# flake8: noqa import comet_ml import time from geowatch.tasks.rutgers_material_seg.models.canny_edge import CannyFilter from skimage.filters import threshold_otsu as otsu from fast_pytorch_kmeans import KMeans from geowatch.tasks.rutgers_material_seg.models.losses import SupConLoss, simCLR_loss, QuadrupletLoss, SoftCE from geowatch.tasks.rutgers_material_seg.models.supcon import SupConResNet from geowatch.tasks.rutgers_material_seg.datasets import build_dataset from geowatch.tasks.rutgers_material_seg.datasets.iarpa_contrastive_dataset import SequenceDataset from geowatch.tasks.rutgers_material_seg.models import build_model import geowatch.tasks.rutgers_material_seg.utils.visualization as visualization import geowatch.tasks.rutgers_material_seg.utils.eval_utils as eval_utils import geowatch.tasks.rutgers_material_seg.utils.utils as utils from pytorch_metric_learning.distances import SNRDistance from pytorch_metric_learning import losses import torchvision.transforms.functional as FT from torchvision import transforms from tqdm import tqdm from torch import nn from scipy import ndimage import torch.nn.functional as F import torch.optim as optim import ubelt as ub import numpy as np import matplotlib.pyplot as plt import ndsampler import kwimage import kwcoco import random import math import yaml import warnings import datetime import torch import cv2 import gc import matplotlib matplotlib.use('Agg') import sys import os debug_mode = True if debug_mode: from pympler import muppy, summary current_path = os.getcwd().split("/") torch.backends.cudnn.enabled = False torch.backends.cudnn.deterministic = True torch.set_printoptions(precision=3, sci_mode=False) np.set_printoptions(precision=3, suppress=True) mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) class Trainer(object): def __init__(self, model: object, train_loader: torch.utils.data.DataLoader, val_loader: torch.utils.data.DataLoader, epochs: int, optimizer: object, scheduler: object, test_loader: torch.utils.data.DataLoader = None, test_with_full_supervision: int = 0) -> None: """trainer class Args: model (object): trained or untrained model train_loader (torch.utils.data.DataLader): loader with training data val_loader (torch.utils.data.DataLader): loader with validation data epochs (int): number of epochs optimizer (object): optimizer to train with scheduler (object): scheduler to train with test_loader (torch.utils.data.DataLader, optional): loader with testing data. Defaults to None. test_with_full_supervision (int, optional): should full supervision be used. Defaults to 0. """ self.model = model self.use_crf = config['evaluation']['use_crf'] self.train_loader = train_loader self.val_loader = val_loader self.epochs = epochs self.optimizer = optimizer self.scheduler = scheduler self.class_weights = torch.Tensor(config['data']['weights']).float().to(device) self.contrastive_loss = SupConLoss() self.quadrupletloss = QuadrupletLoss() self.triplet_margit_loss_snr = losses.TripletMarginLoss(margin=0.05, swap=False, smooth_loss=False, triplets_per_anchor="all", distance=SNRDistance()) # self.k = config['training']['out_features_dim'] self.k = config['data']['num_classes'] self.kmeans = KMeans(n_clusters=self.k, mode='euclidean', verbose=0, minibatch=None) self.max_label = config['data']['num_classes'] self.all_crops_params = [tuple([i, j, config['data']['window_size'], config['data']['window_size']]) for i in range(config['data']['window_size'], config['data'] ['image_size'] - config['data']['window_size']) for j in range(config['data']['window_size'], config['data']['image_size'] - config['data']['window_size'])] self.inference_all_crops_params = [tuple([i, j, config['evaluation']['inference_window'], config['evaluation']['inference_window']]) for i in range(0, config['data']['image_size']) for j in range(0, config['data']['image_size'])] self.all_crops_params_np = np.array(self.all_crops_params) self.change_threshold = 0.2 # print(self.all_crops_params_np) if test_loader is not None: self.test_loader = test_loader self.test_with_full_supervision = test_with_full_supervision self.train_second_transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ColorJitter(0.4, 0.4, 0.4, 0.1), transforms.RandomGrayscale(p=0.2), ]) self.crop_size = (config['data']['window_size'], config['data']['window_size']) self.cmap = visualization.n_distinguishable_colors(nlabels=self.max_label, first_color_black=True, last_color_black=True, bg_alpha=config['visualization']['bg_alpha'], fg_alpha=config['visualization']['fg_alpha']) def train(self, epoch: int, cometml_experiemnt: object) -> float: """training single epoch Args: epoch (int): number of epoch cometml_experiemnt (object): comet ml experiment to log the epoch Returns: float: training loss of that epoch """ total_loss = 0 total_loss_seg = 0 preds, targets = [], [] max_run_network_time = 0 max_backprop_time = 0 max_logging_time = 0 self.model.train() print(f"starting epoch {epoch}") loader_size = len(self.train_loader) if config['visualization']['train_visualization_divisor'] >= loader_size: config['visualization']['train_visualization_divisor'] = loader_size iter_visualization = loader_size // config['visualization']['train_visualization_divisor'] pbar = tqdm(enumerate(self.train_loader), total=len(self.train_loader)) batch_index_to_show = config['visualization']['batch_index_to_show'] for batch_index, batch in pbar: random_crop = transforms.RandomCrop(self.crop_size) outputs = batch image, mask = outputs['inputs']['im'].data[0], batch['label']['class_masks'].data[0] # print(f"image min:{image.min()}, max:{image.max()}") image_name = f"{str(outputs['tr'].data[0][batch_index_to_show]['gids'])}_{str(outputs['tr'].data[0][batch_index_to_show]['slices'])}" # original_width, original_height = outputs['tr'].data[0][batch_index_to_show]['space_dims'] mask = torch.stack(mask) mask = mask.long().squeeze(1) start = time.time() mask[mask == -1] = 0 mask[mask >= 4] = 0 # print(torch.unique(mask)) bs, c, t, h, w = image.shape class_to_show = max(0, torch.unique(mask)[-1] - 1) image = image.to(device).squeeze(2) mask = mask.to(device) # image = utils.stad_image(image) # image2 = utils.stad_image(image2) image = F.normalize(image, dim=1, p=1) output = self.model(image) # [B,22,150,150] # print(output.shape) # exit() loss = 50 * F.cross_entropy(output, mask, weight=self.class_weights, # ignore_index=0, reduction="mean") run_network_time = time.time() - start start = time.time() self.optimizer.zero_grad() loss.backward() self.optimizer.step() total_loss_seg += loss.item() backprop_time = time.time() - start masks = F.softmax(output, dim=1) pred1 = masks.max(1)[1].cpu().detach() # .numpy() total_loss += loss.item() start = time.time() preds.append(pred1) targets.append(mask.cpu()) # .numpy()) if config['visualization']['train_visualizer']: if (epoch) % config['visualization']['visualize_training_every'] == 0: if (batch_index % iter_visualization) == 0: figure = plt.figure(figsize=(config['visualization']['fig_size'], config['visualization']['fig_size']), dpi=config['visualization']['dpi']) ax1 = figure.add_subplot(1, 4, 1) ax2 = figure.add_subplot(1, 4, 2) ax3 = figure.add_subplot(1, 4, 3) ax4 = figure.add_subplot(1, 4, 4) # ax5 = figure.add_subplot(3, 4, 5) # ax6 = figure.add_subplot(3, 4, 6) # ax7 = figure.add_subplot(3, 4, 7) # ax8 = figure.add_subplot(3, 4, 8) # ax9 = figure.add_subplot(3, 4, 9) # ax10 = figure.add_subplot(3, 4, 10) # ax11 = figure.add_subplot(3, 4, 11) # ax12 = figure.add_subplot(3, 4, 12) cmap_gradients = plt.cm.get_cmap('jet') # image_show = np.transpose(image1.cpu().detach().numpy()[batch_index_to_show,:,:,:],(1,2,0))[:,:1:4,:3] image_show1 = np.transpose(image.cpu().detach().numpy()[batch_index_to_show, :, :, :], (1, 2, 0))[:, :, :3] image_show1 = np.flip(image_show1, axis=2) image_show1 = (image_show1 - image_show1.min()) / (image_show1.max() - image_show1.min()) gt_mask_show1 = mask.cpu().detach()[batch_index_to_show, :, :].numpy().squeeze() # histograms_intersection_show = (histograms_intersection_show - histograms_intersection_show.min())/(histograms_intersection_show.max() - histograms_intersection_show.min()) pred1_show = masks.max(1)[1].cpu().detach().numpy()[batch_index_to_show, :, :] # pred2_show = masks2.max(1)[1].cpu().detach().numpy()[batch_index_to_show, :, :] # histc_fp_tp_fn_prediction_mask = gt_mask_show1 + (2*histc_int_change_feats_pred_show) pred1_fp_tp_fn_prediction_mask = gt_mask_show1 + (2 * pred1_show) uniques_str = f"unique in preds: {np.unique(pred1_show)}, masks: {np.unique(gt_mask_show1)}" classes_in_gt = np.unique(gt_mask_show1) ax1.imshow(image_show1) ax2.imshow(image_show1) ax2.imshow(gt_mask_show1, cmap=self.cmap, vmin=0, vmax=self.max_label) masks_show = masks.cpu().detach().numpy()[batch_index_to_show, 2, :, :] ax3.imshow(masks_show) ax4.imshow(pred1_show, cmap=self.cmap, vmin=0, vmax=self.max_label) # ax11.imshow(histc_fp_tp_fn_prediction_mask, cmap=self.cmap, vmin=0, vmax=self.max_label) # ax12.imshow(vw_dis_fp_tp_fn_prediction_mask, cmap=self.cmap, vmin=0, vmax=self.max_label) ax1.axis('off') ax2.axis('off') ax3.axis('off') ax4.axis('off') # ax9.axis('off') if config['visualization']['titles']: ax1.set_title(f"Input Image 1", fontsize=config['visualization']['font_size']) ax2.set_title(f"Change GT Mask overlaid", fontsize=config['visualization']['font_size']) ax3.set_title(f"Features", fontsize=config['visualization']['font_size']) ax4.set_title(f"Prediction {uniques_str}", fontsize=config['visualization']['font_size']) # ax5.set_title(f"l1_patched_diff_change_features_show", fontsize=config['visualization']['font_size']) # ax6.set_title(f"l2_patched_diff_change_features_show", fontsize=config['visualization']['font_size']) # ax7.set_title(f"histograms_intersection_show", fontsize=config['visualization']['font_size']) # ax8.set_title(f"dictionary2_show", fontsize=config['visualization']['font_size']) # ax9.set_title(f"l1_fp_tp_fn_prediction_mask", fontsize=config['visualization']['font_size']) # ax10.set_title(f"l2_fp_tp_fn_prediction_mask", fontsize=config['visualization']['font_size']) # ax11.set_title(f"histc_fp_tp_fn_prediction_mask", fontsize=config['visualization']['font_size']) # figure.suptitle( # f"Epoch: {epoch+1}\nGT labels for classification: {classes_in_gt}, \nunique in change predictions: {np.unique(change_detection_show)}\nunique in predictions1: {np.unique(logits_show1)}", fontsize=config['visualization']['font_size']) # cometml_experiemnt.log_figure(figure_name=f"Training, image name: {image_name}, epoch: {epoch}, classes in gt: {classes_in_gt}, classifier predictions: {labels_predicted_indices}",figure=figure) cometml_experiemnt.log_figure(figure_name=f"Training, image name: {image_name}", figure=figure) # figure.tight_layout() if config['visualization']['train_imshow']: plt.show() figure.clear() figure.clf() plt.cla() plt.clf() plt.close('all') plt.close(figure) gc.collect() logging_time = time.time() - start if run_network_time > max_run_network_time: max_run_network_time = run_network_time if backprop_time > max_backprop_time: max_backprop_time = backprop_time if logging_time > max_logging_time: max_logging_time = logging_time pbar.set_description( f"(timing, secs) run_network: {run_network_time:0.3f}({max_run_network_time:0.3f}), backprob: {backprop_time:0.3f}({max_backprop_time:0.3f}), log: {logging_time:0.3f}({max_logging_time:0.3f})") mean_iou, precision, recall = eval_utils.compute_jaccard(preds, targets, num_classes=config['data']['num_classes']) # hist_mean_iou, hist_precision, hist_recall = eval_utils.compute_jaccard(histogram_distance, targets, num_classes=2) # l1_mean_iou, l1_precision, l1_recall = eval_utils.compute_jaccard(l1_dist, targets, num_classes=2) # l2_mean_iou, l2_precision, l2_recall = eval_utils.compute_jaccard(l2_dist, targets, num_classes=2) # l1_precision = np.array(l1_precision) # l1_recall = np.array(l1_recall) # l1_f1 = 2 * (l1_precision * l1_recall) / (l1_precision + l1_recall) # l2_precision = np.array(l2_precision) # l2_recall = np.array(l2_recall) # l2_f1 = 2 * (l2_precision * l2_recall) / (l2_precision + l2_recall) # hist_precision = np.array(hist_precision) # hist_recall = np.array(hist_recall) # hist_f1 = 2 * (hist_precision * hist_recall) / (hist_precision + hist_recall) mean_iou = np.array(mean_iou) precision = np.array(precision) recall = np.array(recall) classwise_f1_score = 2 * (precision * recall) / (precision + recall + 0.00000000001) mean_precision = precision.mean() mean_recall = recall.mean() overall_miou = mean_iou.mean() mean_f1_score = classwise_f1_score.mean() mean_f1_score_from_r_p = 2 * (mean_precision * mean_recall) / (mean_precision + mean_recall + 0.00000000001) # overall_miou = sum(mean_iou)/len(mean_iou) # print(f"Training class-wise mIoU value: \n{mean_iou} \noverall mIoU: {overall_miou}") # print(f"Training class-wise Precision value: \n{precision} \noverall Precision: {mean_precision}") # print(f"Training class-wise Recall value: \n{recall} \noverall Recall: {mean_recall}") # print(f"Training overall F1 Score: {mean_f1_score}") # cometml_experiemnt.log_metric("Training Loss", total_loss, epoch=epoch+1) # cometml_experiemnt.log_metric("Segmentation Loss", total_loss_seg, epoch=epoch+1) # cometml_experiemnt.log_metric("Training mIoU", overall_miou, epoch=epoch+1) cometml_experiemnt.log_metric("Training mean f1_score_rp", mean_f1_score_from_r_p, epoch=epoch + 1) cometml_experiemnt.log_metric("Training mean_f1_score", mean_f1_score, epoch=epoch + 1) cometml_experiemnt.log_metric("Training mean_precision", mean_precision, epoch=epoch + 1) cometml_experiemnt.log_metric("Training mean_recall", mean_recall, epoch=epoch + 1) # cometml_experiemnt.log_metrics({f"Training Recall class {str(x)}": recall[x] for x in range(len(recall))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"Training Precision class {str(x)}": precision[x] for x in range(len(precision))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"Training F1_score class {str(x)}": classwise_f1_score[x] for x in range(len(classwise_f1_score))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"L1 Training Recall class {str(x)}": l1_recall[x] for x in range(len(l1_recall))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"L1 Training Precision class {str(x)}": l1_precision[x] for x in range(len(l1_precision))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"L1 Training F1_score class {str(x)}": l1_f1[x] for x in range(len(l1_f1))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"L2 Training Recall class {str(x)}": l2_recall[x] for x in range(len(l2_recall))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"L2 Training Precision class {str(x)}": l2_precision[x] for x in range(len(l2_precision))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"L2 Training F1_score class {str(x)}": l2_f1[x] for x in range(len(l2_f1))}, epoch=epoch+1) cometml_experiemnt.log_metrics({f"Concat Training Recall class {str(x)}": recall[x] for x in range(len(recall))}, epoch=epoch + 1) cometml_experiemnt.log_metrics({f"Concat Training Precision class {str(x)}": precision[x] for x in range(len(precision))}, epoch=epoch + 1) cometml_experiemnt.log_metrics({f"Concat Training F1_score class {str(x)}": classwise_f1_score[x] for x in range(len(classwise_f1_score))}, epoch=epoch + 1) print("Training Epoch {0:2d} average loss: {1:1.2f}".format(epoch + 1, total_loss / self.train_loader.__len__())) return total_loss / self.train_loader.__len__() def validate(self, epoch: int, cometml_experiemnt: object, save_individual_plots_specific: bool = False) -> tuple: """validating single epoch Args: epoch (int): current epoch cometml_experiemnt (object): logging experiment Returns: tuple: (validation loss, mIoU) """ print("validating") total_loss = 0 preds, stacked_preds, targets = [], [], [] histogram_distance, l1_dist, l2_dist = [], [], [] accuracies = 0 running_ap = 0.0 batch_index_to_show = config['visualization']['batch_index_to_show'] if self.test_with_full_supervision == 1: loader = self.test_loader else: loader = self.val_loader loader_size = len(loader) if config['visualization']['val_visualization_divisor'] > loader_size: config['visualization']['val_visualization_divisor'] = loader_size iter_visualization = loader_size // config['visualization']['val_visualization_divisor'] self.model.eval() with torch.no_grad(): pbar = tqdm(enumerate(loader), total=len(loader)) for batch_index, batch in pbar: outputs = batch image, mask = outputs['inputs']['im'].data[0], batch['label']['class_masks'].data[0] # print(f"image min:{image.min()}, max:{image.max()}") image_name = f"{str(outputs['tr'].data[0][batch_index_to_show]['gids'])}_{str(outputs['tr'].data[0][batch_index_to_show]['slices'])}" # original_width, original_height = outputs['tr'].data[0][batch_index_to_show]['space_dims'] mask = torch.stack(mask) mask = mask.long().squeeze(1) mask[mask == -1] = 0 mask[mask > 4] = 0 bs, c, t, h, w = image.shape class_to_show = max(0, torch.unique(mask)[-1] - 1) image = image.to(device).squeeze(2) mask = mask.to(device) # image1 = utils.stad_image(image1) # image2 = utils.stad_image(image2) image = F.normalize(image, dim=1, p=1) output = self.model(image) masks = F.softmax(output, dim=1) pred1 = masks.max(1)[1].cpu().detach() # .numpy() preds.append(pred1) targets.append(mask.cpu()) # .numpy()) if config['visualization']['val_visualizer'] or (config['visualization']['save_individual_plots'] and save_individual_plots_specific): if (epoch) % config['visualization']['visualize_val_every'] == 0: if (batch_index % iter_visualization) == 0: figure = plt.figure(figsize=(config['visualization']['fig_size'], config['visualization']['fig_size']), dpi=config['visualization']['dpi']) ax1 = figure.add_subplot(1, 4, 1) ax2 = figure.add_subplot(1, 4, 2) ax3 = figure.add_subplot(1, 4, 3) ax4 = figure.add_subplot(1, 4, 4) # ax5 = figure.add_subplot(3, 3, 5) # ax6 = figure.add_subplot(3, 3, 6) # ax7 = figure.add_subplot(3, 3, 7) # ax8 = figure.add_subplot(3, 3, 8) # ax9 = figure.add_subplot(3, 3, 9) # ax10 = figure.add_subplot(3, 4, 10) # ax11 = figure.add_subplot(3, 4, 11) # ax12 = figure.add_subplot(3, 4, 12) cmap_gradients = plt.cm.get_cmap('jet') # image_show = np.transpose(image1.cpu().detach().numpy()[batch_index_to_show,:,:,:],(1,2,0))[:,:1:4,:3] image_show1 = np.transpose(image.cpu().detach().numpy()[batch_index_to_show, :, :, :], (1, 2, 0))[:, :, :3] image_show1 = np.flip(image_show1, axis=2) image_show1 = (image_show1 - image_show1.min()) / (image_show1.max() - image_show1.min()) gt_mask_show1 = mask.cpu().detach()[batch_index_to_show, :, :].numpy().squeeze() # histograms_intersection_show = (histograms_intersection_show - histograms_intersection_show.min())/(histograms_intersection_show.max() - histograms_intersection_show.min()) pred1_show = masks.max(1)[1].cpu().detach().numpy()[batch_index_to_show, :, :] pred_fp_tp_fn_prediction_mask = gt_mask_show1 + (2 * pred1_show) classes_in_gt = np.unique(gt_mask_show1) ax1.imshow(image_show1) ax2.imshow(image_show1) ax2.imshow(gt_mask_show1, cmap=self.cmap, vmin=0, vmax=self.max_label) masks_show = masks.cpu().detach().numpy()[batch_index_to_show, 2, :, :] ax3.imshow(masks_show) ax4.imshow(pred1_show, cmap=self.cmap, vmin=0, vmax=self.max_label) # ax1.axis('off') # ax2.axis('off') # ax3.axis('off') # ax4.axis('off') # ax5.axis('off') # ax6.axis('off') # ax7.axis('off') # ax8.axis('off') # ax9.axis('off') if config['visualization']['titles']: ax1.set_title(f"Input Image 1", fontsize=config['visualization']['font_size']) ax2.set_title(f"Input Image 2", fontsize=config['visualization']['font_size']) ax3.set_title(f"Change GT Mask overlaid", fontsize=config['visualization']['font_size']) ax4.set_title(f"l1_patched_diff_change_features_show", fontsize=config['visualization']['font_size']) # ax5.set_title(f"l2_patched_diff_change_features_show", fontsize=config['visualization']['font_size']) # ax6.set_title(f"histograms_intersection_show", fontsize=config['visualization']['font_size']) # ax7.set_title(f"l1_fp_tp_fn_prediction_mask", fontsize=config['visualization']['font_size']) # ax8.set_title(f"l2_fp_tp_fn_prediction_mask", fontsize=config['visualization']['font_size']) # ax9.set_title(f"histc_fp_tp_fn_prediction_mask", fontsize=config['visualization']['font_size']) # figure.suptitle( # f"Epoch: {epoch+1}\nGT labels for classification: {classes_in_gt}, \nunique in change predictions: {np.unique(change_detection_show)}\nunique in predictions1: {np.unique(logits_show1)}", fontsize=config['visualization']['font_size']) figure.tight_layout() if config['visualization']['val_imshow']: plt.show() if (config['visualization']['save_individual_plots'] and save_individual_plots_specific): plots_path_save = f"{config['visualization']['save_individual_plots_path']}{config['dataset']}/" fig_save_image_root = (f"{plots_path_save}/image_root/", ax1) fig_save_prediction_root = (f"{plots_path_save}/predictions/", ax3) fig_save_overlaid_full_supervised_mask_on_image_alpha_with_bg = (f"{plots_path_save}/overlaid_full_alpha_w_bg/", ax2) roots = [ fig_save_image_root, fig_save_prediction_root, fig_save_overlaid_full_supervised_mask_on_image_alpha_with_bg ] figure.savefig( f"{plots_path_save}/figs/{image_name}.png", bbox_inches='tight') for root, ax in roots: utils.create_dir_if_doesnt_exist(root) file_path = f"{root}/{image_name}.png" # extent = ax.get_window_extent().transformed(figure.dpi_scale_trans.inverted()) extent = ax.get_tightbbox(figure.canvas.get_renderer()).transformed(figure.dpi_scale_trans.inverted()) figure.savefig(file_path, bbox_inches=extent) cometml_experiemnt.log_figure(figure_name=f"Validation, Image name: {image_name}", figure=figure) figure.clear() plt.cla() plt.clf() plt.close('all') plt.close(figure) gc.collect() mean_iou, precision, recall = eval_utils.compute_jaccard(preds, targets, num_classes=config['data']['num_classes']) # hist_mean_iou, hist_precision, hist_recall = eval_utils.compute_jaccard(histogram_distance, targets, num_classes=2) # l1_mean_iou, l1_precision, l1_recall = eval_utils.compute_jaccard(l1_dist, targets, num_classes=2) # l2_mean_iou, l2_precision, l2_recall = eval_utils.compute_jaccard(l2_dist, targets, num_classes=2) # l1_precision = np.array(l1_precision) # l1_recall = np.array(l1_recall) # l1_f1 = 2 * (l1_precision * l1_recall) / (l1_precision + l1_recall) # l2_precision = np.array(l2_precision) # l2_recall = np.array(l2_recall) # l2_f1 = 2 * (l2_precision * l2_recall) / (l2_precision + l2_recall) # hist_precision = np.array(hist_precision) # hist_recall = np.array(hist_recall) # hist_f1 = 2 * (hist_precision * hist_recall) / (hist_precision + hist_recall) mean_iou = np.array(mean_iou) precision = np.array(precision) recall = np.array(recall) classwise_f1_score = 2 * (precision * recall) / (precision + recall + 0.00000000001) mean_precision = precision.mean() mean_recall = recall.mean() overall_miou = mean_iou.mean() mean_f1_score = classwise_f1_score.mean() mean_f1_score_from_r_p = 2 * (mean_precision * mean_recall) / (mean_precision + mean_recall + 0.00000000001) # print("Validation Epoch {0:2d} average loss: {1:1.2f}".format(epoch+1, total_loss/loader.__len__())) # cometml_experiemnt.log_metric("Validation mIoU", overall_miou, epoch=epoch+1) cometml_experiemnt.log_metric("Validation mean precision", mean_precision, epoch=epoch + 1) cometml_experiemnt.log_metric("Validation mean recall", mean_recall, epoch=epoch + 1) cometml_experiemnt.log_metric("Validation mean f1_score", mean_f1_score, epoch=epoch + 1) cometml_experiemnt.log_metric("Validation mean f1_score_rp", mean_f1_score_from_r_p, epoch=epoch + 1) print({f"Recall class {x}": str(np.float64(recall[x])) for x in range(len(recall))}) print({f"Precision class {x}": str(np.float64(precision[x])) for x in range(len(precision))}) print({f"F1 class {x}": str(np.float64(classwise_f1_score[x])) for x in range(len(classwise_f1_score))}) print(f"Mean F1 score: {mean_f1_score}") print(f"Mean F1 score from average recall and precision: {mean_f1_score_from_r_p}") print(f"Mean Recall: {mean_recall}") print(f"Mean Precision: {mean_precision}") # cometml_experiemnt.log_metrics({f"Recall class {str(x)}": recall[x] for x in range(len(recall))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"Precision class {str(x)}": precision[x] for x in range(len(precision))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"F1_score class {str(x)}": classwise_f1_score[x] for x in range(len(classwise_f1_score))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"L1 Validation Recall class {str(x)}": l1_recall[x] for x in range(len(l1_recall))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"L1 Validation Precision class {str(x)}": l1_precision[x] for x in range(len(l1_precision))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"L1 Validation F1_score class {str(x)}": l1_f1[x] for x in range(len(l1_f1))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"L2 Validation Recall class {str(x)}": l2_recall[x] for x in range(len(l2_recall))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"L2 Validation Precision class {str(x)}": l2_precision[x] for x in range(len(l2_precision))}, epoch=epoch+1) # cometml_experiemnt.log_metrics({f"L2 Validation F1_score class {str(x)}": l2_f1[x] for x in range(len(l2_f1))}, epoch=epoch+1) cometml_experiemnt.log_metrics({f"Concat Validation Recall class {str(x)}": recall[x] for x in range(len(recall))}, epoch=epoch + 1) cometml_experiemnt.log_metrics({f"Concat Validation Precision class {str(x)}": precision[x] for x in range(len(precision))}, epoch=epoch + 1) cometml_experiemnt.log_metrics({f"Concat Validation F1_score class {str(x)}": classwise_f1_score[x] for x in range(len(classwise_f1_score))}, epoch=epoch + 1) cometml_experiemnt.log_metric("Validation Average Loss", total_loss / loader.__len__(), epoch=epoch + 1) return total_loss / loader.__len__(), classwise_f1_score def forward(self, cometml_experiment: object, world_size: int = 8) -> tuple: """forward pass for all epochs Args: cometml_experiment (object): comet ml experiment for logging world_size (int, optional): for distributed training. Defaults to 8. Returns: tuple: (train losses, validation losses, mIoU) """ train_losses, val_losses = [], [] mean_ious_val, mean_ious_val_list, count_metrics_list = [], [], [] best_val_loss, best_train_loss, train_loss = np.infty, np.infty, np.infty best_val_mean_f1, val_mean_f1 = 0, 0 best_val_change_f1, val_change_f1 = 0, 0 model_save_dir = config['data'][config['location']]['model_save_dir'] + \ f"{current_path[-1]}_{config['dataset']}/{cometml_experiment.project_name}_{datetime.datetime.today().strftime('%Y-%m-%d-%H:%M')}/" utils.create_dir_if_doesnt_exist(model_save_dir) for epoch in range(0, self.epochs): if config['procedures']['train']: with cometml_experiment.train(): train_loss = self.train(epoch, cometml_experiment) if config['procedures']['validate']: with cometml_experiment.validate(): val_loss, val_cw_f1 = self.validate( epoch, cometml_experiment) val_mean_f1 = val_cw_f1.mean() val_change_f1 = val_cw_f1[1] self.scheduler.step() if (train_loss <= best_train_loss) or (val_mean_f1 >= best_val_mean_f1) or (val_change_f1 >= best_val_change_f1): if train_loss <= best_train_loss: best_train_loss = train_loss if val_mean_f1 >= best_val_mean_f1: best_val_mean_f1 = val_mean_f1 if val_change_f1 >= best_val_change_f1: best_val_change_f1 = val_change_f1 model_save_name = f"{current_path[-1]}_epoch_{epoch}_loss_{train_loss}_valmF1_{val_mean_f1}_valChangeF1_{val_change_f1}_time_{datetime.datetime.today().strftime('%Y-%m-%d-%H:%M:%S')}.pth" if config['procedures']['train']: config['val_change_f1'] = str(val_change_f1) config['val_mean_f1'] = str(val_mean_f1) config['train_loss'] = str(train_loss) with open(model_save_dir + "config.yaml", 'w') as file: yaml.dump(config, file) torch.save({'epoch': epoch, 'model': self.model.state_dict(), 'optimizer': self.optimizer.state_dict(), 'scheduler': self.scheduler.state_dict(), 'loss': train_loss}, model_save_dir + model_save_name) if config['visualization']['save_individual_plots']: _, _ = self.validate( epoch, cometml_experiment, save_individual_plots_specific=True) return train_losses, val_losses, mean_ious_val if __name__ == "__main__": project_root = '/'.join(current_path[:-1]) # main_config_path = f"{os.getcwd()}/configs/main.yaml" main_config_path = f"{project_root}/configs/main.yaml" initial_config = utils.load_yaml_as_dict(main_config_path) # experiment_config_path = f"{os.getcwd()}/configs/{initial_config['dataset']}.yaml" experiment_config_path = f"{project_root}/configs/{initial_config['dataset']}.yaml" # config_path = utils.dictionary_contents(os.getcwd()+"/",types=["*.yaml"])[0] experiment_config = utils.config_parser( experiment_config_path, experiment_type="training") config = {**initial_config, **experiment_config} config['start_time'] = datetime.datetime.today().strftime( '%Y-%m-%d-%H:%M:%S') # _{datetime.datetime.today().strftime('%Y-%m-%d-%H:%M')}" project_name = f"{current_path[-3]}_{current_path[-1]}_{config['dataset']}" experiment_name = f"attention_{datetime.datetime.today().strftime('%Y-%m-%d-%H:%M:%S')}" experiment = comet_ml.Experiment(api_key=config['cometml']['api_key'], project_name=project_name, workspace=config['cometml']['workspace'], display_summary_level=0) config['experiment_url'] = str(experiment.url) experiment.set_name(experiment_name) torch.manual_seed(config['seed']) torch.cuda.manual_seed(config['seed']) np.random.seed(config['seed']) random.seed(config['seed']) torch.set_default_dtype(torch.float32) device_ids = list(range(torch.cuda.device_count())) # print(device_ids) # config['device_ids'] = device_ids # gpu_devices = ','.join([str(id) for id in device_ids]) # os.environ["CUDA_VISIBLE_DEVICES"] = gpu_devices device = torch.device('cuda') # config['devices_used'] = gpu_devices experiment.log_asset_data(config) experiment.log_text(config) experiment.log_parameters(config) experiment.log_parameters(config['training']) experiment.log_parameters(config['evaluation']) experiment.log_parameters(config['visualization']) if config['visualization']['train_imshow'] or config['visualization']['val_imshow']: matplotlib.use('TkAgg') if config['training']['resume'] != False: base_path = '/'.join(config['training']['resume'].split('/')[:-1]) pretrain_config_path = f"{base_path}/config.yaml" pretrain_config = utils.load_yaml_as_dict(pretrain_config_path) # print(config['training']['model_feats_channels']) # print(pretrain_config_path['training']['model_feats_channels']) config['data']['channels'] = pretrain_config['data']['channels'] # if not config['training']['model_feats_channels'] == pretrain_config_path['training']['model_feats_channels']: # print("the loaded model does not have the same number of features as configured in the experiment yaml file. Matching channel sizes to the loaded model instead.") # config['training']['model_feats_channels'] = pretrain_config_path['training']['model_feats_channels'] config['data']['num_classes'] = pretrain_config['data']['num_classes'] config['training']['model_feats_channels'] = pretrain_config['training']['model_feats_channels'] if config['data']['name'] == 'geowatch' or config['data']['name'] == 'onera': coco_fpath = ub.expandpath(config['data'][config['location']]['train_coco_json']) dset = kwcoco.CocoDataset(coco_fpath) print(dset.cats) sampler = ndsampler.CocoSampler(dset) window_dims = (config['data']['time_steps'], config['data']['image_size'], config['data']['image_size']) # [t,h,w] input_dims = (config['data']['image_size'], config['data']['image_size']) channels = config['data']['channels'] num_channels = len(channels.split('|')) config['training']['num_channels'] = num_channels dataset = SequenceDataset(sampler, window_dims, input_dims, channels) train_dataloader = dataset.make_loader(batch_size=config['training']['batch_size']) test_coco_fpath = ub.expandpath(config['data'][config['location']]['test_coco_json']) test_dset = kwcoco.CocoDataset(test_coco_fpath) test_sampler = ndsampler.CocoSampler(test_dset) test_dataset = SequenceDataset(test_sampler, window_dims, input_dims, channels) test_dataloader = test_dataset.make_loader(batch_size=config['evaluation']['batch_size']) else: train_dataloader = build_dataset(dataset_name=config['data']['name'], root=config['data'][config['location']]['train_dir'], batch_size=config['training']['batch_size'], num_workers=config['training']['num_workers'], split='train', crop_size=config['data']['image_size'], channels=config['data']['channels'], ) channels = config['data']['channels'] num_channels = len(channels.split('|')) config['training']['num_channels'] = num_channels window_dims = (config['data']['time_steps'], config['data']['image_size'], config['data']['image_size']) # [t,h,w] input_dims = (config['data']['image_size'], config['data']['image_size']) test_coco_fpath = ub.expandpath(config['data'][config['location']]['test_coco_json']) test_dset = kwcoco.CocoDataset(test_coco_fpath) test_sampler = ndsampler.CocoSampler(test_dset) test_dataset = SequenceDataset(test_sampler, window_dims, input_dims, channels) test_dataloader = test_dataset.make_loader(batch_size=config['evaluation']['batch_size']) # if not config['training']['model_single_input'] and not config['training']['model_diff_input']: # config['training']['num_channels'] = 2*config['training']['num_channels'] model = build_model(model_name=config['training']['model_name'], backbone=config['training']['backbone'], pretrained=config['training']['pretrained'], num_classes=config['data']['num_classes'], num_groups=config['training']['gn_n_groups'], weight_std=config['training']['weight_std'], beta=config['training']['beta'], num_channels=config['training']['num_channels'], out_dim=config['training']['out_features_dim'], feats=config['training']['model_feats_channels']) # model = SupConResNet(name=config['training']['backbone']) num_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print("model has {} trainable parameters".format(num_params)) model = nn.DataParallel(model) model.to(device) optimizer = optim.SGD(model.parameters(), lr=config['training']['learning_rate'], momentum=config['training']['momentum'], weight_decay=config['training']['weight_decay']) scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, len(train_dataloader), eta_min=config['training']['learning_rate']) if config['training']['resume'] != False: if os.path.isfile(config['training']['resume']): checkpoint = torch.load(config['training']['resume']) # model_dict = model.state_dict() # if model_dict == checkpoint['model']: # print(f"Succesfuly loaded model from {config['training']['resume']}") # else: # pretrained_dict = {k: v for k, v in checkpoint['model'].items() if k in model_dict} # model_dict.update(pretrained_dict) # model.load_state_dict(model_dict) # print("There was model mismatch. Matching elements in the pretrained model were loaded.") missing_keys, unexpexted_keys = model.load_state_dict(checkpoint['model'], strict=False) start_epoch = checkpoint['epoch'] optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) print(f"loadded model succeffuly from: {config['training']['resume']}") print(f"Missing keys from loaded model: {missing_keys}, unexpected keys: {unexpexted_keys}") else: print("no checkpoint found at {}".format( config['training']['resume'])) exit() trainer = Trainer(model, train_dataloader, test_dataloader, config['training']['epochs'], optimizer, scheduler, test_loader=test_dataloader, test_with_full_supervision=config['training']['test_with_full_supervision'] ) train_losses, val_losses, mean_ious_val = trainer.forward(experiment)