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1  Introduction 
 Multigrid algorithms have been used 
extensively as tools for obtaining 
approximations to the solutions of partial 
differential equations. In conjunction, 
there has been intensive research into the 
theoretical understanding these methods 
([1], [4], [7]). Multigrid methods for finite 
elements is extensively applicable in the 
all of sciences such as electricity, fluid 
mechanics and so on (see [9] for 
instance). We consider the two 
dimensional Stokes problem in a simply 
connected bounded polygonal domain 
Ω ⊂ 𝑅2  with homogeneous Dirichlet 
boundary condition:  
  
− Δ𝐮 + ∇𝑝 = 𝐟 𝑖𝑛    Ω,
∇. 𝐮 = 0 𝑖𝑛    Ω,
𝐮 = 𝟎 𝑜𝑛    𝜕Ω.

 
 
(1) 

  
 The equation ∇. 𝐮 = 0 in (1) expresses 
the incompressibility condition. The 
variational form of (1) is to find 𝐮 =
(𝑢1, 𝑢2)

𝑇 ∈ 𝑉 = (𝐻0
1(Ω))2  and 𝑝 ∈ 𝑀 =

𝐿2(Ω) such that  
  
𝑎(𝐮, 𝐯) + 𝑏(𝐯, 𝑝) = (𝐟, 𝐯)0 ∀𝐯 ∈ 𝑉,

𝑏(𝐮, 𝑞) = 0 ∀𝑞 ∈ 𝑀,
 

(2) 

in which (. , . )0 denotes an inner product 
in the 𝐿2(Ω)  space. Also, the bilinear 

forms 𝑎(. , . )  on 𝑉 × 𝑉  and 𝑏(. , . )  on 
𝑉 ×𝑀 are given respectively by  

𝑎(𝐮, 𝐯) = ∫
Ω

∇𝐮. ∇𝐯𝑑𝐱,    

     𝑏(𝐮, 𝑝) = −∫
Ω

𝑝∇. 𝐮𝑑𝐱. 

 Theoretically, we can use the second 
equation in (2) (i.e. incompressibility 
condition) to define the divergence free 
subspace  
𝑍 = {𝐯 ∈ 𝑉: 𝑏(𝐯, 𝑞) = 0,    ∀𝑞 ∈ 𝑀} ⊂ 𝑉. 

 Then, the system (2) splits to a Z-elliptic 
problem: 
 Find 𝐮 ∈ 𝑍 such that  

𝑎(𝐮, 𝐯) = (𝐟, 𝐯)0 ∀𝐯 ∈ 𝑍 (3) 
and a subsequent problem for the 
pressure 𝑝 ∈ 𝑀:  
 
𝑏(𝐯, 𝑝) = (𝐟, 𝐯)0 − 𝑎(𝐮, 𝐯) ∀𝐯 ∈ 𝑉.  (4) 
Then, for solving (2), at first with 
eliminating 𝑝, the system (3) is solved to 
determine the velocity 𝐮 and then with 
solving (4), the pressure 𝑝 is obtained. 
 For discrete mixed formulation of (2), let 
𝑉ℎ ⊂ 𝑉  and 𝑀ℎ ⊂ 𝑀  and consider the 
variational problem to find 𝐮𝐡 ∈ 𝑉ℎ and 
𝑝ℎ ∈ 𝑀ℎ  such that  
𝑎(𝐮𝐡, 𝐯𝐡) + 𝑏(𝐯𝐡, 𝑝ℎ) = (𝐟, 𝐯𝐡)0,  

∀𝐯𝐡 ∈ 𝑉ℎ, 
𝑏(𝐮𝐡, 𝑞ℎ) = 0, ∀𝑞ℎ ∈ 𝑀ℎ. 

 
(5) 

 
 Similarly, define  
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𝑍ℎ = {𝐯𝐡 ∈ 𝑉ℎ: 𝑏(𝐯𝐡, 𝑞ℎ) = 0,
𝑞ℎ ∈ 𝑀ℎ} ⊂ 𝑉ℎ, 

where it is called the subspace of 
discretely divergence free velocities in 𝑉ℎ. 
Note that often, 𝑍ℎ is not a subspace of 
𝑍 (see [6]). Then (5) is equivalent to the 
following: Find 𝐮𝐡 ∈ 𝑍ℎ such that  
  
𝑎(𝐮𝐡, 𝐯𝐡) = (𝐟, 𝐯𝐡)0 ∀𝐯𝐡 ∈ 𝑍ℎ ,  (6) 

 and then determining 𝑝ℎ ∈ 𝑀ℎ  such 
that  
for each 𝐯𝐡 ∈ 𝑉ℎ 
𝑏(𝐯𝐡, 𝑝ℎ) = (𝐟, 𝐯𝐡)0 − 𝑎(𝐮𝐡, 𝐯𝐡). (7) 

 
 The following Inf-Sup Condition will 
guarantee the uniqueness of the solution 
of (5).  
Lemma 1 In order for (7) to have a unique 
solution, it is necessary and sufficient that  

0 < 𝑖𝑛𝑓
𝑞ℎ∈𝑀ℎ

𝑠𝑢𝑝
𝒗𝒉∈𝑉ℎ

|𝑏(𝒗𝒉, 𝑞ℎ)|

∥ 𝒗𝒉 ∥𝑉∥ 𝑞ℎ ∥𝑀
. 

  Proof: See ([14]). 
 In Section 2, we will describe the basis 
functons for Taylor- Hood triangular 
elements that have been originally 
introduced by Hecht. In Section 3, we will 
introduce a new prolongation operator 
and then the symmetric multigrid 
algorithm is expressed. Moreover, the 
convergence of multigrid algorithm would 
be proved. In Section 4, some numeical 
results are given and finally in Section 5, a 
summary of this paper and some 
suggestions for future research are given.  

2. Triangular Taylor-Hood Elements 
We consider the P2-P1 Taylor-Hood 
element 
for the discretization of (1) on a 
triangulation of a simply connected 
polygonal domain Ω ⊂ 𝑅2 as our choices 
for 𝑉 and 𝑀. There is a local basis of 𝑍 
that this local basis of discretely 
divergence free (ddf) space has been 
originally introduced by Hecht in his 
paper. These basis functions are the 
following (for more details see [13]): 

 1) The vertex basis functions 𝐯𝐩,𝟏 and 

𝐯𝐩,𝟐 that are (1,0) and (0,1) on vertex 𝑝 

respectively and zero on the other nodal 
points(vertices and edge midpoints). 
Figure (1) shows the nodal points and the 
supports of these vertex basis functions. 
 

 
  
   
Figure  1:  Vertex basis functions 𝐳𝐩𝟏 = 𝐯𝐩𝟏 

and 𝐳𝐩𝟐 = 𝐯𝐩𝟐 . 

   2) Let us consider the following vectors:  

𝐯𝐞,𝐭(𝑄) = {
𝐶𝑒𝐞 if Q = Me,
𝟎 if Q ≠ Me,

.  

 and  

𝐯𝐞,𝐝(𝑄) = {
𝐶𝑒𝐝 if Q = Me,
𝟎 if Q ≠ Me,

.  

 where 𝑀𝑒  is the midpoint of interior 
edge 𝑒, the vectors 𝐞 and 𝐝 are two 
tangential and diagonal edge vectors of 
the quadrilateral given by the two 
triangles attached to edge 𝑒 (see Figure 
(2))and 𝐶𝑒 is a normalization constant.   
Now, for any two (interior) neighbor 
triangles (a triangle is called interior if all 
its edges are interior, otherwise it is a 
boundary triangle), a basis function in ddf 
space is the summation of the vectors 𝐯𝐞,𝐭 
and 𝐯𝐞,𝐝. In fact, the summation of input 
and output fluxes should be equal. Figures 
3(a) to 3(d) illustrate these basis 
functions. In Figures 3(a) and 3(b), a local 
ddf basis function is 𝐳𝐞 = 𝐯𝐞𝟏,𝐭 + 𝐯𝐞𝟐,𝐭 +

𝐯𝐞𝟑,𝐝 and also in Figures 3(c) and 3(d), a 

local ddf basis function is 𝐳𝐞 = 𝐯𝐞𝟏,𝐭 +
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𝐯𝐞𝟐,𝐭 + 𝐯𝐞𝟑,𝐭 + 𝐯𝐞𝟒,𝐝.  

  
Figure  2:  Tangential and diagonal edge 
vectors. 

    

    
Figure  3:  Local basis functions 𝐳𝐞. 

   3) In each interior triangle, the 
summation of the vector functions 𝐯𝐞,𝐭 

considering their directions contain a ddf 
triangular basis function. In Figure (4), a 
local triangular basis function is 𝐳𝚫 =
𝐯𝐞𝟏,𝐭 + 𝐯𝐞𝟐,𝐭 + 𝐯𝐞𝟑,𝐭.  

  

   
Figure 4:  Local triangular basis function 𝐳𝚫. 

   Now, we are ready to state the following 
theorem:   
Theorem 2 The space 𝑍 of ddf velocities 
for the triangular P2-P1 Taylor-Hood 
element with respect to a triangulation on 
a simply connected polygonal domain 𝛺 
possesses a basis  

𝒵 = 𝒵𝑝 ∪ 𝒵𝑒 ∪ 𝒵𝛥 

 of locally supported functions where 𝒵𝑝 

consists of all vertex basis functions 𝑍𝑝,𝑘, 

𝒵𝑒  of a selection of diagonal edge 
functions 𝒛𝒆,𝒅 as specified above and 𝒵𝛥 
of all triangle functions 𝒛𝜟  associated 
with interior 𝛥.   
 Proof: See [13].  
 
3  Multigrid Methods on Triangular 
Taylor-Hood Elements 
 Solving the Stokes problem on triangular 
Taylor- Hood elements has been verified 
by some researchers (see e.g. [6], [12]). 
Furthermore, in [13] the Stokes problem 
has been solved by the same basis 
functions given in Section 2. In [13], 
Oswald has proposed a specific 
preconditioning method for solving the 
Stokes problem. However, as it has been 
mentioned in [13], this preconditioning 
method is not suitable for large scale. In 
this section, by introducing a new 
prolongation operator, we want to solve 
the Stokes problem by multigrid 
algorithms on triangular Taylor- Hood 
elements. This method also works for 
large scales. Moreover, it is shown that 
under some conditions, the multigrid 
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algorithm converges. Up to now, a lot of 
prolongation operators have been 
constructed for conforming and 
nonconforming finite element 
discretizations (see e.g. [8], [12], [11] for 
some intergrid transfer operators). The 
construction of a prolongation operator 
for Whitney elements on simplicial 
meshes has been given in [3]. Also, in [10] 
a prolongation and restriction operator 
has been given for mixed finite element 
discretizations of the generalized Stokes 
problem using the Scott- Vogelius 
element. In [15], new second-order 
prolongation and restriction formulas 
have been given which preserve the 
divergence and, in some cases, the curl of 
a discretized vector field. Furthermore, a 
divergence free prolongation operator in 
[5] has been applied to estimate the 
magnetic field in the refined cells for 
astrophysical MHD. Now, we are ready to 
introduce our method for solving the 
Stokes problem on triangular Taylor-Hood 
elements. The basis functions are the 
same functions given in Section 2. We 
note that the ddf space in the level 𝑗 (i.e. 
𝑍𝑗 = {𝐯 ∈ 𝑉𝑗: 𝑏(𝐯, 𝑞) = 0,    ∀𝑞 ∈ 𝑀𝑗} ⊂

𝑉𝑗) is not the subspace of ddf space in the 

level 𝑗 + 1  (i.e. 𝑍𝑗+1 ). Then the usual 

prolongation operators would not be 
satisfied in this method. To develop a 
multigrid algorithm for the discretization 
problem (6), we need to assume a 
structure to our family of partitions. For 
0 < ℎ < 1, let Γℎ be a triangulation of Ω 
into triangles of size ℎ. Now, let ℎ1 and 
Γℎ1 = Γ1 be given. For each integer 1 <

𝑗 ≤ 𝐽 , let ℎ𝑗 = 2
1−𝑗ℎ1  and Γℎ𝑗 = Γ𝑗  be 

constructed by connecting the midpoints 
of the edges of the triangle in Γ𝑗−1 and 

let Γℎ = Γ𝐽 be the finest grid. In this and 

the following section, we replace 
subscript ℎ𝑗  simply by subscript 𝑗.  

 
3.1  Intergrid Transfer Operators 

 For construction of prolongation 
operator, we define the coarse to fine 
intergrid transfer operator 𝐼𝑗: 𝑍𝑗−1 → 𝑍𝑗 

for 𝑗 = 2,3,⋯ , 𝐽  by 𝐼𝑗 = 𝐼𝑗1𝑂𝐼𝑗2  where 

𝐼𝑗1 : 𝑉𝑗 → 𝑍𝑗  and 𝐼𝑗2: 𝑍𝑗−1 → 𝑉𝑗  are 

defined as follows. To define 𝐼𝑗2: 𝑍𝑗−1 →

𝑉𝑗, we first recall that if 𝑃 is at most a 

quadratic polynomial on a triangle 𝑇 in 
Γ𝑗−1  such that 𝑃(𝑝𝑖) = 𝑓𝑖  for 𝑖 = 1,2,3 

and 𝑃(𝑀𝑖) = 𝑚𝑖  where 𝑝𝑖  and 𝑀𝑖  for 
𝑖 = 1,2,3 are the vertices and midpoints 
of 𝑇 respectively, then  

𝑃(𝑄1) =
𝑚1 +𝑚2

2
+
𝑚3

3
−
𝑓1 + 𝑓2
8

 
(8) 

 
and similarly holds for 𝑄2 and 𝑄3 (see 
Figure 5.a).  
 

 
Figure  5:  a) Local triangle basis function 
𝐳𝚫 in coarse grid. b) Effect of 𝐳𝚫 on fine grid. 

 
Now, let us to consider a local triangular 
basis function 𝐳𝚫 = 𝐯𝐞𝟏,𝐭 + 𝐯𝐞𝟐,𝐭 + 𝐯𝐞𝟑,𝐭 

(see Figure 5.a). Let 𝑄 be a midpoint of 
an edge of an arbitrary triangle Δ in Γ𝑗; 

then we can define 𝐼𝑗2𝐳𝚫 by (8),  

(𝐼𝑗2𝐳𝚫)(𝑄)

=

{
 
 

 
 
𝟎                          if Q ∈ 𝜕Ω,                               
3

4
𝐞𝐢                      if Q ∈ Γj−1 and Q on  ei,      

𝐞𝟏 + 𝐞𝟑
2

+
𝐞𝟐
4
,   if    Q = Q1( Figure 5),         

 

 where 𝐞𝐢 is the tangential vector on the 
edge 𝑒𝑖.  
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Figure  6:  Mapping the 𝐼𝑗2𝐕𝐩,𝟐. 

 
Similar relations hold when 𝑄 = 𝑄2  or 
𝑄 = 𝑄3. In addition, as Figure (5) shows, 
(𝐼𝑗2𝐳𝚫)(𝑄) = 1/2𝐞𝐢  and (𝐼𝑗2𝐳𝚫)(𝑄) =

1/4𝐞𝐢 so that 𝑄 is within the adjacent 
triangle of 𝑇 ∈ Γ𝑗 and on one side of the 

edge 𝑒𝑖. Also, if 𝑄 is a midpoint of an 
edge 𝑒𝑖  of 𝑇  in Γ𝑗−1 , then 

(𝐼𝑗2𝐳𝚫)(𝑄) = 𝐞𝐢 .  Furthermore, let 𝐯𝐩,𝟏 

and 𝐯𝐩,𝟐  be the vertex basis functions 

corresponding the vertex 𝑝 of a triangle 
𝑇 in Γ𝑗−1. If 𝑄 is a vertex of a triangle in 

Γ𝑗, then we can simply define  

(𝐼𝑗2𝐯𝐩,𝐢)(𝑄) = {
𝐩𝐢, if   Q = p,
𝟎, if  Q ≠ p,

 

 for 𝑖 = 1,2 which 𝐩𝐢 is the unit vector 
with 1 in 𝑖th component. Similarly, by 
formula (8) the mapping 𝐼𝑗2: 𝑍𝑗−1 → 𝑉𝑗 is 

defined for other local basis functions (see 
Figure 6 for instance).  
 

 
Figure 7. Effect of local triangle basis function in 
level 𝑗 − 1 on the vertex basis functions in the 

level 𝑗.  
 To define the mapping 𝐼𝑗1: 𝑉𝑗 → 𝑍𝑗, we 

consider three cases: 
 Case 1: we note that the vertex basis 
functions 𝐯𝐩,𝟏  and 𝐯𝐩,𝟐  belong to the 

ddf space. Then we can simply define 
𝐼𝑗1𝐩𝐢 = 𝐩𝐢  for 𝑖 = 1,2 . Case 2: The 

mapping 𝐼𝑗1  projects each vector 𝐞 =

(𝑒1, 𝑒2)
𝑇 on the middle point of an edge 

in Γ𝑗−1  to horizontal and vertical 

components (Figure 7), i.e.  

𝐼𝑗1𝐞 = {
𝑒1𝐩𝟏,
𝑒2𝐩𝟐.

 

 Case 3: To make the mapping 𝐼𝑗1  on the 

midpoint of an edge of Δ in Γ𝑗 like 𝑄, 

we have to note that several local basis 
functions usually affect on 𝑄 . For 
example, as Figure 8 shows, three local 
basis functions 𝐳𝐞,𝐝𝟏 ,  𝐳𝐞,𝐝𝟐 , 𝐳𝐞,𝐝𝟑  and one 

local triangle basis function 𝐳𝚫 affect on 
𝑄. Then, in order to obtain the value of 
3

4
𝐞𝟏 on 𝑄 (see Figure 5.b), we can form 

the following equation:  

𝐳𝐞,𝐝𝟏 + 𝐳𝐞,𝐝𝟐 + 𝐳𝐞,𝐝𝟑 + 𝐳𝚫 =
3

4
𝐞𝟏. 

 In this manner, for each vector function 
in 𝑉𝑗 , similar equations can be easily 

formed on other midpoints of an edge in 
the fine grid Γ𝑗. Therefore, a system of 

Ax=b is formed and thus the coefficients 
of ddf basis functions in the fine grid are 
determined.    
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  Figure 8. Three edge and one triangular local 

basis functions on the point 𝑄.  
 We observe that this prolongation 
operator will preserve the discrete 
divergence free property from level 𝑗 − 1 
to 𝑗 . The restriction operator 𝑅𝑗: 𝑍𝑗 →

𝑍𝑗−1  can be defined by 𝑅𝑗 = 𝐶(𝐼𝑗)
𝑇 

where 𝐶 is a constant.  
3.2  Multigrid Methods 
 In this subsection, we describe the 
symmetric multigrid algorithm and prove 
its convergence. We consider the 
sequence of discretely divergence free 
spaces  

𝑍0, 𝑍1, . . . , 𝑍𝐽. 

 We define the symmetric positive definite 
bilinear forms 𝑎𝑗(. , . )  and (. , . )𝑗  on 

𝑍𝑗 × 𝑍𝑗  for 𝑗 = 0,1,⋯ , 𝐽 by  

𝑎𝑗(𝐮, 𝐯) = ∫
Ω

∇𝐮. ∇𝐯𝑑𝐱   ∀𝐮, 𝐯 ∈ 𝑍𝑗 ,     

and 

     (𝐮, 𝐯)𝑗 = ∫
Ω

𝐮. 𝐯𝑑𝐱   ∀𝐮, 𝐯 ∈ 𝑍𝑗 . 

 The norm corresponding to (. , . )𝑗 will 

be denoted by ∥. ∥𝑗 . We shall develop 

multigrid algorithms for the solution of 
the following problem: Given 𝑓 ∈ 𝑍𝐽, find 

𝐮 ∈ 𝑍𝐽 such that  

𝑎𝐽(𝐮, 𝐯) = (𝐟, 𝐯)𝐽        ∀ , 𝐯, ∈   𝑍𝐽. 

 For 𝑗 = 0,1, . . . , 𝐽. let 𝐴𝑗: 𝑍𝑗 → 𝑍𝑗  be the 

discretization operator on level 𝑗 given 
by  
(𝐴𝑗𝐯,𝐰)𝑗 = 𝑎𝑗(𝐯,𝐰)       ∀ ,𝐰, ∈   𝑍𝑗 . 

 The operator 𝐴𝑗 is clearly symmetric in 

both 𝑎𝑗(. , . ) and (. , . )𝑗  inner products 

and positive definite. Also, we define the 

operators 𝑝𝑗−1: 𝑍𝑗 → 𝑍𝑗−1 and 𝑝𝑗−1
0 : 𝑍𝑗 →

𝑍𝑗−1 by  

𝑎𝑗−1(𝑝𝑗−1𝐯,𝐰) = 𝑎𝑗(𝐯, 𝐼𝑗𝐰),

∀ 𝐰 ∈   𝑍𝑗−1, 

 and  

(𝑝𝑗−1
0 𝐯,𝐰)𝑗−1 = (𝐯, 𝐼𝑗𝐰)𝑗,     ∀ 𝐰 ∈   𝑍𝑗−1, 

 where 𝐼𝑗: 𝑍𝑗−1 → 𝑍𝑗 for 𝑗 = 1,2, . . . , 𝐽 is 

a prolongation operator. Note that 𝐼𝑗𝑃𝑗−1 

is symmetric in the 𝑎𝑗(. , . )  inner 

product. Also, we require a linear 
smoothing operator 𝑆𝑗: 𝑍𝑗 → 𝑍𝑗  for 𝑗 =

1,2, . . . , 𝐽 . We assume that 𝑆𝑗  is 

symmetric in the (. , . )𝑗 -inner product 

and set 𝐾𝑗 = 𝐼 − 𝑆𝑗𝐴𝑗 . We further assume 

that 𝐾𝑗 is nonnegative in the sense that 

𝑎𝑗(𝐾𝑗𝐮, 𝐮) ≥ 0 for all 𝐮 ∈ 𝑍𝑗. 

 The convergence rate for the multigrid 
algorithm on the 𝑗th level is measured by 
a convergence factor 𝛿𝑗 < 1 satisfying  

|𝑎𝑗((𝐼 − 𝐵𝑗𝐴𝑗)𝐯, 𝐯)| ≤ 𝛿𝑗𝑎𝑗(𝐯, 𝐯)    (9) 

 for  all  𝐯 ∈ 𝑍𝑗 , where the multigrid 

operator 𝐵𝑗: 𝑍𝑗 → 𝑍𝑗  is defined by 

induction and is given as follows([2]).   
 
Multigrid Algorithm  
Set 𝐵0 = (𝐴0)

−1. Assume that 𝐵𝑗−1 has 

been defined and define 𝐵𝑗𝑏 for 𝑏 ∈  𝑍𝑗 

as follows:  
(1) Set 𝑥0 = 0 and 𝑞0 = 0. 
(2) Define 𝑥𝑙  for 𝑙 = 1, ⋯ ,𝑚(𝑗) by  

𝑥𝑙 = 𝑥𝑙−1 + 𝑆𝑗
(𝑙+𝑚(𝑗))

(𝑏 − 𝐴𝑗𝑥
𝑙−1). 

(3) Define 𝑦𝑚(𝑗) = 𝑥𝑚(𝑗) + 𝐼𝑗𝑞
𝑝  where 

𝑞𝑖 for 𝑖 = 1, ⋯ , 𝑝 is defined by  

𝑞𝑖 = 𝑞𝑖−1 + 𝐵𝑗−1[𝑃𝑗−1
0 (𝑏 − 𝐴𝑗𝑥

𝑚(𝑗))

− 𝐴𝑗−1𝑞
𝑖−1]. 

(4) Define 𝑦𝑙  for 𝑙 = 𝑚(𝑗) +
1, ⋯ , 2𝑚(𝑗) by  

𝑦𝑙 = 𝑦𝑙−1 + 𝑆𝑗
(𝑙+𝑚(𝑗))

(𝑏 − 𝐴𝑗𝑦
𝑙−1). 

 (5) Set 𝐵𝑗𝑏 = 𝑦2𝑚(𝑗). 

 In this algorithm, 𝑚(𝑗)  is a positive 
integer which may vary from level to level 
and determines the number of pre and 
post smoothing iterations. If 𝑝 = 1, we 
have a v-cycle multigrid algorithm. If 𝑝 =
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2, we have a w-cycle algorithm. A variable 
v-cycle algorithm is one in which the 
number of smoothing 𝑚(𝑗)  increases 
exponentially as 𝑗 decreases (i.e., 𝑝 = 1 

and 𝑚(𝑗) = 2𝐽−𝑗). The above multigrid is 
called symmetric multigrid algorithm. To 
estimate the convergence of multigrid 
algorithm, we need some conditions 
concerning smoothing and stability. Based 
on the methodology developed in [2], two 
very important ingredients in convergence 
analysis of non-nested multigrid methods 
are the following conditions:  
 Condition(A1): There is a constant 𝐶𝑆 
which does not depend on 𝑗 such that the 
smoothing procedure satisfies  

∥ 𝑢 ∥𝑗
2

𝜆𝑗
≤ 𝐶𝑆(𝑆𝑗𝐮, 𝐮)𝑗      ∀𝐮 ∈ 𝑍𝑗 . 

 
 We note that when 𝑆𝑗 is the Richardson 

smoothing iteration defined by 𝑆𝑗 =

𝜔𝜆𝑗
−1  where 0 < 𝜔 < 2  and 𝜆𝑗  the 

maximum eigenvalue of 𝐴𝑗 , then 

Condition A1 holds in equality with 𝐶𝑆 =
1/𝜔.  
Condition(A2): 
 𝑎𝑗(𝐼𝑗𝐯, 𝐼𝑗𝐯) ≤ 𝑎𝑗−1(𝐯, 𝐯)    ∀𝐯 ∈ 𝑍𝑗−1, 

for 𝑗 = 1,⋯ , 𝐽. 
 Now, we want to show Condition A2 is 
satisfied for our discretization.  
Lemma  3 If a uniform mesh is used on 
polygonal domain Ω, then the Condition 
A2 is satisfied.    
Proof: For 𝐯 ∈ 𝑍𝑗−1,  

𝑎𝑗−1(𝐯, 𝐯) =  ∑ ∫|∇𝐯|2𝑑𝑥

𝑇𝑇∈Γ𝑗−1

 

                   = ∑ ∫|∇𝐯|2𝑑𝑥

𝐸𝐸∈Γ𝑗

 

 
 
 
(10) 

Since 𝐯 ∈ 𝑃2, then |∇𝐯|2 is a quadratic 
polynomial and therefore  

∫
𝐸

|∇𝐯|2𝑑𝑥 =
𝐴(𝐸)

3
∑

3

𝑖=1

|∇𝐯(𝑀𝑖)|
2, 

 where 𝐴(𝐸) is the area of triangle 𝐸 

and 𝑀𝑖  for i=1,2,3 are the midpoint of 
edges of 𝐸. On the other hand, let 𝐸1 
and 𝐸2 be two neighbor triangles in Γ𝑗 

with 𝑝1, 𝑝2, 𝑝3  and 𝑝4  as vertices of 
parallelogram 𝐸1 ∪ 𝐸2  where 𝑝1𝑝3  and 
𝑝2𝑝4 are diagonals (see Fig 9). Now, by 
Taylor expansion, we have:  

{
 
 

 
 
𝐯(𝑝1) − 𝐯(𝑝3) = (𝑥(𝑝1) − 𝑥(𝑝3))𝐯𝑥(𝑀)

                           +(𝑦(𝑝1) − 𝑦(𝑝3))𝐯𝑦(𝑀)

𝐯(𝑝2) − 𝐯(𝑝4) = (𝑥(𝑝2) − 𝑥(𝑝4))𝐯𝑥(𝑀)

                             +(𝑦(𝑝2) − 𝑦(𝑝4))𝐯𝑦(𝑀).

 

 
 
(11) 

 Regarding the relation (11) and the fact 
that in an arbitrary paralellogram 
 𝑑 = (𝑥(𝑝1) − 𝑥(𝑝3)). (𝑦(𝑝2) − 𝑦(𝑝4)) −
(𝑦(𝑝1) − 𝑦(𝑝3)). (𝑥(𝑝2) − 𝑥(𝑝4)) ≠ 0  
we have:  
|∇𝐯(𝑀)|2 = |[(𝐯(𝑝1) − 𝐯(𝑝3))(𝑦(𝑝2) 
               −𝑦(𝑝4))  − (𝐯(𝑝2) 
              −𝐯(𝑝4))(𝑦(𝑝1) − 𝑦(𝑝3))]/𝑑|

2 
              +|[(𝐯(𝑝2) − 𝐯(𝑝4))(𝑥(𝑝1) 
             −𝑥(𝑝3)) − (𝐯(𝑝1) 
        −𝐯(𝑝3))(𝑥(𝑝2) −
𝑥(𝑝4))]/𝑑|

2, 

 
 
(12) 

 
 where 𝑀 is the midpoint of joint edges 
of 𝐸1 and 𝐸2. Now, by (10) and (12) for 
𝑣 ∈ 𝑍𝑗−1  

𝑎𝑗−1(𝐯, 𝐯) = ∑

𝐸∈Γ𝑗

𝐴(𝐸)

3
∑

3

𝑖=1

|∇𝐯(𝑀𝑖)|
2 

= ∑

𝐸∈Γ𝑗

𝐴(𝐸)

3
∑

3

𝑖=1

 

|[(𝐯(𝑝1𝑖) − 𝐯(𝑝3𝑖))(𝑦(𝑝2𝑖) − 𝑦(𝑝4𝑖)) 

−(𝐯(𝑝2𝑖) − 𝐯(𝑝4𝑖))(𝑦(𝑝1𝑖) − 𝑦(𝑝3𝑖))]/𝑑𝑖|
2 

+|[(𝐯(𝑝2𝑖) − 𝐯(𝑝4𝑖))(𝑥(𝑝1𝑖) − 𝑥(𝑝3𝑖)) 

−(𝐯(𝑝1𝑖) − 𝐯(𝑝3𝑖))(𝑥(𝑝2𝑖) − 𝑥(𝑝4𝑖))]/𝑑𝑖|
2, 

  
 where 𝑝1𝑖 , 𝑝2𝑖 and 𝑝3𝑖  are the vertices 

of triangle 𝐸 and 𝑝4𝑖  is the third vertex 

of a neighbor triangle 𝐸′ so that 𝑝2𝑖𝑝4𝑖 

forms the diagonal of paralellogram 𝐸 ∪
𝐸′ and also  
𝑑𝑖 = (𝑥(𝑝1𝑖) − 𝑥(𝑝3𝑖)). (𝑦(𝑝2𝑖) − 𝑦(𝑝4𝑖)) −

(𝑦(𝑝1𝑖) − 𝑦(𝑝3𝑖)). (𝑥(𝑝2𝑖) − 𝑥(𝑝4𝑖)).  

A similar result holds for every 𝑣 ∈ 𝑍𝑗 . 
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Therefore, the condition (A2) easily 
follows from the difinition of 𝐼𝑗  in 

Section (3.1). 

     
  Figure 9. A sample parallelogram.  
 Now, the following theorem guarantees 
the convergence of multigrid algorithm 
with new intergrid transfer operator given 
in Section 3.1.   
Theorem 4 Assume that (A.1) and (A.2) 
hold. Then (9) holds for some 𝛿𝑗 < 1.   

 Proof: See [2].  
4  Numerical experiments 
We consider the Stokes problem (1) and 
assume that Ω = [0,1] × [0,1] is a unit 
square. Let 𝑔 = 2𝑥2𝑦2(1 − 𝑥)2(1 − 𝑦)2 
and choose the vector 𝐟 such that 𝐮 =
𝐜𝐮𝐫𝐥(𝑔)  be the exact solution of (1). 
Then, 𝐮  holds in the boundary and 
incompressibility conditions. We have 
partitioned Ω  to a triangular grid as 
usual and the sequence of triangulation is 
obtained from coarsest level by regular 
subdivision. The coarsest level partitioned 
to three parts in x and y directions (see 
Figure 10).   
 

 
      Figure 10. Coarsest level with 3 partitions in x 

and y directions.  
 For simplicity in the computation of 

∫
Δ
𝐟. 𝐯𝑑𝑥  in which 𝐯 ∈ 𝑍𝑗 , we can use 

two change of variables. According to 
Figure 10, we have used the change of 
variables 𝑥 = 𝑥1 + (𝑥2 − 𝑥1)(1 + 𝛼)/2 
and 𝑦 = 𝑦1 + (𝑦2 − 𝑦1). (1 − 𝛼)(1 +
𝛽)/4 for triangle Δ1 and 𝑥 = 𝑥1 + (𝑥2 −
𝑥1)(1 − 𝛼)(1 + 𝛽)/4  and 𝑦 = 𝑦1 +
(𝑦2 − 𝑦1)(1 + 𝛼)/2  for triangle Δ2 . 
Thus, by  

∫
Δ

𝐟. 𝐯𝑑𝐱 = ∫
𝐷

𝐽(𝛼, 𝛽)𝑔(𝛼, 𝛽)𝑑𝛼𝑑𝛽 
(13) 

where 𝐽(𝛼, 𝛽) =
𝜕(𝛼,𝛽)

𝜕(𝑥,𝑦)
 is the Jacobian 

function, the integration on a triangle Δ 
is converted to a square 𝐷 =
[−1,1] × [−1,1]. Now, by twice applying 
Gauss integration formula on (13), it is 
easily computed. We have solved this 
problem by Matlab R2023b software. 
Since in the higher levels (higher than 3), 
the matrix 𝐴  (which it is obtained by 
finite element method) can not be stored 
in the computer, We have stored the 
matrix 𝐴  by some block matrices the 
number of which increases with an 
increase in the levels. Therefore, there is 
no explicit matrix 𝐴 and just some block 
matrices exist that their combinations 
would create the matrix 𝐴 . Also, the 
Richardson iteration method  

𝑥𝑘+1 = 𝑥𝑘 + 𝜔𝑗(𝑏𝑗 − 𝐴𝑗𝑥
𝑘) 

for solving the system of 𝐴𝑗𝑥 = 𝑏𝑗  is 

used where the smoothing operator 

𝑆𝑗 = 𝜔𝑗 =
2

∥ 𝐴𝑗 ∥∞
. 

Of course, if we assume that 𝜆𝑚𝑎𝑥
𝑗

 be 
the maximum eigenvalues of the stiffness 
matrix 𝐴𝑗 in the level 𝑗, then with 𝜔𝑗 =

2/𝜆𝑚𝑎𝑥
𝑗

, the Richardson iteration would 
be converged faster than 𝜔𝑗 = 2/∥

𝐴𝑗 ∥∞. But, there are no explicit stiffness 

matrices and hence we can not drive the 
eigenvalues of 𝐴𝑗 . However, since 

𝜆𝑚𝑎𝑥
𝑗

≤∥ 𝐴𝑗 ∥∞ , then 2/∥ 𝐴𝑗 ∥∞≤

2/𝜆𝑚𝑎𝑥
𝑗

. Hence, this option of smoothing 
operator is suitable. We have considered 
Problem (1) with number of iterations 
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𝑚(𝑗) = 2  in pre and post smoothing 
processes. Figures 11 and 12 illustrate the 
approximated velocities (for a v-cycle 
algorithm) and exact velocities in the level 
3, respectively. We observe that the 
approximated solution is in good 
agreement with the exact solution. Let 
also 𝐮𝑖,𝑗 and 𝐯𝑖,𝑗 be the value of exact 

and approximated solutions in the point 
(𝑥𝑖, 𝑦𝑗), respectively. Also, we let 𝐞 be a 

vector with components 𝐮𝑝,𝑞 − 𝐯𝑝,𝑞 and 

∥ 𝐞 ∥𝑗 , the ℓ2  norm of the error 𝐞 in 

the level 𝑗. We have provided the error ∥
𝐞 ∥𝑗 from level 2 to level 8 for v-cycle, 

w-cycle and variable v-cycle (vv-cycle) 
algorithms. Table 1 shows ∥ 𝐞 ∥𝑗 and as 

we observe, when the level 𝑗 increases, 
the ℓ2  norm of error would be 
decreased.   
 

      
  Figure 11. The approximated values of velocities 

in the level 3 for Problem (1).  
  

 
  Figure 12. The exact values of velocities in the 

level 3 for Problem (1).   

Table  1: Computation of ∥ 𝐞 ∥𝑗 by MG 

algorithm. 

  
𝐿𝑒𝑣𝑒𝑙 

𝑣 
𝑐𝑦𝑐𝑙𝑒 

𝑤 
𝑐𝑦𝑐𝑙𝑒 

𝑣𝑣 
𝑐𝑦𝑐𝑙𝑒 

  2 2.5e-2 2.5e-2 2.6e-2 

  3 1.3e-2 1.3e-2 1.3e-2 

  4 6.48e-3 6.47e-3 6.48e-3 

  5 3.24e-4 3.20e-4 3.26e-4 

  6 1.02e-4 1.01e-4 1.06e-4 

  7 7.56e-5 7.42e-5 8.01e-5 

  8 4.32e-5 4.28e-5 4.65e-5 

 

    
5  Summary and Conclusion 
 In this paper, we have presented an 
optimal multilevel preconditioner for the 
divergence-free part of a P2-P1 
discretization of the two dimensional 
Stokes problem which contains a new 
prolongation operator preserving the 
discrete divergence-free property. The 
convergence of mulrigrid algorithm has 
been given for uniform meshes. We do 
not know the convergence of multigrid 
algorithm with intergrid transfer 
operators given in Section 3 for 
non-uniform meshes and generalized 
Stokes problem. AT would like to thank 
Professor Peter Oswald from Jacobs 
University, Bremen, Germany for his 
useful discussion and encouragement.  
 
References   
 
[1]  Bramble J. (1993). Multigrid 

Methods, Pitman, London.  
 
[2]  Bramble J. H. and Pasciak J. E. and Xu 

J. (1991), The analysis of multigrid 
algorithms with non-nested spaces 
or non-inherited quadratic forms, 
Mathematics of Computation, 56, 
pp. 1-34.  

 
[3]  Bossavit A. and Rapetti F. (25), A 

prolongation/restriction operator for 
Whitney elements on simplicial 



 
 
 

492 

Journal of Harbin Engineering University 
ISSN: 16-7043 

Vol 46 No. 7 
   July 2025 

meshes, Siam Journal of Numerical 
Analysis, 43, pp. 2077-2097.  

 
[4]  Briggs W. L., Henson V. E. and 

McCormick S. F. (20), A multigrid 
tutorials, Second edition, Siam.  

 
[5]  Fromang S. and Hennebelle P. and 

Teyssier R. (27), A high order 
Godunov scheme with constrained 
transport and adaptive mesh 
refinement for astrophysical MHD, 
Astronomy and Astrophysics 
manuscript no. 5371 ms.  

 
[6]  Girault V. and Raviart P. A. (1986), 

Finite Element Methods for 
Navier-Stokes Equation, New-York: 
Springer.  

 
[7]  Hackbusch W. (1985), Multi-Grid 

Methods and Applications, Springer - 
Verlag.  

 
[8]  John V. and Knobloch P., Matthies G. 

and Tobiska L. (22), Non-nested 
multilevel solvers for finite element 
discretizations of mixed problems, 
Computing, 68, pp. 313-341.  

 
[9]  Kaltenbacher M., Reitzinger S., 

Schinnerl M., Schoberl J. and Landels 
H. (21), Multigrid methods for the 
computation of 3D electromagnetic 
field problems., COMPEL: The 
International Journal for Comp. and 
Math. in Elec. Eng., 20, pp. 581-594.  

 
[10]  Linke A., Matthies G. and Tobiska 

(28), Non-nested multi-grid solvers 
for mixed divergence free Scott- 
Vogelius discretizations, Computing, 
No. 2-3, 83, pp. 87-107.  

 
[11]  Oswald P. (1997), Intergrid transfer 

operators and multilevel 
preconditioners for nonconforming 

discretizations, Applied of Numerical 
Mathematics, 23, pp. 139-158.  

 
[12]  Oswald P. (1998), An optimal 

multilevel preconditioner for 
solenoidal approximations of the 
two-dimensional Stokes problem, 
IMA Journal of Numerical Analysis, 
18, pp. 207-228.  

 
[13]  Oswald P. (21), Remarks on 

multilevel bases for divergence-free 
finite elements, Numerical 
Algorithms, 27, pp. 131-152.  

 
[14]  Temam R. (1995), Navier-Stokes 

equations and nonlinear functional 
analysis, 2nd edition, CBMS-NSF 
Regular Conferences Series in 
Applied Mathematics.  

 
[15]  Toth G. and Roe P. L. (22), 

Divergence- and curl-preserving 
prolongation and restriction 
formulas, Journal of Computational 
Physics, 180, pp. 736-750.   

 
 


