''' ipython -i -c "if 1: fpath = '/home/local/KHQ/jon.crall/.cache/xdev/snapshot_states/state_2024-04-30T152406-5.pkl' from xdev.embeding import load_snapshot load_snapshot(fpath, globals()) " ''' import kwplot import ubelt as ub sns = kwplot.autosns() # agg = NotImplemented # table = agg.table # agg.build_macro_tables(rois=['KR_R002', 'CN_C000', 'KW_C001', 'CO_C001']) agg.build_macro_tables(rois=['KR_R002']) macro_key = list(agg.macro_key_to_regions)[-1] table = agg.region_to_tables[macro_key] paths = table['resolved_params.bas_pxl.package_fpath'].tolist() step_col = [] variant_col = [] epoch_col = [] for fpath in paths: fpath = ub.Path(fpath) parts = ub.Path(fpath).name.split('_')[-2:] print(f'parts={parts}') p1, p2 = parts assert p1.startswith('epoch') assert p2.startswith('step') step_num = int(p2.split('.')[0].split('step')[1]) step_col.append(step_num) variant_col.append(fpath.parent.name) epoch_col.append(int(p1[5:])) table['step'] = step_col table['epoch'] = epoch_col table['resolved_params.bas_pxl_fit.model.init_args.name'] table['training_session'] = variant_col fig = kwplot.figure(fnum=1, doclf=1) ax = fig.gca() # sns.lineplot(data=table, ax=ax, x='step', y='metrics.bas_poly_eval.bas_faa_f1', hue='training_session') ax.cla() sns.lineplot(data=table, ax=ax, x='epoch', y='metrics.bas_poly_eval.bas_faa_f1', hue='training_session')