conjecture 2067. A staroid on powersets is principal iff it is complete in
every argument.

Conjecture 2068. If a is an ultrafilter, then idStrd
a[n] is an atom of the lattice

of:
1◦. anchored relations of the form (P Base(a))n;
2◦. staroids of the form (P Base(a))n;
3◦. completary staroids of the form (P Base(a))n.

Conjecture 2069. If a is an ultrafilter, then ⇈ idStrd
a[n] is an atom of the lattice

of:
1◦. anchored relations of the form F (Base(a))n;
2◦. staroids of the form F (Base(a))n;
3◦. completary staroids of the form F (Base(a))n.
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23.21.1. On finite unions of infinite Cartesian products. Let A be an
indexed family of sets.

Products are
∏
A for A ∈

∏
A.

Let the lattice Γ consists of all finite unions of products.
Let the lattice Γ∗ be the lattice of complements of elements of the lattice Γ.

Problem 2070. Is
dFCD a bijection from a. FΓ; b. FΓ∗ to:

1◦. prestaroids on A;
2◦. staroids on A;
3◦. completary staroids on A?

If yes, is upΓ defining the inverse bijection?
If not, characterize the image of the function

dFCD defined on a. FΓ; b. FΓ∗.

23.21.2. Informal questions. Do products of funcoids and reloids coincide
with Tychonoff topology?

Limit and generalized limit for multiple arguments.
Is product of connected spaces connected?
Product of T0-separable is T0, of T1 is T1?
Relationships between multireloids and staroids.
Generalize the section “Specifying funcoids by functions or relations on atomic

filters” from [30].
Generalize “Relationships between funcoids and reloids”.
Explicitly describe the set of complemented funcoids.
Formulate and prove associativity of staroidal product.
What are necessary and sufficient conditions for up f to be a filter (for a fun-

coid f)? (See also proposition 1125.)



Part 5

Algebra of general topology



CHAPTER 24

Introduction

I will show that most of the topology can be formulated in an ordered semigroup
(or, more generally, an ordered semicategory).

I will make this part of the book mostly self-contained, for example, reminding
definitions of funcoids.
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CHAPTER 25

Prerequisites

You need to know about semigroups, ordered semigroups, semigroup actions,
before reading further. If in doubt, consult Wikipedia.

Filtrators are pairs of a poset and its subset (with the induced order). An
important example of filtrator is the set of filters on some poset together with the
subset of principal filters. (Note that I order filters reversely to the set inclusion
relation: So for filters I have a ⊑ b ⇔ a ⊇ b.)

I will denote meet and join on a poset correspondingly as ⊓ and ⊔.
I call two elements a and b intersecting (a ̸≍ b) when there is a non-least

element c such that c ⊑ a ∧ c ⊑ b. For meet-semilattices with meet operation ⊓
this condition is equivalent to a ⊓ b being non-least element.

I call two elements a and b joining (a ≡ b) when there is no non-greatest
element c such that c ⊒ a∧ c ⊒ b. For join-semilattices with meet operation ⊔ this
condition is equivalent to a ⊔ b being the greatest element.

I denote ⟨f⟩∗
X =

{
fx

x∈X

}
.
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CHAPTER 26

Basic examples

A topological space is determined by its closure operator.
Consider the semigroup formed by composing together any finite number of

topological closure operators (on some fixed “universal” set).
This semigroup can be considered as its own action.
So every topological space is an element of this semigroup that is associated

with an action.
The set, on which these actions act, is the set of subsets of our universal set.

The set of subsets of a set is a partially ordered set.
So we have topological space defined by actions of an ordered semigroup.
Below I will define a space as an ordered semigroup action element.
This includes topological spaces, uniform spaces, proximity spaces, (directed)

graphs, metric spaces, semigroups of operators, etc.
Moreover we can consider the semigroup of all functions P℧ → P℧ for some

set ℧ (the set of “points” of our space). Above we showed that topological spaces
correspond to elements of this semigroup. Functions on ℧ also can be considered
as elements of this semigroup (replace every function with its “image of a set”
function). Then we have an ordered semigroup action containing both topospaces
and functions. As it was considered above, we can describe a function f being
continuous from a space µ to a space ν by the formula f ◦ µ ⊑ ν ◦ f . See, it’s an
instance of algebraic general topology: a topological concept was described by an
algebraic formula, without any quantifiers.
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CHAPTER 27

Semicategories

Definition 2071. A semicategory is a directed multigraph together with a
partial binary operation ◦ on the set M of edges (called the set of morphisms in
the context of semicategories) such that g ◦ f is defined iff Dst f = Src g (for every
morphisms f and g) such that

1◦. Src(g ◦ f) = Src f and Dst(g ◦ f) = Dst g whenever the composition g ◦ f
of morphisms f and g is defined.

2◦. (h◦g)◦f = h◦ (g ◦f) whenever compositions in this equation are defined.

Definition 2072. A prefunctor is a pair of a function from the set of objects
of one semicategory to the set of objects of another semicategory and a function
from the set of morphisms of one semicategory to the set of morphisms of that
another semicategory (these two functions are denoted by the same letter such
as ϕ) conforming to the axioms:

1◦. ϕ(f) : ϕ(Src f) → ϕ(Dst f) for every morphism f of the first semicategory;
2◦. ϕ(g ◦ f) = ϕ(g) ◦ ϕ(f) for every composable morphisms f , g of the first

semicategory.

Note 2073. A semigroup is essentially a special case of a semicategory (with
only one object) and semigroup homomorphism is a prefunctor.
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CHAPTER 28

Ordered semicategories

Definition 2074. Ordered semicategory (or posemicategory) is a semicategory
together with an order on the set of morphisms conforming to the equality:

x0 ⊑ x1 ∧ y0 ⊑ y1 ⇒ y0 ◦ x0 ⊑ y1 ◦ x1.
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CHAPTER 29

Ordered semigroups

Definition 2075. Ordered semigroup (or posemigroup) is a set together with
binary operation ◦ and binary relation ⊑ on it, conforming both to semigroup
axioms and partial order axioms and:

x0 ⊑ x1 ∧ y0 ⊑ y1 ⇒ y0 ◦ x0 ⊑ y1 ◦ x1.

Essentially, a posemigroup is just an ordered semicategory with just one object.
In this book I will call elements of an ordered semigroup spaces, be-

cause they generalize such things as topological spaces, (quasi)proximity spaces,
(quasi)uniform spaces, (directed) graphs, (quasi)metric spaces.

As I shown above, functions (and more generally binary relations) can also be
considered as spaces.
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CHAPTER 30

Semicategory actions

Definition 2076. Semicategory action is a prefunctor from a semicategory to
the category Set.

424



CHAPTER 31

Ordered semicategory actions

The category Pos is the category whose objects are (small) posets and whose
morphisms are order homomorphisms.

Definition 2077. Semiordered semicategory action on a is a semicategory
action ⟨⟩ to the category Pos of all partially ordered sets, such that

1◦. a ⊑ b ⇒ ⟨a⟩x ⊑ ⟨b⟩x for all a, b ∈ S, x ∈ A.
I call morphisms of such a semicategory as semi-interspaces.1

Definition 2078. Ordered semicategory action on a is a semicategory action ⟨⟩
to the category Pos of all partially ordered sets, such that

1◦. a ⊑ b ⇒ ⟨a⟩x ⊑ ⟨b⟩x for all a, b ∈ S, x ∈ A;
2◦. x ⊑ y ⇒ ⟨a⟩x ⊑ ⟨a⟩y for all a ∈ S, x, y ∈ A.

In other words, an ordered semicategory action is a (not necessarily strictly) increas-
ing semicategory action (we consider transformations of this action to be ordered
pointwise, that is by the product order).

I call morphisms of such a semicategory as interspaces.

Note that this “inducting” is an ordered semigroup homomorphism.

1The prefix inter- is supposed to mean that the morphisms may have the source different
that the destination.

425



CHAPTER 32

Ordered semigroup actions

Definition 2079. Curried semiordered semigroup action on a poset A for an
ordered semigroup S is a function ⟨⟩ : S → (A → A) such that

1◦. ⟨b ◦ a⟩x = ⟨b⟩⟨a⟩x for all a, b ∈ S, x ∈ A; x, y ∈ A;
2◦. a ⊑ b ⇒ ⟨a⟩x ⊑ ⟨b⟩x for all a, b ∈ S, x ∈ A.

I call elements of such an action semispaces.

Definition 2080. Curried ordered semigroup action on a poset A for an or-
dered semigroup S is a function ⟨⟩ : S → (A → A) such that

1◦. ⟨b ◦ a⟩x = ⟨b⟩⟨a⟩x for all a, b ∈ S, x ∈ A; x, y ∈ A;
2◦. a ⊑ b ⇒ ⟨a⟩x ⊑ ⟨b⟩x for all a, b ∈ S, x ∈ A;
3◦. x ⊑ y ⇒ ⟨a⟩x ⊑ ⟨a⟩y for all a ∈ S.

I call elements of such an action spaces.

Remark 2081. Google search for “"ordered semigroup action"” showed noth-
ing. Was a spell laid onto Earth mathematicians not to find the most important
structure in general topology?

Essentially, an ordered semigroup action is an ordered semicategory action with
just one object.

We can order actions componentwise. Then the above axioms simplify to:
1◦. ⟨b ◦ a⟩ = ⟨b⟩ ◦ ⟨a⟩ for all a, b ∈ S;
2◦. ⟨⟩ is a (not necessarily strictly) increasing;
3◦. ⟨a⟩ is a (not necessarily strictly) increasing, for every space a.

Definition 2082. A functional ordered semicategory action is such an ordered
semicategory action that ⟨a⟩ = a for every space a.

Theorem 2083. Each ordered semicategory action induces as functional or-
dered semicategory action, whose morphisms are the same a of the original one but
with objects being posets, spaces are the actions of the original semicategory, the
composition operation is function composition, and order of spaces is the product
order.

Proof. That it’s a semicategory is obvious. The partial order is the same as
the original. It remains to prove the remaining axioms.

For our semicategory
⟨b ◦ a⟩ = b ◦ a = ⟨b⟩ ◦ ⟨a⟩.

⟨⟩ is increasing because it’s the identity function.
⟨a⟩ is the same as one of the original ordered semicategory action and thus is

increasing. □

Having a ordered semicategory action and a homomorphism to its ordered
semicategory, we can define in an obvious way a new ordered semicategory action.
The following is an example of this construction (here (RLD)in is a functor of ordered
semicategories).
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32. ORDERED SEMIGROUP ACTIONS 427

Funcoids form an ordered semicategory with action ⟨⟩. Reloids form an ordered
semicategory with action a 7→ ⟨(RLD)ina⟩. As we know from the above, funcoids
are a generalization of topological spaces, proximity spaces, and directed graphs
(“discrete spaces”), reloids is a generalization of uniform spaces and directed graphs.
Funcoid is determined by its action. So most of the customary general topology
can be described in terms of ordered semicategory actions (or ordered semigroup
actions, see below).

Remember that elements of our posets of objects may be such things as sets or
more generally filters, they may be not just points. So our topological construction
is “pointfree” (we may consider sets or filters, not points).

This part of the book is mainly about this topic: describing general topology
in terms of ordered semicategory actions. Above are the new axioms for general
topology. No topological spaces here.

Semiordered semicategory action is ordered by elements when
a ⊑ b ⇐ ⟨a⟩ ⊑ ⟨b⟩

that is when
a ⊑ b ⇐ ∀x : ⟨a⟩x ⊑ ⟨b⟩x.

Obviously, in this case ⟨⟩ is a faithful functor. So our ordered semicategory
action is essentially functional (functional, up to a faithful functor).



CHAPTER 33

Ordered dagger categories and ordered semigroups
with involution

Definition 2084. Dagger semicategory is a semicategory together with the
operation a 7→ a† (called involution or dagger) such that:

1◦. a†† = a;
2◦. (b ◦ a)† = a† ◦ b†.

For an ordered dagger semicategory we will additionally require a ⊑ b ⇒ a† ⊑ b†

(and consequently a ⊑ b ⇔ a† ⊑ b†).

Definition 2085. Semigroup with involution is a dagger semicategory with
just one object.

For an ordered semigroup with involution or ordered dagger semicategory we
will additionally require a ⊑ b ⇒ a† ⊑ b† (and consequently a ⊑ b ⇔ a† ⊑ b†).
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CHAPTER 34

Topological properties

Now we have a formalism to describe many topological properties (following
the idea above in this book):

Continuity is described by the formulas f ◦a ⊑ a◦f , f ◦a◦f† ⊑ a, a ⊑ f† ◦a◦f .
Convergence of a function f from an endomorphism (space) µ to an endo-

morphism (space) ν at filter x to a set or filter y is described by the formula
⟨f⟩⟨µ⟩x ⊑ ⟨ν⟩y.

Generalized limit of an arbitrary interspace f (for example, of an arbitrary
(possibly discontinuous) function), see [33], is described by the formula

xlim f =
{
ν ◦ f ◦ r
r ∈ G

}
,

where G is a suitable group (consider for example the group of all translations of a
vector space).

Neighborhood of element x is such a y that ⟨a⟩x ⊑ y. Interior of x (if it exists)
if the join of all y such that x is a neighborhood of x.

An element x is closed regarding a iff ⟨a⟩x ⊑ x. x is open iff x is closed
regarding ⟨a⟩†.

To define compactness1 we additionally need the structure of filtrator (A,Z) on
our poset. Then it is space a is directly compact iff

∀x ∈ A : (x is non-least ⇒ Cor⟨a⟩x is non-least);
a is reversely compact iff a† is directly compact; a is compact iff it is both directly
and reversely compact.

Denote c the element of the semicategory Set such that ⟨c⟩ = Cor, then the
above can be rewritten

∀x ∈ A : (x is non-least ⇒ ⟨c ◦ a⟩x is non-least);
what is equivalent to 1 ⊑ c ◦ a.

However, we can define compactness without specifying Z as we can take Z to
be the center (the set of all its complemented elements) of the poset A.

The same reasoning applies to Cor′ in place of Cor.
It seem we cannot define total boundness purely in terms of ordered semigroups,

because it is a property of reloids and reloid is not determined by its action.

1That this coincides with the traditional definition of compactness of topological spaces,
follows from the well known fact that a topological space is compact iff each proper filter on it
has an adherent point.
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CHAPTER 35

A relation

Every ordered semicategory action ⟨⟩ defines a relation R: x [a] y ⇔ y ̸≍ ⟨a⟩x.
If [a]†=[a]−1 for every a, we call the action ⟨⟩ on an dagger semicategory inter-

section-symmetric. In this case our action defines a pointfree funcoid.
A space is connected iff x ≡ y ⇒ x [a] y.
We can define open and closed functions.
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CHAPTER 36

Further axioms

Further possible axioms for an ordered semigroup action with binary joins:
• ⟨f⟩(x ⊔ y) = ⟨f⟩x ⊔ ⟨f⟩y;
• ⟨f ⊔ g⟩x = ⟨f⟩x ⊔ ⟨g⟩x.

FiXme: Need to generalize for a wider class of posets.
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CHAPTER 37

Restricted identity transformations

Restricted identity transformation idp, where p is an element of a poset, is the
(generally, partially defined) transformation x 7→ x ⊓ p.

Obvious 2086. idq ◦ idp = idp⊓q if p and q are elements of some poset for which
binary meet is defined.

Proposition 2087. p ̸= q ⇒ idp ̸= idq.

Proof. idp p = p ̸= q = idq q. □

Ordered semicategory action with identities is an ordered semicategory S ac-
tion ⟨⟩ together with a function p 7→ idp ∈ S such that

1◦. ⟨idp⟩ = idp whenever this equality is defined;
2◦. idp ◦x ⊑ x;
3◦. x ◦ idp ⊑ x.

(I abuse the notation idp for both interspaces and for transformations; this won’t
lead to inconsistencies, because as proved above this mapping is faithful on re-
stricted identities.)

Obvious 2088. For every ordered semicategory action with identities, the iden-
tity transformations are entirely defined on their domains.

From injectivity it follows idp⊓q = idp ◦ idq.
Restriction of an interspace a to element x is a|x = a ◦ idx.
Square restriction (a generalization of restriction of a topological space, metric

space, etc.) of a space a to element x is idx ◦a ◦ idx.
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CHAPTER 38

Binary product of poset elements

Definition 2089. I call an ordered semicategory action correctly bounded when
the set of interspaces between two fixed objects is bounded and:

1◦. ⟨⊥⟩x = ⊥ for every poset element x;

2◦. ⟨⊤⟩x =
{

⊤ if x ̸= ⊥,
⊥ if x = ⊥.

Binary product in an ordered semigroup action having a greatest element ⊤ is
defined as p× q = idq ◦⊤ ◦ idp.

Theorem 2090. If our action is correctly bounded, then

⟨p× q⟩x =
{
q if x ̸≍ p,
⊥ if x ≍ p.

Proof.

⟨p× q⟩x =
⟨idq ◦⊤ ◦ idp⟩x =
⟨idq⟩⟨⊤⟩⟨idp⟩x =
q ⊓ ⟨⊤⟩(p ⊓ x) = {

q if x ̸≍ p,
⊥ if x ≍ p.

□

Theorem 2091. If our action is correctly bounded, then
x [p× q] y ⇔ x ̸≍ p ∧ y ̸≍ q.

Proof.

x [p× q] y ⇔ y ̸≍ ⟨p× q⟩x ⇔

y ̸≍
{
q if x ̸≍ p,
⊥ if x ≍ p.

⇔

x ̸≍ p ∧ y ̸≍ q.

□
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CHAPTER 39

Separable spaces

T1-space a when x RCor a y for every x ≍ y.
T2-space or Hausdorff is such a space f that f−1 ◦ f is T1-separable.
T0-space is such a space f that f−1 ⊓ f is T1-separable.
T4-space is such a space f that

f ◦ f−1 ◦ f ◦ f−1 ⊑ f ◦ f−1.
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CHAPTER 40

Distributive ordered semigroup actions

We can define (product) order of ordered semicategory actions. For functional
ordered semicategory actions composition is defined. So we have one more “level”
of ordered semicategories. By the way, it can be continued indefinitely building
new and new levels of such ordered semicategories.

More generally we could consider ordered semicategory functors (or specifically,
ordered semigroup homomorphisms). Examples of such homomorphisms are ⟨⟩,
(FCD), (RLD)in.

Pointfree funcoids (and consequently funcoids) are an ordered semicategory
action. Reloids are also an ordered semicategory action.
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CHAPTER 41

Complete spaces and completion of spaces

A space a is complete when ⟨a⟩ dS = d⟨⟨a⟩⟩∗
S whenever both dS and

d⟨⟨a⟩⟩∗
S are defined.

Definition 2092. Completion of an interspace is its core part (see above for
a definition of core part) on the filtrator of interspace and complete interspace.

Note 2093. Apparently, not every space has a completion.

Note 2094. It is unrelated with Cachy-completion.
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CHAPTER 42

Kuratowski spaces

Definition 2095. Kuratowski space is a complete idempotent (a◦a = a) space.

Kuratowski spaces are a generalization of topological spaces.
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CHAPTER 43

Metric spaces

Let us call most general nonnegative real metrics (MGNRM) the semicategory
of all extended nonnegative (R+ ∪ {+∞}) real functions (on some fixed set) of two
arguments and the “composition” operation

(σ ◦ ρ)(x, z) = inf
y∈℧

(ρ(x, y) + σ(z, y))

and most general nonnegative real metric an element of this semicategory.

Remark 2096. The infimum exists because it’s nonnegative.

We need to prove it’s an associative operation.

Proof.

(τ ◦ (σ ◦ ρ))(x, z) =
inf

y1∈℧
((σ ◦ ρ)(x, y1) + τ(y1, z)) =

inf
y1∈℧

( inf
y0∈℧

(ρ(x, y0) + σ(y0, y1)) + τ(y1, z)) =

inf
y0,y1∈℧

(ρ(x, y0) + σ(y0, y1) + τ(y1, z)).

Similarly

((τ ◦ σ) ◦ ρ)(x, z) =
inf

y0,y1∈℧
(ρ(x, y0) + σ(y0, y1) + τ(y1, z)).

Thus τ ◦ (σ ◦ ρ) = (τ ◦ σ) ◦ ρ. □

Definition 2097. We extend MGNRM to the set P℧ by the formula:
ρ(X,Y ) = inf

x∈X,y∈Y
ρ(x, y).

Remark 2098. This is well-defined thanks to MGNRM being nonnegative and
allowing the infinite value.

Proposition 2099.
1◦. ρ(I ∪ J, Y ) = min{ρ(I, Y ), ρ(J, Y )};
2◦. ρ(X, I ∪ J) = min{ρ(X, I), ρ(Y, J)}.

Proof. We’ll prove the first as the second is similar:

ρ(I ∪ J, Y ) =
inf

x∈I∪J,y∈Y
ρ(x, y) =

min
{

inf
x∈I,y∈Y

ρ(x, y), inf
x∈J,y∈Y

ρ(x, y)
}

=

min{ρ(I, Y ), ρ(J, Y )}.
□
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Let a be a most general metric. I denote ∆a the funcoid determined by the
formula

X [∆a]∗ Y ⇔ ρa(X,Y ) = 0.
(If a is a metric, then it’s the proximity induced by it.)
Let’s prove it really defines a funcoid:

Proof. Not ∅ [∆a]∗ Y and not X [∆a]∗ ∅ because
ρa(∅, Y ) = ρa(X, ∅) = +∞.

By symmetry, it remains to prove
(I ∪ J) [∆a]∗ Y ⇔ I [∆a]∗ Y ∨ J [∆a]∗ Y.

Really,

(I ∪ J) [∆a]∗ Y ⇔
ρa(I ∪ J, Y ) = 0 ⇔

min{ρa(I, Y ), ρa(J, Y )} = 0 ⇔
ρa(I, Y ) = 0 ∨ ρa(J, Y ) = 0 ⇔

I [∆a]∗ Y ∨ J [∆a]∗ Y.
□

Obvious 2100.

X [∆a]∗ Y ⇔
∀ϵ > 0∃x ∈ X, y ∈ Y : |ρa(x, y)| < ϵ.

Theorem 2101.
⟨∆a⟩X =

l

ϵ>0

⋃
x∈X

B(x, ϵ)

(B(x, ϵ) is the open ball of the radius ϵ centered at x).

Proof.

Y ̸≍ ⟨∆a⟩X ⇔ X [∆a] Y ⇔
∀ϵ > 0∃x ∈ X, y ∈ Y : ρa(x, y) < ϵ.

Y ̸≍
l

ϵ>0

⋃
x∈X

Ba(x, ϵ) ⇔

∀ϵ > 0 : Y ̸≍
⋃

x∈X

Ba(x, ϵ) ⇔

∀ϵ > 0∃x ∈ X : Y ̸≍ Ba(x, ϵ) ⇔
∀ϵ > 0∃x ∈ X, y ∈ Y : ρa(x, y) < ϵ.

□

MGNRM are also interspaces: Define the order on metric spaces by the formula
ρ ⊑ σ ⇔ ∀x, y : ρ(x, y) ⊒ σ(x, y).

Define the action for a metric space a as the action ⟨∆a⟩ of its induced proximity ∆a

(see above for a definition of proximity and more generally funcoid actions ⟨⟩) and
composition of metrics ρ, σ by the formula:

(σ ◦ ρ)(x, z) = inf
y∈℧

(ρ(x, y) + σ(z, y)),

where ℧ is the set of points of our metric space.
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Lemma 2102. ∆b◦a = ∆b ◦ ∆a.

Proof. Let X, Y be arbitrary sets on a metric space.

Z ̸≍ ⟨∆b◦a⟩X ⇔
∀ϵ > 0∃x ∈ X, z ∈ Z :

inf
y∈℧

(ρa(x, y) + ρb(y, z)) < ϵ ⇔

∀ϵ > 0∃x ∈ X, y ∈ ℧, z ∈ Z :
ρa(x, y) + ρb(y, z) < ϵ ⇔

∀ϵ > 0∃x ∈ X, y ∈ ℧, z ∈ Z :
(ρa(x, y) < ϵ ∧ ρb(y, z) < ϵ)

Z ̸≍ ⟨∆b ◦ ∆a⟩X ⇔ Z ̸≍ ⟨∆b⟩⟨∆a⟩X ⇔〈
∆−1

b

〉
Z ̸≍ ⟨∆a⟩X ⇔

l

ϵ>0

⋃
x∈X

Ba(x, ϵ) ̸≍
l

ϵ>0

⋃
z∈Z

Bb(z, ϵ) ⇔

∀ϵ > 0 :
⋃

x∈X

Ba(x, ϵ) ̸≍
⋃

z∈Z

Bb(z, ϵ) ⇔

∀ϵ > 0∃x ∈ X, z ∈ Z : Ba(x, ϵ) ̸≍ Bb(z, ϵ) ⇔
∀ϵ > 0∃x ∈ X, z ∈ Z, y ∈ ℧ :

(ρa(x, z) < ϵ ∧ ρb(z, y) < ϵ).

So, Z ̸≍ ⟨∆b◦a⟩X ⇔ Z ̸≍ ⟨∆b ◦ ∆a⟩X. □

Let’s prove it’s really an ordered semicategory action:

Proof.
• It is an ordered semicategory, because ⟨a⟩x = ⟨∆a⟩x ⊑ ⟨∆a⟩y = ⟨a⟩y for

filters x ⊑ y.
•

⟨b ◦ a⟩ = ⟨∆b◦a⟩ =
⟨∆b ◦ ∆a⟩ =

⟨∆b⟩ ◦ ⟨∆a⟩ = ⟨b⟩ ◦ ⟨a⟩;

• a ⊑ b ⇒ ⟨a⟩ ⊑ ⟨b⟩ is obvious;
• x ⊑ y ⇒ ⟨a⟩x ⊑ ⟨a⟩y for all a ∈ S is obvious.

□

FiXme: The above can be generalized for the values of the metric to be certain
ordered additive semigroups instead of nonnegative real numbers.

43.1. Functions as metrics

We want to consider functions in relations with MGNRM. So we we will consider
(not only functions but also) every morphism f of category Rel as an MGNRM by
the formulas ρf (x, y) = 0 if x f y and ρf (x, y) = +∞ if not x f y.

Theorem 2103. If ρ is a MGNRM and f is a binary relation composable with
it, then:

1◦. (ρ ◦ f)(X,Y ) = ρ(Y, ⟨f⟩∗
X);

2◦. (f ◦ ρ)(X,Y ) = ρ(
〈
f−1〉∗

Y,X).
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Proof.
(ρ ◦ f)(x, y) = inf

t
(f(X, t) + ρ(Y, y))

but f(X, t) + ρ(Y, t) = +∞ if not X [f ]∗ {t} and f(X, t) + ρ(Y, t) = ρ(Y, t) if
X [f ]∗ {t}. So

(ρ ◦ f)(X,Y ) =
inf

t∈
{

t
X[f]∗{t}

} ρ(Y, t) =

inf
t∈⟨f⟩∗X

ρ(Y, t) =

ρ(Y, ⟨f⟩∗
X).

The other item follows from symmetry. □

43.2. Contractions

What are (generalized) continuous functions between metric spaces?
Let f be a function, µ and ν be MGNRMs. Provided that they are composable,

what does the formula of generalized continuity f ◦ µ ⊑ ν ◦ f mean?
Transforming the formula equivalently, we get:

∀x, z : (f ◦ µ)(x, z) ⊒ (ν ◦ f)(x, z);

∀x, z : µ({x},
〈
f−1〉∗{z}) ⊒ ν(fx, z);

∀x, z, y ∈
〈
f−1〉∗{z} : µ(x, y) ⊒ ν(fx, z);

∀x, y : µ(x, y) ⊒ ν(fx, fy).
So generalized continuous functions for metric spaces is what is called contrac-

tions that is functions that decrease distance.
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CHAPTER 44

Postface

See this Web page for my research plans:
https://math.portonvictor.org/research-plans-in-algebraic-general-topology/

I deem that now the most important research topics in Algebraic General Topol-
ogy are:

• to solve the open problems mentioned in this work;
• research pointfree reloids (see below);
• define and research compactness of funcoids;
• research categories related with funcoids and reloids;
• research multifuncoids and staroids in more details;
• research generalized limit of compositions of functions;
• research more on complete pointfree funcoids.

All my research of funcoids and reloids is presented at
https://math.portonvictor.org/algebraic-general-topology-and-math-

synthesis/
Please write to porton@narod.ru, if you discover anything new related with my

theory.

44.1. Pointfree reloids

Let us define something (let call it pointfree reloids) corresponding to pointfree
funcoids in the same way as reloids correspond to funcoids.

First note that RLD(A,B) are isomorphic to FP(PX × PB). Then
note that P(PA × PB) are isomorphic both to pFCD(PA,PB) and to
atomsPA × atomsPB .

But FCD(A,B) is isomorphic to pFCD(F(A),F(B)).
Thus both FpFCD(A,B) and F(atomsA × atomsB) correspond to

pFCD(F(A),F(B)) in the same way (replace PA → A, PB → B) as RLD(A,B)
corresponds to FCD(A,B).

So we can name either FpFCD(A,B) or F(atomsA × atomsB) as pointfree
reloids.

Yes another possible way is to define pointfree reloids as the set of filters on
the poset of Galois connections between two posets.

Note that there are three different definitions of pointfree reloids. They prob-
ably are not the same for arbitrary posets A and B.

I have defined pointfree reloids, but have not yet started to research their
properties.

Research convergence for pointfree funcoids (should be easy).

44.2. Formalizing this theory

Despite of all measures taken, it is possible that there are errors in this book.
While special cases, such as filters of powersets or funcoids, are most likely correct,
general cases (such as filters on posets or pointfree funcoids) may possibly contain
wrong theorem conditions.

445

https://math.portonvictor.org/research-plans-in-algebraic-general-topology/
https://math.portonvictor.org/algebraic-general-topology-and-math-synthesis/
https://math.portonvictor.org/algebraic-general-topology-and-math-synthesis/
mailto:porton@narod.ru


44.2. FORMALIZING THIS THEORY 446

Thus it would be good to formalize the theory presented in this book in a proof
assistant1 such as Coq.

If you want to work on formalizing this theory, please let me know.
See also https://coq.inria.fr/bugs/show_bug.cgi?id=2957

1A proof assistant is a computer program which checks mathematical proofs written in a
formal language understandable by computer.

https://coq.inria.fr/bugs/show_bug.cgi?id=2957


CHAPTER 45

Please nominate me for prizes

Please nominate me for this book and other texts at my site https://
mathematics21.org for math prizes.

In particular, this page gives instructions how to nominate me for Abel Prize:
https://mathematics21.org/nominate-me-for-abel-prize/
I also need a recommendation letter from you to be nominated for the Break-

through Prize. Please write and send me (porton@narod.ru) a letter.
Nominate me for other prizes, too.
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CHAPTER 46

Story of the discovery

I was a Protestant. (Now I have a new religion.1).
I deemed that I should openly proclaim my faith: (Luk. 9:26) “For whoever

shall be ashamed of me and of my words, of him shall the Son of man be ashamed,
when he shall come in his own glory, and in his Father’s, and of the holy angels.”
and Mrk. 8:38.

Moreover, I “reduced” my confession: “I am a sectarian”, “I am a religious
fanatic.” I considered the word “sectarian” as one of the Christ’s words, because
the Gospel, 2Cor. 6:17 contains the word “separate”, the root of which has the
same meaning as the roots of the words “sectarian” and “holy”. I considered the
word “fanatic” to be one of Christ’s words, because the Bible says (Rev. 3:19) “be
zealous” and “jealous” and “fanatic” are words with the root of a similar meaning.

My so-called “confession of faith” caused a sharply negative reaction of people
and led to religious discrimination, refusal to talk to me, insults, and often beatings.
Moreover, realizing the hopelessness of my situation, I did not even try to improve
my social status, since this was clearly impossible. In addition, with such my
position, new opportunities would mean new problems for me.

When I was a first year student at Perm State University, I became interested
in general topology and set a goal to discover algebraic general topology.

So I ended up on the street, without food. I began to eat grass and drink from
a puddle and wait for death from hunger (as you know, I still survived).

From nothing to do, I continued my mathematical thoughts and came up with
a definition of funcoid. The biggest math discovery in general topology since 1937
(when the filters were opened) was made by a hungry homeless on the street.

I wrote a term paper at my first year opening in the university.
Understanding that a religious fanatic cannot find a job and for me it is threat-

ening soon again starvation and death, I decided to show humility: become eco-
nomically weaker (abandon my economic goals and ambitions) in order to become
richer. To become economically weaker, I decided to leave the university in the 5th
year and filed a deduction.

My humility worked: I managed to get a second disability group that provided
the conditions for my survival. Besides other things, I told psychiatrists that I have
a strange object in my brain, a seraph (“genius” in Greek mythology). Consider
both options: if I have a foreign object in my brain then I’m a disabled person in
the psyche, if not then disabled in the psyche, too.

As you know, I wrote a doctoral dissertation in mathematics (you read it) and I
was not awarded the title of Doctor of Science for religious reasons as a punishment
for practicing my religion.

I sued, demanding compensation for the unpaid salary of a professor of mathe-
matics and other things, as well as 4 trillion dollars as compensation for not made
due to poverty scientific discoveries. (I valued this book along with amendments,

1https://www.smashwords.com/books/view/618525
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as well as my XML file processing method in 2 trillion dollars; well, how much is
the limit of the discontinuous function?)

It was not that court, and after that I filed a lawsuit in the Tverskoy court of
Moscow. This time without the requirement of 4 trillions and the title of hero of
Russia.

But when she saw the word “sectarian”, the chairman of the court, Olga Niko-
laevna Solopova, went crazy with laughter and shame and, deciding that humor
took precedence over the law, did not respond to my lawsuit. It is clear that
Solopova cannot answer, therefore I demanded that the qualification collegium of
judges recognize her as incompetent and insane as a result of exposure to her brain
with information about an abnormal sectarian and transfer the case to another
judge. Qualification board has not yet responded. Such should be the reaction of
a judge to a suit of a subhuman, in accordance with humor.

Note: I’m not going to actually bankrupt Russia.
About mathematical aspects of the story of my discoveries, see blog post:

https://portonmath.wordpress.com/?p=2992

https://portonmath.wordpress.com/?p=2992


APPENDIX A

Using logic of generalizations

A.1. Logic of generalization

In mathematics it is often encountered that a smaller set S naturally bijectively
corresponds to a subset R of a larger set B. (In other words, there is specified an
injection from S to B.) It is a widespread practice to equate S with R.

Remark 2104. I denote the first set S from the first letter of the word “small”
and the second set B from the first letter of the word “big”, because S is intuitively
considered as smaller than B. (However we do not require cardS < cardB.)

The set B is considered as a generalization of the set S, for example: whole
numbers generalizing natural numbers, rational numbers generalizing whole num-
bers, real numbers generalizing rational numbers, complex numbers generalizing
real numbers, etc.

But strictly speaking this equating may contradict to the axioms of ZF/ZFC
because we are not insured against S ∩ B ̸= ∅ incidents. Not wonderful, as it is
often labeled as “without proof”.

To work around of this (and formulate things exactly what could benefit com-
puter proof assistants) we will replace the set B with a new set B′ having a bijection
M : B → B′ such that S ⊆ B′. (I call this bijection M from the first letter of the
word “move” which signifies the move from the old set B to a new set B′).

The following is a formal but rather silly formalization of this situation in
ZF. (A more natural formalization may be done in a smarter formalistic, such as
dependent type theory.)

A.1.1. The formalistic. Let S and B be sets. Let E be an injection from S
to B. Let R = imE.

Let t = P
⋃⋃

S.

Let M(x) =
{
E−1x if x ∈ R;
(t, x) if x /∈ R.

Recall that in standard ZF (t, x) = {t, {t, x}} by definition.
Theorem 2105. (t, x) /∈ S.
Proof. Suppose (t, x) ∈ S. Then {t, {t, x}} ∈ S. Consequently {t} ∈

⋃
S;

{t} ⊆
⋃⋃

S; {t} ∈ P
⋃⋃

S; {t} ∈ t what contradicts to the axiom of foundation
(aka axiom of regularity). □

Definition 2106. Let B′ = imM .
Theorem 2107. S ⊆ B′.
Proof. Let x ∈ S. Then Ex ∈ R; M(Ex) = E−1Ex = x; x ∈ imM = B′. □

Obvious 2108. E is a bijection from S to R.
Theorem 2109. M is a bijection from B to B′.
Proof. Surjectivity of M is obvious. Let’s prove injectivity. Let a, b ∈ B and

M(a) = M(b). Consider all cases: □
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a, b ∈ R. M(a) = E−1a; M(b) = E−1b; E−1a = E−1b; thus a = b because E−1 is
a bijection.

a ∈ R, b /∈ R. M(a) = E−1a; M(b) = (t, b); M(a) ∈ S; M(b) /∈ S. Thus M(a) ̸=
M(b).

a /∈ R, b ∈ R. Analogous.
a, b /∈ R. M(a) = (t, a); M(b) = (t, b). Thus M(a) = M(b) implies a = b.

Theorem 2110. M ◦ E = idS .

Proof. Let x ∈ S. Then Ex ∈ R; M(Ex) = E−1Ex = x. □

Obvious 2111. E = M−1|S .

A.1.2. Existence of primary filtrator.

Theorem 2112. For every poset Z there exists a poset A ⊇ Z such that (A,Z)
is a primary filtrator.

Proof. Take S = Z, B = F, E =↑. By the above there exists an injection M
defined on F such that M◦ ↑= idZ.

Take A = imM . Order (⊑′) elements of A in such a way that M : F(Z) → A
become order isomorphism. If x ∈ Z then x = idZ x = M ↑ x ∈ imM = A. Thus
A ⊇ Z.

If x ⊑ y for elements x, y of Z, then ↑ x ⊑↑ y and thus M ↑ x ⊑′ M ↑ y that is
x ⊑′ y, so Z is a subposet of A, that is (A,Z) is a filtrator.

It remains to prove that M is an isomorphism between filtrators (F(Z),P) and
(A,Z). That M is an order isomorphism from F(Z) to A is already known. It
remains to prove that M maps P to Z. We will instead prove that M−1 maps Z
to P. Really, ↑ x = M−1x for every x ∈ Z. □
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atomistic, 25

ball
closed, 139
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induced by dagger category, 369
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chain, 18
closed

regarding pointfree funcoid, 338
closure

in metric space, 140
Kuratowski, 144

co-completion
funcoid

pointfree, 335

of funcoid, 179
of reloid, 198

complement, 22
complemented

element, 22
lattice, 22

complementive, 22
complete

multifuncoid, 400
staroid, 400

complete lattice
homomorphism, 26

completely starrish, 82
completion

of funcoid, 179
of reloid, 198

composable
funcoids, 151
reloids, 188

composition
funcoids, 151
of reloids, 188

concatenation, 52
connected

regarding endofuncoid, 235
regarding endoreloid, 235
regarding pointfree funcoid, 338

connected component, 234
connectedness

regarding binary relation, 233
regarding Rel-endomorphism, 233

connectivity reloid, 234
continuity

coordinate-wise, 393
generalized, 226
of restricted morphism, 229
pre-topology, 225
proximity, 225
uniformity, 225

converges
regarding funcoid, 284

core part, 90
dual, 90

core star, 92
currying, 50, 51

De Morgan’s laws
infinite, 23

decomposition of composition, 220
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of reloids, 220
destination, 33
difference, 21
directly isomorphic, 244
disjunction property of Wallman, 39
distance, 139
domain

of funcoid, 161
downgrading, 354

anchored relation, 354
dual

order, 18
poset, 18

duality
partial order, 18

edge, 33
edge part, 104
element

of filtrator, 75
typed, 64

embedding
reloids into funcoids, 222

endo-funcoid, 149
endo-reloid, 187
endomorphism, 34
endomorphism series, 232
equivalent

filters, 131

filter
closed, 185
cofinite, 122
Fréchet, 122
on a meet-semilattice, 72
on a poset, 72
on a set, 72
on meet-semilattice, 73
on poset, 72
on powerset, 74
on set, 74
principal, 74
proper, 72

filter base, 72
generalized, 97
generated by, 100

filter object, 130
filter-closed, 100
filtrator, 75

central, 75
complete lattice, 75
down-aligned, 83
filtered, 75
lattice, 75
of funcoids, 157
powerset, 76
prefiltered, 75
star-separable, 93
up-aligned, 83
weakly down-aligned, 83
weakly up-aligned, 83
with binarily join-closed core, 75
with binarily meet-closed core, 75

with co-separable core, 76
with join-closed core, 75
with meet-closed core, 75
with separable core, 76

finitary
relation

anchored, 352
finite intersection property, 123
form

of star-morphism, 367
funcoid, 148, 149

co-complete, 174
complete, 174
destination, 149
identity, 161
induced by reloid, 201
injective, 182
monovalued, 182
pointfree, 312

co-complete, 333
co-completion, 335
complete, 333
composable, 314
composition, 314
destination, 312
domain, 321
identity, 321
image, 321
injective, 335
monovalued, 335
order, 318
restricted identity, 321
restricting, 321
source, 312
zero, 387

principal, 155
restricted identity, 161
reverse, 149
source, 149

funcoidal reloid, 211
funcoids

composable, 151
composition, 151
separable, 184

function space of posets, 117

Galois
connection, 26

Galois connection
between funcoids and reloids, 209

Galois surjection, 57
generalized closure, 174
graph

of anchored relation, 50, 351
greatest element, 17, 18
Grothendieck universe, 14
group, 37

permutation, 37
transitive, 37

group theory, 37
groupoid, 34

ideal base, 72
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idempotent, 27
identity, 37
identity relation, 17, 401
image

of funcoid, 161
independent family, 128
inequality

triangle, 139
infimum, 19
infinitary

relation
anchored, 352

infinite distributive, 23
injective

funcoid, 182
reloid, 195

intersecting elements, 18
inverse, 33
involution, 34
isomorphic

filters, 246
isomorphism, 33

join, 19
binary, 19

join infinite distributive, 23
join semilattice

homomorphism, 26
joining elements, 18

Kuratowski’s lemma, 25

lattice, 20
boolean, 23
center, 24
co-brouwerian, 30
co-Heyting, 30
complete, 20
distributive, 21
homomorphism, 26

least element, 17, 18
limit, 286

generalized, 286
linearly ordered set, 18
lower bound

nontrivial, 401

maximal element, 19
meet, 19
meet infinite distributive, 23
meet semilattice

homomorphism, 26
minimal element, 19
monotone, 26
monovalued

funcoid, 182
reloid, 195

Morgan’s laws, 23
morphism, 33

bijective, 47
co-metacomplete, 47
entirely defined, 46
identity, 33
injective, 46

involutive, 34
metacomplete, 47
metainjective, 47
metamonovalued, 47
monovalued, 46
surjective, 46
symmetric, 45
transitive, 45
unitary, 45
weakly co-metacomplete, 48
weakly metacomplete, 47
weakly metainjective, 47
weakly metamonovalued, 47

mult, 357
on powersets, 357

multifuncoid, 357
multigraph

directed, 33
multireloid, 379

convex, 382
principal, 382

object, 33
open map, 230
order

of mults, 359
Rudin-Keisler, 246

order embedding, 26
order homomorphism, 26
order isomorphism, 26
order reflecting, 38
ordinal, 50
ordinal variadic, 51

partial order, 17
restricted, 17
strict, 17

partition
strong, 48
weak, 48

path, 233
poset, 17

bounded, 20
separable, 39
starrish, 82
strongly separable, 39

pre-staroid, 352
pre-topology

induced by metric, 141
semicategory, 33, 419

dagger, 45
partially ordered, 45

with star-morphisms, 367
with star-morphism

induced by dagger semicategory, 369
with star-morphisms, 367

quasi-invertible, 368
preclosure, 140
prefunctor, 419
preorder, 17
preserve filtered meets, 156
pretopology, 140
prime element, 95
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principal
funcoid, 155

product
cartesian, 50
cross-composition, 350, 370
displaced, 389
funcoidal, 168, 327, 362
oblique, 263
ordinated, 53
reindexation, 364
reloidal, 190

starred, 382
second, 263
simple, 377
staroidal, 361
subatomic, 383

product order, 117
projection

staroidal, 386
proximity, 145
pseudocomplement, 29

dual, 29
pseudodifference, 29
pseudofuncoid, 396

quasi-proximity, 145
quasicomplement, 41

dual, 41
quasidifference, 31, 42

rebase
filters, 131

relation
anchored, 50, 351

between posets, 352
finitary, 352
infinitary, 352
on powersets, 352

relational structure, 64
reloid, 187

co-complete, 196
complete, 196
convex, 191
destination, 187
domain, 192
identity, 192
image, 192
injective, 195
inward, 205
monovalued, 195
outward, 205
principal, 187
reverse, 187
source, 187

restricted identity reloid, 192
restricting

funcoid, 161
rectangular, 229
reloid, 192
square, 229

Rudin-Keisler equivalence, 248

semigroup, 37
semilattice

join-semilattice, 20
meet-semilattice, 20

separable, 39
atomically, 40

separation subset, 39
set

closed, 142
in metric space, 140

open, 142
in metric space, 140

partially ordered, 17
typed, 64

small set, 14
source, 33
space

metric, 139
pre-topological, 140
preclosure, 140

induced by topology, 143
proximity, 145
topological, 142

induced by preclosure, 142
uniform, 200

star
core, 92
full, 39

star composition, 367
star-morphism, 367
staroid, 352

completary, 352, 353
generated, 355
identity

big, 402
small, 401

principal, 355
starrish, 82
straight map, 38
subcategory

wide, 35
subelement, 17
sublattice

closed, 24
substractive, 21
sum

structured, 51
supremum, 19

topology, 142
torning, 48
typed element, 64
typed set, 64

ultrafilter, 109
trivial, 109

uncurrying, 50, 51
uniformity, 200
upgraded staroid

generated, 356
upgrading, 354

anchored relation, 354

vertex, 33
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