
Autonomous Learning in Tic-Tac-Toe Using
Q-Learning:

A Reinforcement Learning Approach
Dheiver Santos

R. Ver. Pedro Moura, 283 - Jatiúca, Maceió - AL, 57036-360
dheiver.santos@gmail.com

https://orcid.org/0000-0002-8599-9436

June 8, 2025

Abstract

This study investigates the application of Q-learning, a model-free reinforce-
ment learning algorithm, to train an autonomous agent to master the game
of Tic-Tac-Toe. The agent, playing against a random opponent, learns optimal
move-selection strategies through trial-and-error over 5,000 training episodes.
By leveraging an epsilon-greedy exploration strategy with a decay mechanism
and a carefully structured reward system, the agent demonstrates rapid and sta-
ble convergence towards a near-optimal policy. Performance metrics show that
the agent’s win rate progressively increases from a baseline of random guess-
ing to approximately 90%, while its average reward shifts from negative values
(indicating frequent losses) to consistently high positive scores. The findings
validate the efficacy of Q-learning in deterministic, discrete state-space envi-
ronments and underscore its value as a foundational algorithm for understand-
ing autonomous learning. This work provides a comprehensive blueprint for its
implementation and serves as a basis for scaling to more complex game-playing
domains.

Keywords: Q-learning, Reinforcement Learning, Tic-Tac-Toe, Autonomous Agents,
Game Theory, Epsilon-Greedy

1 Introduction

Reinforcement Learning (RL) represents a paradigm in machine learning where
an agent learns to make sequential decisions by interacting with an environment
to maximize a cumulative reward signal [1]. Unlike supervised learning, RL does
not rely on labeled data; instead, it learns from feedback in the form of rewards or
penalties, making it exceptionally suited for problems like game playing, robotics,
and resource management.

Tic-Tac-Toe, though simple, is a canonical problem in artificial intelligence and
RL. Its well-defined rules, finite state space, and clear outcomes (win, lose, draw)
provide an ideal testbed for evaluating core RL algorithms without the computa-
tional overhead of more complex games like Chess or Go. The game encapsulates
fundamental challenges such as strategic planning, opponent modeling, and the
critical trade-off between exploration and exploitation. Q-learning, a foundational
model-free RL algorithm, is particularly well-suited for this task, as it can learn an

1

mailto:dheiver.santos@gmail.com
https://orcid.org/0000-0002-8599-9436


optimal policy directly from state-action-reward tuples without needing a model of
the environment’s dynamics [2].

This experiment details the design, training, and evaluation of a Q-learning
agent for Tic-Tac-Toe. The agent, playing as ’X’, learns to compete against a ’O’
player that makes random moves. Over 5,000 episodes, the agent’s goal is to
populate a Q-table—a data structure mapping state-action pairs to expected fu-
ture rewards—to derive a policy that maximizes its chances of winning. This study
not only demonstrates the successful application of Q-learning but also explores
the impact of hyperparameter tuning and exploration strategies. The principles
illustrated are foundational to many modern AI systems, from medical diagnostics
[3, 4, 5] and image analysis [6, 7] to the interpretation of complex biosignals [8, 9].

2 Background and Theory

2.1 The Reinforcement Learning Framework

At its core, RL involves an agent interacting with an environment over a sequence
of discrete time steps. At each step t, the agent observes the environment’s state
st, selects an action at, and receives a numerical reward rt+1 as feedback. The
environment then transitions to a new state st+1. The agent’s objective is to learn a
policy π(s), which is a mapping from states to actions, that maximizes the expected
cumulative discounted reward, known as the return.

2.2 Q-Learning: A Model-Free Approach

Q-learning [2] is an off-policy, model-free RL algorithm. "Model-free" means it does
not need to understand the environment’s transition probabilities or reward func-
tion. It directly learns the optimal action-value function, Q∗(s, a), which represents
the maximum expected return achievable from state s by taking action a and fol-
lowing the optimal policy thereafter. The Q-values are stored in a lookup table (the
Q-table) and are updated iteratively using the Bellman equation:

Q(s, a)← Q(s, a) + α

[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
(1)

Here:

• α (Learning Rate): Controls how much new information overrides old infor-
mation.

• γ (Discount Factor): Balances the importance of immediate versus future re-
wards.

• r+γmaxa′ Q(s′, a′): This is the temporal difference (TD) target, which serves as
an improved estimate of the value of Q(s, a).

2.3 The Exploration-Exploitation Dilemma

To find the optimal policy, the agent must navigate the trade-off between exploita-
tion (making the best decision given current knowledge) and exploration (gath-
ering more information by trying new actions). An agent that only exploits may get
stuck in a suboptimal policy. An agent that only explores will fail to leverage what
it has learned.

2



The ϵ-greedy strategy is a simple yet effective solution. With probability ϵ, the
agent chooses a random action (explores), and with probability 1 − ϵ, it chooses
the action with the highest Q-value for the current state (exploits). Typically, ϵ is
started at a high value and gradually decayed over time, encouraging exploration
early in training and shifting towards exploitation as the Q-values become more
reliable.

3 Methodology

3.1 Game Environment and State Representation

The environment is a standard 3×3 Tic-Tac-Toe grid. The agent plays as ‘X’ (value
1), the random opponent plays as ‘O’ (value -1), and empty cells are represented
by 0. A game state is defined by the configuration of the board. To use states as
keys in our Python dictionary-based Q-table, the 3x3 NumPy array representing
the board is flattened into a 9-element vector and converted to a hashable tuple.

The theoretical state space is 39 = 19, 683. However, many of these states are un-
reachable in a valid game. By accounting for symmetries (rotation and reflection),
the number of unique states can be further reduced, though this optimization was
not implemented in this study to maintain algorithmic simplicity.

3.2 The Q-Learning Algorithm Implementation

The agent’s training loop, outlined in Algorithm 1, translates the theoretical Q-
learning framework into a practical computational process. A crucial implementa-
tion choice is the data structure for the Q-table. As it is not feasible to pre-populate
a table for all 19,683 potential states, a Python dictionary serves as an ideal,
memory-efficient solution. This structure allows for "lazy initialization," where
state-action values are added dynamically as new board configurations are en-
countered. Each key in the main dictionary is a hashable tuple representing a
game state, and its corresponding value is another dictionary that maps actions
(integers 0-8, representing board positions) to their floating-point Q-values.

The core of the implementation resides within the main training loop, which
iterates for 5,000 episodes. At the start of each episode, the board is cleared. Dur-
ing the agent’s turn (lines 7-16 in Algorithm 1), the decision-making process is
governed by the ϵ-greedy policy. First, a list of valid (empty) cells is generated.
Then, a random number is compared against the current value of ϵ. If exploration
is chosen (line 10), an action is selected uniformly at random from the list of valid
moves. If exploitation is chosen (line 12), the agent queries the Q-table for the
current state. It retrieves the Q-values for all valid actions and selects the action
corresponding to the maximum Q-value. If multiple actions share the same max-
imum value, a random choice among them is made to break the tie, preventing
deterministic but potentially suboptimal behavior. If the agent encounters a state
for the first time, an entry for it is created in the Q-table with Q-values initialized
to zero for all actions.

Immediately after executing an action a in state s and observing the resulting
reward r and the new state s′, the learning step occurs (line 15). The Q-value
Q(s, a) is updated using the Bellman equation (Equation 1). This update is the crux
of the learning process: it adjusts the value of the action just taken based on the
immediate reward received plus the discounted estimate of the maximum value
achievable from the new state (γmaxa′ Q(s′, a′)). This "bootstrapping" method allows

3



the agent to propagate value estimates backward through the sequence of moves
over many episodes.

The game proceeds with the opponent making a random move, and the loop
continues until a terminal state—a win, loss, or draw—is reached. At the end of
each episode, the exploration rate ϵ is multiplicatively decayed, gradually shifting
the agent’s behavior from exploration-heavy to exploitation-heavy as its Q-value
estimates become more accurate and reliable.

Algorithm 1 Q-Learning Training for Tic-Tac-Toe
1: Initialize Q-table Q as an empty dictionary
2: Initialize hyperparameters: α, γ, ϵ, decay rate, min ϵ
3: for each episode from 1 to N do
4: Reset the game environment to an initial state s
5: done ← false
6: while not done do
7: if it is the agent’s turn then
8: if state s is not in Q then
9: Initialize Q[s] with zeros for all actions
10: end if
11: Get all available actions for state s
12: if random number < ϵ then
13: Choose a random action a from available actions (Exploration)
14: else
15: Choose a = argmaxa′∈availableQ[s][a′] (Exploitation)
16: end if
17: Take action a, observe reward r and new state s′

18: if state s′ is not in Q then
19: Initialize Q[s′] with zeros for all actions
20: end if
21: Q[s][a]← Q[s][a] + α[r + γmaxa′ Q[s′][a′]−Q[s][a]]
22: s← s′

23: else
24: Opponent makes a random move
25: Update state s
26: end if
27: Check if the game is over and set done
28: end while
29: Decay ϵ: ϵ← max(min_ϵ, ϵ× decay_rate)
30: end for

3.3 Reward Structure

A sparse, terminal reward system was implemented to guide the agent’s learn-
ing. This approach provides feedback only at the conclusion of a game, which is a
natural fit for episodic tasks.

• Win: +100 (Strongly encourages winning moves)

• Loss: -100 (Strongly penalizes losing)

• Draw: +10 (A neutral-to-positive outcome, better than losing)

4



• Illegal Move: -200 (A strong penalty, though the current setup only allows
valid moves)

• Ongoing Game: 0 (No intermediate rewards)

3.4 Hyperparameter Configuration

The hyperparameters, shown in Table 1, were selected based on common practices
in the literature and empirical tuning to ensure stable convergence for this specific
problem [1].

Table 1: Hyperparameters for the Q-Learning Agent.

Parameter Description Value
Learning Rate (α) Controls the step size of Q-value updates. 0.2
Discount Factor (γ) Determines the importance of future rewards. 0.95
Initial Epsilon (ϵ) Starting probability of taking a random action. 0.5
Epsilon Decay Rate Multiplicative factor for reducing epsilon. 0.995
Minimum Epsilon The lowest value epsilon can reach. 0.01
Training Episodes Total number of games played for training. 5,000

4 Results and Analysis

The agent was trained for 5,000 episodes. Its performance was tracked by record-
ing the total reward per episode and by periodically evaluating its win rate against
the random opponent with exploration turned off (ϵ = 0).

Figure 1: Learning curves for the Q-learning agent. (Left) The moving average
of total rewards per episode (window=50). (Right) The moving average of the
win/draw rate evaluated every 100 episodes (window=5).

4.1 Learning Curves

The learning progress is visualized in Figure 1.

• Reward Curve (Left): The smoothed average reward per episode shows a
clear learning trend. It starts in negative territory (around -40 to -60), reflect-
ing the initial phase where the untrained agent frequently loses. As training
progresses, the curve steadily rises, crossing into positive territory after ap-
proximately 1,000-1,500 episodes and eventually stabilizing in a high positive

5



range of +80 to +95. This indicates the agent has learned to consistently
achieve high-reward outcomes (wins and draws).

• Win Rate Curve (Right): The win rate against a random opponent starts, as
expected, around 10-20% (with draws contributing). It exhibits a steep learn-
ing curve, surpassing 50% early in training and plateauing at a dominant rate
of approximately 85-90% by the end of the 5,000 episodes. The remaining 10-
15% of outcomes are primarily draws, with losses becoming extremely rare,
demonstrating the development of a robust, near-unbeatable policy against
this specific opponent.

4.2 Policy Analysis

By inspecting the learned Q-table, we can verify that the agent acquired key Tic-
Tac-Toe strategies:

• Offensive Strategy: The agent learns to complete a line of three ’X’s when
the opportunity arises, as this action consistently yields the highest Q-value
in such states.

• Defensive Strategy: The agent correctly identifies situations where the op-
ponent is about to win and learns to block them. The Q-values for blocking
actions are significantly higher than for other non-winning moves in those
states.

• Strategic Openings: The agent often learns to prefer opening moves in the
center or corners, which are known to be strategically superior in Tic-Tac-Toe.

5 Discussion

5.1 Interpretation of Results

The results unequivocally demonstrate that tabular Q-learning can effectively solve
Tic-Tac-Toe. The rapid convergence observed is a direct consequence of the game’s
small, manageable state space. The smooth, monotonic improvement in both re-
ward and win rate confirms that the chosen hyperparameters and the ϵ-greedy
exploration schedule with decay provided a stable learning environment. The final
policy is not only effective but also optimal against a random player, as an optimal
player should never lose at Tic-Tac-Toe.

5.2 Limitations and Future Work

Despite its success, this study has several limitations that open avenues for future
research:

1. Simplistic Opponent: Training against a purely random opponent is a good
starting point, but the learned policy may not be robust against a strategic ad-
versary. Future work should involve training the agent against more advanced
opponents, such as a minimax-based player or through self-play, where the
agent learns by playing against previous versions of itself.

2. Lack of State-Space Reduction: The Q-table size could be made more com-
pact and learning more sample-efficient by implementing logic to recognize

6



board symmetries. By treating rotated and reflected boards as the same state,
the agent would generalize its learning from one configuration to all its sym-
metric equivalents instantly.

3. Scalability: Tabular Q-learning is fundamentally limited by the "curse of
dimensionality." It is infeasible for games with vast state spaces like Chess
(> 1040 states) or Go (> 10170 states). For such problems, the Q-table must be
replaced by a function approximator, such as a neural network. This leads to
algorithms like Deep Q-Networks (DQN), which are a cornerstone of mod-
ern RL.

6 Conclusion

This study successfully designed and implemented a Q-learning agent capable of
mastering the game of Tic-Tac-Toe. Through iterative updates guided by a simple
reward signal and a balanced exploration-exploitation strategy, the agent devel-
oped a near-optimal policy, achieving a win rate of approximately 90% against a
random opponent. The clear progression shown in the learning curves validates
the effectiveness of the Q-learning algorithm and the chosen hyperparameter con-
figuration for discrete, finite environments.

While the scope was limited to a classic introductory problem, the project pro-
vides a solid and intuitive foundation for understanding the core principles of re-
inforcement learning. The concepts demonstrated here—value functions, policy
learning, and managing the exploration-exploitation trade-off—are directly appli-
cable to solving far more complex real-world challenges. This work serves as both
a practical guide and a conceptual stepping stone toward advanced topics like deep
reinforcement learning.

References

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, 2018.

[2] Christopher J.C.H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3-4):279–292, 1992.

[3] D. F. Santos. Predicting Chronic Obstructive Pulmonary Disease (COPD)
Diagnosis Using Primary Care Variables and Machine Learning Algorithms.
medRxiv, 2024.

[4] D. F. Santos. Cardiovascular Disease Prediction Using Machine Learning: An
XGBoost Approach with Hyperparameter Tuning. Preprints, 2024.

[5] D. F. Santos. Advancing Skin Cancer Detection: Harnessing the Power of
CNNs. Preprints, 2024.

[6] D. Santos. An Automated Nodule Segmentation Framework Using Anisotropic
Diffusion and Texture Analysis. Preprints, 2025.

[7] D. F. Santos. Advancing Automated Dental Diagnostics: YOLOv8 Segmenta-
tion and Deep Learning Insights. Authorea Preprints, 2024.

7



[8] D. F. Santos. The Advanced Complexity Analysis of Electroencephalography
(EEG) Data Using Tsallis Entropy. SciELO Preprints, 2024.

[9] D. Santos. Deep Learning Approaches for Electrocardiogram (ECG) Analysis:
Challenges and Applications. Preprints, 2024.

[10] D. F. Santos. Predicting Patient Survival After Heart Failure Using Ensemble
Learning Models. Preprints, 2024.

[11] D. F. Santos. Predicting the Risk of Surgical Complications Using Machine
Learning Models. Preprints, 2024.

[12] D. Santos. Simulating Autism Spectrum Disorder Diagnosis Using Tsallis En-
tropy. Preprints, 2025.

8


	Introduction
	Background and Theory
	The Reinforcement Learning Framework
	Q-Learning: A Model-Free Approach
	The Exploration-Exploitation Dilemma

	Methodology
	Game Environment and State Representation
	The Q-Learning Algorithm Implementation
	Reward Structure
	Hyperparameter Configuration

	Results and Analysis
	Learning Curves
	Policy Analysis

	Discussion
	Interpretation of Results
	Limitations and Future Work

	Conclusion

