#!/bin/bash __notes__=" https://docs.google.com/spreadsheets/d/1kYseTFyLb-_7BzILtSOWuimRVyLuefaninfNwkg45r4/edit#gid=0 " prep_teamfeat_drop2(){ # Team Features on Drop2 DVC_DPATH=$(geowatch_dvc --hardware=ssd) DVC_DPATH=$(geowatch_dvc --hardware=hdd) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 python -m geowatch.cli.queue_cli.prepare_teamfeats \ --base_fpath="$DVC_DPATH/$DATASET_CODE/data.kwcoco.json" \ --gres="0,1" \ --with_landcover=1 \ --with_depth=0 \ --with_materials=1 \ --with_invariants=0 \ --do_splits=1 \ --depth_workers=0 \ --cache=0 --run=1 --serial=1 #python -m geowatch.cli.queue_cli.prepare_splits --base_fpath=$DVC_DPATH/Drop2-Aligned-TA1-2022-01/combo_L.kwcoco.json --run=False } repackage_checkpoints_and_evaluate(){ __doc__=' Prepare existing checkpoints for DVC storage and evaluation ' DVC_DPATH=$(geowatch_dvc) DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 EXPT_GROUP_CODE=eval3_candidates KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE python -m geowatch.tasks.fusion.repackage gather_checkpoints \ --dvc_dpath="$DVC_DPATH" \ --storage_dpath="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/packages" \ --train_dpath="$DVC_DPATH/training/$HOSTNAME/$USER/$DATASET_CODE/runs/*/lightning_logs" \ --push_jobs=4 \ --mode=interact #--mode=commit # Note: change backend to tmux if slurm is not installed DVC_DPATH=$(geowatch_dvc) DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 EXPT_GROUP_CODE=eval3_candidates KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --gpus="0,1" \ --model_globstr="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/packages/*/*.pt" \ --test_dataset="$VALI_FPATH" \ --run=0 --skip_existing=True --backend=slurm ##### # Alternative invocations : only schedule prediction, then evaluate independently ##### DVC_DPATH=$(geowatch_dvc) DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 EXPT_GROUP_CODE=eval3_candidates KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --gpus="0,1" \ --model_globstr="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/packages/*/*.pt" \ --test_dataset="$VALI_FPATH" \ --run=1 --skip_existing=0 --backend=slurm --enable_pred=False # As metrics are reported add them to dvc via the following DVC_DPATH=$(geowatch_dvc) ls "$DVC_DPATH"/models/fusion/eval3_candidates/eval/*/*/*/*/eval/curves/measures2.json ## ## # How to package metrics # # After eval, adding the measures2.json file to DVC will prevent other # machines from needing to rerun prediction to compare against past results # paths of interest __doc__=" ls models/fusion/eval3_candidates/packages/* ls models/fusion/eval3_candidates/pred/*/*/*/*/pred.kwcoco.json ls models/fusion/eval3_candidates/pred/*/*/*/*/_assets models/fusion/eval3_candidates/pred/*/*/*/*/eval ls models/fusion/eval3_candidates/eval/*/*/*/*/eval ls models/fusion/eval3_candidates/eval/*/*/*/*/eval/curves/*.png ls models/fusion/eval3_candidates/eval/*/*/*/*/eval/heatmaps " DVC_DPATH=$(geowatch_dvc) cd "$DVC_DPATH" ls models/fusion/eval3_candidates/eval/*/*/*/*/eval/curves/measures2.json (cd "$DVC_DPATH" && dvc add models/fusion/eval3_candidates/eval/*/*/*/*/eval/curves/measures2.json) (cd "$DVC_DPATH" && dvc push -r aws -R models/fusion/eval3_candidates) } aggregate_multiple_evaluations(){ __doc__=" This script will aggregate results over all packaged checkpoints with computed metrics. You can run this while the schedule_evaluation script is running. It will dump aggregate stats into the 'out_dpath' folder. " DVC_DPATH=$(geowatch_dvc) EXPT_GROUP_CODE=eval3_candidates EXPT_NAME_PAT="*" #EXPT_NAME_PAT="BOTH_TA1_COMBO_TINY_p2w_raw*" MODEL_EPOCH_PAT="*" PRED_DSET_PAT="*" PRED_CFG_PAT="*" MEASURE_GLOBSTR=${DVC_DPATH}/models/fusion/${EXPT_GROUP_CODE}/eval/${EXPT_NAME_PAT}/${MODEL_EPOCH_PAT}/${PRED_DSET_PAT}/${PRED_CFG_PAT}/eval/curves/measures2.json python -m geowatch.tasks.fusion.aggregate_results \ --measure_globstr="$MEASURE_GLOBSTR" \ --out_dpath="$DVC_DPATH/agg_results/$EXPT_GROUP_CODE" \ --dset_group_key="*" --show=True \ --classes_of_interest "Site Preparation" "Active Construction" } #### Baseline BAS+SC config DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json EXPERIMENT_NAME=BaselineTemplate2022-03-03 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="0" python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="blue|green|red" \ --global_change_weight=0.00 \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=0.5 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=8 \ --optimizer=AdamW \ --learning_rate=3e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=256 \ --time_steps=5 \ --chip_overlap=0.0 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=120 \ --patience=120 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="noop" \ --package_fpath="$PACKAGE_FPATH" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --num_sanity_val_steps=0 \ --dump "$WORKDIR/configs/common_20220303.yaml" #--use_centered_positives=True \ # Should have been true #--multimodal_reduce=max \ #--modulate_class_weights="positive*0,negative*0,background*0.001,No Activity*0.0,Post Construction*0.0001" \ #--dist_weight=True \ #--stream_channels=8 # Transfer BAS+SC WV+L1 With Few Features Toothbrush LinConv - 2022-01-27 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop1-20201117 ARCH=smt_it_stm_p8 #CHANNELS="depth,before_after_heatmap|segmentation_heatmap,brush|bare_ground|built_up,blue|green|red|nir|swir16|swir22" CHANNELS="blue|green|red|nir|swir16|swir22" #geowatch stats "$TRAIN_FPATH" "$VALI_FPATH" EXPERIMENT_NAME=BOTH_${ARCH}_TA1_RAW_v61 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="1" python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --channels=${CHANNELS} \ --name=$EXPERIMENT_NAME \ --chip_size=416 \ --time_steps=3 \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --method="MultimodalTransformer" \ --gpus "1" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --amp_backend=apex \ --attention_impl=exact \ --tokenizer=linconv \ --use_centered_positives=True \ --use_grid_positives=True \ --num_workers="8" \ --time_span=1y \ --neg_to_pos_ratio=1.0 \ --global_saliency_weight=1.00 \ --global_class_weight=2.00 \ --time_sampling=soft2 \ --batch_size=1 \ --normalize_inputs=1024 \ --temporal_dropout=0.5 \ --init="$HOME/remote/toothbrush/data/dvc-repos/smart_watch_dvc/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" # Transfer BAS+SC WV+L1 With Few Features Toothbrush LinConv - 2022-01-27 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop1-20201117 ARCH=smt_it_stm_p8 #CHANNELS="depth,before_after_heatmap|segmentation_heatmap,brush|bare_ground|built_up,blue|green|red|nir|swir16|swir22" CHANNELS="blue|green|red|nir|swir16|swir22" #geowatch stats "$TRAIN_FPATH" "$VALI_FPATH" EXPERIMENT_NAME=BOTH_${ARCH}_TA1_RAW_v62 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="0" python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --channels=${CHANNELS} \ --name=$EXPERIMENT_NAME \ --chip_size=416 \ --time_steps=9 \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --method="MultimodalTransformer" \ --gpus "1" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --amp_backend=apex \ --attention_impl=exact \ --tokenizer=linconv \ --use_centered_positives=True \ --use_grid_positives=True \ --num_workers="8" \ --time_span=1y \ --neg_to_pos_ratio=1.0 \ --global_saliency_weight=1.00 \ --global_class_weight=1.00 \ --time_sampling=soft2 \ --batch_size=1 \ --normalize_inputs=512 \ --arch_name=$ARCH \ --temporal_dropout=0.5 \ --init="$HOME/remote/toothbrush/data/dvc-repos/smart_watch_dvc/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" # Fresh Toothbrush - 2022-01-29 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop1-20201117 ARCH=smt_it_stm_p8 #CHANNELS="depth,before_after_heatmap|segmentation_heatmap,brush|bare_ground|built_up,blue|green|red|nir|swir16|swir22" CHANNELS="blue|green|red|nir|swir16|swir22" #geowatch stats "$TRAIN_FPATH" "$VALI_FPATH" EXPERIMENT_NAME=BOTH_${ARCH}_TA1_RAW_scratch_v63 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="1" python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --channels=${CHANNELS} \ --name=$EXPERIMENT_NAME \ --chip_size=416 \ --time_steps=3 \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --method="MultimodalTransformer" \ --gpus "1" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --amp_backend=apex \ --attention_impl=exact \ --tokenizer=linconv \ --use_centered_positives=True \ --use_grid_positives=True \ --num_workers="8" \ --time_span=1y \ --neg_to_pos_ratio=1.0 \ --global_saliency_weight=1.00 \ --global_class_weight=2.00 \ --time_sampling=soft2 \ --batch_size=1 \ --normalize_inputs=1024 \ --temporal_dropout=0.5 # Fresh Toothbrush - 2022-01-29 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop1-20201117 ARCH=smt_it_stm_p8 #CHANNELS="depth,before_after_heatmap|segmentation_heatmap,brush|bare_ground|built_up,blue|green|red|nir|swir16|swir22" CHANNELS="blue|green|red|nir|swir16|swir22" #geowatch stats "$TRAIN_FPATH" "$VALI_FPATH" EXPERIMENT_NAME=BOTH_${ARCH}_TA1_RAW_scratch_v64 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="0" python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --channels=${CHANNELS} \ --name=$EXPERIMENT_NAME \ --chip_size=416 \ --time_steps=9 \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --method="MultimodalTransformer" \ --gpus "1" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --amp_backend=apex \ --attention_impl=exact \ --tokenizer=linconv \ --use_centered_positives=True \ --use_grid_positives=True \ --num_workers="8" \ --time_span=1y \ --neg_to_pos_ratio=1.0 \ --global_saliency_weight=1.00 \ --global_class_weight=1.00 \ --time_sampling=soft2 \ --batch_size=1 \ --normalize_inputs=1024 \ --arch_name=$ARCH \ --temporal_dropout=0.5 # Fine Tune For BAS TA-1 Transfer Learning - 2022-02-02 BAS_PRETRAINED_MODEL_FPATH="$DVC_DPATH/models/fusion/SC-20201117/BAS_smt_it_stm_p8_L1_raw_v53/BAS_smt_it_stm_p8_L1_raw_v53_epoch=3-step=85011.pt" DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop1-20201117 ARCH=smt_it_stm_p8 CHANNELS="blue|green|red|nir|swir16|swir22" EXPERIMENT_NAME=BAS_${ARCH}_TA1_xfer53_v65 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="0" python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --channels=${CHANNELS} \ --name=$EXPERIMENT_NAME \ --chip_size=416 \ --time_steps=9 \ --learning_rate=1e-4 \ --optimizer=SGD \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --method="MultimodalTransformer" \ --gpus "1" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --amp_backend=apex \ --attention_impl=exact \ --tokenizer=linconv \ --use_grid_positives=True \ --use_centered_positives=True \ --neg_to_pos_ratio=0.25 \ --global_class_weight=0.0 \ --global_saliency_weight=1.0 \ --time_span=1y \ --time_sampling=hardish \ --num_workers=8 \ --arch_name=$ARCH \ --init="$BAS_PRETRAINED_MODEL_FPATH" # Fine Tune For SC TA-1 Transfer Learning - 2022-02-02 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' DATASET_CODE=Drop1-20201117 ARCH=smt_it_stm_p8 CHANNELS="blue|green|red|nir|swir16|swir22" SC_PRETRAINED_MODEL_FPATH="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" EXPERIMENT_NAME=SC_${ARCH}_TA1_xfer55_v66 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="1" python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --channels=${CHANNELS} \ --name=$EXPERIMENT_NAME \ --chip_size=320 \ --time_steps=21 \ --learning_rate=1e-4 \ --optimizer=SGD \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --method="MultimodalTransformer" \ --gpus "1" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --amp_backend=apex \ --attention_impl=exact \ --tokenizer=linconv \ --use_centered_positives=True \ --use_grid_positives=True \ --num_workers=8 \ --global_saliency_weight=0.00 \ --global_class_weight=1.00 \ --time_span=1y \ --time_sampling=hardish \ --batch_size=1 \ --arch_name=$ARCH \ --init="$SC_PRETRAINED_MODEL_FPATH" # Fine Tune For SC TA-1 Transfer Learning (with some team features) - 2022-02-04 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' DATASET_CODE=Drop1-20201117 ARCH=smt_it_stm_p8 CHANNELS="forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field,blue|green|red|nir|swir16|swir22" SC_PRETRAINED_MODEL_FPATH="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" EXPERIMENT_NAME=SC_${ARCH}_TA1_xfer55_v67 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="1" python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --channels=${CHANNELS} \ --name=$EXPERIMENT_NAME \ --chip_size=320 \ --time_steps=16 \ --learning_rate=1e-4 \ --optimizer=SGD \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --method="MultimodalTransformer" \ --gpus "1" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --amp_backend=apex \ --attention_impl=exact \ --tokenizer=linconv \ --use_centered_positives=True \ --use_grid_positives=True \ --num_workers=8 \ --global_saliency_weight=0.00 \ --global_class_weight=1.00 \ --time_span=1y \ --time_sampling=hardish \ --batch_size=1 \ --arch_name=$ARCH \ --init="$SC_PRETRAINED_MODEL_FPATH" # Fine Tune For SC TA-1 Transfer Learning (with some team features) - 2022-02-04 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' DATASET_CODE=Drop1-20201117 ARCH=smt_it_stm_p8 CHANNELS="forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field,blue|green|red|nir|swir16|swir22" SC_PRETRAINED_MODEL_FPATH="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" EXPERIMENT_NAME=SC_${ARCH}_TA1_xfer55_v68 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="0" python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --channels=${CHANNELS} \ --name=$EXPERIMENT_NAME \ --chip_size=320 \ --time_steps=16 \ --learning_rate=3e-4 \ --optimizer=SGD \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --method="MultimodalTransformer" \ --gpus "1" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --amp_backend=apex \ --attention_impl=exact \ --tokenizer=linconv \ --use_centered_positives=True \ --use_grid_positives=True \ --num_workers=8 \ --global_saliency_weight=0.00 \ --global_class_weight=1.00 \ --time_span=1y \ --time_sampling=hardish \ --batch_size=1 \ --arch_name=$ARCH \ --init="$SC_PRETRAINED_MODEL_FPATH" # Fine Tune For SC TA-1 Transfer Learning (with some team features) - 2022-02-04 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' DATASET_CODE=Drop1-20201117 ARCH=smt_it_stm_p8 CHANNELS="forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field,blue|green|red|nir|swir16|swir22" SC_PRETRAINED_MODEL_FPATH="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" EXPERIMENT_NAME=SC_${ARCH}_TA1_xfer55_v69 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="1" python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --channels=${CHANNELS} \ --name=$EXPERIMENT_NAME \ --chip_size=320 \ --time_steps=16 \ --learning_rate=1e-3 \ --optimizer=SGD \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --method="MultimodalTransformer" \ --gpus "1" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --amp_backend=apex \ --attention_impl=exact \ --tokenizer=linconv \ --use_centered_positives=True \ --use_grid_positives=True \ --num_workers=8 \ --global_saliency_weight=0.00 \ --global_class_weight=1.00 \ --time_span=1y \ --time_sampling=hardish \ --batch_size=1 \ --arch_name=$ARCH \ --init="/home/joncrall/data/dvc-repos/smart_watch_dvc/models/fusion/SC-20201117/SC_smt_it_stm_p8_TA1_xfer55_v68/SC_smt_it_stm_p8_TA1_xfer55_v68_epoch=19-step=40959.pt" # Fine Tune For SC TA-1 Transfer Learning (with some team features) - 2022-02-04 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' DATASET_CODE=Drop1-20201117 ARCH=smt_it_stm_p8 CHANNELS="forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field,blue|green|red|nir|swir16|swir22" SC_PRETRAINED_MODEL_FPATH="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" EXPERIMENT_NAME=SC_${ARCH}_TA1_xfer55_v70 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="0" python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --channels=${CHANNELS} \ --name=$EXPERIMENT_NAME \ --chip_size=320 \ --time_steps=16 \ --learning_rate=1e-3 \ --optimizer=SGD \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --method="MultimodalTransformer" \ --gpus "1" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --amp_backend=apex \ --attention_impl=exact \ --tokenizer=linconv \ --use_centered_positives=True \ --use_grid_positives=True \ --num_workers=8 \ --global_saliency_weight=0.00 \ --global_class_weight=1.00 \ --time_span=1y \ --time_sampling=hardish \ --batch_size=1 \ --arch_name=$ARCH \ --init="/home/joncrall/data/dvc-repos/smart_watch_dvc/models/fusion/SC-20201117/SC_smt_it_stm_p8_TA1_xfer55_v68/SC_smt_it_stm_p8_TA1_xfer55_v68_epoch=19-step=40959.pt" # --- horologic --- # DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json ARCH=smt_it_stm_p8 __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' CHANNELS="blue|green|red|nir|swir16|swir22,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" python -m geowatch.tasks.fusion.fit \ --config $WORKDIR/configs/common_20201117.yaml \ --channels=${CHANNELS} \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --saliency_loss='focal' \ --class_loss='dicefocal' \ --batch_size=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --name="BAS-Template" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --draw_interval=5000m \ --num_draw=0 \ --chip_size=256 \ --time_steps=5 \ --tokenizer=dwcnn \ --optim=AdamW \ --method="MultimodalTransformer" \ --gpus "1" \ --amp_backend=apex \ --arch_name=$ARCH \ --dump $WORKDIR/configs/BAS_20220205.yaml DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_c001_v071 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="0" python -m geowatch.tasks.fusion.fit \ --default_root_dir=$DEFAULT_ROOT_DIR \ --name=$EXPERIMENT_NAME \ --config $WORKDIR/configs/BAS_20220205.yaml \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --optim=AdamW DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_c001_v072 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="1" python -m geowatch.tasks.fusion.fit \ --default_root_dir=$DEFAULT_ROOT_DIR \ --name=$EXPERIMENT_NAME \ --config $WORKDIR/configs/BAS_20220205.yaml \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --optim=SGD DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_c001_v073 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="2" python -m geowatch.tasks.fusion.fit \ --default_root_dir=$DEFAULT_ROOT_DIR \ --name=$EXPERIMENT_NAME \ --config $WORKDIR/configs/BAS_20220205.yaml \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --optim=AdamW \ --init="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_c001_v074 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="3" python -m geowatch.tasks.fusion.fit \ --default_root_dir=$DEFAULT_ROOT_DIR \ --name=$EXPERIMENT_NAME \ --config $WORKDIR/configs/BAS_20220205.yaml \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --optim=SGD \ --init="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" # On Namek DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_c001_v075 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="2" python -m geowatch.tasks.fusion.fit \ --default_root_dir=$DEFAULT_ROOT_DIR \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --saliency_loss='focal' \ --name=$EXPERIMENT_NAME \ --class_loss='dicefocal' \ --config $WORKDIR/configs/BAS_20220205.yaml \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --optim=AdamW DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_c001_v076 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="3" python -m geowatch.tasks.fusion.fit \ --default_root_dir=$DEFAULT_ROOT_DIR \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --name=$EXPERIMENT_NAME \ --config $WORKDIR/configs/BAS_20220205.yaml \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --optim=AdamW \ --init="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" # --- toothbrush --- #/home/joncrall/data/dvc-repos/smart_watch_dvc/models/fusion/SC-20201117/SC_smt_it_stm_p8_TA1_xfer55_v70/pred_SC_smt_it_stm_p8_TA1_xfer55_v70_epoch=42-step=88063/Drop2-Aligned-TA1-2022-01_combo_L_nowv_vali.kwcoco/pred.kwcoco.json kwcoco subset --src "$KWCOCO_BUNDLE_DPATH/combo_L.kwcoco.json" \ --dst "$KWCOCO_BUNDLE_DPATH/combo_L_nowv.kwcoco.json" \ --select_images '.sensor_coarse != "WV"' # Train + Fine Tune on Korea SUBMISSION CANDIDATE DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' DATASET_CODE=Drop1-20201117 ARCH=smt_it_stm_p8 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME CHANNELS="forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field,blue|green|red|nir|swir16|swir22" SC_PRETRAINED_MODEL_FPATH="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" EXPERIMENT_NAME=SC_TA1_ALL_REGIONS_c002_v077 PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="0" python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --channels=${CHANNELS} \ --name=$EXPERIMENT_NAME \ --chip_size=384 \ --time_steps=5 \ --learning_rate=1e-3 \ --optimizer=RAdam \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --method="MultimodalTransformer" \ --gpus "1" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --amp_backend=apex \ --attention_impl=exact \ --tokenizer=linconv \ --use_centered_positives=True \ --use_grid_positives=False \ --num_workers=8 \ --global_saliency_weight=0.00 \ --global_class_weight=1.00 \ --time_span=1y \ --time_sampling=soft2+distribute \ --batch_size=1 \ --arch_name=$ARCH \ --num_draw=1 \ --init="/home/joncrall/data/dvc-repos/smart_watch_dvc/models/fusion/SC-20201117/SC_smt_it_stm_p8_TA1_xfer55_v70/SC_smt_it_stm_p8_TA1_xfer55_v70_epoch=42-step=88063.pt" # Train + Fine Tune on Korea SUBMISSION CANDIDATE DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' DATASET_CODE=Drop1-20201117 ARCH=smt_it_stm_p8 CHANNELS="forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field,blue|green|red|nir|swir16|swir22" SC_PRETRAINED_MODEL_FPATH="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" EXPERIMENT_NAME=SC_TA1_ALL_REGIONS_c002_v078 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="1" python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --channels=${CHANNELS} \ --name=$EXPERIMENT_NAME \ --chip_size=384 \ --time_steps=5 \ --learning_rate=1e-3 \ --optimizer=RAdam \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --method="MultimodalTransformer" \ --gpus "1" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --amp_backend=apex \ --attention_impl=exact \ --tokenizer=linconv \ --use_centered_positives=True \ --use_grid_positives=True \ --num_workers=8 \ --global_saliency_weight=0.10 \ --global_class_weight=1.00 \ --time_span=1y \ --time_sampling=soft2+distribute \ --batch_size=1 \ --arch_name=$ARCH \ --num_draw=1 \ --init="/home/joncrall/data/dvc-repos/smart_watch_dvc/models/fusion/SC-20201117/SC_smt_it_stm_p8_TA1_xfer55_v70/SC_smt_it_stm_p8_TA1_xfer55_v70_epoch=42-step=88063.pt" # Horologic linconv DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_c001_v079 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="0" python -m geowatch.tasks.fusion.fit \ --default_root_dir=$DEFAULT_ROOT_DIR \ --name=$EXPERIMENT_NAME \ --tokenizer=linconv \ --config $WORKDIR/configs/BAS_20220205.yaml \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --optim=AdamW DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_c001_v080 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="1" python -m geowatch.tasks.fusion.fit \ --default_root_dir=$DEFAULT_ROOT_DIR \ --name=$EXPERIMENT_NAME \ --tokenizer=linconv \ --config $WORKDIR/configs/BAS_20220205.yaml \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --optim=SGD DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_c001_v081 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="2" python -m geowatch.tasks.fusion.fit \ --default_root_dir=$DEFAULT_ROOT_DIR \ --name=$EXPERIMENT_NAME \ --tokenizer=linconv \ --config $WORKDIR/configs/BAS_20220205.yaml \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --optim=AdamW \ --init="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_c001_v082 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="3" python -m geowatch.tasks.fusion.fit \ --default_root_dir=$DEFAULT_ROOT_DIR \ --name=$EXPERIMENT_NAME \ --tokenizer=linconv \ --config $WORKDIR/configs/BAS_20220205.yaml \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --optim=SGD \ --init="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" # toothbrush - fine-tune on korea DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_KOREA_v083 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="1" python -m geowatch.tasks.fusion.fit \ --default_root_dir=$DEFAULT_ROOT_DIR \ --train_dataset=$TRAIN_FPATH \ --vali_dataset=$VALI_FPATH \ --test_dataset=$TEST_FPATH \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --learning_rate=3e-4 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --name=$EXPERIMENT_NAME \ --config $WORKDIR/configs/BAS_20220205.yaml \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --num_draw=8 \ --optim=AdamW \ --normalize_inputs='transfer' \ --init="$DVC_DPATH/models/fusion/SC-20201117/BAS_TA1_c001_v076/BAS_TA1_c001_v076_epoch=90-step=186367.pt" DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_nowv_vali.kwcoco.json DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_ALL_REGIONS_v084 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="1" python -m geowatch.tasks.fusion.fit \ --default_root_dir=$DEFAULT_ROOT_DIR \ --train_dataset=$TRAIN_FPATH \ --vali_dataset=$VALI_FPATH \ --test_dataset=$TEST_FPATH \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --learning_rate=3e-4 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --name=$EXPERIMENT_NAME \ --config $WORKDIR/configs/BAS_20220205.yaml \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --num_draw=8 \ --optim=AdamW \ --normalize_inputs='transfer' \ --init="$DVC_DPATH/models/fusion/SC-20201117/BAS_TA1_KOREA_v083/BAS_TA1_KOREA_v083_epoch=5-step=11189.pt" # ------ DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_vali.kwcoco.json DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_v085 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME export CUDA_VISIBLE_DEVICES="1" __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --channels="forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field,blue|green|red|nir|swir16|swir22" \ --global_class_weight=0.01 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=0.25 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --batch_size=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --time_sampling=soft2 \ --attention_impl=exact \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --draw_interval=5000m \ --num_draw=1 \ --chip_size=448 \ --time_steps=5 \ --time_span=7m \ --tokenizer=linconv \ --num_workers=8 \ --optim=AdamW \ --method="MultimodalTransformer" \ --gpus "1" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --chip_overlap=0.0 \ --amp_backend=apex \ --init="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_vali.kwcoco.json DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_v086 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME export CUDA_VISIBLE_DEVICES="0" __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --channels="forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field,blue|green|red|nir|swir16|swir22" \ --global_class_weight=0.01 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=0.25 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --batch_size=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --time_sampling=soft2 \ --attention_impl=exact \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --draw_interval=5000m \ --num_draw=1 \ --chip_size=448 \ --time_steps=5 \ --time_span=7m \ --tokenizer=linconv \ --optim=AdamW \ --method="MultimodalTransformer" \ --gpus "1" \ --num_workers=8 \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --chip_overlap=0.0 \ --amp_backend=apex \ --init="noop" # ------ horologic DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_vali.kwcoco.json DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_v087 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME export CUDA_VISIBLE_DEVICES="0" __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --channels="forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field,blue|green|red|nir|swir16|swir22" \ --global_class_weight=0.01 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=0.25 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --batch_size=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --time_sampling=soft2 \ --attention_impl=exact \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --draw_interval=5000m \ --num_draw=1 \ --chip_size=384 \ --time_steps=5 \ --time_span=7m \ --tokenizer=linconv \ --num_workers=5 \ --optim=AdamW \ --method="MultimodalTransformer" \ --gpus "1" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --chip_overlap=0.0 \ --amp_backend=apex \ --init="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_vali.kwcoco.json DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_v088 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME export CUDA_VISIBLE_DEVICES="1" __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --channels="forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field,blue|green|red|nir|swir16|swir22" \ --global_class_weight=0.01 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=0.25 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --batch_size=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --time_sampling=soft2 \ --attention_impl=exact \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --draw_interval=5000m \ --num_draw=1 \ --chip_size=384 \ --time_steps=5 \ --time_span=7m \ --tokenizer=linconv \ --optim=AdamW \ --method="MultimodalTransformer" \ --gpus "1" \ --num_workers=5 \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --chip_overlap=0.0 \ --amp_backend=apex \ --init="noop" DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_vali.kwcoco.json DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER EXPERIMENT_NAME=BAS_TA1_v089 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME export CUDA_VISIBLE_DEVICES="2" __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --channels="forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field,blue|green|red|nir|swir16|swir22" \ --global_class_weight=0.01 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=0.25 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --batch_size=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --time_sampling=hardish \ --attention_impl=exact \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --draw_interval=5000m \ --num_draw=1 \ --chip_size=384 \ --time_steps=5 \ --time_span=7m \ --tokenizer=linconv \ --num_workers=5 \ --optim=AdamW \ --method="MultimodalTransformer" \ --gpus "1" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --chip_overlap=0.0 \ --amp_backend=apex \ --init="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v55/BOTH_smt_it_stm_p8_L1_DIL_v55_epoch=5-step=53819.pt" DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER KWCOCO_BUNDLE_DPATH=$DVC_DPATH/Drop2-Aligned-TA1-2022-01 TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_L_vali.kwcoco.json DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc EXPERIMENT_NAME=BAS_TA1_v090 DATASET_CODE=Drop1-20201117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME export CUDA_VISIBLE_DEVICES="3" __check__=' geowatch stats $VALI_FPATH $TRAIN_FPATH ' python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20201117.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --channels="forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field,blue|green|red|nir|swir16|swir22" \ --global_class_weight=0.01 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=0.25 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --batch_size=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --time_sampling=hardish \ --attention_impl=exact \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --draw_interval=5000m \ --num_draw=1 \ --chip_size=384 \ --time_steps=5 \ --time_span=7m \ --tokenizer=linconv \ --optim=AdamW \ --method="MultimodalTransformer" \ --gpus "1" \ --num_workers=5 \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --chip_overlap=0.0 \ --amp_backend=apex \ --init="noop" # ------ toothbrush -2020-02-17 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,invariants.0:7,invariants.7,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=BOTH_TA1_COMBO_TINY_p1_v0100 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.001 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p1 \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,invariants.0:8,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=BOTH_TA1_COMBO_TINY_p2w_v0101 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.001 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p2w \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,invariants.0:8,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=BOTH_TA1_COMBO_TINY_p2w_v0102 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.001 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p2w \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" # ------ horologic export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=BOTH_TA1_COMBO_TINY_p2w_raw_xfer_v0103 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.001 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p2w \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=2 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" INITIAL_STATE="noop" EXPERIMENT_NAME=BOTH_TA1_COMBO_TINY_p2w_raw_scratch_v0104 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.001 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p2w \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=BOTH_TA1_COMBO_TINY_p2w_raw_xfer_v2_v0105 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.001 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p2w \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=3 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" INITIAL_STATE="noop" EXPERIMENT_NAME=BOTH_TA1_COMBO_TINY_p2w_raw_scratch_v2_v0106 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.001 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p2w \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" # toothbrush export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,invariants.0:7,invariants.7,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="noop" EXPERIMENT_NAME=BOTH_TA1_COMBO_TINY_p1_scratch_v0107 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.001 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p1 \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,invariants.0:8,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="noop" EXPERIMENT_NAME=BOTH_TA1_COMBO_TINY_p2w_scratch_v0108 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.001 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p2w \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" # namek export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="matseg_0|matseg_1|matseg_2|matseg_3|invariants.0:8|forest|built_up|water|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="noop" EXPERIMENT_NAME=BOTH_TA1_p8_scratch_fused_norgb_v0109 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --global_change_weight=0.00 \ --neg_to_pos_ratio=0.25 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=7e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=256 \ --time_steps=5 \ --chip_overlap=0.0 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=40 \ --patience=40 \ --max_epoch_length=none \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 echo "CUDA_VISIBLE_DEVICES = $CUDA_VISIBLE_DEVICES" DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3|invariants.0:8|forest|built_up|water" INITIAL_STATE="noop" EXPERIMENT_NAME=BOTH_TA1_p8_scratch_2stream_v0110 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --global_change_weight=0.00 \ --neg_to_pos_ratio=0.25 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=7e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=256 \ --time_steps=5 \ --chip_overlap=0.0 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=40 \ --patience=40 \ --max_epoch_length=none \ --draw_interval=5000m \ --num_draw=1 \ --amp_backend=apex \ --init="$INITIAL_STATE" # yardrat DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" INITIAL_STATE="noop" EXPERIMENT_NAME=BASELINE_EXPERIMENT_V111 python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --global_change_weight=0.00 \ --neg_to_pos_ratio=0.25 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=7e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=256 \ --time_steps=5 \ --chip_overlap=0.0 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=40 \ --patience=40 \ --max_epoch_length=none \ --draw_interval=5000m \ --num_draw=1 \ --amp_backend=apex \ --init="$INITIAL_STATE" # yardrat DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" INITIAL_STATE="noop" EXPERIMENT_NAME=BASELINE_EXPERIMENT_nowv_V111 python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --global_change_weight=0.00 \ --neg_to_pos_ratio=0.25 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=7e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=256 \ --time_steps=5 \ --chip_overlap=0.0 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=40 \ --patience=40 \ --max_epoch_length=none \ --draw_interval=5000m \ --num_draw=1 \ --amp_backend=apex \ --init="$INITIAL_STATE" ### horologic --- 2022-02-27 # ------ horologic export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22|matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_matearly_nowv_p2w_V112 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_matlate_nowv_p8_V113 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=2 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_matlate_nowv_p2w_V114 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p2w \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=3 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22|matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_matearly_nowv_p2w_V115 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p2w \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" ### Toothbrush 2022-02-27 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22|matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_matearly_nowv_p2w_V116 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=3e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_matlate_nowv_p8_V117 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=3e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" ### Toothbrush 2022-02-28 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22|matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_matearly_nowv_p2w_V118 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --global_change_weight=0.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=3e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=SGD \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=40 \ --patience=40 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_matlate_nowv_p8_V119 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --global_change_weight=0.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=3e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=SGD \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=40 \ --patience=40 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" # ooo export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" INITIAL_STATE="noop" EXPERIMENT_NAME=BASELINE_EXPERIMENT_V120 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --global_change_weight=0.00 \ --neg_to_pos_ratio=0.25 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=7e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=256 \ --time_steps=5 \ --chip_overlap=0.0 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=40 \ --patience=40 \ --max_epoch_length=none \ --draw_interval=5000m \ --num_draw=1 \ --amp_backend=apex \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16" INITIAL_STATE="noop" EXPERIMENT_NAME=BASELINE_EXPERIMENT_V121 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.1 \ --global_saliency_weight=1.00 \ --global_change_weight=0.00 \ --neg_to_pos_ratio=0.25 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=7e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=256 \ --time_steps=5 \ --chip_overlap=0.0 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=40 \ --patience=40 \ --max_epoch_length=none \ --draw_interval=5000m \ --num_draw=1 \ --amp_backend=apex \ --init="$INITIAL_STATE" ### Toothbrush 2022-02-28 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22|matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_matearly_nowv_p2w_V122 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --global_change_weight=0.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=3e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=SGD \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=40 \ --patience=40 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_matlate_nowv_p8_V123 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --global_change_weight=0.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=3e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=SGD \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=40 \ --patience=40 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="$INITIAL_STATE" #### GENERAL 2022-03-01 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json EXPERIMENT_NAME=BaselineTemplate2022-03-01 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt export CUDA_VISIBLE_DEVICES="0" python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="blue|green|red|nir|swir16|swir22" \ --global_change_weight=0.00 \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --optimizer=AdamW \ --learning_rate=3e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="noop" \ --package_fpath="$PACKAGE_FPATH" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --num_sanity_val_steps=0 \ --dump "$WORKDIR/configs/common_20220301.yaml" ### Horologic 2022-03-01 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_M_late_nowv_p8_shorter_V124 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220301.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-5 \ --attention_impl=exact \ --chip_overlap=0.5 \ --optimizer=AdamW \ --max_epoch_length=256 \ --arch_name=smt_it_stm_p8 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_M_late_nowv_p8_scratch_shorter_V125 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220301.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-5 \ --attention_impl=exact \ --chip_overlap=0.3 \ --optimizer=AdamW \ --max_epoch_length=256 \ --arch_name=smt_it_stm_p8 \ --init="noop" export CUDA_VISIBLE_DEVICES=2 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_M_late_nowv_p8_shorter_sgd_V126 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220301.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=1e-3 \ --attention_impl=exact \ --chip_overlap=0.3 \ --optimizer=SGD \ --max_epoch_length=256 \ --arch_name=smt_it_stm_p8 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=3 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_M_late_nowv_p8_scratch_shorter_sgd_V127 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220301.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=1e-3 \ --attention_impl=exact \ --chip_overlap=0.3 \ --optimizer=SGD \ --max_epoch_length=256 \ --arch_name=smt_it_stm_p8 \ --init="noop" ### Toothbrush 2022-03-01 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_late_nowv_p8_shorter_V128 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220301.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-5 \ --attention_impl=exact \ --chip_overlap=0.3 \ --optimizer=AdamW \ --max_epoch_length=256 \ --arch_name=smt_it_stm_p8 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_late_nowv_p24_shorter_V129 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220301.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --chip_size=256 \ --time_steps=3 \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-5 \ --attention_impl=exact \ --chip_overlap=0.3 \ --optimizer=AdamW \ --max_epoch_length=256 \ --arch_name=smt_it_stm_s24 \ --init="$INITIAL_STATE" ### Toothbrush 2022-03-02 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_only_nowv_p8_V130 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220301.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=0.0003 \ --attention_impl=exact \ --chip_overlap=0.3 \ --optimizer=AdamW \ --max_epoch_length=none \ --arch_name=smt_it_stm_p8 \ --num_draw=8 \ --draw_interval=10m \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_only_nowv_p12_V131 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220301.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --chip_size=256 \ --time_steps=5 \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=0.003 \ --attention_impl=exact \ --chip_overlap=0.3 \ --optimizer=SGD \ --max_epoch_length=none \ --arch_name=smt_it_stm_n12 \ --num_draw=8 \ --draw_interval=10m \ --init="$INITIAL_STATE" \ --auto_lr_find=True ### Toothbrush 2022-03-03 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red,nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,depth,panchromatic" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_SC_DM_wv_p8_V132 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_change_weight=0.0 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --neg_to_pos_ratio=1.0 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=3e-5 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.5 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=4 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --use_conditional_classes=True \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red,nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,depth,panchromatic" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_SC_DM_wv_p8_V133 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_class_weight=1.0 \ --global_change_weight=0.0 \ --global_saliency_weight=0.00 \ --neg_to_pos_ratio=0.5 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-5 \ --weight_decay=1e-8 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=224 \ --time_steps=11 \ --chip_overlap=0.0 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=160 \ --patience=160 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=4 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --use_conditional_classes=True \ --init="$INITIAL_STATE" ### Horologic 2022-03-03 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red,nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,depth,panchromatic" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_BOTH_DM_wv_p8_V134 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_change_weight=0.0 \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=0.5 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-5 \ --weight_decay=1e-8 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=224 \ --time_steps=11 \ --chip_overlap=0.0 \ --time_sampling=hardish \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=120 \ --patience=120 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=0 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --use_conditional_classes=True \ --min_spacetime_weight=0.5 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red,nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,depth,panchromatic" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_BOTH_DM_wv_p8_V135 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_change_weight=0.0 \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=0.5 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=8 \ --learning_rate=1e-5 \ --weight_decay=1e-8 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=224 \ --time_steps=11 \ --chip_overlap=0.0 \ --time_sampling=hardish \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=120 \ --patience=120 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=0 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --use_conditional_classes=True \ --min_spacetime_weight=0.5 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=2 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red,nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,depth,panchromatic" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_DM_wv_p8_V136 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_change_weight=0.0 \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=0.5 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=8 \ --learning_rate=1e-4 \ --weight_decay=1e-8 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=224 \ --time_steps=11 \ --chip_overlap=0.0 \ --time_sampling=hardish \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=120 \ --patience=120 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=0 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --use_conditional_classes=True \ --min_spacetime_weight=0.5 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=3 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red,nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,depth,panchromatic" INITIAL_STATE="$DVC_DPATH/models/fusion/SC-20201117/BOTH_smt_it_stm_p8_L1_DIL_v52/BOTH_smt_it_stm_p8_L1_DIL_v52_epoch=13-step=55215.pt" EXPERIMENT_NAME=FUSION_EXPERIMENT_DM_wv_p8_V137 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_change_weight=0.0 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --neg_to_pos_ratio=0.5 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --gpus "1" \ --batch_size=1 \ --accumulate_grad_batches=16 \ --learning_rate=1e-4 \ --weight_decay=1e-8 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=224 \ --time_steps=11 \ --chip_overlap=0.0 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=120 \ --patience=120 \ --max_epoch_length=1024 \ --draw_interval=5000m \ --num_draw=2 \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --use_conditional_classes=True \ --min_spacetime_weight=0.5 \ --init="$INITIAL_STATE" # ------------------------------------- export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V138 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --accumulate_grad_batches=8 \ --chip_size=128 \ --time_steps=48 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-3 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --max_epoch_length=1024 \ --arch_name=smt_it_stm_p8 \ --num_draw=8 \ --draw_interval=5m \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_SC_ML_V139 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --accumulate_grad_batches=32 \ --chip_size=128 \ --time_steps=32 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=1e-4 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --max_epoch_length=1024 \ --arch_name=smt_it_stm_p16 \ --num_draw=8 \ --draw_interval=5m \ --init="$INITIAL_STATE" # ------------------------------------- horologic 2022-03-08 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V140 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --accumulate_grad_batches=8 \ --chip_size=128 \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-3 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --max_epoch_length=1024 \ --time_sampling=hardish \ --arch_name=smt_it_stm_p8 \ --num_draw=8 \ --draw_interval=5m \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=/flash/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V141 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --accumulate_grad_batches=8 \ --chip_size=128 \ --time_steps=14 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-3 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --max_epoch_length=1024 \ --time_sampling=hardish \ --arch_name=smt_it_stm_p8 \ --num_draw=2 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=2 #DVC_DPATH=$(geowatch_dvc) DVC_DPATH=/flash/smart_watch_dvc #$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V142 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --accumulate_grad_batches=8 \ --chip_size=128 \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-4 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --max_epoch_length=1024 \ --time_sampling=hardish \ --arch_name=smt_it_stm_p8 \ --num_draw=8 \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=3 DVC_DPATH=/flash/smart_watch_dvc WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V143 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --accumulate_grad_batches=8 \ --chip_size=128 \ --time_steps=14 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-4 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --max_epoch_length=1024 \ --time_sampling=hardish \ --arch_name=smt_it_stm_p8 \ --num_draw=2 \ --init="$INITIAL_STATE" # ------------------------------------- toothbrush 2022-03-08 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V144 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --accumulate_grad_batches=8 \ --chip_size=128 \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-4 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --max_epoch_length=1024 \ --time_sampling=hardish \ --arch_name=smt_it_stm_p8 \ --num_draw=8 \ --draw_interval=5m \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V145 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --accumulate_grad_batches=8 \ --chip_size=128 \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=1e-4 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --max_epoch_length=1024 \ --time_sampling=hardish \ --arch_name=smt_it_stm_p8 \ --num_draw=8 \ --draw_interval=5m \ --init="$INITIAL_STATE" # ------------------------------------- toothbrush 2022-03-10 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V146 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --accumulate_grad_batches=8 \ --chip_size=128 \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-4 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --max_epoch_length=2048 \ --time_sampling=hardish \ --arch_name=smt_it_stm_p8 \ --num_draw=8 \ --draw_interval=1m \ --dist_weight=True \ --modulate_class_weights="positive*0,negative*0,background*0.001,No Activity*0.0,Post Construction*0.0001" \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V147 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --batch_size=1 \ --accumulate_grad_batches=8 \ --chip_size=128 \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=1e-3 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=SGD \ --max_epoch_length=2048 \ --time_sampling=hardish \ --arch_name=smt_it_stm_p8 \ --multimodal_reduce=mean \ --num_draw=8 \ --draw_interval=100m \ --dist_weight=True \ --modulate_class_weights="positive*0,negative*0,background*1e-3,No Activity*1e-9,Post Construction*1e-2" \ --stream_channels=32 \ --init="$INITIAL_STATE" # ------------------------------------- toothbrush 2022-03-10 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V148 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --accumulate_grad_batches=8 \ --chip_size=128 \ --decoder=segmenter \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-4 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --max_epoch_length=2048 \ --time_sampling=hardish \ --arch_name=smt_it_stm_p8 \ --num_draw=8 \ --draw_interval=1m \ --dist_weight=True \ --modulate_class_weights="positive*0,negative*0,background*0.001,No Activity*0.0,Post Construction*0.0001" \ --init="$INITIAL_STATE" # ------------------------------------- horologic 2022-03-12 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V149 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --accumulate_grad_batches=8 \ --chip_size=128 \ --decoder=segmenter \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-4 \ --weight_decay=1e-8 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --max_epoch_length=2048 \ --time_sampling=hardish \ --arch_name=smt_it_stm_p8 \ --num_draw=8 \ --draw_interval=100m \ --dist_weight=True \ --modulate_class_weights="positive*0,negative*0,background*0.001,No Activity*0.0,Post Construction*0.0001" \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V150 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --accumulate_grad_batches=8 \ --chip_size=128 \ --decoder=segmenter \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-4 \ --weight_decay=1e-8 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --max_epoch_length=2048 \ --time_sampling=hardish \ --arch_name=smt_it_stm_p8 \ --num_draw=8 \ --draw_interval=100m \ --dist_weight=True \ --modulate_class_weights="" \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=2 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V151 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --accumulate_grad_batches=8 \ --chip_size=128 \ --decoder=segmenter \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-4 \ --weight_decay=1e-7 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --max_epoch_length=2048 \ --time_sampling=hardish \ --arch_name=smt_it_stm_p8 \ --num_draw=8 \ --draw_interval=100m \ --dist_weight=True \ --modulate_class_weights="" \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=3 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V152 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --accumulate_grad_batches=8 \ --chip_size=256 \ --decoder=segmenter \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-4 \ --weight_decay=1e-7 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --max_epoch_length=2048 \ --time_sampling=hardish \ --arch_name=smt_it_stm_p8 \ --num_draw=8 \ --draw_interval=100m \ --dist_weight=True \ --modulate_class_weights="positive*0,negative*0,background*0.001,No Activity*0.0,Post Construction*0.0001" \ --init="$INITIAL_STATE" # ------------------------------------- toothbrush 2022-03-14 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,depth,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V153 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --accumulate_grad_batches=8 \ --chip_size=128 \ --decoder=segmenter \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-4 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=RAdam \ --max_epoch_length=2048 \ --time_sampling=hardish \ --arch_name=smt_it_stm_p4 \ --num_draw=8 \ --draw_interval=100m \ --dist_weight=True \ --modulate_class_weights="positive*0,negative*0,background*0.001,No Activity*0.0,Post Construction*0.0001" \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red,nir|swir16|swir22,depth,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V154 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --accumulate_grad_batches=8 \ --chip_size=128 \ --decoder=segmenter \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=0.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-4 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=RAdam \ --max_epoch_length=2048 \ --time_sampling=hardish \ --arch_name=smt_it_stm_p2 \ --num_draw=8 \ --draw_interval=100m \ --dist_weight=True \ --modulate_class_weights="positive*0,negative*0,background*0.001,No Activity*0.0,Post Construction*0.0001" \ --init="$INITIAL_STATE" # ------------------------------------- toothbrush 2022-03-17 #TODO: # CHANNELS="(S2,L8,WV):blue|green|red,(S2,L8):nir|swir16|swir22,(WV):depth|pan,(WV):depth|red|green|blue,(S2,L8):matseg_0|matseg_1|matseg_2|matseg_3" export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red,nir|swir16|swir22,depth,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V155 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --accumulate_grad_batches=24 \ --chip_size=224 \ --decoder=segmenter \ --tokenizer=dwcnn \ --time_steps=5 \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-4 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=RAdam \ --max_epoch_length=None \ --time_sampling=hardish \ --arch_name=smt_it_sm_p2 \ --num_draw=8 \ --draw_interval=100m \ --dist_weight=True \ --stream_channels=64 \ --modulate_class_weights="positive*0,negative*0,background*0.1,No Activity*0.0,Post Construction*0.0,Site Preparation*2.0" \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,depth,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE=$DVC_DPATH/models/fusion/eval3_candidates/packages/FUSION_EXPERIMENT_ML_V146/FUSION_EXPERIMENT_ML_V146_epoch=67-step=17407.pt EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V156 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --neg_to_pos_ratio=0.5 \ --accumulate_grad_batches=16 \ --chip_size=224 \ --decoder=segmenter \ --tokenizer=dwcnn \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=3e-4 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=RAdam \ --max_epoch_length=None \ --time_sampling=hardish \ --arch_name=smt_it_sm_m24 \ --max_epoch_length=4096 \ --num_draw=8 \ --draw_interval=100m \ --dist_weight=True \ --stream_channels=64 \ --modulate_class_weights="positive*0,negative*0,background*0.1,No Activity*0.0,Post Construction*0.0,Site Preparation*2.0" \ --init="$INITIAL_STATE" # ------------------------------------- toothbrush 2022-03-19 #TODO: # CHANNELS="(S2,L8,WV):blue|green|red,(S2,L8):nir|swir16|swir22,(WV):depth|pan,(WV):depth|red|green|blue,(S2,L8):matseg_0|matseg_1|matseg_2|matseg_3" #export CUDA_VISIBLE_DEVICES=1 #DVC_DPATH=$(geowatch_dvc) #WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER #DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 #KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE #TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json #VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json #TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json #CHANNELS="blue|green|red|nir|swir16|swir22,depth,matseg_0|matseg_1|matseg_2|matseg_3" #INITIAL_STATE=$DVC_DPATH/models/fusion/eval3_candidates/packages/FUSION_EXPERIMENT_ML_V156/FUSION_EXPERIMENT_ML_V156_epoch=39-step=10239.pt \ #EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V156-cont1 #DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME #python -m geowatch.tasks.fusion.fit \ # --config "$WORKDIR/configs/common_20220303.yaml" \ # --default_root_dir="$DEFAULT_ROOT_DIR" \ # --name=$EXPERIMENT_NAME \ # --train_dataset="$TRAIN_FPATH" \ # --vali_dataset="$VALI_FPATH" \ # --test_dataset="$TEST_FPATH" \ # --use_centered_positives=True \ # --channels="$CHANNELS" \ # --neg_to_pos_ratio=0.5 \ # --accumulate_grad_batches=16 \ # --chip_size=224 \ # --decoder=segmenter \ # --tokenizer=dwcnn \ # --time_steps=7 \ # --global_class_weight=1.0 \ # --global_saliency_weight=1.00 \ # --num_workers=8 \ # --gpus "1" \ # --learning_rate=1e-3 \ # --attention_impl=exact \ # --chip_overlap=0.0 \ # --optimizer=AdamW \ # --time_sampling=hardish \ # --arch_name=smt_it_sm_m24 \ # --max_epoch_length=4096 \ # --num_draw=8 \ # --draw_interval=100m \ # --dist_weight=True \ # --stream_channels=64 \ # --modulate_class_weights="positive*0,negative*0,background*0.2,No Activity*0.0,Post Construction*0.0,Site Preparation*2.0" \ # --init="$INITIAL_STATE" #DVC_DPATH=$(geowatch_dvc) #DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 #EXPT_GROUP_CODE=eval3_candidates #KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE #python -m geowatch.tasks.fusion.repackage gather_checkpoints \ # --dvc_dpath="$DVC_DPATH" \ # --storage_dpath="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/packages" \ # --train_dpath="$DVC_DPATH/training/*/*/*/runs/FUSION_EXPERIMENT_ML_V156-cont1/lightning_logs/version_2/checkpoints/epoch=3-step=1023-v2.ckpt" \ # --mode=copy #DVC_DPATH=$(geowatch_dvc) #DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 #EXPT_GROUP_CODE=eval3_candidates #KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE #ls $DVC_DPATH/training/*/*/*/runs/FUSION_EXPERIMENT_ML_V155-cont1/lightning_logs/*/checkpoints #python -m geowatch.tasks.fusion.repackage gather_checkpoints \ # --dvc_dpath="$DVC_DPATH" \ # --storage_dpath="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/packages" \ # --train_dpath="$DVC_DPATH/training/*/*/*/runs/FUSION_EXPERIMENT_ML_V155-cont1/lightning_logs/version_2/checkpoints/epoch=3-step=1023-v2.ckpt" \ # --mode=copy export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red,nir|swir16|swir22,depth,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE=$DVC_DPATH/models/fusion/eval3_candidates/packages/FUSION_EXPERIMENT_ML_V155/FUSION_EXPERIMENT_ML_V155_epoch=18-step=41628.pt \ EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V155-cont1 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --accumulate_grad_batches=24 \ --chip_size=224 \ --decoder=segmenter \ --tokenizer=linconv \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=1e-2 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --max_epoch_length=None \ --time_sampling=hardish \ --arch_name=smt_it_sm_p2w \ --num_draw=8 \ --draw_interval=1m \ --max_epoch_length=16384 \ --dist_weight=True \ --stream_channels=64 \ --temporal_dropout=0.22 \ --modulate_class_weights="positive*0,negative*0,background*0.2,No Activity*0.0,Post Construction*0.0,Site Preparation*2.0" \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red,nir|swir16|swir22,blue|green|red,depth,panchromatic,matseg_0|matseg_1|matseg_2|matseg_3" INITIAL_STATE=$DVC_DPATH/models/fusion/eval3_candidates/packages/FUSION_EXPERIMENT_ML_V155/FUSION_EXPERIMENT_ML_V155_epoch=18-step=41628.pt #INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V157 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --neg_to_pos_ratio=0.3 \ --accumulate_grad_batches=16 \ --chip_size=196 \ --decoder=segmenter \ --tokenizer=linconv \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=2e-3 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --time_sampling=hardish3 \ --arch_name=smt_it_sm_s12 \ --max_epoch_length=4096 \ --num_draw=8 \ --draw_interval=1m \ --dist_weight=True \ --stream_channels=64 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*0.5,No Activity*0.0,Post Construction*0.0,Site Preparation*2.0" \ --init="$INITIAL_STATE" # ------------------------------------- horologic 2022-03-22 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22|matseg_0|matseg_1|matseg_2|matseg_3,depth" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V158 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --neg_to_pos_ratio=0.3 \ --accumulate_grad_batches=16 \ --chip_size=224 \ --decoder=segmenter \ --tokenizer=rearrange \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=2e-3 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --time_sampling=hardish3 \ --arch_name=smt_it_sm_p8 \ --max_epoch_length=4096 \ --num_draw=8 \ --draw_interval=20m \ --dist_weight=True \ --stream_channels=64 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.0,Site Preparation*1.0" \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red,nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,depth" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V159 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --neg_to_pos_ratio=0.3 \ --accumulate_grad_batches=16 \ --chip_size=224 \ --decoder=segmenter \ --tokenizer=linconv \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=2e-3 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --time_sampling=hardish3 \ --arch_name=smt_it_sm_p8 \ --max_epoch_length=4096 \ --num_draw=8 \ --draw_interval=20m \ --dist_weight=True \ --stream_channels=64 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.0,Site Preparation*1.0" \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=2 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22|matseg_0|matseg_1|matseg_2|matseg_3,depth" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V160 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --neg_to_pos_ratio=0.3 \ --accumulate_grad_batches=16 \ --chip_size=224 \ --decoder=segmenter \ --tokenizer=rearrange \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=2e-3 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=SGD \ --time_sampling=hardish3 \ --arch_name=smt_it_sm_p8 \ --max_epoch_length=4096 \ --num_draw=8 \ --draw_interval=20m \ --dist_weight=True \ --stream_channels=64 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.0,Site Preparation*1.0" \ --init="$INITIAL_STATE" export CUDA_VISIBLE_DEVICES=3 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red,nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,depth" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V161 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --neg_to_pos_ratio=0.3 \ --accumulate_grad_batches=16 \ --chip_size=224 \ --decoder=segmenter \ --tokenizer=linconv \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=2e-3 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=SGD \ --time_sampling=hardish3 \ --arch_name=smt_it_sm_p8 \ --max_epoch_length=4096 \ --num_draw=8 \ --draw_interval=20m \ --dist_weight=True \ --stream_channels=64 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.0,Site Preparation*1.0" \ --init="$INITIAL_STATE" # Hack: to test if segmenter is the issue export CUDA_VISIBLE_DEVICES=2 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop2-Aligned-TA1-2022-02-15 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22|matseg_0|matseg_1|matseg_2|matseg_3,depth" INITIAL_STATE="noop" EXPERIMENT_NAME=FUSION_EXPERIMENT_ML_V158 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config "$WORKDIR/configs/common_20220303.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --use_centered_positives=True \ --channels="$CHANNELS" \ --neg_to_pos_ratio=0.3 \ --accumulate_grad_batches=16 \ --chip_size=224 \ --decoder=mlp \ --tokenizer=rearrange \ --time_steps=7 \ --global_class_weight=1.0 \ --global_saliency_weight=1.00 \ --num_workers=8 \ --gpus "1" \ --learning_rate=2e-3 \ --attention_impl=exact \ --chip_overlap=0.0 \ --optimizer=AdamW \ --time_sampling=hardish3 \ --arch_name=smt_it_sm_p8 \ --max_epoch_length=4096 \ --num_draw=8 \ --draw_interval=20m \ --dist_weight=True \ --stream_channels=64 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.0,Site Preparation*1.0" \ --init="$INITIAL_STATE"