
Paradigm

Reth – Ethereum Execution Client
Security Assessment Report

Version: 2.0

June, 2024

Contents
Introduction 3Disclaimer . 3Document Structure . 3Overview . 3
Security Assessment Summary 4Scope . 4Approach . 4Coverage Limitations . 5Findings Summary . 5
Detailed Findings 6

Summary of Findings 7Invalid Side Chain Hashes For State Provider . 9
TrieUpdates::flush() Will Change Order Of Operations For Extended Updates 10RLP Decoding Allows CREATE Transactions For EIP-4844 Types 12RLP Decoding Allows Trailing Bytes When Decoding Transactions 13State Roots May Not Be Checked For Buffered Blocks . 15
respond_closest() Shares All Neighbours . 17Lack Of Timeout In EthStream Handshake . 18Reachable unreachable!() During Pool Transaction Decoding 20Error messages For EngineAPI May Return An Invalid Hash . 22
latest_valid_hash_for_invalid_payload() Does Not Find Canonical Hashes 24Denial-of-Service Condition Through PING Spamming . 26
find_node May Be Called With An Invalid Endpoint . 28Multiplexer Ignores Errors From P2PStream . 30Sub Protocol Messages Are Dropped During EthStream Handshake 31Arithmetic Overflows In alloy-nybbles . 32Panic When Debug Assertion Is Violated . 34Bytes May Not Be Nibbles In From And Extend Traits . 35
TrieUpdates Are Not Removed For All Chains During Fork Choice Updates 36Unreliable last_finalized_block_number initialisation . 37
expect() Used Without Guarantees Of Success . 41Imported Transactions May Be Removed From Fetcher Without Being Added To The Pool 42Incorrect Expiration Used For Checking Expired Requests . 43Missing Fields Should Be Skipped When Decoding Messages . 44Unbounded Channels . 45Connection Denial-of-Service Condition Via Invalid TCP Packets 47Out-of-Bounds Access When Reading From Nippy Jar Archives 48Denial-of-Service Condition Through UDP Spamming . 49Potential Index Out Of Bounds In kdf() . 51Arithmetic Overflow In decrypt_message() . 52Arithmetic Overflow In read_body() . 53Arithmetic Overflow In new_chain_fork() . 54
read_header() Index Out Of Bounds If Input Is Not At Least 32 Bytes 55RLP Header Is Not Validated In RequestPair Decoding . 56RLP Header Is Not Validated In DisconnectReason . 57Index Out Of Bounds Panic When Sending Empty Bytes . 58Index Out Of Bounds Panic When Multiplex Message Is Empty 59Arithmetic Overflows In ProtocolStream & ProtocolProxy . 60Forks With next As Timestamp May Be Confused With Blocknumber 61
PING/PONG Man-in-the-Middle . 63Database Shrinking Accidentally Enabled . 65Database Not Opened in Exclusive Mode . 67

1

ENR Responses Are Not Validated . 68Eclipse Mitigations . 69ECIES Protocol Bugs . 70Large base_fee Overflows Block Base Fee Calculations . 72Missing Documentation for Untrusted NippyJar and Compact Formatted Data 73Missing Panic Comments in from_compact() . 74
is_database_empty() False Positive For Paths That Are Not Directories 76
BlockchainTreeConfig Concerns Regarding Fixed Finalisation Depth 78Miscellaneous General Comments . 79Missing Payload Header Validation For Blob Fields, Withdrawals 82

A Vulnerability Severity Classification 84

2

Reth – Ethereum Execution Client Introduction

Introduction

Sigma Primewas commercially engaged to perform a time-boxed security review of the Paradigm Reth codebase.The review focused solely on the security aspects of the Rust implementation of the execution client, thoughgeneral recommendations and informational comments are also provided.
The review focused solely on the security aspects of the codebase, though general recommendations and infor-mational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the codebase. Sigma Prime makes no judgements on, orprovides any security review, regarding the underlying business model or the individuals involved in the project.

Document Structure

The first section provides an overview of the functionality of the Reth execution client software contained withinthe scope of the security review.
A summary followed by a detailed review of the discovered vulnerabilities is then given which assigns each vul-nerability a severity rating (see Vulnerability Severity Classification), an open/closed/resolved status and a recom-mendation. Additionally, findings which do not have direct security implications (but are potentially of interest)are marked as informational.
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Reth codebase.

Overview

Reth is an Execution Layer (EL) client implementation for the Ethereum protocol, written in Rust. It is an alter-native to other execution clients like Besu, Erigon, Geth and Nethermind, which are responsible for processingand broadcasting transactions, and managing the Ethereum state. Reth is developed with a focus on modularity,user-friendliness and performance.
Users run Reth in combination with a Consensus Layer (CL) client in order to act as a full staking node, andinteract with the Ethereum network in a decentralised manner.

Page | 3

Reth – Ethereum Execution Client Security Assessment Summary

Security Assessment Summary

Scope

The review was conducted on the files hosted on the Paradigm Reth codebase and first-party dependencies,detailed as follows:
• paradigmxyz/reth 66c9403 (release: v0.2.0-beta.1)
• alloy-rs/trie 4c4f32f (release: v0.3.0)
• alloy-rs/nybbles d294873 (release: v0.2.1)
• alloy-rs/rlp 91fd3d3 (shortly after release v0.3.4)

Retesting activities were performed on the following commits:
• paradigmxyz/reth 560080e (release: v1.0.0-rc.1)
• alloy-rs/trie 80c18f9 (release: v0.4.1)
• alloy-rs/nybbles d294873 (release: v0.2.1)
• alloy-rs/rlp b6a26dc (shortly after release v0.3.5)

The scope of this time-boxed review was strictly limited to files at the commits specified.
Note: third-party libraries and dependencies were excluded from the scope of this assessment.

Approach

The manual code review section of the report is focused on identifying any and all issues/vulnerabilities associ-atedwith the business logic implementation of the components in scope. This includes their internal interactions,intended functionality and correct implementation with respect to the underlying functionality of the Rust lan-guage and Ethereum protocol.
To support this review, the testing team also utilised the following testing tools:

• Clippy linting: https://doc.rust-lang.org/stable/clippy/index.html
Output for these automated tools is available upon request.
Additionally, the testing team leveraged fuzz testing techniques (i.e. fuzzing), which is a process allowing theidentification of bugs by providing randomised and unexpected data inputs to software with the purpose ofcausing crashes (in Rust, panics) and other unexpected behaviours (e.g. broken invariants,).
Sigma Prime produced fuzzing targets targeting the components using cargo-fuzz, a fuzz-testing framework forRust software. This framework focuses on:

• In-process fuzzing: the fuzzing engine executes the target many times with multiple data inputs in thesame process. It must tolerate any kind of input (empty, huge, malformed, etc.);

Page | 4

https://github.com/paradigmxyz/reth
https://github.com/paradigmxyz/reth/commit/66c9403ea1d3d03938eafc099e64e789aadc3616
https://github.com/alloy-rs/trie/tree/4c4f32fe3b6921751dad8c57c784b882b4201ab9
https://github.com/alloy-rs/nybbles/tree/d2948738b76ecc0d47ce9a5d56512a82a132a27c
https://github.com/alloy-rs/rlp/tree/91fd3d335eb48890583efbe88cc3e034ee36571a
https://github.com/paradigmxyz/reth/commit/560080ee1990a14194f4e6da969f5a7e1b95a236
https://github.com/alloy-rs/trie/commit/80c18f9ac4879cccfb08672cf7b7184ee1105317
https://github.com/alloy-rs/nybbles/tree/d2948738b76ecc0d47ce9a5d56512a82a132a27c
https://github.com/alloy-rs/rlp/commit/b6a26dc34bfd0cbb026e0f8da7b67fbcdb772f6b
https://doc.rust-lang.org/stable/clippy/index.html
https://github.com/rust-fuzz/cargo-fuzz

Reth – Ethereum Execution Client Coverage Limitations

• White-box fuzzing: cargo-fuzz leverages compiler instrumentation and requires access to the sourcecode;
• Coverage-guided fuzzing: for every input/test case, cargo-fuzz tracks code paths (sections of the codereached), and produces variants of each test case to generate additional input data to increase code cov-erage.

The testing team created a set of fuzzing targets to complement the manual review (see fuzzing folder).

Coverage Limitations

Due to a time-boxed nature of this review, all documented vulnerabilities reflect best effort within the allotted,limited engagement time. As such, Sigma Prime recommends to further investigate areas of the code and anyrelated functionality, where majority of critical and high risk vulnerabilities were identified.

Findings Summary

The testing team identified a total of 51 issues during this assessment. Categorised by their severity:
• Critical: 4 issues.
• High: 6 issues.
• Medium: 8 issues.
• Low: 20 issues.
• Informational: 13 issues.

Page | 5

Reth – Ethereum Execution Client Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Reth codebase. Eachvulnerability has a severity classification which is determined from the likelihood and impact of each issue bythe matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 6

Summary of Findings

ID Description Severity Status
RETH-01 Invalid Side Chain Hashes For State Provider Critical Resolved

RETH-02 TrieUpdates::flush() Will Change Order Of Operations For ExtendedUpdates Critical Resolved

RETH-03 RLP Decoding Allows CREATE Transactions For EIP-4844 Types Critical Resolved

RETH-04 RLP Decoding Allows Trailing Bytes When Decoding Transactions Critical Resolved

RETH-05 State Roots May Not Be Checked For Buffered Blocks High Open

RETH-06 respond_closest() Shares All Neighbours High Resolved

RETH-07 Lack Of Timeout In EthStream Handshake High Resolved

RETH-08 Reachable unreachable!() During Pool Transaction Decoding High Resolved

RETH-09 Error messages For EngineAPI May Return An Invalid Hash High Resolved

RETH-10 latest_valid_hash_for_invalid_payload() Does Not Find CanonicalHashes High Resolved

RETH-11 Denial-of-Service Condition Through PING Spamming Medium Resolved

RETH-12 find_node May Be Called With An Invalid Endpoint Medium Resolved

RETH-13 Multiplexer Ignores Errors From P2PStream Medium Resolved

RETH-14 Sub Protocol Messages Are Dropped During EthStream Handshake Medium Resolved

RETH-15 Arithmetic Overflows In alloy-nybbles Medium Resolved

RETH-16 Panic When Debug Assertion Is Violated Medium Resolved

RETH-17 Bytes May Not Be Nibbles In From And Extend Traits Medium Resolved

RETH-18 TrieUpdates Are Not Removed For All Chains During Fork Choice Up-dates Medium Resolved

RETH-19 Unreliable last_finalized_block_number initialisation Low Resolved

RETH-20 expect() Used Without Guarantees Of Success Low Resolved

RETH-21 Imported Transactions May Be Removed From Fetcher Without BeingAdded To The Pool Low Resolved

RETH-22 Incorrect Expiration Used For Checking Expired Requests Low Resolved

RETH-23 Missing Fields Should Be Skipped When Decoding Messages Low Open

RETH-24 Unbounded Channels Low Resolved

RETH-25 Connection Denial-of-Service Condition Via Invalid TCP Packets Low Open

7

RETH-26 Out-of-Bounds Access When Reading From Nippy Jar Archives Low Resolved

RETH-27 Denial-of-Service Condition Through UDP Spamming Low Resolved

RETH-28 Potential Index Out Of Bounds In kdf() Low Resolved

RETH-29 Arithmetic Overflow In decrypt_message() Low Resolved

RETH-30 Arithmetic Overflow In read_body() Low Resolved

RETH-31 Arithmetic Overflow In new_chain_fork() Low Resolved

RETH-32 read_header() Index Out Of Bounds If Input Is Not At Least 32 Bytes Low Resolved

RETH-33 RLP Header Is Not Validated In RequestPair Decoding Low Resolved

RETH-34 RLP Header Is Not Validated In DisconnectReason Low Resolved

RETH-35 Index Out Of Bounds Panic When Sending Empty Bytes Low Resolved

RETH-36 Index Out Of Bounds Panic When Multiplex Message Is Empty Low Resolved

RETH-37 Arithmetic Overflows In ProtocolStream & ProtocolProxy Low Resolved

RETH-38 Forks With next As Timestamp May Be Confused With Blocknumber Low Resolved

RETH-39 PING/PONG Man-in-the-Middle Informational Closed

RETH-40 Database Shrinking Accidentally Enabled Informational Resolved

RETH-41 Database Not Opened in Exclusive Mode Informational Closed

RETH-42 ENR Responses Are Not Validated Informational Resolved

RETH-43 Eclipse Mitigations Informational Open

RETH-44 ECIES Protocol Bugs Informational Open

RETH-45 Large base_fee Overflows Block Base Fee Calculations Informational Closed

RETH-46 Missing Documentation for Untrusted NippyJar and Compact FormattedData Informational Resolved

RETH-47 Missing Panic Comments in from_compact() Informational Resolved

RETH-48 is_database_empty() False Positive For Paths That Are Not Directories Informational Resolved

RETH-49 BlockchainTreeConfig Concerns Regarding Fixed Finalisation Depth Informational Open

RETH-50 Miscellaneous General Comments Informational Resolved

RETH-51 Missing Payload Header Validation For Blob Fields, Withdrawals Informational Resolved

8

Reth – Ethereum Execution Client Detailed Findings

RETH-01 Invalid Side Chain Hashes For State Provider
Asset reth/crates/blockchain-tree/src/blockchain_tree.rs

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

The function all_chain_hashes() may overwrite existing block hashes if the parent chain has overlapping block num-bers with the child chains.
fn all_chain_hashes(&self, chain_id: BlockChainId) -> BTreeMap<BlockNumber, BlockHash> {

// find chain and iterate over it,
let mut chain_id = chain_id;
let mut hashes = BTreeMap::new();
loop {

let Some(chain) = self.state.chains.get(&chain_id) else { return hashes };
hashes.extend(chain.blocks().values().map(|b| (b.number, b.hash()))); // @audit if there already exists entries for

b.number this will overwrite↪→

let fork_block = chain.fork_block();
if let Some(next_chain_id) = self.block_indices().get_blocks_chain_id(&fork_block.hash)
{

chain_id = next_chain_id;
} else {

// if there is no fork block that point to other chains, break the loop.
// it means that this fork joins to canonical block.
break

}
}
hashes

}

The case which will cause issues is during the second, or higher, iteration of the loop. If the current chain contains ablock with b.number that is already in the hashes mapping, then hashes will overwrite the value at key b.number .
The impact of this issue is rated as high as these hashes are used inside the EVM for the BLOCKHASH opcode. An invalidhash could lead to incorrect values inside the EVM executor and result in an incorrect state root calculation.

Recommendations

To resolve the issue, only insert values in to hashes if the block in the parent chain is less than the fork number.

Resolution

The recommendation has been implemented in PR #7669.

Page | 9

https://github.com/paradigmxyz/reth/pull/7669

Reth – Ethereum Execution Client Detailed Findings

RETH-02 TrieUpdates::flush() Will Change Order Of Operations For Extended Updates
Asset reth/crates/trie/src/updates.rs

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

TrieUpdates::flush() will break the order of operations if there are delete and update operations from differentblocks.
The following sort_unstable_by() command is correct when there is a single block. That is because any delete oper-
ations in StorageTrie should occur before StorageNode updates. However, when there are multiple blocks worth of
trie_operations then the order may be reversed.
let mut trie_operations = Vec::from_iter(self.trie_operations);
trie_operations.sort_unstable_by(|a, b| a.0.cmp(&b.0)); //@audit this sort can break order of operations
for (key, operation) in trie_operations {

match key {
TrieKey::AccountNode(nibbles) => match operation {

TrieOp::Delete => {
if account_trie_cursor.seek_exact(nibbles)?.is_some() {

account_trie_cursor.delete_current()?;
}

}
TrieOp::Update(node) => {

if !nibbles.0.is_empty() {
account_trie_cursor.upsert(nibbles, StoredBranchNode(node))?;

}
}

},
TrieKey::StorageTrie(hashed_address) => match operation { // @audit always occurs before any `TrieKey::StorageNode` due to

sorting↪→
TrieOp::Delete => {

if storage_trie_cursor.seek_exact(hashed_address)?.is_some() {
storage_trie_cursor.delete_current_duplicates()?;

}
}
TrieOp::Update(..) => unreachable!("Cannot update full storage trie."),

},
TrieKey::StorageNode(hashed_address, nibbles) => { // @audit occurs after all `TrieKey::StorageTrie` operations

if !nibbles.is_empty() {
// Delete the old entry if it exists.
if storage_trie_cursor

.seek_by_key_subkey(hashed_address, nibbles.clone())?

.filter(|e| e.nibbles == nibbles)

.is_some()
{

storage_trie_cursor.delete_current()?;
}

// The operation is an update, insert new entry.
if let TrieOp::Update(node) = operation {

storage_trie_cursor
.upsert(hashed_address, StorageTrieEntry { nibbles, node })?;

}
}

}
};

}

Page | 10

Reth – Ethereum Execution Client Detailed Findings

Consider an example where there are two updates A->B and B->C , each with one operation:

• A->B does Triekey::StorageNode(0xDEAD, 0x11) with operation TrieOp::Update(node1) .
• B->C does TrieKey::StorageTrie(0xDEAD) with operation TrieOp::Delete .

When these operations are processed one block at a time, the TrieOp::Update will occur first followed by the
TrieOp::Delete .
When the updates from A->B and B->C are combined, the TrieOp::Delete will now occur before
TrieOp::Update(node1) . That is because sort will put all Triekey::StorageTrie operations before
Triekey::StorageNode operations.

Recommendations

Consider modifying TrieUpdates such that when extend() is called, updates for each block are serialised by block.
That is in the above example updates A->B occur before B->C .
This can be done by adding a function TrieUpdates::extend_block() which stores a HashMap for each block ratherthan combining blocks into a single map.
If trie updates are modified to operate strictly on the previous block, then all block updates may be safely cached inblockchain tree. This solution would require a memory overlay for AccountsTrie and StoragesTrie which ensures
TrieUpdates are prepared with respect to previous state rather than some old canonical head.
This solution would be similar to how BundleStateWithReciepts works for receipts and reverts, which are stored on aper-block basis and can easily be reverted to the correct block by slicing a vector.
Now TrieUpdates would not need to be invalidated on fork choice updates since each update is based strictly on theblock before.

Resolution

The issue was quickly resolved by disabling caching for more than one block in PR #7753.

Page | 11

https://github.com/paradigmxyz/reth/pull/7753

Reth – Ethereum Execution Client Detailed Findings

RETH-03 RLP Decoding Allows CREATE Transactions For EIP-4844 Types
Asset reth/crates/primitives/src/transaction/eip4844.rs

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

EIP-4844 specifies a restriction that blob transactions must not allow CREATE transactions (i.e. those used to deploybytecode). However, this is achievable in Reth due to the TransactionKind field.
The following excerpt is from EIP-4844.

The field ‘to‘ deviates slightly from the semantics with the exception that it MUST NOT be ‘nil‘ and therefore
must always represent a 20-byte address. This means that blob transactions cannot have the form of a create
transaction.

The following is an excerpt from the TxEip4844 struct in Reth.
pub struct TxEip4844 {

// ... snipped
pub to: TransactionKind,
// ... snipped

}

Setting the to field as TransactionKind allows decoding the address into TransactionKind::Create() .
The severity is rated a critical as this is a consensus bug since these transactions are RLP decoded through the EngineAPI
eth_newPayloadV3() call.
The following is an example test case and data which would allow decoding as a CREATE transactsion
let data = vec![3, 208, 128, 128, 123, 128, 120, 128, 129, 129, 128, 192, 129, 129, 192, 128, 128, 9];
let res = TransactionSigned::decode_enveloped(&mut &data[..]); // res is Ok() when it should be Err()

Recommendations

Change the type of to in TxEip4844 to be Address rather than TransactionKind .
Alternatively, add a custom implementation of Decodable and enforce to = TransactionKind::Create .

Resolution

The recommendation has been implemented in PR #8291. The changes ensure that EIP-4844 transactions are not
CREATE transactions by enforcing the to address field be non-empty.

Page | 12

https://eips.ethereum.org/EIPS/eip-4844
https://github.com/paradigmxyz/reth/pull/8291/files

Reth – Ethereum Execution Client Detailed Findings

RETH-04 RLP Decoding Allows Trailing Bytes When Decoding Transactions
Asset reth/crates/primitives/src/transaction/mod.rs

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

The RLP decoding of transactions in EngineAPI is not strict, it allows excess bytes to be appended to a transaction andstill decode successfully.
It is required each set of transaction bytes inside an execution payload to be strictly the number of bytes required todecode the transaction. The following is from the yellow paper.

1. Transaction Execution The execution of a transaction is the most complex part of the Ethereum protocol: it
defines the state transition function Y. It is assumed that any transactions executed first pass the initial tests of
intrinsic validity. These include: (1) The transaction is well-formed RLP, **with no additional trailing bytes**

If excess bytes are supplied other clients will error. For example Geth will raise an error if there are bytes remaining inthe buffer after calling DecodeBytes(). Note here that Geth supports two functions for RLP decoding Decode() which
allows excess bytes and DecodeBytes() which requires strict decoding.
Neither try_payload_v1_to_block() or any sub routines will verify the length of each transaction is strict.
try_payload_v1_to_block()

27 let transactions = payload
.transactions

29 .into_iter()
.map(|tx| TransactionSigned::decode_enveloped(&mut tx.as_ref())) // @audit transaction decoding does not check all bytes are

read↪→
31 .collect::<Result<Vec<_>, _>>()?;

let transactions_root = proofs::calculate_transaction_root(&transactions);

decode_enveloped() also does not check all data is read, similarly for all sub calls.
decode_enveloped

1412 pub fn decode_enveloped(data: &mut &[u8]) -> alloy_rlp::Result<Self> {
if data.is_empty() {

1414 return Err(RlpError::InputTooShort)
}

1416
// Check if the tx is a list

1418 if data[0] >= EMPTY_LIST_CODE {
// decode as legacy transaction

1420 TransactionSigned::decode_rlp_legacy_transaction(data)
} else {

1422 TransactionSigned::decode_enveloped_typed_transaction(data)
}

1424 }

The result is a consensus bug as malformed blocks may be accepted on Reth but rejected on other clients. The severityis critical severity due to the ease for an attacker to craft a block with a single malicious transaction.

Page | 13

https://github.com/ethereum/go-ethereum/blob/acd1eaae2c5006dd7f5ae42455bc7f61e5471013/rlp/decode.go#L102-L104

Reth – Ethereum Execution Client Detailed Findings

A minimal case is the bytes input [201, 3, 56, 56, 128, 43, 36, 27, 128, 3, 192] . This successfully decodes on
Reth decode_enveloped() but is rejected on Geth Transaction::UnmarshalBinary() .
The issue of allowing excess bytes in RLP may occur throughout the code base. An alternate example is referencedin load_and_reinsert_transactions(). Other cases do not raise consensus bugs as they do not occur on calls from theconsensus layer client, however they could cause issues in networking with some transactions being accepted by Rethand rejected by other clients.

Recommendations

Modify decode_enveloped() or try_payload_v1_to_block() to reject transactions with excess bytes.
Furthermore, add the function decode_exact() to the Decodable trait such that there is an alternative decodingmethod which will perform length checks on the buffer.

Resolution

Additional checks have been added in PR #8296. These checks require a strict equality between the RLP payloadlength and the number of bytes provided.

Page | 14

https://github.com/paradigmxyz/reth/blob/54f75cdcc82125a97ffd82952c2a8bc8ed324b48/crates/transaction-pool/src/maintain.rs#L583
https://github.com/paradigmxyz/reth/pull/8296/files

Reth – Ethereum Execution Client Detailed Findings

RETH-05 State Roots May Not Be Checked For Buffered Blocks
Asset reth/crates/blockchain-tree/src/blockchain_tree.rs

Status Open

Rating Severity: High Impact: High Likelihood: Medium

Description

When a new payload is added to the chain, it is checked to see if any children exist in the buffer blocks as these maybe connected to the chain. Upon connecting the buffered blocks, state root validation does not occur for the bufferedblocks. Furthermore, state root validation does not occur later when making the blocks canonical unless the block isalso the new canonical tip. As a result, blocks may be added to the chain with invalid state roots.
The function try_connect_buffered_blocks() will allow buffered blocks to skip state root validation. This function iscalled when adding a new payload and may result in blocks being inserted into side chains.
blockchain_tree.rs

828 fn try_connect_buffered_blocks(&mut self, new_block: BlockNumHash) {
trace!(target: "blockchain_tree", ?new_block, "try_connect_buffered_blocks");

830
// first remove all the children of the new block from the buffer

832 let include_blocks = self.state.buffered_blocks.remove_block_with_children(&new_block.hash);
// then try to reinsert them into the tree

834 for block in include_blocks.into_iter() {
// dont fail on error, just ignore the block.

836 let _ = self
.try_insert_validated_block(block, BlockValidationKind::SkipStateRootValidation) // @audit state root validation is

skipped↪→
838 .map_err(|err| {

debug!(
840 target: "blockchain_tree", %err,

"Failed to insert buffered block",
842);

err
844 });

}
846 }

Note that pending blocks are assumed to be “fully validated” in other parts of the code, however, this is not the case ifthey were originally buffered as the state root is not validated.
Later, if a forkchoice update sets a number of blocks as canonical, it will only perform state root checks on the tip. Thiscan be seen in commit_canonical_to_database() which performs the checks.
The issue is that blocks strictly in between the new tip and the old tip do not have their state roots validated. Therefore,each block header except the tip may contain any arbitrary value for state_root , if it was previously buffered.
The impact is high as it may result in blocks with arbitrary state roots being accepted, which is a consensus bug andmay allow malicious state proofs for light clients and external applications.

Page | 15

https://github.com/paradigmxyz/reth/blob/54f75cdcc82125a97ffd82952c2a8bc8ed324b48/crates/blockchain-tree/src/blockchain_tree.rs#L1135-L1145

Reth – Ethereum Execution Client Detailed Findings

Recommendations

A solution is to use exhaustive validation when attempting to insert buffered blocks in try_insert_validated_block() .This will increase the processing time as state roots must be checked; however, it will prevent potentially invalid blocksbeing added to the chain.

Resolution

The development team have opted to delay fixing this issue.
The recommendation suggests using exhaustive validation, however this has a significant degradation in performance.PR #8026 implements these changes but was not merged due to the performance impact.
A follow-up PR #8128, which is not yet merged, contains changes to calculate the storage root in parallel rather thansingle threaded. The issue is marked as open while development continues to resolve the issue.

Page | 16

https://github.com/paradigmxyz/reth/pull/8026
https://github.com/paradigmxyz/reth/pull/8128

Reth – Ethereum Execution Client Detailed Findings

RETH-06 respond_closest() Shares All Neighbours
Asset reth/crates/net/discv4/src/lib.rs

Status Resolved: See Resolution
Rating Severity: High Impact: Medium Likelihood: High

Description

The function respond_closest() is intended to return the 16 closest nodes from a target. However, the current imple-mentation will return the entire local DHT.
The following line does not include a take() and therefore will return all of closest_values() which represents theentire DHT sorted by distance.
respond_closest()

1374 fn respond_closest(&mut self, target: PeerId, to: SocketAddr) {
let key = kad_key(target);

1376 let expire = self.send_neighbours_expiration();
let all_nodes = self.kbuckets.closest_values(&key).collect::<Vec<_>>(); // @audit does not take() the correct number of nodes

1378
for nodes in all_nodes.chunks(SAFE_MAX_DATAGRAM_NEIGHBOUR_RECORDS) {

1380 let nodes = nodes.iter().map(|node| node.value.record).collect::<Vec<NodeRecord>>();
trace!(target: "discv4", len = nodes.len(), to=?to,"Sent neighbours packet");

1382 let msg = Message::Neighbours(Neighbours { nodes, expire });
self.send_packet(msg, to);

1384 }
}

The impact is significant as other Reth nodes will reject the neighbours packets since they will generally exceed the
MAX_NODES_PER_BUCKET count. As seen in the following check in on_neightbours() .
on_neighbours()

1293 let total = request.response_count + msg.nodes.len();

1295
// Neighbours response is exactly 1 bucket (16 entries).

1297 if total <= MAX_NODES_PER_BUCKET { // @audit will reject messages with too many entries
request.response_count = total;

1299 } else {
trace!(target: "discv4", total, from=?remote_addr, "Received neighbors packet entries exceeds max nodes per bucket");

1301 return
}

Recommendations

Add take() to the iterator before calling collect() . This will ensure only the correct number of nodes is used.

Resolution

The issue has been resolved in PR #6842 by adding take(MAX_NODES_PER_BUCKET) .

Page | 17

https://github.com/paradigmxyz/reth/blob/0192934a856199e4b2a846a36dbcd93e49866364/crates/net/discv4/src/lib.rs#L1382
https://github.com/paradigmxyz/reth/pull/6842

Reth – Ethereum Execution Client Detailed Findings

RETH-07 Lack Of Timeout In EthStream Handshake
Asset reth/crates/net/eth-wire/src/ethstream.rs, crates/net/ecies/src/stream.rs

Status Resolved: See Resolution
Rating Severity: High Impact: Medium Likelihood: High

Description

There is no timeout when waiting for a reply status message in UnauthedEthStream . An attacker could abuse this byopening countless connections and performing the handshake up to the status message of the EthStream . As a result,each of the spawned threads would be indefinitely pending, waiting for a status message.
handshake()

54 pub async fn handshake(
mut self,

56 status: Status,
fork_filter: ForkFilter,

58) -> Result<(EthStream<S>, Status), EthStreamError> {
trace!(

60 %status,
"sending eth status to peer"

62);

64 // we need to encode and decode here on our own because we don't have an `EthStream` yet
// The max length for a status with TTD is: <msg id = 1 byte> + <rlp(status) = 88 byte>

66 let mut our_status_bytes = BytesMut::with_capacity(1 + 88);
ProtocolMessage::from(EthMessage::Status(status)).encode(&mut our_status_bytes);

68 let our_status_bytes = our_status_bytes.freeze();
self.inner.send(our_status_bytes).await?;

70
let their_msg_res = self.inner.next().await; //@audit lack of timeout here

72
let their_msg = match their_msg_res {

74 Some(msg) => msg,
None => {

76 self.inner.disconnect(DisconnectReason::DisconnectRequested).await?;
return Err(EthStreamError::EthHandshakeError(EthHandshakeError::NoResponse))

78 }
}?;

The unbounded read occurs in self.inner.next().await . The call will watch the TCP stream and wait for a messageto be received. If a malicious user on the other end of the connection does not send a message the thread will blockindefinitely.
As a result the total number of spawned threads is increased and these threads are permanently blocking, which limitsthe number of possible connections.
The same bug is also present in the ECIES handshake for both incoming and outgoing connections as it uses
transport.try_next().await .

Page | 18

Reth – Ethereum Execution Client Detailed Findings

connect()
39 pub async fn connect(

transport: Io,
41 secret_key: SecretKey,

remote_id: PeerId,
43) -> Result<Self, ECIESError> {

let ecies = ECIESCodec::new_client(secret_key, remote_id)
45 .map_err(|_| io::Error::new(io::ErrorKind::Other, "invalid handshake"))?;

47 let mut transport = ecies.framed(transport);

49 trace!("sending ecies auth ...");
transport.send(EgressECIESValue::Auth).await?;

51
trace!("waiting for ecies ack ...");

53
let msg = transport.try_next().await?; // @audit no timeout

incoming()
75 pub async fn incoming(transport: Io, secret_key: SecretKey) -> Result<Self, ECIESError> {

let ecies = ECIESCodec::new_server(secret_key)?;
77

trace!("incoming ecies stream");
79 let mut transport = ecies.framed(transport);

let msg = transport.try_next().await?; // @audit no timeout

Recommendations

The issue may be mitigated by wrapping each of the next() and try_next() calls mentioned in the description with
a tokio timeout.
tokio::time::timeout(HANDSHAKE_TIMEOUT, self.inner.next()).await

Resolution

The issue has been resolved by adding a high level timeout which covers the entire handshake. Changes can be seenin PR #7219.
It is recommended to also include timeouts over each individual transport layer read. This will increase the robustness,protecting from future modifications to the code. Additionally, it will give more granularity in debugging.

Page | 19

https://github.com/paradigmxyz/reth/pull/7219

Reth – Ethereum Execution Client Detailed Findings

RETH-08 Reachable unreachable!() During Pool Transaction Decoding
Asset crates/reth/primitives/src/transaction/mod.rs

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

There is a reachable unreachable!() macro that will cause a panic when decoding PooledTransactionsElement() .
The function decode_enveloped() will take raw bytes as input and decode them into a transaction depending on thevariant. If a transaction has the first byte as larger than 192, it can be considered a legacy transaction since it is an RLPencoded list. Otherwise it will be decoded as an EIP-4844, EIP-2930 or EIP-1559 transaction type.
decode_enveloped()

1314 pub fn decode_enveloped(data: &mut &[u8]) -> alloy_rlp::Result<Self> {
if data.is_empty() {

1316 return Err(RlpError::InputTooShort)
}

1318
// Check if the tx is a list - tx types are less than EMPTY_LIST_CODE (0xc0)

1320 if data[0] >= EMPTY_LIST_CODE {
// decode as legacy transaction

1322 let (transaction, hash, signature) =
TransactionSigned::decode_rlp_legacy_transaction_tuple(data)?;

1324
Ok(Self::Legacy { transaction, signature, hash })

1326 } else {
// decode the type byte, only decode BlobTransaction if it is a 4844 transaction

1328 let tx_type = *data.first().ok_or(RlpError::InputTooShort)?;

1330 if tx_type == EIP4844_TX_TYPE_ID {
// ... snipped

1332 let blob_tx = BlobTransaction::decode_inner(data)?;
Ok(PooledTransactionsElement::BlobTransaction(blob_tx))

1334 } else {
// DO NOT advance the buffer for the type, since we want the enveloped decoding to

1336 // decode it again and advance the buffer on its own.
let typed_tx = TransactionSigned::decode_enveloped_typed_transaction(data)?; // @audit can be called with `data[0]

= 0↪→
1338

// ... snipped
1340 }

}
1342 }

There is a subroutine to decode_enveloped_typed_transaction() which is intended to decode each of EIP-2930, EIP-1559 and EIP-4844 transaction types but should not be called for legacy transactions.

Page | 20

Reth – Ethereum Execution Client Detailed Findings

decode_enveloped_typed_transaction()
1244 pub fn decode_enveloped_typed_transaction(

data: &mut &[u8],
1246) -> alloy_rlp::Result<TransactionSigned> {

// keep this around so we can use it to calculate the hash
1248 let original_encoding_without_header = *data;

1250
let tx_type = *data.first().ok_or(RlpError::InputTooShort)?;

1252 data.advance(1);

1254
// decode the list header for the rest of the transaction

1256 let header = Header::decode(data)?;
if !header.list {

1258 return Err(RlpError::Custom("typed tx fields must be encoded as a list"))
}

1260

1262 let remaining_len = data.len();

1264
// length of

Now data[0] represents the transaction type, with the value zero used to represent legacy. Hence, if we set
data[0] = 0 it will cause tx_type = TxType::Legacy and thus cause a panic.
Calling PooledTransactionsElement::decode_enveloped() with the following input will trigger the "unreachable" panic.
let data = vec![0, 195, 139, 10, 171, 171, 171, 171];
PooledTransactionsElement::decode_enveloped(&data); // @audit panics

Recommendations

Return an error if tx_type = TxType::Legacy in decode_enveloped_typed_transaction() rather than
unreachable!() .

Resolution

The recommendation has been implemented in PR #7339. An error will be returned in place of the unreachable!() .

Page | 21

https://github.com/paradigmxyz/reth/pull/7339

Reth – Ethereum Execution Client Detailed Findings

RETH-09 Error messages For EngineAPI May Return An Invalid Hash
Asset reth/crates/consensus/beacon/src/engine/mod.rs

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

The function prepare_invalid_reponse() does not ensure the status message contains a valid latest_valid_hash .
The case arises when two invalid blocks occur in a row. The invalid header.parent_hash is passed as a parameter to
prepare_invalid_response() , this parent hash is presently unvalidated, and as such may be invalid.
check_invalid_ancestor_with_head()

756 fn check_invalid_ancestor_with_head(
&mut self,

758 check: B256,
head: B256,

760) -> Option<PayloadStatus> {
// check if the check hash was previously marked as invalid

762 let header = self.invalid_headers.get(&check)?;

764 // populate the latest valid hash field
let status = self.prepare_invalid_response(header.parent_hash); // @audit this parent_hash is not ensured to be valid

766
// insert the head block into the invalid header cache

768 self.invalid_headers.insert_with_invalid_ancestor(head, header);

770 Some(status)
}

prepare_invalid_response()
736 fn prepare_invalid_response(&self, mut parent_hash: B256) -> PayloadStatus {

// Edge case: the `latestValid` field is the zero hash if the parent block is the terminal
738 // PoW block, which we need to identify by looking at the parent's block difficulty

if let Ok(Some(parent)) = self.blockchain.header_by_hash_or_number(parent_hash.into()) {
740 if !parent.is_zero_difficulty() {

parent_hash = B256::ZERO;
742 }

}
744

PayloadStatus::from_status(PayloadStatusEnum::Invalid {
746 validation_error: PayloadValidationError::LinksToRejectedPayload.to_string(),

})
748 .with_latest_valid_hash(parent_hash) // @audit the unvalidated parent hash is attached here

}

One such case where this may occur in the CL layer is when a block A is missing and the child block B is sent to the EL.Assuming both blocks A and B are invalid. If two calls to engine_newPayload(block_B) are made then the second call
will return status INVALID with latest_valid_hash = block_A . However, block A has not been received or validated.
The impact is rated as high as it is a consensus bug and CL implementations use the last_valid_hash as part of thefork choice.

Page | 22

Reth – Ethereum Execution Client Detailed Findings

Recommendations

The helper function latest_valid_hash_for_invalid_payload() may be used in prepare_invalid_response() to de-
termine the latest valid hash or set it to None if it cannot be determined.

Resolution

PR #8123 iterates through invalid ancestors to search for the last valid hash. Only when a valid hash is found will it bereturned. Otherwise, None will be returned.

Page | 23

https://github.com/paradigmxyz/reth/pull/8123/files

Reth – Ethereum Execution Client Detailed Findings

RETH-10 latest_valid_hash_for_invalid_payload() Does Not Find Canonical Hashes
Asset reth/crates/consensus/beacon/src/engine/mod.rs

Status Resolved: See Resolution
Rating Severity: High Impact: Medium Likelihood: High

Description

The function latest_valid_hash_for_invalid_payload() will return None if the parent_hash is canonical.
latest_valid_hash_for_invalid_payload()

703 fn latest_valid_hash_for_invalid_payload(
&self,

705 parent_hash: B256,
insert_err: Option<&InsertBlockErrorKind>,

707) -> Option<B256> {
// check pre merge block error

709 if insert_err.map(|err| err.is_block_pre_merge()).unwrap_or_default() {
return Some(B256::ZERO)

711 }

713 // If this is sent from new payload then the parent hash could be in a side chain, and is
// not necessarily canonical

715 if self.blockchain.header_by_hash(parent_hash).is_some() { // @audit returns None if parent_hash is canonical
// parent is in side-chain: validated but not canonical yet

717 Some(parent_hash)
} else {

719 let parent_hash = self.blockchain.find_canonical_ancestor(parent_hash)?; // @audit returns None if parent_hash is canonical
let parent_header = self.blockchain.header(&parent_hash).ok().flatten()?;

721
// we need to check if the parent block is the last POW block, if so then the payload is

723 // the first POS. The engine API spec mandates a zero hash to be returned:
if !parent_header.is_zero_difficulty() {

725 return Some(B256::ZERO)
}

727
// parent is canonical POS block

729 Some(parent_hash)
}

731 }

Within the latest_valid_hash_for_invalid_payload() function, the first subroutine
self.blockchain.header_by_hash() will only return Some if the parent_hash is within a side chain. Therefore,
if it is canonical, None will be returned.
The first case will search for blocks within a side chain and the else statement is intended to find the canonical blocks.
However, self.blockchain.find_canonical_ancestor(parent_hash) will also return None if parent_hash is not in aside chain.
Hence, if parent_hash is a canonical block, the function latest_valid_hash_for_invalid_payload() will return None .
The specification expects a valid hash to be returned if it can be found and only return None when the chain is discon-nected.

Page | 24

Reth – Ethereum Execution Client Detailed Findings

Recommendations

To resolve this issue, update the else statement such that it will search for canonical blocks.
Furthermore, consider updating the code to handle the case where the parent_header is in a set of buffered blocks
leading to an invalid header, as the InvalidHeaderCache may contain the required header.
This requires checking each parent hash to see if it exists in the canonical chain, a side chain, the buffered blocks orinvalid headers cache and continuing until a fully validated block is found, or the chain is disconnected.

Resolution

The first portion of the recommendations have been implemented in PR #7716. The updates will search for canonicalblocks in the database as well as non-canonical blocks in side chains.

Page | 25

https://github.com/paradigmxyz/reth/pull/7716/files

Reth – Ethereum Execution Client Detailed Findings

RETH-11 Denial-of-Service Condition Through PING Spamming
Asset crates/reth/net/discv4/src/lib.rs

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

There is an unbounded vectorwhichwill be appended to for each outgoing PINGonce themaximumnumber of pendingPINGs has been reached. This queue will be appended to for each incoming PING.
fn on_ping(&mut self, ping: Ping, remote_addr: SocketAddr, remote_id: PeerId, hash: B256) {

// ... snipped

let mut is_new_insert = false;
let mut needs_bond = false;
let mut is_proven = false;

let old_enr = match self.kbuckets.entry(&key) {

// ... snipped

kbucket::Entry::Absent(entry) => {
let mut node = NodeEntry::new(record);
node.last_enr_seq = ping.enr_sq;

match entry.insert(..) {
BucketInsertResult::Inserted | BucketInsertResult::Pending { .. } => {

// mark as new insert if insert was successful
is_new_insert = true;

}
BucketInsertResult::Full => {

// ... snipped
needs_bond = true;

}
BucketInsertResult::TooManyIncoming | BucketInsertResult::NodeExists => {

needs_bond = true;
// insert unsuccessful but we still want to send the pong

}
BucketInsertResult::FailedFilter => return,

}

None
}
kbucket::Entry::SelfEntry => return,

};

// send the pong first, but the PONG and optionally PING don't need to be send in a
// particular order
let pong = Message::Pong(Pong {

// ... snipped
});
self.send_packet(pong, remote_addr);

// if node was absent also send a ping to establish the endpoint proof from our end
if is_new_insert {

self.try_ping(record, PingReason::InitialInsert);
} else if needs_bond {

self.try_ping(record, PingReason::EstablishBond); // @audit will be called for BucketInsertResult TooManyIncoming or Full

The attack is for a malicious node to spam new PING packets to a node. Each ping will be processed and a PONG
Page | 26

Reth – Ethereum Execution Client Detailed Findings

message returned. Furthermore, if there are too many incoming nodes, the insert fails and the needs_bond field will
be set to true and try_ping() will be called.
Since, try_ping() contains the unbounded vector queued_pings which is appended to once the pending pings arefull. As it is cheap for a malicious node with a large network bandwidth to spam PING packets, it would be possible toreach the maximum pending PINGs and then expand the queued_pings indefinitely.
The impact of the issue is two-fold:

• it could cause an OOM (out of memory) crash if the vector grows sufficiently large; and
• valid PINGs will not be processed until the queue is emptied.

Recommendations

It is recommended to drop out-going PING requests if there is insufficient bandwidth to process requests.

Resolution

A limit to the number of PING requests has been added in PR #7999. The change prevents unbounded growth of PINGrequests.

Page | 27

https://github.com/paradigmxyz/reth/pull/7999/files

Reth – Ethereum Execution Client Detailed Findings

RETH-12 find_node May Be Called With An Invalid Endpoint
Asset crates/reth/net/discv4/src/lib.rs

Status Resolved: See Resolution
Rating Severity: Medium Impact: Low Likelihood: High

Description

There is a CAUTION comment over the find_node() function which can be reached.
/// Sends a new `FindNode` packet to the node with `target` as the lookup target.
///
/// CAUTION: This expects there's a valid Endpoint proof to the given `node`.
fn find_node(&mut self, node: &NodeRecord, ctx: LookupContext) {

trace!(target: "discv4", ?node, lookup=?ctx.target(), "Sending FindNode");
ctx.mark_queried(node.id);
let id = ctx.target();
let msg = Message::FindNode(FindNode { id, expire: self.find_node_expiration() });
self.send_packet(msg, node.udp_addr());
self.pending_find_nodes.insert(node.id, FindNodeRequest::new(ctx));

}

It is possible to call find_node() for a node record which does not yet have a validated endpoint.
The case can be reached if the other user has sent a PING but not sent a PONG response. The node record will beadded to the DHT, and return an entry in self.kbuckets.entry() .
The function on_neighbours() will then iterate through all entries including those with has_endpoint_proof = false

and if this node is the closest it will reach out to that node via find_node() .

Page | 28

Reth – Ethereum Execution Client Detailed Findings

for closest in closest {
let key = kad_key(closest.id);
match self.kbuckets.entry(&key) {

BucketEntry::Absent(entry) => {
// the node's endpoint is not proven yet, so we need to ping it first, on
// success, we will add the node to the pending_lookup table, and wait to send
// back a Pong before initiating a FindNode request.
// In order to prevent that this node is selected again on subsequent responses,
// while the ping is still active, we always mark it as queried.
ctx.mark_queried(closest.id);
let node = NodeEntry::new(closest);
match entry.insert(

node,
NodeStatus {

direction: ConnectionDirection::Outgoing,
state: ConnectionState::Disconnected,

},
) {

BucketInsertResult::Inserted | BucketInsertResult::Pending { .. } => {
// only ping if the node was added to the table
self.try_ping(closest, PingReason::Lookup(closest, ctx.clone()))

}
BucketInsertResult::Full => {

// new node but the node's bucket is already full
self.notify(DiscoveryUpdate::DiscoveredAtCapacity(closest))

}
_ => {}

}
}
BucketEntry::SelfEntry => {

// we received our own node entry
}
_ => self.find_node(&closest, ctx.clone()), // @audit does not check has_endpoint_proof

}
}

Therefore, it has called find_node() with an unvalidated endpoint.
The impact is rated as low as it cannot be determined what the effect of calling find_node() with an invalid endpointwould be. However, the likelihood is high as this attack can be exploited by any node on the network.

Recommendations

To resolve this issue, in on_neighbours() first check that the closest entry has has_endpoint_proof = true before
calling find_node() for that endpoint.

Resolution

PR #8002 implements the suggestion mitigation.

Page | 29

https://github.com/paradigmxyz/reth/pull/8002/files

Reth – Ethereum Execution Client Detailed Findings

RETH-13 Multiplexer Ignores Errors From P2PStream

Asset reth/crates/net/eth-wire/src/multiplex.rs

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

When the function RplxSatelliteStream::poll_next() is polled, it will call poll_ready() for the internal P2PStreamsink to determine if there is sufficient space in the buffer to send messages. If there is space, then messages will beadded to the P2PStream sink.
However, for the case where P2PStream::poll_ready() returns Poll::Ready(Err(err)) , the error is ignored.
loop {

match this.inner.conn.poll_ready_unpin(cx) {
Poll::Ready(_) => { //@audit error case is ignored

if let Some(msg) = this.inner.out_buffer.pop_front() {
if let Err(err) = this.inner.conn.start_send_unpin(msg) {

return Poll::Ready(Some(Err(err.into())))
}

} else {
break

}
}
Poll::Pending => {

conn_ready = false;
break

}
}

}

P2PStream::poll_ready() will have a return value Poll<Result<(), P2PStream::Error> . In this match statement, the
error case is treated the same as Ok(()) : it will pop the front of out_buffer and attempt to send it through the stream.

Recommendations

Handle the error case for P2PStream::poll_ready() . It could be desirable here to close the connection on error.

Resolution

The development team havemodified the stream to begin disconnecting if an error occurs in the inner stream. Changescan be seen in PR #7988.

Page | 30

https://github.com/paradigmxyz/reth/pull/7988/files

Reth – Ethereum Execution Client Detailed Findings

RETH-14 Sub Protocol Messages Are Dropped During EthStream Handshake
Asset reth/crates/net/eth-wire/src/multiplex.rs

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

The multiplexer will drop messages from the non-primary protocol during the primary protocol handshake.
let (mut multiplex_stream, their_status) = RlpxProtocolMultiplexer::new(p2p_stream)

.into_eth_satellite_stream(status, fork_filter) //@audit handshake occurs here

.await

.unwrap();

// install additional handlers
for handler in extra_handlers.into_iter() {

let cap = handler.protocol().cap;
let remote_peer_id = their_hello.id;
multiplex_stream

.install_protocol(&cap, move |conn| { //@audit additional protocols added here
handler.into_connection(direction, remote_peer_id, conn)

})
.ok();

}

The handshake occurs in into_eth_satellite_stream() . During this procedure, any messages not related to the pri-
mary protocol are delegated to the associated sub protocol via delegate_message() .
However, there is the limitation that delegate_message() will not yet contain any items in self.protocols since
install_protocol() has not been called.
fn delegate_message(&mut self, cap: &SharedCapability, msg: BytesMut) -> bool {

for proto in &self.protocols { // @audit empty list during the handshake
if proto.shared_cap == *cap {

proto.send_raw(msg);
return true

}
}
false

}

The messages are not cached and so are silently dropped.

Recommendations

It is recommended to either cache the sub protocol messages during the primary handshake or to install the sub pro-tocols before initiating the handshake.

Resolution

The issue is resolved in PR #9086.
Page | 31

https://github.com/paradigmxyz/reth/pull/9086/files

Reth – Ethereum Execution Client Detailed Findings

RETH-15 Arithmetic Overflows In alloy-nybbles

Asset alloy-nybbles/src/nibbles.rs

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

get_bytes()

The function get_bytes() will overflow with input i = usize::MAX , leading to memory out of bounds reads.
pub fn get_byte(&self, i: usize) -> Option<u8> {

if i + 1 < self.len() {
Some(unsafe { self.get_byte_unchecked(i) })

} else {
None

}
}

get_byte_unchecked() does not validate that it reads within the bounds of the SmallVec . Thus, if we pass
i = usize::MAX it will read some undefined memory.
The impact here is significant as it is conceivable that a malicious node may attempt to call get_byte() with a largevalue.

unpack_heap()

There is a potential overflow in the function unpack_heap() if a significantly large slice is passed as data . This is not
feasible on 64 bit architecture however, if usize is 32 bits this may be reachable.
fn unpack_heap(data: &[u8]) -> Self {

// Collect into a vec directly to avoid the smallvec overhead since we know this is going on
// the heap.
debug_assert!(data.len() > 32);
let unpacked_len = data.len() * 2; // @audit potential overflow if data.len() is large
let mut nibbles = Vec::with_capacity(unpacked_len);
// SAFETY: enough capacity.
unsafe { Self::unpack_to_unchecked(data, nibbles.as_mut_ptr()) };
// SAFETY: within capacity and `unpack_to` initialized the memory.
unsafe { nibbles.set_len(unpacked_len) };
// SAFETY: the capacity is greater than 64.
unsafe_assume!(nibbles.capacity() > 64);
Self(SmallVec::from_vec(nibbles))

}

Recommendations

Add checked maths for these instances and return a None or error if there is an overflow.

Page | 32

Reth – Ethereum Execution Client Detailed Findings

Resolution

The recommendations have been implemented in PRs #4 and #6.

Page | 33

https://github.com/alloy-rs/nybbles/pull/4/files
https://github.com/alloy-rs/nybbles/pull/6/files

Reth – Ethereum Execution Client Detailed Findings

RETH-16 Panic When Debug Assertion Is Violated
Asset crates/net/network/src/transactions/fetcher.rs

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

In debug builds of Reth, when invoking the client via the CLI via reth node , the client will panic due to a violation of
a debug assertion on line [668-681] of crates/net/network/src/transactions/fetcher.rs .
Error: Critical task `p2p txpool` panicked: ``%hash` in `@buffered_hashes` that's not in

`@hashes_fetch_inflight_and_pending_fetch`, `@buffered_hashes` should be a subset of keys in
`@hashes_fetch_inflight_and_pending_fetch`, broken invariant `@buffered_hashes` and
`@hashes_fetch_inflight_and_pending_fetch`,

↪→
↪→
↪→

`%hash`: 0x5ec3b4dc46dbcc15935dd390de5bcd2050c865349a292187e99db944627d6076`

This debug assertion exists to ensure the following:

"The set of buffered hashes and the set of hashes currently being fetched are not disjoint.""

Recommendations

Convert the debug assertion to a debug-level log or otherwise consider the codepath causing this assertion to fail.

Resolution

The recommendation has been implemented in commit 5bd2d34.

Page | 34

https://github.com/paradigmxyz/reth/commit/5bd2d34e4a31c6e2b317684784b5138a2c8e3aac

Reth – Ethereum Execution Client Detailed Findings

RETH-17 Bytes May Not Be Nibbles In From And Extend Traits
Asset alloy-nybbles/src/nibbles.rs

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

The traits for Extend<u8> and From<Vec<u8>> do not ensure the incoming bytes fit within the nibble range 0x00 to
0x0F .
Nibbles are 4 bit objects which are stored as bytes in the underlying Rust structs. Two traits have been added whichappend raw bytes to nibbles. However, there are no range checks on these traits to ensure the incoming bytes eachfall in the range 0x00 to 0xF0 .
Crates should generally prevent users from incorrectly using public functions and traits. Instead, there is the function
from_nibbles_unchecked() which can be used to convert a slice to nibbles.

Recommendations

It is recommended to remove the Extend<u8> and From<Vec<u8>> trait implementations.
For From<Vec<u8>> calls can be replaced with from_nibbles_unchecked() if the underlying slice is in nibble format.
Note that it may be clearer to rename this function from_slice_unchecked() and stating in the doc comments thereis no unpacking.
For Extend<u8> this can be replaced with the unchecked function extend_from_slice() . Note it may be worth re-
naming this extend_from_slice_unchecked() to state it does not perform unpacking. Lastly, the doc comments couldbe updated to state it takes a slice and does not perform unpacking.

Resolution

PR #8 resolves the issue through a number of changes:
• remove From<Vec<u8>> impl in favour of from_vec_unchecked() method
• remove Extend impl in favour of extend_from* methods
• allow unchecked access to underlying SmallVec

• add "safe" counterparts to _unchecked methods that check validity of nibbles, and vice versa add missing checksand unchecked versions
• update docs to use safe versions, add examples of bad usage

Page | 35

https://github.com/alloy-rs/nybbles/pull/8

Reth – Ethereum Execution Client Detailed Findings

RETH-18 TrieUpdates Are Not Removed For All Chains During Fork Choice Updates
Asset reth/crates/blockchain-tree/src/blockchain_tree.rs

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

TrieUpdates are not removed from all chains when a fork choice update occurs.
Each TrieUpdates is based off a database snapshot at a certain block number. When a fork choice update is made,
database operations occur to the AccountsTrie and StoragesTrie tables. The changes invalidate any TrieUpdatesstored in memory.
The function make_canonical() does not invalidate TrieUpdates for chains other than the current one.
Consider a scenario where a canonical block A is a fork block with two children blocks B and C . Each of blocks Band C will cache the TrieUpdates on new payload calls. Say a fork choice update occurs which makes block B the
new canonical head. The TrieUpdates for the chain containing block C will not be removed.

Recommendations

To mitigate this issue consider iterating through all chains in the blockchain tree and removing any TrieUpdates when-
ever the canonical head changes in make_canonical() .

Resolution

PR #8370 removes all cached TrieUpdates during make_canonical() .

Page | 36

https://github.com/paradigmxyz/reth/pull/8370/files

Reth – Ethereum Execution Client Detailed Findings

RETH-19 Unreliable last_finalized_block_number initialisation
Asset reth/crates/blockchain-tree/src/blockchain_tree.rs &

reth/crates/blockchain-tree/src/block_indices.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

In BlockchainTree::new() , the last_finalized_block_number value is initialised to a fixed depth value based on
BlockchainTreeConfig::max_reorg_depth , which does not correspond to the actual finality depth1 as last reportedby the consensus layer (CL). When the Ethereum network is subject to severe, adverse conditions, there are no fixedbounds to finality depth and the actual finalised block can be earlier than the initialised last_finalized_block_number .
This can break internal assumptions and leave the BlockchainTree in an inconsistent, unexpected state.
impl<DB: Database, EVM: ExecutorFactory> BlockchainTree<DB, EVM> {

/// Create a new blockchain tree.
pub fn new(

externals: TreeExternals<DB, EVM>,
config: BlockchainTreeConfig,
prune_modes: Option<PruneModes>,

) -> RethResult<Self> {
let max_reorg_depth = config.max_reorg_depth() as usize; // @audit set to 64 in Reth
// The size of the broadcast is twice the maximum reorg depth, because at maximum reorg
// depth at least N blocks must be sent at once.
let (canon_state_notification_sender, _receiver) =

tokio::sync::broadcast::channel(max_reorg_depth * 2);

let last_canonical_hashes =
externals.fetch_latest_canonical_hashes(config.num_of_canonical_hashes() as usize)?; // @audit based on

max_reorg_depth, set to fixed 256 value↪→

// TODO(rakita) save last finalized block inside database but for now just take
// `tip - max_reorg_depth`
// https://github.com/paradigmxyz/reth/issues/1712
let last_finalized_block_number = if last_canonical_hashes.len() > max_reorg_depth {

// we pick `Highest - max_reorg_depth` block as last finalized block.
last_canonical_hashes.keys().nth_back(max_reorg_depth)

// ... snipped (error handling)
Ok(Self {

externals,
state: TreeState::new(

last_finalized_block_number,
last_canonical_hashes,
config.max_unconnected_blocks(),

),
// ... snipped

})
}

The source of this issue was previously noted and raised internally as reth#1712 (which appears to have been auto-matically closed due to inactivity) but the impact may not have been thoroughly evaluated.
As specific, external exploits have not been identified, this issue has been deemed ofmedium impact. The testing teamnotes that max_reorg_depth is only currently used on initialisation and a running Reth node can handle unbounded
finality depth and reorgs greater than max_reorg_depth (as long as the non-finality period begins after startup). These

1Finality depth is the distance between the current head of the chain and the most recent finalised block.

Page | 37

https://github.com/paradigmxyz/reth/issues/1712

Reth – Ethereum Execution Client Detailed Findings

issues would not be encountered during normal network conditions but are vital to the safety of the protocol in situa-tions where correct operation of individual nodes is most important.

Detail and Analysis

After initialisation, these values are saved in the BlockIndices last_finalized_block and canonical_chain fields.
On startup, the first Engine API message sent by the CL is engine_forkchoiceUpdated 2

There are two scenarios of interest, where this issue can cause unexpected behaviour. They both involveReth being started during a long period where the network has been unable to finalise, such that the first
engine_forkchoiceUpdated contains a finalizedBlockHash corresponding to a block with a number less than the
initialised BlockIndices::last_finalized_block . After validation, the main processing for this message is done by
BeaconConsensusEngine::on_fork_choice_updated() .

Scenario A: Quick restart

Reth was quite recently running, such that the engine_forkchoiceUpdated message’s headBlockHash was already inReth’s canonical chain.
• From the perspective of the BlockchainTree , make_canonical is first executed. This returns

Ok(CanonicalOutcome::AlreadyCanonical { header })

• The RPC message contains no PayloadAttributes , so the BeaconConsensusEngine next ex-
ecutes self.ensure_consistent_state_with_status() at line [443]. This passes through to
self.update_finalized_block() and BlockchainTree::finalize_block()

• BlockchainTree::finalize_block() then calls through to BlockIndices::finalize_canonical_blocks .
• BlockIndices::finalize_canonical_blocks (shown below) is executed with a finalized_block argument less

than self.last_finalized_block .
2This offers a reasonable explanation https://hackmd.io/@danielrachi/engine_api#Node-startup. Though it appears that this order is observedrather than directly specified.

Page | 38

https://hackmd.io/@danielrachi/engine_api#Node-startup

Reth – Ethereum Execution Client Detailed Findings

328 /// Used for finalization of block.
///

330 /// Return list of chains for removal that depend on finalized canonical chain.
pub(crate) fn finalize_canonical_blocks(

332 &mut self,
finalized_block: BlockNumber,

334 num_of_additional_canonical_hashes_to_retain: u64,
) -> BTreeSet<BlockChainId> {

336 // get finalized chains. blocks between [self.last_finalized,finalized_block).
// Dont remove finalized_block, as sidechain can point to it.

338 let finalized_blocks: Vec<BlockHash> = self
.canonical_chain

340 .iter()
.filter(|(number, _)| *number >= self.last_finalized_block && *number < finalized_block) // @audit never true

342 .map(|(_, hash)| hash)
.collect();

344
// remove unneeded canonical hashes.

346 let remove_until =
finalized_block.saturating_sub(num_of_additional_canonical_hashes_to_retain);

348 self.canonical_chain.retain(|&number, _| number >= remove_until);

350 let mut lose_chains = BTreeSet::new();

352 for block_hash in finalized_blocks.into_iter() {
// there is a fork block.

354 if let Some(fork_blocks) = self.fork_to_child.remove(&block_hash) {
lose_chains = fork_blocks.into_iter().fold(lose_chains, |mut fold, fork_child| {

356 if let Some(lose_chain) = self.blocks_to_chain.remove(&fork_child) {
fold.insert(lose_chain);

358 }
fold

360 });
}

362 }

364 // set last finalized block.
self.last_finalized_block = finalized_block;

366
lose_chains

368 }

– The predicate at line [341] never holds true, so the finalized_blocks vector is empty.
– Similarly, everything is retained at line [348] because remove_until is less than anything currently in thecanonical chain. This does not expand the canonical chain.
– At line [352] there is nothing to iterate through, so lose_chains is also empty.
– Finally, self.last_finalized_block is set at line [365].

As such, the function returns without panicking, but self.canonical_chain no longer contains a full
num_of_additional_canonical_hashes_to_retain prior to self.last_finalized_block . Indeed, if the period of
non-finality is long enough, the entry corresponding to self.last_finalized_block can now be missing from
self.canonical_chain . This occurs when new_finalized_block < old_canonical_chain.first_entry .
This breaks an apparent invariant where self.canonical_chain is expected to always hold all canonical, non-finalised blocks.

• The engine RPC returns without error, but now BlockIndices is in an unexpected state.
Future blocks inserted by the RPC engine_newPayload may incorrectly buffer blocks as disconnected, that should beattached as side-chains.
It appears that block execution is still functional despite possible gaps in the BlockIndices::canonical_chain . No
exploits or consensus splits were identified in a subsequent call to try_append_canonical_chain() , as the underlyingstate provider passed to rEVM falls back to database access if entries cannot be found in the BlockIndices.

Page | 39

Reth – Ethereum Execution Client Detailed Findings

Scenario B: Start after some downtime or a reorg

Reth was offline for a longer period or the headBlockHash was in a side-chain that was not persisted to the database.Because only canonical blocks are persisted to the database (to be loaded on startup), these bothmean that the received
headBlockHash is not currently present in the BlockchainTree .

• From the perspective of the BlockchainTree , make_canonical is first executed. This returns a
CanonicalError::BlockchainTree(BlockchainTreeError::BlockHashNotFoundInChain { .. })) at line [957].

• This is next passed through to BeaconConsensusEngine::on_failed_canonical_forkchoice_update()

• Then starts executing syncing via the pipeline or sync controller.
• Note that the BlockIndices::last_finalized_block is still the initialised value, such that it could be possible for

the new target block to be part of a reorg deeper than the last_finalized_block .

Recommendations

Save finalised block numbers to persistent storage (e.g. to the database). On startup, load this as
last_finalized_block_number when creating a new BlockchainTree and its contained BlockIndices .
Remove or refactor the BlockchainTreeConfig::max_reorg_depth field and ensure the last_canonical_hashes appro-priately contains the finalised block and sufficient additional blocks.
Examine the codebase for other assumptions involving fixed limits to finality depth.
Evaluate whether BlockIndices::finalize_canonical_blocks() should still be able to handle a finalized_block ar-
gument that is less than self.last_finalized_block . If so, line [348] (shown below) should be modified to also expand
self.canonical_chain when needed.

348 self.canonical_chain.retain(|&number, _| number >= remove_until);

Introduce appropriate testing and simulations to exercise scenarios involving long periods of non-finality and deep re-orgs. Consider introducing debug assertions for invariants like that the BlockIndices::canonical_chain should alwayshold the finalized block. This can expressed in code as
impl BlockIndices {

// ...
debug_assert!(self.canonical_chain.canonical_hash(&self.last_finalized_block).is_some());
// or
debug_assert!(self

.canonical_chain

.inner()

.first_entry()

.map(|(&number, _)| number
<= self

.last_finalized_block

.saturating_sub(num_of_additional_canonical_hashes_to_retain))
.unwrap());

Resolution

The development team have mitigated the issue in PR #8473, the finalised block is updated on initialisation.

Page | 40

https://github.com/paradigmxyz/reth/pull/8473

Reth – Ethereum Execution Client Detailed Findings

RETH-20 expect() Used Without Guarantees Of Success
Asset reth/crates/blockchain-tree/src/blockchain_tree.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

There are 10 occurrences of expect() in the file blockchain_tree.rs (excluding tests). Some of these expect()statements may be reachable if other code has bugs which allow invalid conditions.
Expects will cause panics if they are triggered. It is desirable to avoid panics where possible and instead return errormessages to facilitate debugging.
The following functions contain expect() statements:

• post_state_data()

• find_all_dependent_chains()

• insert_unwound_chain()

• is_block_inside_chain()

• make_canonical()

Recommendations

It is recommended to instead return an error if an Option is None or Result is Err .

Resolution

Each potential panic has been removed in PR #8278.

Page | 41

https://github.com/paradigmxyz/reth/pull/8278

Reth – Ethereum Execution Client Detailed Findings

RETH-21 Imported Transactions May Be Removed From Fetcher Without Being Added To The Pool
Asset reth/crates/net/network/src/transactions/mod.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

The transaction importer may remove items from the fetcher list without adding these transactions.
In the case where a peer_id is not found in the list peers , the transaction manager will remove the hashes from thetransaction fetcher without adding them to the transaction pool.
fn import_transactions(

&mut self,
peer_id: PeerId,
transactions: PooledTransactions,
source: TransactionSource,

) {
// If the node is pipeline syncing, ignore transactions
if self.network.is_initially_syncing() {

return
}
if self.network.tx_gossip_disabled() {

return
}

let mut transactions = transactions.0;

// mark the transactions as received
self.transaction_fetcher

.remove_hashes_from_transaction_fetcher(transactions.iter().map(|tx| *tx.hash())); // @audit transactions removed from
fetched↪→

let Some(peer) = self.peers.get_mut(&peer_id) else { return }; // @audit returns without adding transactions to pool

// ... snipped (handles the fetched transactions)

While it is unlikely to receive a transaction list from a peer_id that is not in peers , if this case occurs the transactions
will be removed from the fetcher without adding them to pool .

Recommendations

It is recommended to change the order of operations such that it will first check to see if a peer exists and return if not.Then remove the transactions from the fetcher and add them to the pool.

Resolution

The order of operations has been updated to reflect the recommendation in PR #7998.

Page | 42

https://github.com/paradigmxyz/reth/pull/7998

Reth – Ethereum Execution Client Detailed Findings

RETH-22 Incorrect Expiration Used For Checking Expired Requests
Asset reth/crates/net/discv4/src/lib.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Medium

Description

The expiry calculations use the expiry for PING messages. It would be better to use the expiry associated with eachrequest.
self.pending_enr_requests.retain(|_node_id, enr_request| {

now.duration_since(enr_request.sent_at) < self.config.ping_expiration // @audit better to use enr_expiration
});

let mut failed_pings = Vec::new();
self.pending_pings.retain(|node_id, ping_request| {

if now.duration_since(ping_request.sent_at) > self.config.ping_expiration {
failed_pings.push(*node_id);
return false

}
true

});

debug!(target: "discv4", num=%failed_pings.len(), "evicting nodes due to failed pong");

// remove nodes that failed to pong
for node_id in failed_pings {

self.remove_node(node_id);
}

let mut failed_lookups = Vec::new();
self.pending_lookup.retain(|node_id, (lookup_sent_at, _)| {

if now.duration_since(*lookup_sent_at) > self.config.ping_expiration { // @audit better to use neighbours_expiration
failed_lookups.push(*node_id);
return false

}
true

});

Recommendations

Use self.config.enr_expiration for pending ENRs and self.config.neighbours_expiration for pending lookups.

Resolution

The expirations have been updated in PRs #7507 and #7996.

Page | 43

https://github.com/paradigmxyz/reth/pull/7507/files
https://github.com/paradigmxyz/reth/pull/7996/files

Reth – Ethereum Execution Client Detailed Findings

RETH-23 Missing Fields Should Be Skipped When Decoding Messages
Asset reth/crates/net/discv4/src/proto.rs

Status Open

Rating Severity: Low Impact: Low Likelihood: Medium

Description

The Discv4 specification states that after EIP-8, additional list elements should be skipped when decoding packet-data.
The following types in Discv4 do not allow for additional list elements to be skipped during decoding:

• FindNode

• Neighbours

• EnrRequest

Similarly, for RPLx specification, addition list elements in handshake messages and Hello should be skipped. This is notenforced in the Reth RPLx implementation.

Recommendations

It is recommended to skip additional list elements to match the specifications.

Resolution

Additional fields are now skipped for RLP encoding of the listed types. Changes are reflected in PR #8039.
The issue is left open as RLPx message should also be updated to skip additional fields.

Page | 44

https://github.com/ethereum/devp2p/blob/master/discv4.md#eip-8-december-2017
https://github.com/ethereum/devp2p/blob/master/rlpx.md#version-4-eip-8-december-2015
https://github.com/paradigmxyz/reth/pull/8039/files

Reth – Ethereum Execution Client Detailed Findings

RETH-24 Unbounded Channels
Asset reth/crates/consensus/beacon/src/engine/mod.rs, reth/crates/tokio-util/src/event_listeners.rs
Status Resolved: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

There is an unbounded channel for consensus events sent from the RPC.
The channel to_engine is used by BeaconConsensusEngineHandle to handle messages from the RPC. The channel isunbounded and therefore susceptible to Denial-of-Service (DoS) attacks or excessive resource consumption in timesof congestion.
The RPC is only callable from the consensus client which is considered a trusted actor and therefore the likelihood ofexploitation is low. However, during times of congestion, numerous events could build up. Processing events includesexecuting blocks and updating the blockchain tree. Thus, it may be possible that events are added to the channel fasterthan they may be processed, and the channel will increase in volume.
pub fn new(

client: Client,
pipeline: Pipeline<DB>,
blockchain: BT,
task_spawner: Box<dyn TaskSpawner>,
sync_state_updater: Box<dyn NetworkSyncUpdater>,
max_block: Option<BlockNumber>,
run_pipeline_continuously: bool,
payload_builder: PayloadBuilderHandle<EngineT>,
target: Option<B256>,
pipeline_run_threshold: u64,
hooks: EngineHooks,

) -> RethResult<(Self, BeaconConsensusEngineHandle<EngineT>)> {
let (to_engine, rx) = mpsc::unbounded_channel(); // @audit unbounded channel

Another unbounded channel exists in the tokio-util crate containing a single structure called EventListeners .
EventListeners implements a multi-producer/multi-consumer queue where each sent value is seen by all consumers.To achieve this, EventListeners allocates a std::Vec to be filled with tokio::sync::UnboundedSender every time
EventListeners::new_listener() is called.
As every value sent via EventListeners is cloned to each UnboundedReceiver , and the channels are unbounded, thisis prone to unlimited memory growth and eventual Out-of-Memory (OOM) conditions.
/// Add a new event listener.
pub fn new_listener(&mut self) -> UnboundedReceiverStream<T> {

let (sender, receiver) = mpsc::unbounded_channel(); // @audit unbounded broadcast channel
self.listeners.push(sender);
UnboundedReceiverStream::new(receiver)

}

Note there are a number of other unbounded channels that are marked as known issues by the development team, andare therefore not included in this report.

Page | 45

Reth – Ethereum Execution Client Detailed Findings

Recommendations

It is recommended to bound all channels.

Resolution

Discussions about bounding consensus channels occur on PR #8251. It was eventually closed in favour of PR #8203which will prune consensus messages when breaching limits.
PR #8193 sets bounded channels for event listeners.

Page | 46

https://github.com/paradigmxyz/reth/pull/8251
https://github.com/paradigmxyz/reth/issues/8203
https://github.com/paradigmxyz/reth/pull/8193

Reth – Ethereum Execution Client Detailed Findings

RETH-25 Connection Denial-of-Service Condition Via Invalid TCP Packets
Asset reth/crates/net/ecies/src/algorithm.rs

Status Open

Rating Severity: Low Impact: Medium Likelihood: Low

Description

Predicting a TCP sequence number of a live connection allows an attacker to close the connection by sending a data-gram with the next sequence number and with garbage body.
When a datagram is received and the body message is random bytes, it will attempt to be decoded as a header. Thecheck against the MAC will error without knowledge of the private key. Upon error, the tokio stream will return
Poll::Read(None) which will eventually lead to a closed connection.
It is feasible although non-trivial to inject spoofed TCP packets into a connection if the TCP sequence number can bepredicted. To predict TCP packets, a malicious user would need to have read access to the connection which may occuron local area networks.
If TCP datagrams are received with invalid body, closing the connection is common practice. However, in the case ofRLPx the connection may not be re-established.

Recommendations

Recovering a TCP connection when the sequence number is known by an attacker is not feasible at the applicationlevel. The attacker will be able to send an unbounded number of TCP datagrams to increase the sequence number. Toresolve the issue, a new connection must be established without knowledge of the sequence number being leaked.

Page | 47

Reth – Ethereum Execution Client Detailed Findings

RETH-26 Out-of-Bounds Access When Reading From Nippy Jar Archives
Asset crates/reth/storage/nippy-jar/src/lib.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Medium

Description

In DataReader::offset_at , data is read from an arbitrary index into the memory-mapped offsets file without bounds
checking. As such, any index greater than the length of offset_mmap will cause an out-of-bounds access.

Recommendations

Add an explicit bounds check prior to performing the read from self.offset_mmap . Note that, the upstream depen-dency for this (memmap2) will default to the length of the file for file-backed maps.

Resolution

The recommendation has been implemented in commit 4693f73.

Page | 48

https://github.com/paradigmxyz/reth/commit/4693f73fbf44ab8c90516dc83883b5968de7ed3e

Reth – Ethereum Execution Client Detailed Findings

RETH-27 Denial-of-Service Condition Through UDP Spamming
Asset reth/crates/net/discv4/src/lib.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

It is possible to spam general UDP packets to block the poll() function from executing messages.
The receive_loop() will read UDP messages from the socket and send them to poll() via the ingress channel. The
gist of the attack is to fill up the ingress channel with pointless messages to stall poll() . Subsequently, the processwill not be able to process any genuine requests.
Once the ingress channel is full, the receive_loop() will block while it waits for the ingress channel to clear. Duringthis time the OS will continue to load more UDP messages in the OS socket and eventually drop them, when full.
Note that it is possible to send the sameUDPmessage repeatedly, whichwill be forwarded through the ingress channel.
The impact of filling up the ingress channel with bogus UDP messages is that it prevents valid messages from beingprocessed.
The ingress loop has a buffer let (ingress_tx, ingress_rx) = mpsc::channel(config.udp_ingress_message_buffer); .
Once this channel is full then receive_loop() will block trying to write to the ingress channel. The UDP socket will
fill up and start discarding incoming packets until the receive_loop() can read from the OS socket.
The likelihood of the attack is low as it would require an attacker to have very large bandwidth, enough to fill the bufferbefore it may be processed.

Recommendations

These style of DoS attack vectors are non-trivial to fix in UDP as it is possible to forge the from IP address in UDPdatagrams.
One consideration is to use a rate limiter which slows the number of incoming messages per IP address. By filteringout messages from the same IP before adding them to the ingress loop it would reduce the amount of spam messageswithout blocking the ingress loop.
However, since from IP address can be forged in UDP, an attacker could use this to rate limit other users by forging the
from address to another node and then spamming packets. It is worth noting that IP spoofing on UDP is non-trivial asmany internet service providers will do source packet checking to prevent IP spoofing. Thus, this is still a viable solutionbut with known caveats.
Additionally, consider adding some duplicate resistance and rejecting identical messages.

Page | 49

Reth – Ethereum Execution Client Detailed Findings

Resolution

Simple IP rate limiting is included in PR #8406.

Page | 50

https://github.com/paradigmxyz/reth/pull/8406/files

Reth – Ethereum Execution Client Detailed Findings

RETH-28 Potential Index Out Of Bounds In kdf()

Asset reth/crates/net/ecies/src/algorithm.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

There is a bug in the kdf() function that will occur if dest is ever not 32 bytes in length. Note that this is a private
function and all calling instances (decrypt_message() and encrypt_message()) have the output as 32 bytes and sothis issue is not reachable.
The bug occurs since written will be incremented by 32 until it is equal to or larger than dest . However, if destcannot fit all 32 bytes then the slice index will be larger than the length and a panic will occur.
As an example, consider dest.len() = 1 , for this case the first iteration of the loop will execute, and it will index
dest[0..32] which panics since dest is length 1.
fn kdf(secret: B256, s1: &[u8], dest: &mut [u8]) {

// SEC/ISO/Shoup specify counter size SHOULD be equivalent
// to size of hash output, however, it also notes that
// the 4 bytes is okay. NIST specifies 4 bytes.
let mut ctr = 1_u32;
let mut written = 0_usize;
while written < dest.len() {

let mut hasher = Sha256::default();
let ctrs = [(ctr >> 24) as u8, (ctr >> 16) as u8, (ctr >> 8) as u8, ctr as u8];
hasher.update(ctrs);
hasher.update(secret.as_slice());
hasher.update(s1);
let d = hasher.finalize();
dest[written..(written + 32)].copy_from_slice(&d); // @audit will index out of bounds if dest.len() % 32 != 0
written += 32;
ctr += 1;

}
}

Recommendations

If written + 32 > dest.len() then only copy the number of bytes until dest is full.

Resolution

The resolution is to use concat_kdf crate which implements the required KDF. Updates can be seen in PR #7106.

Page | 51

https://github.com/paradigmxyz/reth/pull/7106

Reth – Ethereum Execution Client Detailed Findings

RETH-29 Arithmetic Overflow In decrypt_message()

Asset reth/crates/net/ecies/src/algorithm.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

A reachable arithmetic overflow exists in the function decrypt_message() .
The bug occurs in the code encrypted.len() - 32 . The overflow is reachable when the parameter data has a length67-99.
In release mode this will result in a wrapping overflow. A very large number will be passed as the index to
split_at_mut() which will error since the encrypted slice is less than 32 bytes in length.
The impact is that an error will occur, and the program will continue safely. Thus, this issue is rated as low severity.
fn decrypt_message<'a>(&self, data: &'a mut [u8]) -> Result<&'a mut [u8], ECIESError> {

let (auth_data, encrypted) = split_at_mut(data, 2)?;
let (pubkey_bytes, encrypted) = split_at_mut(encrypted, 65)?;
let public_key = PublicKey::from_slice(pubkey_bytes)?;
let (data_iv, tag_bytes) = split_at_mut(encrypted, encrypted.len() - 32)?; // @audit overflows

Recommendations

It is recommended to use checked maths here and return an error for the overflow case. Alternatively, minimum lengthchecks can be used as 2 + 65 + 32 + 16 = 115.

Resolution

The issue has been resolved in PR #7108.

Page | 52

https://github.com/paradigmxyz/reth/pull/7108

Reth – Ethereum Execution Client Detailed Findings

RETH-30 Arithmetic Overflow In read_body()

Asset reth/crates/net/ecies/src/algorithm.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

There is an overflow in the function read_body() when it is called with data length less than 16.
Note that the codec does round the length up to the nearest 16 bytes. However, this overflow can occur if a nodesends a body with length zero and a valid header.
let (body, mac_bytes) = split_at_mut(data, data.len() - 16)?; //@audit potential overflow if we have a body_size 0

The issue is rated as low severity as the function split_at_mut() will raise an error on a large input.

Recommendations

The issue may be mitigated by using checked maths for the subtraction data.len() - 16 .

Resolution

PR #7117 resolves the issue by using checked maths.

Page | 53

https://github.com/paradigmxyz/reth/pull/7117

Reth – Ethereum Execution Client Detailed Findings

RETH-31 Arithmetic Overflow In new_chain_fork()

Asset reth/crates/blockchain-tree/src/chain.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

A potential arithmetic overflow exists in the function new_chain_fork() .
The bug occurs in the code block.number - 1 . The overflow is reachable when the parameter block.number is 0.
pub(crate) fn new_chain_fork<DB, EF>(

&self,
block: SealedBlockWithSenders,
side_chain_block_hashes: BTreeMap<BlockNumber, BlockHash>,
canonical_block_hashes: &BTreeMap<BlockNumber, BlockHash>,
canonical_fork: ForkBlock,
externals: &TreeExternals<DB, EF>,
block_validation_kind: BlockValidationKind,

) -> Result<Self, InsertBlockErrorKind>
where

DB: Database + Clone,
EF: ExecutorFactory,

{
let parent_number = block.number - 1; // @audit potential overflow if block.number = 0

Recommendations

It is recommended to use checked maths here and return an error for the overflow case.

Resolution

Checked math is added in PR #8156.

Page | 54

https://github.com/paradigmxyz/reth/pull/8156/files

Reth – Ethereum Execution Client Detailed Findings

RETH-32 read_header() Index Out Of Bounds If Input Is Not At Least 32 Bytes
Asset reth/crates/net/ecies/src/algorithm.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

If the function read_header() is called with less than 32 bytes, an index out of bounds panic occurs.
The data is split at index 16 with the first 16 bytes being passed into header_bytes and the remaining bytes passed
into mac_bytes . Following this, mac_bytes is accessed at index 15.
For example if data.len() = 20 , then mac_bytes.len() = 4 and mac_bytes[..16] will panic.
pub fn read_header(&mut self, data: &mut [u8]) -> Result<usize, ECIESError> {

let (header_bytes, mac_bytes) = split_at_mut(data, 16)?;
let header = HeaderBytes::from_mut_slice(header_bytes);
let mac = B128::from_slice(&mac_bytes[..16]); //@audit will panic if data is less than 32 bytes

Recommendations

Use mac_bytes.split_at(16) to ensure it is at least length 16.
Alternatively, an initial check can be performed to ensure data.len() >= 32 .

Resolution

The issue has been resolved in PR #7118.

Page | 55

https://github.com/paradigmxyz/reth/pull/7118

Reth – Ethereum Execution Client Detailed Findings

RETH-33 RLP Header Is Not Validated In RequestPair Decoding
Asset reth/crates/net/eth-wire/src/types/message.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

When decoding an RLP Header for RequestPair , the header is decoded then discarded.
The decode() function will first decode an RLP header and then the request_id and finally the message. However,
the header is not validated for header.payload_length , therefore it is possible to read bytes past the end of the RLPencoding.
impl<T> Decodable for RequestPair<T>
where

T: Decodable,
{

fn decode(buf: &mut &[u8]) -> alloy_rlp::Result<Self> {
let _header = Header::decode(buf)?; //@audit we discard the header without checking payload_length
Ok(Self { request_id: u64::decode(buf)?, message: T::decode(buf)? })

}
}

The impact of this issue is low, as the program will decode the bytes and adjust the buffer as required. However, forcorrectness we should ensure we do not read past the payload_length when decoding the message and request ID.

Recommendations

Check the length of the bytes read by u64::decode() and T::decode() and ensure the amount read is less than
payload_length .

Resolution

The recommendation has been implemented in PR #7292 by validating the length of bytes consumed matches the RLPheader.

Page | 56

https://github.com/paradigmxyz/reth/pull/7292

Reth – Ethereum Execution Client Detailed Findings

RETH-34 RLP Header Is Not Validated In DisconnectReason

Asset reth/crates/net/eth-wire/src/disconnect.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

A DisconnectReason may be decoded with a RLP header that contains an empty list and empty payload, that is
header.payload_length = 0 after header = Header::decode(buf) .
The decode() function will continue to read the next byte of the buffer which is outside the payload since the
payload_length = 0 .
if buf.len() > 1 {

// this should be a list, so decode the list header. this should advance the buffer so
// buf[0] is the first (and only) element of the list.
let header = Header::decode(buf)?; //@audit it is possible to have payload_length = 0
if !header.list {

return Err(RlpError::UnexpectedString)
}

}

// geth rlp encodes [`DisconnectReason::DisconnectRequested`] as 0x00 and not as empty
// string 0x80
if buf[0] == 0x00 {

buf.advance(1);
Ok(DisconnectReason::DisconnectRequested)

} else {
DisconnectReason::try_from(u8::decode(buf)?)

.map_err(|_| RlpError::Custom("unknown disconnect reason"))
}

It does not cause an index out of bounds or any other issues, however it is considered invalid to read the next byte ofthe buffer if the payload_length is zero.

Recommendations

Consider adding a check to ensure payload_length = 1 .

Resolution

The recommendation is implemented in PR #7284.

Page | 57

https://github.com/paradigmxyz/reth/pull/7284

Reth – Ethereum Execution Client Detailed Findings

RETH-35 Index Out Of Bounds Panic When Sending Empty Bytes
Asset reth/crates/net/eth-wire/src/p2pstream.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

An index out of bounds (IOOB) panic will occur when empty bytes are sent as a P2P message.
fn start_send(self: Pin<&mut Self>, item: Bytes) -> Result<(), Self::Error> {

if item.len() > MAX_PAYLOAD_SIZE {
return Err(P2PStreamError::MessageTooBig {

message_size: item.len(),
max_size: MAX_PAYLOAD_SIZE,

})
}

// ensure we have free capacity
if !self.has_outgoing_capacity() {

return Err(P2PStreamError::SendBufferFull)
}

let this = self.project();

let mut compressed = BytesMut::zeroed(1 + snap::raw::max_compress_len(item.len() - 1)); // @audit item.len() - 1 will overflow
if empty↪→

let compressed_size =
this.encoder.compress(&item[1..], &mut compressed[1..]).map_err(|err| { //@audit index out of bounds panic if item.len() =

0↪→

If start_send() is called with item.len() = 0 then there will be an overflow in item.len() - 1 . Furthermore, this
will cause an index out of bounds panic in item[1..] .
It is not expected to be able to send data of length zero, hence the likelihood of this issue is rated as low.

Recommendations

Return an error if item.len() = 0 .

Resolution

Each item is checked to be non-empty in PR #7294.

Page | 58

https://github.com/paradigmxyz/reth/pull/7294/files

Reth – Ethereum Execution Client Detailed Findings

RETH-36 Index Out Of Bounds Panic When Multiplex Message Is Empty
Asset reth/crates/net/eth-wire/src/multiplex.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

An index out of bounds (IOOB) panic will occur when empty bytes are received as a multiplex message from the P2Pstream.
The following snippet is taken from into_satellite_stream_with_tuple_handshake() .
tokio::select! {

Some(Ok(msg)) = self.inner.conn.next() => {
// Ensure the message belongs to the primary protocol
let offset = msg[0]; //@audit potential index out of bounds
if let Some(cap) = self.shared_capabilities().find_by_relative_offset(offset).cloned() {

// ... snipped
}
Some(msg) = from_primary.recv() => {

self.inner.conn.send(msg).await.map_err(Into::into)?;
}
// ... snipped

}

Similarly, the function poll_next() may also cause an index out of bounds panic on an empty incoming message.
loop {

// pull messages from connection
match this.inner.conn.poll_next_unpin(cx) {

Poll::Ready(Some(Ok(msg))) => {
delegated = true;
let offset = msg[0]; // @audit potential index out of bounds panic

There are two potential index out of bounds panics which both occur when the P2P message received is empty. How-ever, there are checks in p2pstream.rs::poll_next() to ensure that incoming bytes are non-zero. Thus, the likelihoodof exploitation for this issue is deemed low.

Recommendations

It is recommended to replace msg[0] with fuzzing and propagate any errors for each of poll_next() and
into_satellite_stream_with_tuple_handshake() , rather than indexing a potentially empty slice.

Resolution

The recommendation was implemented in PR #7314.

Page | 59

https://github.com/paradigmxyz/reth/pull/7314/files

Reth – Ethereum Execution Client Detailed Findings

RETH-37 Arithmetic Overflows In ProtocolStream & ProtocolProxy

Asset reth/crates/net/eth-wire/src/multiplex.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

There are overflows in the addition and subtraction of the relative message ID offset in ProtocolStream and
ProtocolProxy . Additionally, each of the functions will panic if the msg.len() = 0 .
One example is mask_msg_id() in ProtocolProxy . If msg.len() = 0 there will be an index out of bounds panic in
msg[0] . Additionally, msg[0] + self.shared_cap.relative_message_id_offset() may overflow if msg[0] is large.
fn mask_msg_id(&self, msg: Bytes) -> Bytes {

let mut masked_bytes = BytesMut::zeroed(msg.len());
masked_bytes[0] = msg[0] + self.shared_cap.relative_message_id_offset(); // @audit index out of bounds panic and overflow
masked_bytes[1..].copy_from_slice(&msg[1..]);
masked_bytes.freeze()

}

The following functions are vulnerable to the same issues:
• ProtocolProxy::mask_msg_id()

• ProtocolProxy::unmask_id()

• ProtocolStream::mask_msg_id()

• ProtocolStream::unmask_id()

Recommendations

It is recommended to return an error when insufficient data is passed as input. Furthermore, use checked maths andhandle the overflow case.

Resolution

Overflow checks are included in PR #7297.

Page | 60

https://github.com/paradigmxyz/reth/pull/7297

Reth – Ethereum Execution Client Detailed Findings

RETH-38 Forks With next As Timestamp May Be Confused With Blocknumber
Asset reth/crates/ethereum-forks/src/forkid.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

There is insufficient differentiation betweenwhether the field next is used to represent a timestamp vs a blocknumber.
// We check if this fork is time-based or block number-based
// NOTE: This is a bit hacky but I'm unsure how else we can figure out when to use
// timestamp vs when to use block number..
let head_block_or_time = match self.cache.epoch_start {

ForkFilterKey::Block(_) => self.head.number,
ForkFilterKey::Time(_) => self.head.timestamp,

};

//... compare local head to FORK_NEXT.
return if head_block_or_time >= fork_id.next { //@audit if next is a timestamp and head is a block we'll never pass

// 1a) A remotely announced but remotely not passed block is already passed locally,
// disconnect, since the chains are incompatible.
Err(ValidationError::LocalIncompatibleOrStale {

local: self.current(),
remote: fork_id,

})
} else {

// 1b) Remotely announced fork not yet passed locally, connect.
Ok(())

}
}

The issue will occur if self.cache.epoch_start is measured in blocknumbers and fork_id.next is measured in times-tamps.
The field is used to determine whether a connection should be established with the peer.
Since block numbers are significantly less than timestamps, if the timestamp is somewhat recent it will always be larger.The current mainnet block height of Ethereum is about 19 million whereas the current timestamp for Unix is almost 2billion.

Recommendations

A possible solution to deciding whether to use a timestamp or header could be to check if fork_id.next is greaterthan an old timestamp. e.g. the timestamp of 2011 before Ethereum mainnet was 1.3 billion.
Consider estimating if fork_id.next > 1,300,000,000 then it is expected to be a timestamp and if it is less, then theunits are in blocknumbers.
An extra safety check could be added that the estimation does not occur if self.head.number > 1,300,000,000 tofuture-proof for when Ethereum has over a billion blocks.

Page | 61

Reth – Ethereum Execution Client Detailed Findings

Resolution

The recommendation has been implemented in PR #8320.

Page | 62

https://github.com/paradigmxyz/reth/pull/8320/files

Reth – Ethereum Execution Client Detailed Findings

RETH-39 PING/PONG Man-in-the-Middle
Asset reth/crates/net/discv4/src/lib.rs

Status Closed: See Resolution
Rating Informational

Description

There is a lack of checks for the fields Ping.to , Ping.from , Pong.to ; instead, the sender IP address is recorded. SincePING and PONG messages are replayable until the expiry timestamp, this opens up an attack vector where a user mayMitM (Man-in-the-Middle) the PING-PONG steps.
An example of the issue is to have a malicious user Mallory attack Alice and Bob.
Steps:

1. Mallory waits for a PING from Alice. Mallory copies the exact message and forwards the PING to Bob.
2. Bob registers Mallory’s IP address and UDP port in the NodeRecord along with Alice’s ID and sends both:

(a) PONG back to Mallory
(b) PING to Mallory

3. Mallory will forward both PING and PONG to Alice
4. Alice will receive two messages:

(a) PONG - runs on_pong() which contains the correct echo hash and will be processed
(b) PING - will return a PONG back to Mallory

5. Mallory forwards the PONG message to Bob
The result here is the Bob will have registered Mallory’s IP address with Alice’s ID.
It is possible to continue this MitM attack with ENR requests also to establish an endpoint proof.
Geth is also vulnerable to the same attack as seen in v4_udp.go.

Recommendations

Consider adding two steps to resolve the issue:
• Verify that the to address matches the local configuration for both PING and PONG messages;
• Ensure the remote address matches the Ping.from .

However, it is worth investigating more before implementing this solution, as there may be a good reason Geth hasimplemented it that way (potentially to facilitate proxies).
Page | 63

https://github.com/ethereum/go-ethereum/blob/b87b9b45331f87fb1da379c5f17a81ebc3738c6e/p2p/discover/v4_udp.go#L662

Reth – Ethereum Execution Client Detailed Findings

Resolution

The issue is marked as won’t fix by the development team.

Page | 64

Reth – Ethereum Execution Client Detailed Findings

RETH-40 Database Shrinking Accidentally Enabled
Asset crates/storage/db/src/implementation/mdbx/mod.rs &

crates/storage/libmdbx-rs/src/environment.rs

Status Resolved: See Resolution
Rating Informational

Description

Reth configures libmdbx to allow database shrinking but the intent is to disable database shrinking.
Reth sets libmdbx configuration in DatabaseEnv::open , with the relevant excerpt displayed below.

233 inner_env.set_geometry(Geometry {
// Maximum database size of 4 terabytes

235 size: Some(0..(4 * TERABYTE)),
// We grow the database in increments of 4 gigabytes

237 growth_step: Some(4 * GIGABYTE as isize),
// The database never shrinks

239 shrink_threshold: None,
page_size: Some(PageSize::Set(default_page_size())),

241 });

The eth_newPayloadV3() field is set to None and appears, at first glance, to have the intended effect of disabling
database shrinking. However, the None value actually results in the default of −1 being passed through to the under-
lying implementation at crates/storage/libmdbx-rs/src/environment.rs:643 (shown below).
mdbx_result(ffi::mdbx_env_set_geometry(

// ... snipped
geometry.shrink_threshold.unwrap_or(-1),
// ... snipped

))?;

According to the libmdbx API documentation
shrink_threshold "The shrink threshold in bytes, must be greater than zero to allow the database to shrink and
greater than growth_step to avoid shrinking right after grow. Negative value means "keep current or use default".
Default is 2*growth_step."

Hence, the resulting value for shrink_threshold is actually 8 GiB.
The testing team did not identify a security risk associated with this issue, hence an informational severity.

Recommendations

Confirm whether database shrinking is intended. If disabling database shrinking is desired, instead pass the followingvalue to NodeRecord

crates/storage/libmdbx-rs/src/environment.rs:643

Page | 65

https://libmdbx.dqdkfa.ru/group__c__settings.html#ga79065e4f3c5fb2ad37a52b59224d583e

Reth – Ethereum Execution Client Detailed Findings

Resolution

The issue is resolved in PR #8324.

Page | 66

https://github.com/paradigmxyz/reth/pull/8324

Reth – Ethereum Execution Client Detailed Findings

RETH-41 Database Not Opened in Exclusive Mode
Asset crates/storage/db/src/implementation/mdbx/mod.rs

Status Closed: See Resolution
Rating Informational

Description

The Reth database libmdbx supports an exclusive mode3 to prevent the database from being opened by multipleprocesses at once. As Reth runs as a single process, there is no need or expectation that the database is accessed bymultiple processes. This feature is not enabled and could result in accidental database corruption if multiple instancesof Reth were started.
This feature is configured in Reth via the DatabaseArguments::exclusive struct field of type Option<bool> . The as-
sociated doc comment states that “If None , the default value is used” but does not clarify what that default value is.
At line [284] we observe that the value passed to the inner implementation defaults to the bool::default() value of
false .
exclusive: args.exclusive.unwrap_or_default(),

Currently this default is always used by Reth binaries and is not exposed for configuration by the user.
The identified risks are associated with misuse rather than security, hence an informational severity.

Recommendations

Consider enabling exclusive mode for Reth, and enabling it by default. This could be achieved without modifying theforked reth-libmdbx crate by setting the flag at line [284] to true by default.
decode_enveloped()

If setting it to exclusive by default, ensure this is appropriately documented.

Resolution

The development team have stated the intention is for the database to be opened in non-exclusive mode.

3Documented here and in the doc comments for DatabaseArguments::exclusive at line [72].

Page | 67

https://libmdbx.dqdkfa.ru/group__c__opening.html#gga9138119a904355d245777c4119534061aa516c74e6fed22c9812bb909c8c459ed

Reth – Ethereum Execution Client Detailed Findings

RETH-42 ENR Responses Are Not Validated
Asset reth/crates/net/discv4/src/lib.rs

Status Resolved: See Resolution
Rating Informational

Description

When an ENR Response packet is received in the function on_enr_response() , the value of msg.enr is not validatedthen immediately discarded.
The Discv4 specification states the following:

"The recipient of the packet should verify that the node record is signed by the public keywhich signed the response
packet."

Note that this is the same behaviour in Geth excluding a small amount of verification of the ENR record. This can beseen in v4_udp.go#L361-L375 and v4_udp.go#L782.

Recommendations

Consider performing validation on the incoming ENR responses.

Resolution

Validation has been added to ensure the record has been signed by the public key in PR #8407.

Page | 68

https://github.com/ethereum/devp2p/blob/master/discv4.md#enrresponse-packet-0x06
https://github.com/ethereum/go-ethereum/blob/b87b9b45331f87fb1da379c5f17a81ebc3738c6e/p2p/discover/v4_udp.go#L361-L375
https://github.com/ethereum/go-ethereum/blob/b87b9b45331f87fb1da379c5f17a81ebc3738c6e/p2p/discover/v4_udp.go#L782
https://github.com/paradigmxyz/reth/pull/8407

Reth – Ethereum Execution Client Detailed Findings

RETH-43 Eclipse Mitigations
Asset reth/crates/net/discv4/*

Status Open

Rating Informational

Description

One the main attacks against any discovery protocol is an eclipse. An attacker generates a large and occasionallyspecific set of node-ids in order to populate the first 10 or so buckets routing table of a node with malicious entries.Once achieved, the attacker can force all new peer discoveries to be malicious peers of their choosing.
In practice, an attacking discv4 node pre-generates or generates on the fly many node-ids and on a query request,responds with these malicious nodes, which can often relate back to their attacking node. Over time, they end upfilling the local routing table by removing previous honest entries.

Recommendations

There are a few ways to mitigate this: one mitigation is to place limits on the kinds of entries we store in our routingtable. There are two kinds of limits used in Lighthouse, one is an IP limit per bucket. There is a limit of IPs in subnets asunlike node-ids, IPs are harder to generate. A write-up on this issue exists in the ethereum/devp2p Github repository.

Page | 69

https://github.com/ethereum/devp2p/blob/master/discv5/discv5-rationale.md#sybil-and-eclipse-attacks

Reth – Ethereum Execution Client Detailed Findings

RETH-44 ECIES Protocol Bugs
Asset reth/crates/net/ecies/*

Status Open

Rating Informational

Description

There are bugs within the ECIES protocol that are not specific to the Reth implementation. While these are securityconsiderations, the security impact is not significant enough to warrant immediate patching.

Forgeable signatures

The function recover_ecdsa() allows recovering a public key from a message hash and signature. It is trivial to forgea valid signature if the message hash is selected by the attacker. In ECIES the attacker is able to set the message hashto x ^ nonce where x is the ECDH x-coordinate and nonce is arbitrarily chosen by the attacker.
An attacker is able to select an arbitrary message hash. To set an arbitrary message hash, first calculating ECDH x then
select the desired final message hash. Finally, set nonce = x ^ messageHash , such that messageHash = x ^ nonce .
The impact here is the attacker can choose any remote_ephemeral_public_key without knowing the secret key. Theimpact is not severe, as this ephemeral key is only used to calculate the shared secret. If the attacker does not knowthe shared secret they cannot encrypt or decrypt messages with this peer. The connection will not be able to share
Hello messages and will error or be dropped after a timeout.

Authentication without knowledge of public key secret

It is possible to pass the ECIES Auth / Ack handshake without knowledge of a public key secret. This also occurs dueto recover_ecdsa() , in that if we provide a random message and signature there is around 50% chance it will succeedand return a valid public key, to which no one knows the secret for.
Again this style of attack will result in an encrypted connection to which the attacker does not know the shared secret.This will allow them to open a connection but unable to encrypt and share the Hello message resulting in an error ortimeout.

Auth / Ack packets are replayable

There is no expiry on Auth or Ack packets. Therefore, an attacker is able to re-use an existing handshake by replaying anAuth packet. This would result in a handshake without knowledge of the shared secret, and as such, no more messagescan be encrypted or decrypted by the attacker.

Page | 70

Reth – Ethereum Execution Client Detailed Findings

Recommendations

Forgeable signatures

The x and nonce values should be concatenated then hashed rather than using XOR. This would prevent the attackerfrom selecting a specific message hash.

Authentication without knowledge of public key secret

To resolve this issue, include the public key in the message hash. That is hash ephemeral_public_key , x and nonce .To facilitate the message hashing the ephemeral public key would need to be passed as a field in the message.

Auth / Ack packets are replayable

Auth and Ack messages should have an expiry timestamp or nonce. A timestamp is the quickest and easiest way toprevent replay though it allows replay before the timestamp expires. A nonce is more secure but requires long termstorage which will have resource consumption considerations.

Page | 71

Reth – Ethereum Execution Client Detailed Findings

RETH-45 Large base_fee Overflows Block Base Fee Calculations
Asset crates/reth/primitives/src/basefee.rs

Status Closed: See Resolution
Rating Informational

Description

A large base_fee may cause an overflow when adding change. This would require the previous base fee plus the
increase to overflow a u64 , which is unlikely.
pub fn calculate_next_block_base_fee(

gas_used: u64,
gas_limit: u64,
base_fee: u64,
base_fee_params: crate::BaseFeeParams,

) -> u64 {
// Calculate the target gas by dividing the gas limit by the elasticity multiplier.
let gas_target = gas_limit / base_fee_params.elasticity_multiplier;

match gas_used.cmp(&gas_target) {
// If the gas used in the current block is equal to the gas target, the base fee remains the
// same (no increase).
std::cmp::Ordering::Equal => base_fee,
// If the gas used in the current block is greater than the gas target, calculate a new
// increased base fee.
std::cmp::Ordering::Greater => {

// Calculate the increase in base fee based on the formula defined by EIP-1559.
base_fee + // @audit can overflow if base_fee is large

(std::cmp::max(
// Ensure a minimum increase of 1.
1,
base_fee as u128 * (gas_used - gas_target) as u128 /

(gas_target as u128 * base_fee_params.max_change_denominator as u128),
) as u64)

}

Recommendations

Consider using saturating_add() .

Resolution

The issue is marked as won’t fix by the development team. The variable base_fee has been increase from a u64 to
u128 and is therefore unlikely to overflow.

Page | 72

Reth – Ethereum Execution Client Detailed Findings

RETH-46 Missing Documentation for Untrusted NippyJar and Compact Formatted Data
Asset crates/storage/codecs & crates/storage/nippy-jar

Status Resolved: See Resolution
Rating Informational

Description

The NippyJar and Compact encoding formats and their implementations are designed for storing and retrieving datainternally. They are not hardened to safely read potentially malicious data. Documentation should clearly and visiblywarn against misuse.
For example, the Compact encoding does not allow limiting the length values to protect against allocating extremelylarge vectors. The implementation can trivially panic after reading a length value that is larger than the size of the bufferbeing read from (out of bounds with a range slicing operation). Similarly, the decode_varuint() function will panic with
"could not decode varuint" when passed malformed data.
The NippyJar implementation can similarly panic after reading offset values that exceed the bounds of the data file.
The testing team notes that these formats are used safely in Reth for internal storage purposes. However, becausethesemodular components are also intended to be used as libraries in other projects, it is important that documentationwarns against their misuse.

Recommendations

Ensure crate documentation and README files clearly warn against using the Compact and NippyJar formats to readuntrusted data.

Resolution

Documentation has been added in PR #8345.

Page | 73

https://github.com/paradigmxyz/reth/pull/8345

Reth – Ethereum Execution Client Detailed Findings

RETH-47 Missing Panic Comments in from_compact()

Asset crates/reth/primitives/src/transaction/mod.rs

Status Resolved: See Resolution
Rating Informational

Description

Numerous implementations of the trait Compact , specifically the function from_compact() , may panic.
There are unreachable!() statements that would cause a panic if reached. These panics could be triggered on certaininput. However, the calling function is the compact codec in storage and so these will only be reached if bad data isadded to the storage database. As these panics are not reachable unless there is an invalid database entry, this is notlikely to occur. However, there should be doc comments stating how and why these panics could occur.
For example, Transaction::from_compact() has multiple unreachable!() statements that could be reached with anidentifier larger than 3.
fn from_compact(mut buf: &[u8], identifier: usize) -> (Self, &[u8]) {

match identifier {
0 => {

let (tx, buf) = TxLegacy::from_compact(buf, buf.len());
(Transaction::Legacy(tx), buf)

}
1 => {

let (tx, buf) = TxEip2930::from_compact(buf, buf.len());
(Transaction::Eip2930(tx), buf)

}
2 => {

let (tx, buf) = TxEip1559::from_compact(buf, buf.len());
(Transaction::Eip1559(tx), buf)

}
3 => {

// An identifier of 3 indicates that the transaction type did not fit into
// the backwards compatible 2 bit identifier, their transaction types are
// larger than 2 bits (eg. 4844 and Deposit Transactions). In this case,
// we need to read the concrete transaction type from the buffer by
// reading the full 8 bits (single byte) and match on this transaction type.
let identifier = buf.get_u8() as usize;
match identifier {

3 => {
let (tx, buf) = TxEip4844::from_compact(buf, buf.len());
(Transaction::Eip4844(tx), buf)

}
#[cfg(feature = "optimism")]
126 => {

let (tx, buf) = TxDeposit::from_compact(buf, buf.len());
(Transaction::Deposit(tx), buf)

}
_ => unreachable!("Junk data in database: unknown Transaction variant"), // @audit should have a panic comment for

this case↪→
}

}
_ => unreachable!("Junk data in database: unknown Transaction variant"), // @audit should have a panic comment for this

case↪→
}

}

Page | 74

Reth – Ethereum Execution Client Detailed Findings

Recommendations

It is recommended to update the transaction signature of from_compact() to return an error. This error can handle anyof the deserialisation issues that may occur and exit gracefully.

Resolution

Additional documentation has been added in PR #8346.

Page | 75

https://github.com/paradigmxyz/reth/pull/8346

Reth – Ethereum Execution Client Detailed Findings

RETH-48 is_database_empty() False Positive For Paths That Are Not Directories
Asset crates/storage/db/src/utils.rs

Status Resolved: See Resolution
Rating Informational

Description

The utility function is_database_empty() takes a path parameter and returns a boolean value indicating whether the
path corresponds to an empty database. The function returns true for paths that exist but are not directories, whichmay be unexpected.
Though unusual, this could be encountered if the Reth data directory contains a file named “db”.
No security implications were identified for this issue, hence an informational severity.

Detail

The following test function constitutes a proof of concept. The test fails if is_database_empty() returns true whenpassed a path to a non-empty file.
#[test]
fn not_empty_if_db_path_is_a_file() {

let base_dir = tempdir().unwrap();
let db_file = base_dir.as_ref().join("db");
fs::write(&db_file, b"Lorem ipsum").unwrap();

let result = is_database_empty(&db_file);
// would expect the function to return false
assert!(!result);

}

When the same path is passed to init_db() at crates/storage/db/src/lib.rs:97 , the path is treated as if it is a validbut empty database directory. Fortunately an error is safely returned at line [103] when trying to create a directory atthat path:
Error {

msg: "Could not create database directory /tmp/.tmp6h66uI/db",
source: CreateDir {

source: Os {
code: 17,
kind: AlreadyExists,
message: "File exists",

},
path: "/tmp/.tmp6h66uI/db",

},
},

Recommendations

Consider whether is_database_empty() should return false or an error when passed a path to a non-directory.

Page | 76

Reth – Ethereum Execution Client Detailed Findings

Resolution

The recommendation has been implemented in PR #8351.

Page | 77

https://github.com/paradigmxyz/reth/pull/8351

Reth – Ethereum Execution Client Detailed Findings

RETH-49 BlockchainTreeConfig Concerns Regarding Fixed Finalisation Depth
Asset crates/blockchain-tree/src/config.rs

Status Open

Rating Informational

Description

There are several inaccuracies in the BlockchainTreeConfig that appear to indicate misunderstandings surroundingconsensus layer’s fork-choice and finality mechanisms.
Consider the following excerpt that defines the default values for BlockchainTreeConfig :

28 // Gasper allows reorgs of any length from 1 to 64.
max_reorg_depth: 64,

30 // This default is just an assumption. Has to be greater than the `max_reorg_depth`.
max_blocks_in_chain: 65,

1. The comment at line [28] is inaccurate. When the network is unhealthy and unable to finalise, it is possible tohave reorgs of a depth with no fixed bounds (much greater than 64).
2. Relying on a max_reorg_depth is potentially dangerous. From the perspective of the Ethereum protocol, there isno “maximum reorg depth” other than the last finalised block. If the implementation’s correctness relies on anyfixed depth value, it may fail to agree with other EL implementations during adverse network conditions (whenconsensus is most important).
3. The max_blocks_in_chain field is unused in the codebase under review and has no effect.

This issue is focused on the comments and config definitions, which do not appear to pose a direct security risk, hencean informational severity rating.

Recommendations

Evaluate whether these findings indicate misunderstood assumptions that need to be rectified elsewhere in the code-base and design. Additionally:
1. Correct or remove the comment at line [28].
2. If making use of a fixed max_reorg_depth in the in-memory Blockchain Tree, ensure there is an alternate re-covery pathway that allows processing larger reorgs. This could involve rebuilding the state from some on-diskcheckpoint. In this case, consider also renaming and documenting the field to indicate that the limit is only forBlockchain Tree, rather than Reth as a whole.

Otherwise, consider removing the max_reorg_depth field and modifying code that relies on it.
3. Consider whether max_blocks_in_chain should remain unused. If so, remove the unnecessary field.

Page | 78

Reth – Ethereum Execution Client Detailed Findings

RETH-50 Miscellaneous General Comments
Asset /*

Status Resolved: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. muxdemux.rs is unused:
The file and associated code is not used anywhere in Reth and could be deleted. Consider removing the unusedcode if not otherwise useful (e.g. intended for library users).

2. Unnecessary, potentially lossy casts:At crates/storage/nippy-jar/src/lib.rs , DataReader::offset_size is stored as a u64 type and typically used
by casting it to a usize like self.offset_size as usize . This can be a lossy, potentially truncating cast on some
architectures where the usize type is smaller than a u64 (like 32bit x86).
This can be avoided by instead defining offset_size as a u8 type, which is sufficient to hold the value retrievedfrom disk.

3. Confusing blockchain-tree function naming:

(a) The function BlockChainTree::is_block_hash_inside_chain() (defined at
crates/blockchain-tree/src/blockchain_tree.rs:226) is a confusing and misleading name. Fromthe implementation and doc comment, it is clear that the functionality is more aptly described with “inside-chain” rather than “inside chain” (as it first appears).
Consider renaming to is_block_hash_in_sidechain or similar.
The same struct also has a very similarly named function is_block_inside_chain() that returns whether a
block is present in the BlockIndices , and has a doc comment including “inside chain”.
Evaluate whether is_block_inside_chain should also be renamed.

(b) In crates/blockchain-tree/src/block_indices.rs , the comments for get_canonical_block_number()

and is_block_hash_canonical() mention a “canonical chain”, but the implementation is only check-
ing canonical non-finalized blocks. This is also true for get_canonical_block_number() defined at
crates/blockchain-tree/src/canonical_chain.rs:49 .
Consider renaming to reduce confusion, and ensure doc comments are clear.

(c) Similarly, crates/blockchain-tree/src/canonical_chain.rs defines get_canonical_block_number()

and canonical_number() functions, which are quite ambiguously named. On inspection,
get_canonical_block_number() checks through non-finalized canonical blocks, and canonical_number()iterates over the whole canonical chain cached in the index.
Consider renaming and making doc comments more clear.

4. Validation of non-terminal difficulty blocks not implemented:
Noted as a TODO , if a consensus client sends a block before total terminal difficulty then it will not be properlyvalidated.

Page | 79

Reth – Ethereum Execution Client Detailed Findings

This should be fine since the consensus client will send via engine_newPayload from the Engine API which setsdifficulty to zero for new blocks.
Only an issue during syncing if malformed blocks are received.

5. Unused functions may be removed:
The following functions are unused and may be removed:

• validate_transaction_regarding_header()

• validate_all_transaction_regarding_block_and_nonces()

6. Chain split allows block number larger than the chain:
If the function split() is called with a block number greater than the tip, it will consider this split valid and treatit the same as splitting the canonical head.
If block_number > chain_tip , then it implies the block is not in this chain and the chain cannot be split.
Consider returning an error for this case instead of NoSplitPending .

7. reth-codecs documentation issues:

(a) In crates/storage/codecs/README.md , the Features section is out-of-date. There is no mention of the
compact encoding that is now the default (main codec).

(b) There is no documentation detailing or specifying the Compact encoding format. The
docs/design/codecs.md file is empty, the crate README.md does not mention the format, and the
doc comments give little detail in terms of how the standard and varuint types are encoded.

8. reth-blockchain-tree documentation issues:

(a) At crates/blockchain-tree/src/blockchain_tree.rs:138 , the doc comment states that is_block_known()returns an error if “the block is already finalized”. This is not accurate and it is more clear to state that an erroris returned when the block is not part of the canonical chain but is at a height that is already finalised. (Theblock itself is not finalised.)
9. Project structure documentation issues:At docs/repo/ci.md , line [10] contains a broken link to a fuzz github workflow that does not currently exist.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The development team have acknowledged these findings, addressing them where appropriate as follows:
1. Resolved in PR #8287.
2. Resolved in PR #8360.
3. Resolved in PR #8408.
4. Unresolved.
5. Resolved in PR #7972.

Page | 80

https://github.com/paradigmxyz/reth/blob/54f75cdcc82125a97ffd82952c2a8bc8ed324b48/crates/consensus/common/src/validation.rs#L61
https://github.com/paradigmxyz/reth/blob/54f75cdcc82125a97ffd82952c2a8bc8ed324b48/crates/consensus/common/src/validation.rs#L147
https://github.com/paradigmxyz/reth/blob/54f75cdcc82125a97ffd82952c2a8bc8ed324b48/crates/storage/provider/src/chain.rs#L284
https://github.com/paradigmxyz/reth/pull/8287/files
https://github.com/paradigmxyz/reth/pull/8360
https://github.com/paradigmxyz/reth/pull/8408
https://github.com/paradigmxyz/reth/pull/7972

Reth – Ethereum Execution Client Detailed Findings

6. Resolved in PR #8285.
7. Resolved in PR #8665.
8. Resolved in PR #8408.
9. Resolved in PR #8363.

Page | 81

https://github.com/paradigmxyz/reth/pull/8285
https://github.com/paradigmxyz/reth/pull/8665
https://github.com/paradigmxyz/reth/pull/8408
https://github.com/paradigmxyz/reth/pull/8363

Reth – Ethereum Execution Client Detailed Findings

RETH-51 Missing Payload Header Validation For Blob Fields, Withdrawals
Asset crates/payload/validator/src/lib.rs

Status Resolved: See Resolution
Rating Informational

Description

The function ensure_well_formed_payload() lacks checks for the fields block.header.blob_gas_used and
block.header.excess_blob_gas to ensure they are None before the Cancun update timestamp.
For a V3 execution payload the function try_payload_v3_to_block() allows setting blob_gas_used and
excess_blob_gas to Some() value. There lacks checks to ensure these values are set to None before Cancun.
Note similarly for Shanghai, Withdrawals may be added to blocks prior to Shanghai upgrade. Note that although thefork is passed if blocks are sent with a timestamp before Shanghai these should not have withdrawals.
Furthermore, cancun_fields.parent_beacon_block_root() should only return Some() after the Cancun upgrade. If
the value is Some() it will be set in the function try_into_block() .

98 pub fn ensure_well_formed_payload(
&self,

100 payload: ExecutionPayload,
cancun_fields: MaybeCancunPayloadFields,

102) -> Result<SealedBlock, PayloadError> {
let block_hash = payload.block_hash();

104
// First parse the block

106 let block = try_into_block(payload, cancun_fields.parent_beacon_block_root())?; // @audit may set `parent_beacon_block_root`
before Cancun↪→

108 let cancun_active = self.is_cancun_active_at_timestamp(block.timestamp);

110 if !cancun_active && block.has_blob_transactions() { // @audit lacks checks for block.header excess_blob_gas and blob_gas_used
// cancun not active but blob transactions present

112 return Err(PayloadError::PreCancunBlockWithBlobTransactions)
}

114
// @audit should include checks for Shanghai withdrawals

116
// Ensure the hash included in the payload matches the block hash

118 let sealed_block = validate_block_hash(block_hash, block)?;

120 // EIP-4844 checks
self.ensure_matching_blob_versioned_hashes(&sealed_block, &cancun_fields)?;

122
Ok(sealed_block)

124 }

The severity is rated as informational severity as the end point is only callable through the authenticated EngineAPIand the consensus layer “should” be calling the correct version based on the incoming block timestamp.

Page | 82

Reth – Ethereum Execution Client Detailed Findings

Recommendations

Add checks to ensure_well_formed_payload() to ensure that these fields are None before Cancun and Some() after-wards.
Additionally, add checks for the Shanghai fork to ensure that withdrawals are not included before this timestamp andare included afterwards.
Finally, ensure cancun_fields.fields is None before Cancun and Some() afterwards.

Resolution

The issue was resolved in PR #7993 and alloy PR #649.

Page | 83

https://github.com/paradigmxyz/reth/pull/7993
https://github.com/alloy-rs/alloy/pull/649

Reth – Ethereum Execution Client Vulnerability Severity Classification

Appendix A Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

Page | 84

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Scope
	Approach
	Coverage Limitations
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Invalid Side Chain Hashes For State Provider
	TrieUpdates::flush() Will Change Order Of Operations For Extended Updates
	RLP Decoding Allows CREATE Transactions For EIP-4844 Types
	RLP Decoding Allows Trailing Bytes When Decoding Transactions
	State Roots May Not Be Checked For Buffered Blocks
	respond_closest() Shares All Neighbours
	Lack Of Timeout In EthStream Handshake
	Reachable unreachable!() During Pool Transaction Decoding
	Error messages For EngineAPI May Return An Invalid Hash
	latest_valid_hash_for_invalid_payload() Does Not Find Canonical Hashes
	Denial-of-Service Condition Through PING Spamming
	find_node May Be Called With An Invalid Endpoint
	Multiplexer Ignores Errors From P2PStream
	Sub Protocol Messages Are Dropped During EthStream Handshake
	Arithmetic Overflows In alloy-nybbles
	Panic When Debug Assertion Is Violated
	Bytes May Not Be Nibbles In From And Extend Traits
	TrieUpdates Are Not Removed For All Chains During Fork Choice Updates
	Unreliable last_finalized_block_number initialisation
	expect() Used Without Guarantees Of Success
	Imported Transactions May Be Removed From Fetcher Without Being Added To The Pool
	Incorrect Expiration Used For Checking Expired Requests
	Missing Fields Should Be Skipped When Decoding Messages
	Unbounded Channels
	Connection Denial-of-Service Condition Via Invalid TCP Packets
	Out-of-Bounds Access When Reading From Nippy Jar Archives
	Denial-of-Service Condition Through UDP Spamming
	Potential Index Out Of Bounds In kdf()
	Arithmetic Overflow In decrypt_message()
	Arithmetic Overflow In read_body()
	Arithmetic Overflow In new_chain_fork()
	read_header() Index Out Of Bounds If Input Is Not At Least 32 Bytes
	RLP Header Is Not Validated In RequestPair Decoding
	RLP Header Is Not Validated In DisconnectReason
	Index Out Of Bounds Panic When Sending Empty Bytes
	Index Out Of Bounds Panic When Multiplex Message Is Empty
	Arithmetic Overflows In ProtocolStream & ProtocolProxy
	Forks With next As Timestamp May Be Confused With Blocknumber
	PING/PONG Man-in-the-Middle
	Database Shrinking Accidentally Enabled
	Database Not Opened in Exclusive Mode
	ENR Responses Are Not Validated
	Eclipse Mitigations
	ECIES Protocol Bugs
	Large base_fee Overflows Block Base Fee Calculations
	Missing Documentation for Untrusted NippyJar and Compact Formatted Data
	Missing Panic Comments in from_compact()
	is_database_empty() False Positive For Paths That Are Not Directories
	BlockchainTreeConfig Concerns Regarding Fixed Finalisation Depth
	Miscellaneous General Comments
	Missing Payload Header Validation For Blob Fields, Withdrawals

	Vulnerability Severity Classification

