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Abstract
Natural language processing (NLP) techniques are becoming increasingly popular in industrial and
organizational psychology. One promising area for NLP-based applications is scale development;
yet, while many possibilities exist, so far these applications have been restricted—mainly focusing
on automated item generation. The current research expands this potential by illustrating an
NLP-based approach to content analysis, which manually categorizes scale items by their measured
constructs. In NLP, content analysis is performed as a text classification task whereby a model is
trained to automatically assign scale items to the construct that they measure. Here, we present
an approach to text classification—using state-of-the-art transformer models—that builds upon
past approaches. We begin by introducing transformer models and their advantages over alternative
methods. Next, we illustrate how to train a transformer to content analyze Big Five personality
items. Then, we compare the models trained to human raters, finding that transformer models out-
perform human raters and several alternative models. Finally, we present practical considerations,
limitations, and future research directions.

Keywords
personality, scale development, machine learning, natural language processing, text classification,
transformers

Researchers have spent decades echoing the challenging nature of scale development (e.g., Condon
et al., 2020; Hinkin, 1998; McCrae & Costa, 1987; Norman, 1963); often describing it as a process of
“trial and error” (Tellegen & Waller, 2008, p. 262)—whereby subject matter experts (SMEs) write,
review, and revise items to best measure psychological attributes (Clark & Watson, 2016, 2019). If
not carefully developed, scales could include unrelated items or items that underrepresent the con-
struct(s) of interest (Hattie, 1985; Rosellini & Brown, 2021; Smith et al., 2022). So, best practices
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suggest performing a content analysis, a process that evaluates the degree to which item content
relates to the psychological construct(s) of interest (i.e., content validation; Anderson Gerbing,
1991; Colquitt et al., 2019; Worthington & Whittaker, 2006).

Content analysis has had a significant and historic role in scale development (e.g., Allport,
1937; Loevinger, 1957). This role is likely to grow in importance as researchers and practitioners
deal both with more nuanced constructs and with the need to avoid construct proliferation. Most
recently, researchers have begun proposing various machine-learning techniques to streamline the
scale development process, for example, automated item generation, automated scoring, and auto-
mated test assembly (e.g., Campion et al., 2016; Hommel et al., 2022; Jiao & Lissitz, 2020; Lee
et al., 2023; von Davier, 2018). Yet, the standard approach to content analysis is mostly a manual
process that demands considerable time, cognitive effort, and decision-making from SMEs
(Krippendorff, 2018; Short et al., 2018). After considering the recent growth of machine-learning
techniques, automated item generation in particular (e.g., Götz et al., 2021; Hommel et al., 2022;
Lee et al., 2023; von Davier, 2018), manually conducting content analysis becomes untenable
since it would be virtually impossible for SMEs to quickly evaluate a large number of (e.g., a
few thousand) generated items. These dynamics suggest a need for more efficient ways to
conduct content analysis.

In response to this need, researchers have recently begun applying natural language processing
(NLP)1 techniques to automate the content analysis process (e.g., Ilmini & Fernando, 2017;
Kobayashi et al., 2018a; Pandey & Pandey, 2019). The particular NLP strategy used for content val-
idation is known as text classification (Kobayashi et al., 2018a). In text classification, an NLP model
learns to automatically classify text documents into predetermined categories or classes by identify-
ing similar patterns among text documents within a class (Kowsari et al., 2019). Here, we use the
term “document” to encompass the various units of natural language text composed of at least one
word (e.g., words, phrases, sentences, or paragraphs). To train a classification model, researchers
must collect enough labeled documents. A “label” is a specific tag representing a class or collection
of documents with similar content.2

In training a text classification model for content analysis, one can treat scale items as documents
and their respective constructs as the labels. For example, the personality item “I am the life of the
party” can be treated as a text document representing the class “extraversion.” A model that could
effectively perform such a task would dramatically increase the efficiency of a researcher’s scale
development process and provide several additional advantages. For example, a text classification
model trained to perform content analysis could flag potentially problematic items (i.e., “blended”
or cross-loading items) before collecting response data, preselect the most content-representative
items among a large pool of pilot items before SME review, and instantly provide data-driven feed-
back to item writers regarding how well-constructed items align with the construct or constructs of
interest.

Although text classification has a large potential when applied to content analysis, two issues still
exist in the literature. First, research demonstrating text classification techniques in organizational
and psychological scale development is scarce. As such, there is little understanding of the advan-
tages, concerns, and limitations of applying text classification for content analyzing scale items. A
second issue arises from previous demonstrations of text classification in organizational and psycho-
logical research. While impressive in many ways, early studies often illustrate techniques that involve
collecting a large number of text documents which require a significant amount of time to clean, pre-
process, and label (e.g., Ilmini & Fernando, 2017; Kobayashi et al., 2018a; Pandey & Pandey, 2019).
Recent developments in computer science and computational linguistics have led to significant
improvements in text classification (Wolf et al., 2020); however, organizational and psychological
researchers are still relatively unfamiliar with these techniques (Boyd & Schwartz, 2021;
Eichstaedt et al., 2020; Kennedy et al., 2021).
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In light of these issues, the present research aims to (a) introduce organizational researchers to
state-of-the-art transformer models (see Vaswani et al., 2017); (b) illustrate how to use text classifi-
cation to automate the content analysis process; (c) provide reproducible code and data for training
such models; (d) compare the effectiveness of various text classification techniques with human
raters when performing content analysis; and (e) discuss practical, methodological, and substantive
concerns when using the proposed method in scale development.

The Present Research
In pursuit of our objectives, we first describe how transformers fit into the text classification process.
Second, we present the factors that led to the emergence of transformer models in text classification,
then we discuss their advantages over other NLP approaches. Third, we outline the steps to train and
fine-tune a transformer-based text classification model. We provide a step-by-step tutorial illustrating
how to automate the content analysis process. Specifically, we illustrate several ways to train trans-
formers to classify personality items by their trait label to assess the content relevance (Haynes et al.,
1995).3 Fourth, we evaluate the efficacy of our proposed approach by comparing its accuracy to
human raters and several other NLP models when performing content analysis. Lastly, we discuss
methodological considerations and recommendations while progressing through each step of our
text classification approach. In summary, this research strives to clarify the role of NLP in a critical
scale development process—content analysis—in hopes of presenting NLP as an essential yet acces-
sible element in the future of organizationally relevant scale development.

An Introduction to Transformers in Text Classification:
Concepts and Developments
Text classification aims to train a classification model to assign text documents to predefined classes
or categories (Kobayashi et al., 2018a). A classification model takes in a piece of text and outputs a
label representing a predicted class or category. A classification model combines two components—
the text representation method and the classification algorithm (see Figure 1). Although these com-
ponents are distinct—allowing researchers to use various techniques for each—they combine to
determine the overall accuracy of the classification model (Domingos, 2012; Kobayashi et al.,
2018a). The text representation method converts raw text documents into a numeric form, for
instance, a vector of 0’s and 1’s representing the presence or absence of particular words in a docu-
ment. These numeric representations, called encodings or embeddings, are used as input to train the
classification algorithm. When training, the classification algorithm aims to learn a function that most
accurately predicts class labels predetermined by the researcher (Kobayashi et al., 2018a). While
researchers perform several substeps during text classification (e.g., Kobayashi et al., 2018a;
Kowsari et al., 2019; Mirończuk & Protasiewicz, 2018), these steps all seek to improve the
quality of the embeddings (i.e., text representations) and classification algorithm.

The Emergence of Transformer Models
Researchers have developed increasingly sophisticated classification algorithms in hopes of better clas-
sifying text (see Kowsari et al., 2019). However, advancements in text representation are the
primary source of the recent improvements in text classification (see Pilehvar & Camacho-Collados,
2020 for an overview)—most notably transformer models (a.k.a., transformers, Vaswani et al.,
2017). Transformers are a type of deep neural network (i.e., neural network architecture) used to
convert text into numeric representations (i.e., embeddings). Since transformers are primarily a text rep-
resentation method, researchers can use them to perform a broad array of NLP tasks (not just text
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classification). As such, the transformer models that have grown in popularity (e.g., Bidirectional
Encoder Representations from Transformers [BERT]; Devlin et al., 2019; Generative Pretrained
Transformer 3 [GPT-3]; Brown et al., 2020; Sentence-BERT [SBERT]; Reimers & Gurevych,
2019) are just specialized types of transformers—developed to accelerate in a particular area of
NLP. Nonetheless, the key similarity between these models is that they all use transformer architecture
for text representation.

The development of the transformer architecture arose from the need for an efficient but effective
way to represent complexities in human language (Vaswani et al., 2017). Unlike early “count-based”
approaches to text representation (e.g., bag-of-words and bag-of-n-grams; Harris, 1954) and even
well-established shallow and deep neural network approaches (e.g., ELMo; Peters et al., 2018;
word2vec; Mikolov et al., 2013), transformers are highly efficient when producing embeddings
(Kennedy et al., 2021; Liu et al., 2020). Specifically, contextual embeddings account for both the
meaning of a word and the context in which the word is used (Eichstaedt et al., 2020).

A transformer’s neural network performs several key operations to produce rich contextual
embeddings. First, a transformer model splits text into several smaller pieces (usually words or sub-
words). Then the model gives each word an embedding—either randomly or using a pre-existing
embedding learned during pre-training (see Figure 2 for more information on pre-training). Then,
word embeddings combine with positional encodings, which modify the embeddings to account
for each word’s relative position in the text document. Accounting for word order is crucial when
capturing a text’s meaning (Boyd & Schwartz, 2021). For example, the words “job” and “fair” in

Figure 1. Traditional approach to text classification.
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the text documents “job fair” and “fair job” will have different contextual embeddings in each docu-
ment because they appear in distinct positions. The addition of positional encodings gives transform-
ers advantages over early word embedding approaches (e.g., gloVe; Pennington et al., 2014;
word2vec; Mikolov et al., 2013) since transformers can have multiple representations for the same
word depending on the context. Next, in a series of steps, the model updates “naive” contextual
embeddings with valuable information from surrounding words.

The core mechanism of the transformer architecture—known as self-attention (Vaswani et al.,
2017)—updates the contextual embeddings. The self-attention mechanism determines which of
the surrounding words the transformer should give more weight when updating a word’s contextual
embedding. That is, the attention mechanism determines which words the model should pay more
attention to when considering a word’s context. Transformers tend to outperform alternative deep
neural network architectures, such as recurrent neural networks (RNN; Elman, 1990) and long-term,
short-term memory (LSTM; Hochreiter & Schmidhuber, 1997),4 in part due to their attention mech-
anism (Adhikari et al., 2019; Hendrycks et al., 2020; Peters et al., 2019). Instead of encoding infor-
mation about every word appearing before the target word, a transformer’s attention mechanism
focuses on the surrounding words that are most important. Consequently, transformers produce
more effective contextual embeddings and process text more efficiently (Azunre, 2021; Pilehvar
Camacho-Collados, 2020).

Due to their ability to produce contextual embeddings, NLP practitioners may use transformers for
a wide variety of NLP tasks, such as text translation, keyword extraction, and text generation. In text

Figure 2. Transfer learning approach to text classification.
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classification, the BERT (Devlin et al., 2019) and models based on BERT (e.g., decoding-enhanced
BERT with disentangled attention [DeBERTa]; He et al., 2021; robustly optimized BERT approach
[RoBERTa]; Liu et al., 2019) are among the most popular. The BERT family of transformers adds a
classification layer to the base transformer architecture that serves as the classification algorithm (as
shown in Figure 1, a classification model requires both a text representation method and a classifi-
cation algorithm). BERT and related transformers are considered state-of-the-art due to their effec-
tiveness in representing language in addition to their capacity for transfer learning and fine-tuning
(Sun et al., 2020; Wolf et al., 2020; Zhang et al., 2021). The following section expands upon transfer
learning and fine-tuning in text classification. After, we elaborate on how these developments can
serve as strengths when using BERT models to classify Big Five personality items.

Transformers: Pre-Training and Transfer Learning. As demonstrated in Figure 1, the traditional approach
to text classification seeks to train a model to classify particular documents to particular classes (e.g.,
classifying personality items to one of the Big Five traits). So, researchers start this process by col-
lecting text documents of a particular kind (e.g., Kobayashi et al., 2018a; Pandey & Pandey, 2019).
While this approach to training a text classification model is popular today, it has limitations.
Notably, the traditional approach to training limits those unable to collect enough text documents
in domains where data is scarce; it produces models that struggle to process text that differs from
the text seen during training (i.e., text with out-of-vocabulary words); also, this approach results
in a model that researchers cannot use for other purposes (Azunre, 2021).

Considering these limitations, NLP researchers began to move away from the traditional approach
to training (i.e., training classification models to solve a particular task). Instead, researchers have
begun to embrace a “learning to learn” approach to training (Azunre, 2021, p. 16). This recent
method is known as transfer learning—a process that instead pre-trains a model to gain a general
representation of language (see Figure 2). During the pre-training phase, a model develops rich pre-
trained embeddings (of words and symbols) by performing a variety of prediction task(s)—known as
source tasks.5 Thus, instead of training a model that starts without an understanding of word relation-
ships, researchers can start with a model with a general representation of language in the form of pre-
trained embeddings. After pre-training, researchers perform the adaptation step, where they adjust a
pre-trained model to effectively perform their particular task—known as the target task (Pan & Yang,
2010). Next, we describe the ways to adapt a pre-trained transformer for performing text
classification.

Adapting Transformers: Fine-Tuning and Feature Extraction. There are two general approaches to adapt-
ing a pre-trained transformer: (a) feature extraction and (b) fine-tuning (Peters et al., 2019). When
using a pre-trained transformer for feature extraction, researchers use pre-trained embeddings as
is. Illustrated in Figure 3A, this approach inputs unlabeled text documents to a pre-trained model
and outputs “fixed” embeddings for each document. This results in a matrix of N × K where the
number of rows (N) is equal to the number of documents, and the number of columns (K ) is
equal to the length of the embeddings (e.g., 512 or 768). With the addition of label information,
this matrix can be input into an external machine-learning classifier to perform text classification.
Moreover, specific transformer models used for feature extraction (e.g., Universal Sentence
Encoder [USE] and SBERT) produce “fixed” embeddings. These specific models will always
output the same embedding for a text document—regardless of additional factors. For example, a
model like SBERT will always output the same embedding for the item “I am the life of the
party” regardless of the additional items processed. One notable benefit of this approach is that
researchers do not need to provide the model with labeled documents to produce embeddings.
However, researchers must add label information later in the process (when training the classification
algorithm).
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The other approach to adapting a pre-trained transformer involves fine-tuning a pre-trained trans-
former model. The fine-tuning process (Figure 3B) adapts the pre-trained model to perform the spe-
cific classification task better; it does so by training the model using a sample (i.e., training set) of text
documents with class labels (Sun et al., 2020). Unlike the feature extraction approach, fine-tuning
updates pre-trained embeddings based on the training set and class labels. As such, embeddings
are not “fixed.” For example, the personality item “I am the life of the party” with the class label
“extraversion” would receive a different embedding from a transformer model fine-tuned to classify
items as “extraversion” or “introversion” versus a transformer model fine-tuned to classify items into
one of the Big Five traits (i.e., “agreeableness,” “conscientiousness,” “extraversion,” “neuroticism,”
and “openness”).

While researchers consider the fine-tuning approach to be the state-of-the-art approach to text clas-
sification (He et al., 2021; Ruder, 2021; Sun et al., 2020; Zhang et al., 2021), the present research
examines several types of transformer models using both approaches to adaptation (i.e., feature
extraction and fine-tuning). Specifically, we evaluate two transformers developed for feature extrac-
tion: USE (Cer et al., 2018) and SBERT (Reimers & Gurevych, 2019). We also evaluate five fine-
tuned transformer models: (i) ALBERT (“A Lite” version of BERT; Lan et al., 2020), (ii) BERT
(Devlin et al., 2019), (iii) decoding-enhanced BERT with disentangled attention (DeBERTa; He
et al., 2021), (iv) robustly optimized BERT approach (RoBERTa; Liu et al., 2019), and (v)
XLNet (Generalized Autoregressive Transformer; Yang et al., 2020). Overall, these models are
based on the transformer architecture and have been pre-trained on enormous amounts of data.

Figure 3. Using pre-trained transformers for text classification via feature extraction and fine-tuning.
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The justification for demonstrating several approaches was two-fold. First, although using a trans-
former for feature extraction is advantageous in some cases (e.g., document clustering tasks with
unlabeled documents), it creates more steps in the overall text classification process. For example,
after extracting the fixed-embedding matrix, researchers must append class labels, select a classifica-
tion algorithm, format the fixed-embedding data, and determine which software package(s) to lever-
age when training the model. We wanted to illustrate this added complexity in text classification (see
Figure 3). Second, since the value of a classification model is relative to its alternatives (Kobayashi
et al., 2018a), and feature extraction approaches commonly used (Peters et al., 2019), we thought it
would be important to examine transformer-based classification models that use feature extraction in
addition to classification models that have been fine-tuned.

Advantages of Transformers in Text Classification
Using pre-trained transformers for text classification of personality items has several advantages.
First, transformers better account for contextual factors compared to early text representation
methods (Pilehvar & Camacho-Collados, 2020). This advantage is important for classifying person-
ality items that often have very few distinct words and many words in common (e.g., Goldberg, 1993;
Saucier, 1997). Second, the pre-training process exposes transformers to vast amounts of unclean text
during pre-training, allowing them to simplify or eliminate the need for text cleaning and preprocess-
ing (Devlin et al., 2019; Miyajiwala et al., 2022). Third, related to the former advantage, fine-tunable
transformers combine text representation and classification into a single model, reducing the number
of steps in the overall classification process and providing a more reproducible and efficient approach
(Peters et al., 2019). Fourth, fine-tuning transformer models allows them to produce accurate results
with less training data (e.g., Brown et al., 2020; Halder et al., 2020) and provides feedback to prior-
itize relevant features for each class, increasing the likelihood that the model is grounded in theory.
Finally, while researchers have yet to apply transformers to classify personality items, pre-trained
transformers have demonstrated impressive performance on classification tasks using documents
of a similar nature (e.g., He et al., 2021; Lan et al., 2020; Yang et al., 2020). In addition to previously
described advantages, Table 1 includes a description, relevant challenges, and recommendations for
transformer-based approaches to text classification that aligns with each step in the text classification
process (see Kobayashi et al., 2018a for an overview).

Demonstration: Training Transformers to Classify Personality Items
In this section, we apply several pre-trained transformers to classify Big Five items to demonstrate a
novel and effective way to automate content analysis. First, we introduce each step by expanding on
specific goals and challenges. Then, we describe our procedures while providing recommendations; a
summarized version of this information is in Table 1. In addition to the demonstration described here,
we have created a GitHub code repository—https://github.com/Shea-Fyffe/transforming-personality-
scales. The repository provides several software tutorials, data, and other tools for training
transformer-based text classification models. To reproduce the steps described below, see the files
in the ∼/tutorials directory of the code repository (we refer to these files as the “tutorials” throughout
this manuscript).

Step 1: Collecting and Preprocessing Personality Items
To train an effective classification model for content analysis, researchers must collect scale items
(i.e., text documents) and their corresponding dimensions (i.e., represented by labels). One challenge
is identifying accessible data sources that provide structured data. While commonly used scales, such
as those measuring the Big Five, are widely available, researchers may need to use other existing
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scales to train models for other constructs. However, the biggest challenge is determining how many
labeled scale items are needed for the classification model to be accurate. Given its criticality, we
elaborate on this challenge in the latter part of this article. Specifically, we provide suggestions on
how to proceed in the section “Question 1: How Many Items are Needed for Fine-Tuning?” and
Table 1.

Additionally, researchers should evaluate the integrity of the labeling process (i.e., the process that
determines which items belong to which labels (e.g., Mirończuk & Protasiewicz, 2018). If misla-
beled, scale items are likely to hurt model performance (e.g., Chen et al., 2022; Phang et al.,
2019; Saarikoski et al., 2015; Schick & Schütze, 2021). In the same vein, researchers may be moti-
vated to include items that are indirectly related to the dimension labels of interest to obtain a larger
number of items for training (e.g., collecting popular scales used in clinical psychology and labeling
them as “neuroticism” items or collecting “extraversion” items from leadership scales). Instead, we
recommend researchers focus on collecting scale items directly related to the dimensions under
investigation; striving for items with a wide variety of wordings (e.g., negatively worded items,
long items, short items, contextual personality items, and items with non-first-person subjects)
since variation in training data has been shown to improve model performance (e.g.,
Chronopoulou et al., 2019; Wang et al., 2021; Yin et al., 2020).

Step 1: Our Demonstration. To collect personality items, we leveraged the open-source repositories:
International Personality Item Pool (IPIP; Goldberg et al., 2006) and the Synthetic Aperture
Personality Assessment project (SAPA; Condon, 2018). We focused on items that explicitly mea-
sured Big Five personality traits. We filtered out duplicate items by converting items to lowercase
and then removing non-letter characters (e.g., whitespace, commas, apostrophes, and hyphens).
We mapped Big Five items to the labels: (1) agreeableness, (2) conscientiousness, (3) extraversion,
(4) neuroticism, and (5) openness. Table 2 presents scale-level information for the unique 852 items.

Since we utilized pre-trained models, we performed minimal text preprocessing on the 852 items.
We considered the recommendations by Hickman et al. (2020) to preprocess the items. Specifically,
the steps taken were: (1) add an explicit first-person subject (e.g., I ) to each personality item; (2)
expand contractions (e.g., I’m, don’t, that’s) to represent their element words (e.g., I am, do not,
that is); (3) convert number symbols to word representations (e.g., “4” was transformed into

Table 2. Total Items Collect by Scale and Source.

Source/Scale Itemsa

International Personality Item Pool (IPIP)
Abridged Big Five Circumplex (AB5C) 441
Big Five Aspects Scales (BFAS) 26
Big Five Inventory (BFI) 60
HEXACO Personality Inventory (HEXACO) 88
Interpersonal Circumplex (IPIP-IPC) 2
NEO Personality Inventory Revised (NEO-PI-R) 111
Seven Factor Scales (7FACTOR) 50
Six Factor Personality Questionnaire (6FPQ) 16

Synthetic Aperture Personality Assessment (SAPA)
SAPA Personality Inventory (SPI) 58

Note. Raw data from the international item pool can be found by visiting the link: https://ipip.ori.org/ItemAssignmentTable.htm.
Raw data can be accessed by visiting the link: https://doi.org/10.7910/DVN/T1NQ4V (Condon, 2019).
a

Item counts represent unique items after removing duplicates.
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“four”); (4) convert words in items to lowercase, then capitalize the first letter of each item along with
any occurrences of the word “I”; finally (5) append a period to each item. Since negative wording
impacts the interpretation of personality items (DiStefano & Motl, 2009), we did not perform nega-
tion handling (see Hickman et al., 2020); we were concerned this may give a machine-learning model
an advantage during text classification. We split pre-processed items into a training and testing set
using a “Train/Test Split” approach (Vabalas et al., 2019), which resulted in 733 and 119 items
for training and testing, respectively (see Table 3).

Step 2: Text Representation of Personality Items
Recalling from Figure 3, there are two ways to produce text representations when using transformers.
There are several reasons a researcher might take a feature extraction approach to text classification.
These reasons include a motivation to use a more interpretable model that requires less computational
resources, wanting to perform additional steps related to feature engineering, or the desire to use a
more complex classification algorithm. On the other hand, researchers may fine-tune a pre-trained
model given that they have collected enough labeled scale items and want to achieve the best possible
performance. Although fine-tuning often involves selecting a transformer architecture that is slightly
more complex, transformers simplify the overall classification process by combing text representa-
tion and classification into one.

To process text, transformers require raw documents to undergo tokenization. This splits each
item’s text into its component tokens.6 Then, the model converts each token to a numeric index cor-
responding to that token’s line in the model’s pre-trained vocabulary file. For instance, the BERT
tokenizer will tokenize “I rarely feel depressed” as: [1045, 6524, 2514, 14777]; so, “I” is the
1045th token in the BERT vocabulary file. The model assigns each token a pre-trained contextual
embedding that will be updated or “fine-tuned” during training. By converting tokens to a
numeric index, the model can process and update embeddings more efficiently. Depending on the
NLP task, tokenization may result in adding several special tokens to each text document. In a
text classification task, for instance, tokenizers prepend a “[CLS]” token with the id [101]. This
token serves as the composite for the token-level contextual embeddings and is used as the overall
(document-level) representation during text classification (Devlin et al., 2019).

Step 2: Our Demonstration. To compare fine-tuned classification models to classification models
trained with embeddings derived from feature extraction, we trained 11 separate models—six
models using feature extraction and five fine-tuned models. Four out of the six feature extraction
models used “fixed” embeddings produced by transformers—the USE (Cer et al., 2018) and
SBERT (Reimers & Gurevych, 2019). Researchers developed USE and SBERT to produce

Table 3. Training and Testing Set Item Counts by Class Label.

Class Label Training Testinga

Agreeableness 152 25
Conscientiousness 153 25
Extraversion 158 23
Neuroticism 130 21
Openness 140 25
Total 733 119

Note. N= 852.
a
The testing sets totaled 119 items (14.0% of the overall items). This number was generated through stratified sampling based
on 15% of the total sample, while considering rater fatigue.
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fixed-length contextual embeddings that researchers can use for various NLP tasks. Additionally, we
chose to include mean-aggregated word embedding to serve as a baseline because of their effective-
ness in text classification tasks (e.g., De Boom et al., 2016; Rudkowsky et al., 2018) as well as usage
in organizational and psychological research (e.g., Speer, 2021). The “Classification with Fixed
Embeddings” tutorial (see GitHub repository) describes the software procedures used to extract
fixed embeddings for the 852 items.

To demonstrate the fine-tuning process, we selected five different pre-trained transformer models
(i) ALBERT (Lan et al., 2020), (ii) BERT (Devlin et al., 2019), (iii) DeBERTa (He et al., 2021),
(iv) RoBERTa (Liu et al., 2019), and (v) XLNet (Generalized Autoregressive Transformer; Yang et al.,
2020). These models were fine-tuned in the “Fine-Tuning Transformer for Text Classification of Big Five
Items” tutorial (see project’s GitHub repository) using the popular Python library transformers (Wolf et al.,
2020).

Step 3: Model Selection and Training
Model Selection. Typically, prediction accuracy determines the validity of a classification model
(Kobayashi et al., 2018a). Thus, researchers should aim for the model with the highest accuracy
when selecting from the possibilities. Nonetheless, this information is likely unavailable at the
time of model selection. Alternatively, researchers should examine the literature to determine
the current state-of-the-art model for similar text classification tasks. Currently, DeBERTa (He
et al., 2021) and RoBERTa (Liu et al., 2019) are among the current state-of-the-art text classifi-
cation models (Wang et al., 2019). Also, researchers should recognize that different types of trans-
formers may differ in terms of the pre-training source tasks, the size and depth of the neural
network, and slight variations in tokenization and embedding (see Kalyan et al., 2021).
Nonetheless, the factors determining model selection are nuanced and practical, such as the com-
putational resources required and how easily a particular model can be integrated into the text
classification pipeline. When choosing a model, researchers should consider how closely the
model’s source task aligns with the classification task, especially in cases where there are few
labeled examples (Peng et al., 2020). They should also consider the computational resources
needed for training. Those with access to more time and computing resources may benefit from
choosing a larger model, such as DeBERTa or RoBERTa. Those with less access to computing
resources should consider smaller “distilled” models or models like ALBERT (Lan et al.,
2020) or DistilBERT (Sanh et al., 2020). Additionally, open-source repositories contain existing
fine-tuned models for particular text classification tasks, such as sentiment analysis or emotion
detection. These models may be particularly effective in situations where scale developers
want to classify items measuring attitudes or emotions.

Model Training and Hyper-Parameters. Transformers (and deep learning models more broadly) intro-
duce a set of novel hyper-parameters that may be unfamiliar to organizational researchers.
Researchers and practitioners set hyper-parameters to control the learning process. Thus, we begin
by providing a brief overview of essential hyper-parameters. Then, we move on to describe our train-
ing procedures. During training, a transformer updates the weights in its network in a series of steps.
Formally the total number of steps (T ) the model takes during training is a product of:

T = E ×
N
k

(1)

In equation (1) E is the number of epochs, N is the total number of training examples, and k the
batch size. The number of epochs (E) indicates the number of times a transformer model will
process the whole training set. Within an epoch, the batch size (k) determines the number of
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training examples to process before taking a step. For example, for an epoch with 100 training
examples (N ), a batch size (k) of 20 would take the model 5 steps (i.e., 100 divided by 20) to
complete the epoch. At each step, the model updates layer parameters by a learning rate, which
determines the extent to which the model can adjust its parameters each time it processes a batch
of training data—this affects how quickly the model learns. For example, a higher learning rate
can make the model learn patterns in the training data faster, but it can also make the model less
accurate if set too high. The latter situation may lead to catastrophic forgetting, whereby a trans-
former model overwrites knowledge gained from pre-training with knowledge gained from fine-
tuning (see Goodfellow et al., 2015). Hence, this increases the likelihood that the model will
underperform when classifying novel items or text that is unlike the data seen during training
(Sun et al., 2020).

Oftentimes, researchers emphasize selecting hyper-parameters, such as the number of epochs,
batch size, and learning rate (e.g., Adhikari et al., 2019; Zhang et al., 2021), on a case-by-case
basis. Still, several general guidelines appear in the literature that help better inform how to set
hyper-parameters—especially in cases where one has a small amount of training data (less than
100 examples per label). First, while the original BERT authors (i.e., Devlin et al., 2019) suggest
using no more than four epochs, researchers should consider using more than 10 epochs when
the training data are small (e.g., Adhikari et al., 2019; Zhang et al., 2021). Also, to avoid cat-
astrophic forgetting and overfitting, researchers should use a learning rate between .000002 and
.0001 in addition to a batch size smaller than 32, keeping in mind that setting a lower learning
rate, such as .000002, may require increasing the number of epochs to produce optimal results
(e.g., Liang et al., 2022; Sun et al., 2020).

Step 3: Our Demonstration. We trained two machine-learning classifiers, (a) a boosted decision-tree
algorithm (XGB; XGBoost) and (b) and linear support vector machines (SVM),7 for each of the three
fixed-embedding methods (i.e., USE, SBERT, and word embeddings). We selected these classifiers
given their success in text classification tasks (Kobayashi et al., 2018a) and their availability in open-
source software. This resulted in six fixed-embedding classification models (i.e., 3 text representa-
tions× 2 classifiers) in addition to the five fine-tuned transformer models. The fixed-embedding
models were trained using the caret package (Kuhn, 2021) in R, and the fine-tuned models using
the transformers (Wolf et al., 2020) library in Python.

We sought to control confounding factors, such as hyper-parameters, bearing in mind that the goal
of this illustration was to show how various models using fixed embeddings compared to fine-tuned
transformers. For the fixed-embedding models, we initialized hyper-parameters at their respective
defaults. When training the five fine-tuned models, we set a conservative base learning rate of
.00002. Given that we trained the fine-tuned transformer models using a batch size of 16 for 10
epochs (e.g., Liang et al., 2022; Sun et al., 2020; Zhang et al., 2021), we felt it would be inappropriate
to train the fixed-embedding models using all the training data. Thus, for the fixed-embedding
models, we performed k-fold cross-validation (see Kobayashi et al., 2018a) by breaking the training
data into seven smaller “folds.” This technique allowed the selected classification algorithms to train
in a way that better aligns with our fine-tuned models. For example, in both training scenarios, we
divided the training data into multiple subsets (“folds” for the fixed-embedding models and
“batches” for the fine-tuned models). This allows for a more robust estimate of performance that
is less susceptible to the effects of randomness or noise in the data. For the fixed-embedding
models, we used the version of the model with the highest accuracy out of the seven folds; for the
fine-tuned transformers, we selected the version that was most accurate across the 10 epochs—
these models were then saved and used for the final model evaluation on the scale items in the
testing set.
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Step 4: Model Evaluation
Researchers should select evaluation measures based on the type of classification problem (e.g.,
binary, multiclass, multilabel), nature of the data, and priorities of the researcher (Kobayashi
et al., 2018a). Since we performed a multiclass classification problem (i.e., a classification task
where the model classifies each item to belong to just one of the Big Five traits), we calculated
metrics as a weighted average across classes (see Table 4). We focus on four metrics: accuracy,
recall, precision, and F1-score. Accuracy is the proportion of correct predictions out of all predictions
made. Recall (also referred to as sensitivity) is the proportion of correctly predicted known positives
—this is a proxy for the “power” of the model. Precision is the proportion of correctly predicted pos-
itives over the total number of positive predictions. In other words, one minus the precision score is
the model’s likelihood of committing a type I error. F1-score is calculated as the harmonic mean of
precision and recall, which considers the fact that precision and recall are on a different scale (i.e.,
both use true positives as their numerator but precision divides by predicted positives whereas
recall divides by actual positives). Readers can think of the F1-score as the “effectiveness” of a
model (Kowsari et al., 2019, p. 45). However, in isolation, these evaluation metrics give little infor-
mation regarding a model’s practical value (Kobayashi et al., 2018a). In what follows, we evaluate
the performance of the models described here versus human raters when classifying Big Five person-
ality items by their content.

Table 4. Ranked Model Performance When Classifying Big Five Personality Items by Trait Label.

Model Accuracy [CILL, CIUL] Precisiona Recallb F1-scorec

Human ratersd .706 [.677, .735] .71 .71 .71
Fine-tuned transformers
ALBERT .621 [.532, .704] .63 .62 .62
BERT .807 [.727, .868] .81 .81 .81
DeBERTa .824 [.745, .882] .83 .82 .82
RoBERTa .824 [.745, .882] .82 .82 .82
XLNet .824 [.745, .882] .83 .82 .82

Fixed-embedding (feature extraction) models
Aggregate word embeddings-SVM .548 [.467, .628] .55 .55 .54
Aggregate word embeddings-XGB .618 [.537, .693] .64 .62 .63
Sentence-BERT embeddings-XGB .680 [.600, .751] .68 .68 .68
Sentence-USE embeddings-SVM .688 [.608, .758] .69 .69 .68
Sentence-BERT embeddings-SVM .701 [.622, .770] .70 .70 .70
Sentence-USE embeddings-XGB .715 [.637, .783] .72 .72 .71

Note. Accuracy estimates are rounded to the nearest hundredth for greater detail. Models presented in bold are beyond the
upper limit of human baseline accuracy based on bootstrapped estimates, p< .05.
abc
Macroweighted precision was calculated as

∑C

c=1

fc
N · tpc

tpc +fpc
where tpc is the number of true positives, fpc the number of false

positives, and fc the total number of items for class c in the test set size N. Macroweighted recall (i.e., sensitivity) was calculated

as
∑C

c = 1

fc
N · tpc

tpc +fnc
where fnc is the number of false negatives. Macroweighted F1-score was calculated as

∑C

c = 1

fc
N · 2×tpc

2×tpc + fpc + fnc
.

d
Rater accuracy was calculated as the total number of correct ratings divided by the total number of ratings. Additionally, rater
accuracy was re-calculated using direct consensus, where the most common label was used as the prediction for each item.
This resulted in a slightly higher accuracy estimate (0.764).
ALBERT= “A Lite” version of BERT; BERT= Bidirectional Encoder Representations from Transformers; CI= accuracy
confidence interval calculated based on Wilson (1927) interval; DeBERTa= decoding-enhanced BERTwith disentangled
attention; LL= lower limit; RoBERTa= robustly optimized BERT approach; SVM= support vector machine; UL= upper limit;
USE= Universal Sentence Encoder; XGB=XGBoost.
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Examining Transformer Model Performance
Comparing Model Performance with Human Raters
To conduct the manual content validation task, we recruited eight psychology graduate students to
serve as SMEs. Six students specialized in Industrial and Organizational Psychology; the remaining
students specialized in Human Factors or Developmental Psychology, respectively. Raters partici-
pated in a 3 to 4 hours training that began with an overview of the study, followed by an in-depth
video lecture covering the Big Five personality traits. After the video lecture, raters practiced by clas-
sifying 30 randomly selected items from the training set. We required raters to repeat the training
until they achieved an accuracy of 80%.

After completing training, the training instructed raters to independently (and honestly) classify
the test items using an online survey. Rating procedures were fully crossed, meaning all raters
rated all items in the testing set. This design is ideal for evaluations involving human raters (Putka
et al., 2008). We used Fleiss’ kappa to evaluate agreement among the eight raters on the testing-set
items. Kappa values for the 119 items (κ= 0.59) were >0.40 showing acceptable interrater agreement
(Fleiss, 1981).

Results of Model Performance
Table 4 shows the overall results for outcomes including accuracy, precision, recall, and F1-score.
Rater accuracy ranged from 69% to 78% with raters being 71% accurate on average. In terms of
overall accuracy, human raters outperformed most of the classification models trained using
feature extraction and fixed document embeddings. However, four of the five fine-tuned transformer
models produced higher accuracy than the human raters. As demonstrated in Table 4, three models—
DeBERTa, RoBERTa, and XLNet—outperformed the average human rater beyond estimated confi-
dence intervals. These findings align with a number of studies demonstrating that transformer models
are comparable to (or better than) human raters on an assortment of NLP tasks (e.g., Alberti et al.,
2019; Conneau & Kiela, 2018; Nangia & Bowman, 2019; Zellers et al., 2018). In addition, four
of the five fine-tuned transformer models outperformed rater predictions when using a direct-
consensus approach8—though not by a significant margin.

Important Questions When Using Transformers
for Classifying Personality Items
While we provided several recommendations throughout our demonstration above (see Table 1),
there are still several concerns that have not been fully addressed. We address them here in the
form of questions researchers may have when applying transformer models to classify personality
items. In many cases, we provide an empirical example to further elaborate on implications as
well as recommendations for how to address such concerns.

Question 1: How Many Items are Needed for Fine-Tuning?
While researchers emphasize that transformer models should be fine-tuned to be most effective when
classifying documents (e.g., Devlin et al., 2019; Sun et al., 2020), fine-tuning a model with a small
number of training examples can lead to inconsistent or inferior performance (e.g., Phang et al., 2019;
Zhang et al., 2021). The number of examples required to reach a point of “sufficiency” varies based
on factors such as how well the classification task aligns with tasks performed during pre-training,
model size and complexity, and the quality of the training data (e.g., Chronopoulou et al., 2019;
Wang et al., 2021; Yin et al., 2020).
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Accordingly, scholars in computer science and computational linguistics advocate for an ad hoc
approach as opposed to providing clear guidelines (Ruder, 2017). Although researchers hesitate to
define the minimum number of training examples recommended to fine-tune a model, the status
quo seems to suggest that fewer than 32 examples per label (i.e., 32 items per dimension in our
case) severely compromise model performance (e.g., Bansal et al., 2020; Halder et al., 2020;
Schick & Schütze, 2021). In the literature, text classification with only a few labeled training exam-
ples is commonly referred to as “few-shot” learning, or in cases where no labeled data are provided,
“zero-shot” learning (Ruder, 2017).

Researchers with an insufficient number of labeled examples have several different options. For
example, freezing various layers of the transformer architecture (e.g., Chronopoulou et al., 2019),
training with smaller learning rates (e.g., Howard & Ruder, 2018), and training the model multiple
times with several different random seeds are options (e.g., Phang et al., 2019). However, better
aligning the classification task with a source task performed by a transformer model during pre-
training (see Figure 1) produces compelling results (e.g., Brown et al., 2020; Liu et al., 2019).

Recommendation. Instead of using the standard BERT family of transformer models for text classi-
fication, researchers can reframe a text classification task as a language modeling task—since
many transformers are pre-trained using language modeling (e.g., GPT-3, BERT, and RoBERTa).
In a language modeling task, given some prompt of existing words, a language model predicts the
next word or words (i.e., the completion) in the sequence. By fine-tuning a transformer using

Figure 4. Few-shot classification accuracy by number of training examples.
Note: A comparison of classification accuracy on a testing set (N = 119) between a standard fine-tuned model
(i.e., DeBERTa) and an autoregressive decoder transformer (i.e., GPT-3). When reframing a text classification
task to better align with a transformer’s source task (i.e., a task accomplished during pre-training), researchers
can drastically increase model performance with fewer examples. a Values represent the number of randomly
selected examples per label. Since our classification included five labels, when k = 5, for example, the total
number of items used to train the model was equal to 25; when k = 2, there were 10 items used to train the
models. DeBERTa= decoding-enhanced Bidirectional Encoder Representations from Transformers with dis-
entangled attention.
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personality items as prompts and their corresponding trait label as completions, a model learns to
predict trait labels when given a novel item prompt. We demonstrate this in the tutorial:
“Few-Shot Learning with Transformers” (see the ∼/tutorials directory of project’s code repository).

We encourage readers to access the tutorial for more information on the steps taken to produce the
results displayed in Figure 4. When inspecting Figure 4, one can see the limits of a fine-tuning
approach with fewer than 40-labeled examples per class. However, if the classification task is refor-
matted into a language modeling task, we drastically improve classification accuracy with even a
handful of examples (e.g., Scao & Rush, 2021). While the few-shot learning model underperforms
the fine-tuned models presented in Table 4, the model starts to perform on par with our human
raters after just two-labeled examples per class (N= 10).

In the current research, we illustrate a “Train/Test Split” approach (Vabalas et al., 2019) to fine-
tuning. This approach is quite popular in transformer-based text classification as well as text classi-
fication more broadly. Nonetheless, we primarily used the “test set” (which can be more accurately
considered a “developmental set” because items were labeled) to evaluate model performance. Like
others (e.g., Kobayashi et al., 2018a), we recommend rigorously evaluating a classification model
prior to implementing it in practice. Still, researchers and practitioners should consider further fine-
tuning a trained model using the testing set (if labels are present) after model evaluation.

Question 2: How to Classify Items Measuring Multiple Traits?
When predicting the class label of a new text document, classification models produce predictions in
the form of logits. Depending on the type of classification task, sigmoid or softmax functions convert
logit predictions to probabilities ranging between .00 and 1.00. The simplest type of text classifica-
tion task is binary classification (Padhy et al., 2020). In binary classification, a model selects the most
likely class among two possibilities. For instance, one could train a binary classification model to
predict whether an item is a Big Five item or a non-Big Five item, or a binary classification
model could be used to predict whether items measure cognitive or noncognitive constructs.
Binary classification converts logit-valued predictions to probabilities via the sigmoid function.

In multiclass classification, a model selects the most likely class given three or more classes or
categories. Here, a softmax function outputs probability values for each class. As such, classes are
mutually exclusive, and probabilities sum to 1 (Kowsari et al., 2019). By conducting a multiclass
classification task, for the purpose of content analysis, one implies that items can only belong to
one class (analogous to the idea of simple structure in factor analysis).

In cases where evidence suggests that items may belong to multiple classes, one may perform a
multilabel classification. One can consider this type of classification task to be k binary one-vs-all
classifications, where k is the number of classes (Padhy et al., 2020). In this case, the models
trained in this research would perform five iterations each time, treating items from one Big Five
dimension as the positive class and combining items from all other dimensions into a negative
class (Padhy et al., 2020). The sigmoid function converts predictions to probabilities where a
value close to zero would indicate that the input is likely to belong to the “negative” class, and a
value close to one would indicate that the input is likely to belong to the “positive” class. In multilabel
classification, classification probabilities are not required to sum to one. As a result, items may belong
to multiple traits or factors.

Before describing recommendations, we provide an applied example to clarify the distinction
between multiclass and multilabel classification. After training a multilabel text classification
model to predict the class of Big Five personality items, the predicted probabilities of the class “neu-
roticism,” for example, would be interpreted as “the probability that the classification model thinks an
item is related to neuroticism after taking the other Big Five Factors into account.” In contrast, the
predicted probabilities of the class “neuroticism” produced by a multiclass classification would be
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interpreted as, “the probability that the classification model thinks an item belongs to neuroticism
when compared to the other Big Five factors.” While the distinction between multiclass and multi-
label classification appears subtle, these differences have several practical and conceptual implica-
tions. In the following sections, we provide recommendations for how to navigate such implications.

Recommendation. A multiclass text classification assumes that each Big Five item corresponds to a
single trait; an assumption often made by researchers (e.g., Marsh et al., 2010). However, we
acknowledge that personality items can measure multiple traits, as researchers have frequently
discussed these “blended items” (e.g., Goldberg & Velicer, 2006; Hofstee et al., 1992;
Schwaba et al., 2020). For example, the item “I feel comfortable with myself” tends to negatively
load on neuroticism and positively load on extraversion (DeGeest & Schmidt, 2015). Thus, we
provide an option to perform multilabel classification in the “Fine-tuning Transformer Models
for Text Classification of Big Five Items” tutorial. As a reminder, multilabel classification per-
forms a binary one-vs-all classification for each class—iteratively treating the one class as the pos-
itive class and combining all other classes into a negative class (Padhy et al., 2020); multilabel
classification expects the negative class to adequately compliment the positive class, or sample
everything that is not the positive class. Accordingly, if the negative class is not exhaustive,
researchers should be careful when communicating results. For example, if one were to train a
multilabel classification model using the training data presented in this research; then, produce
a “neuroticism” class probability for an item, that probability should be interpreted as “the
model’s confidence that the item relates to neuroticism after taking the other Big Five traits
into account,” and not “the model’s confidence that the item relates to neuroticism or something
else.” This more conservative interpretation results from the negative class not being exhaustive.
In the next question, we elaborate on how this problem relates to measuring items outside of the
Big Five.

Question 3: How to Account for “Other” (Non-Big Five) Items?
A prominent issue is the consideration and treatment of negative classes outside of, or adjacent to, the
focal one(s). Notably, researchers may have items representing these “Other” classes (i.e., known
“Others”) or lack examples of “Other” (i.e., unknown “Others”). A common approach to identifying
“Other” examples (i.e., items) is to use multilabel classification (Padhy et al., 2020; Roady et al.,
2020). However, this approach assumes items representing the “Other” class are exhaustive and accu-
rately represented in the training data (Geng et al., 2021; Hendrycks et al., 2020). Alternatively, this
approach could be simplified, and researchers could perform a binary classification task which com-
bines items representing focal classes (i.e., Big Five dimensions) into one “Big Five” class and items
representing nonfocal classes (i.e., non-Big Five dimensions) into a single “Other” class.

In all cases, the central obstacle becomes how to best determine the items that represent “Other”
especially when considering the countless variations of items that are possible. For instance, “Other”
items could be items that measure a personality trait beyond the Big Five, items that measure non-
personality constructs (e.g., values, health, mental ability), or even items that have a different gram-
matical structure than a standard personality item (e.g., other-report items, questions). Moreover,
researchers must determine how large the “Other” class should be relative to the “Big Five” class.
Below, we discuss two situations researchers may encounter when determining what content
should make up the “Other” class. In one situation, researchers know the content making up the
“Other” (e.g., items tapping known traits outside the Big Five). Alternatively, researchers may be
in a situation where they are not aware of what other constructs (and thus items) will constitute
the “Other” class(es).

Fyffe et al. 19



When “Other” Traits are Known. When translated to a text classification task, items measuring unde-
sired constructs belong to a class we generically refer to as “Other.” Accounting for “Other” items
would help control the type I errors (see Meehl & Rosen, 1955) as it would prevent the model
from assuming all input documents have content belonging to a focal class. Personality items
outside the Big Five would constitute “Other.” Still, there remains considerable debate about the gen-
erality of the model, and whether statistically adjacent traits could be encompassed by (Costa &
McCrae, 1995; John et al., 2008; Saucier& Goldberg, 1998) or lie outside the Big Five (e.g.,
Ashton et al., 2004; Block, 2010; Paunonen & Jackson, 2000). Nonetheless, determining a baseline
estimate for the proportion of items outside of the Big Five would be valuable for several reasons.
First, this estimate ensures that the relative proportions of labeled items (when training the prelimi-
nary model described in the following section) are representative of the overall population. Second, a
baseline estimate may help researchers better establish a threshold or cutoff for classification prob-
abilities. For example, when compared to a baseline estimate of 15%, a probability threshold result-
ing in 50% of items being flagged as “Other” should signal to researchers that their “Other” class is
poorly constructed or that their threshold should be increased.

To estimate the proportion of scales “outside” of the Big Five, we drew from several empirical and
review studies (i.e., Bainbridge et al., 2022; Paunonen & Jackson, 2000; Saucier& Goldberg, 1998;
Schwaba et al., 2020). These studies provided estimates of the proportion of items outside of the Big
Five using various metrics. Table 5 provides a summary of baseline estimates. According to these
results, past research suggests that a vast portion of personality items will fall within the Big Five
framework. Nonetheless, these studies are only useful in cases where the items presented to the
model are, in fact, personality items and not items measuring nonpersonality constructs. Below,
we provide recommendations for addressing both cases, or cases in which a model will only
process personality items and cases in which a model may process personality and nonpersonality
items.

Recommendation. First, we recommend that researchers review past content analyses (if available),
poorly performing (e.g., reworked or retired) scale items, and the literature to identify items to
include in the “Other” class. The models we present—for example—assume that input documents
will be Big Five personality items. If implemented in practice, these models overlook the possibility
for item writers to generate items that measure non-Big Five traits. Thus, we would review the liter-
ature to identify items measuring “Other” dimensions (i.e., constructs outside the Big Five).
Researchers may also want to ensure that the “Other” class contains items of inferior quality (e.g.,
misspelled or grammatically incorrect). We provide examples in Table 6.

If enough known “Other” examples exist, we suggest a multistage approach whereby researchers
use a binary classification transformer model first to identify if items are related to the Big Five (or
their focal classes of interest). This model would help distinguish desirable (Big Five) items from

Table 5. Percentage of Personality Scales Measuring Non-Big Five Traits.

Study Method of Estimation Estimate [CILL, CIUL]

Paunonen & Jackson (2000) Scale Variance Account For .038 [.011, .130] a

Saucier & Goldberg (1998) Scale Variance Account For .000 [.000, .069] a

Schwaba et al. (2020) Network Analysis .012
Bainbridge et al. (2022) Facet Ranking Regression .154 [.080, .275] a

Note. N= 852.
a
Confidence intervals taken from Bainbridge et al. (2022; see Supplemental Material A).
CI = Accuracy confidence interval calculated based on Wilson (1927) Interval; LL = lower limit; UL = upper limit.
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undesirable (“Other”) items. Next, a multiclass model—like those described in the demonstration—
would be applied to evaluate items that have not been flagged by the first model. We recommend
this two-step approach as opposed to training a single multiclass model with an additional “Other”
class. It is important to remember that researchers should use class labels to organize and categorize
text documents in a way that is meaningful and relevant to a particular task or objective. In a multiclass
problem, the “Other” class would not represent a significant collection of related documents.
Researchers should stray away from creating classes that are arbitrary and misalign with the various
classes present during classification. In treating the Big Five dimensions as labels, for example, we
signify that each label represents a personality trait; “Other” is not a personality trait, so it misaligns
with a multiclass problem. After using an initial binary classification model to determine if an item
is likely related to the Big Five or not related to the Big Five (i.e., “Other”), those items that are
“related” to the Big Five (based on a classification probability threshold determined by the researcher)
can be used as input for the model described in our demonstration.9

When “Other” Traits are Unknown. In some cases, the content of “Other” may be unknown either
completely or partially. While researchers in machine-learning call this the “open-set problem”
(see Roady et al., 2020), in areas related to psychological measurement it relates to the second com-
ponent of content validity—content representativeness—or the extent to which a measure captures
the construct(s) of interest (Colquitt et al., 2019). Commonly, SMEs estimate content representative-
ness (Haynes et al., 1995); still, it is unlikely that SME judgment is fully sufficient, given the limi-
tations of human cognition (Shrestha et al., 2021). In other words, it is difficult, if not impossible, for
SMEs to consider every item that could exist outside of (and within) the scope of the Big Five. Hence,
Allport (1937) famously described the scope of personality content as “a semantic nightmare that
could keep psychologists at work for a lifetime” (pp. 353–354). Even so, transformers could play
a role in making this problem more tractable. We elaborate below.

Recommendation. Researchers posit that language is the source of personality content (John et al.,
1988; Saucier & Goldberg, 1998). Accordingly, novel generative transformers (e.g., GPT-3;
Brown et al., 2020) may help better address this problem. Generative decoder-based transformers,

Table 6. Example Items Representing the “Other” Class.

Item Item Source Scale a

I feel thankful for what I have received in life. Values in Action Inventory of Strengths
I like to exaggerate my troubles. Values in Action Inventory of Strengths
I misuse power. Temperament and Character Inventory
I take in stray animals. Temperament and Character Inventory
I need things to be arranged in a particular order. Obsessive-Compulsive Inventory
I believe that unfortunate events occur because of bad luck. Powerful Others and Chance
Not inventive ideas original telling not have is. Denatured item
I do forget restless frequently things. Denatured item

Note. Items like those above could be used as the “Other” class when training a binary classification model to predict a positive
class (“Big Five” item) versus a negative class (“Other” items). This model could be applied to flag a variety of issues in scale
development (e.g., poorly written items and items measuring cognitive constructs) given representative examples are provided
in the “Other” class.
a
Examples taken from: Powerful Others and Chance scale (Levenson, 1981), Obsessive-Compulsive Inventory (Foa et al.,
2002), Temperament and Character Inventory (Cloninger et al., 1993), and Values in Action Inventory of Strengths (Peterson &
Seligman, 2004).We generated “denatured items” by randomly shuffling the words in a Big Five item, then swapping out a word
for a random word among all words used across items.
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like GPT-3, differ from encoder-based transformers (e.g., BERT and DeBERTa) in how they are pre-
trained. When pre-training, decoder-based transformers attempt to accurately predict the next word in
a sentence or phrase by utilizing only the words that appear before the target word (Radford et al., 2018).
In other words, generative transformers attempt to predict the next word in a sequence of text while only
seeing words that occur before that word; however, models like BERT and DeBERTa can see both
words before and after the target word. As a result, generative decoder-based transformers excel at text-
generation tasks. When applied to scale development, researchers could generate adversarial data to
improve the precision of classification models (see de Rosa & Papa, 2021 for an overview).
Adversarial examples are “fake” examples (produced by a generative model) that help a classification
model better discriminate between ideal and non-ideal cases (e.g., Croce et al., 2020). Researchers
could leverage this strategy to train classification models to be robust to items that cross-load,
measure “Other” things, or that lack the appropriate grammatical structure.

Question 4: Does Text Classification Relate to Established Content
Validation Approaches?
Researchers have already established approaches to content validation that can help scale developers
identify potentially problematic scale items (e.g., Anderson & Gerbing, 1991; Hinkin & Tracey,
1999). These approaches recruit non-expert raters to verify which of the intended constructs (if
any) each item belongs (i.e., a manual text classification task). Anderson and Gerbing’s (1991)
approach, for example, produces two metrics, substantive agreement (psa) and substantive validity
(csv) for each item rated (see Colquitt et al., 2019, p. 1244, for psa and csv formulas). Conceptually
like a model’s classification probability, the substantive-agreement coefficient represents the propor-
tion of raters who indicate the item measures the intended construct. The substantive-validity coef-
ficient represents the degree to which raters indicate that an item measures “its [intended] construct
more than any other construct” (Anderson & Gerbing, 1991, p. 734). Both metrics relate to important
scale characteristics, such as reliability (Colquitt et al., 2019); however, there is insufficient research
on the relationship between substantive agreement, substantive validity, and classification probabil-
ities. Here, we present an empirical illustration in hopes of how transformer-based text classification
methods may relate to well-established, manual approaches to content validation.

For the 119 items in our testing set, we calculated substantive agreement (psa) and substantive
validity (csv) using classifications from our eight human raters. Overall, the average psa equaled
.707 (SE= 0.031) and csv equaled .627 (SE= 0.034). Although the testing set consisted of randomly
selected items from different Big Five scales (see Table 2), these averages were adequate when com-
pared to item sets taken from single scales (Colquitt et al., 2019); this suggests that our test set has
content that is highly relevant to the Big Five personality traits. Then, we compared the classification
probabilities produced by the fine-tuned DeBERTa model to psa and csv values. There was a strong
relationship between the classification probability of an item (produced by the DeBERTa model
trained in the tutorial) and substantive agreement and substantive validity values derived from
human raters. The correlation between substantive agreement and classification probability [r(117)
= .575, p < .001], was just slightly higher than the correlation between substantive validity and clas-
sification probability [r(117)= .565, p < .001].

In addition, we separated items into ordered categories based on the numeric psa and csv values
(see Table 5 in Colquitt et al., 2019), where higher categories indicate stronger levels of content valid-
ity. We present these results in Figure 5 below. As shown by (A) in Figure 5, items in the lowest
substantive agreement category had an average classification probability of .480 (SE= .091);
whereas the DeBERTa model was highly confident when predicting items in the highest or “very
strong” substantive agreement category (M= .992, SE= .005). For items with a substantive validity
score lower than .04, the DeBERTa model was unsure of its classifications (M= .402, SE= .136);
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however, the DeBERTa classification model was highly confident regarding the predicted class for
items with a csv > .80 (M= .992, SE= .005).

There are several notable trends in Figure 5. When DeBERTa was not confident about the pre-
dicted class of an item (i.e., classification probability < .50), that item was likely to have a poor sub-
stantive agreement and validity. Moreover, if we removed items with a classification probability of
below .80 from the scale, we would lose only one item with “very strong” psa and csv. However, there
were a number of type II errors based on the psa and csv. In other words, using classification proba-
bility thresholds does not guarantee that the remaining scale items will have strong content validity.
This finding is likely a result of DeBERTa’s highly skewed classification probabilities (which were
.97 on average for the test items)—keeping in mind that this model was more accurate than human
raters—and classification probabilities were based on a multiclass classification problem. This
finding may also relate to our sample of raters, as there is discussion about the level of subject
matter expertise and number of raters to use when conducting content analysis (see Colquitt et al.,
2019). Depending on the collection of items, number of raters, and level of expertise, psa, and csv
estimates could have varied (e.g., average psa equaled .707, SE= 0.031, and average csv equaled
.627, SE= 0.034). Our raters rated 23 items as “poor,” yet the model gave the items a classification
probability of above .80. While these items confused our raters, the model selected the correct label
(as intended by the original scale developer) 100% of the time.

Recommendation. Our results suggest a strong relationship between substantive agreement, substan-
tive validity, and an item’s classification probability. In practice, implementing a transformer model
(like the ones illustrated in this research) would help identify items with poor content validity indices.
However, based on our results, such a model would also be confident about the content of an item that
may confuse humans even if the model indicated a label that aligns with the scale developer’s expec-
tation. Our major recommendation is for future research to continue exploring the relationships

Figure 5. Classification probability by rater’s levels of substantive agreement and substantive validity.

Fyffe et al. 23



between NLP-based indices and traditional psychometric indices. We find it interesting, for example,
that all of the 23 items that our raters deemed as having weak content validity were predicted cor-
rectly by the model. While this may be due to our sample of raters, this could suggest content
areas that are particularly prone to misinterpretation by raters.

Question 5: Do the Proposed Techniques Have the Potential to Improve Factor Analysis?
Several researchers have attempted to relate well-established content analysis techniques to factor
analysis (see Colquitt et al., 2019), but few have examined the relationship between NLP methods
and factor analysis (e.g., Cutler & Condon, 2022). Still, NLP methods such as text classification
have the potential to augment factor analysis. Researchers have highlighted how outcomes of
factor analysis depend upon the initial set of items selected for response data collection (Ashton &
Lee, 2005; Hopwood & Donnellan, 2010; Russell, 2002). Though, unlike factor analysis, text clas-
sification models do not require the collection of response data. As such, they give researchers the
opportunity to make data-driven decisions when selecting an initial set of items for scale administra-
tion. These decisions could help prevent the administration of items that will perform poorly during
factor analysis. Hence, artificial intelligence (AI) models have been leveraged to improve decision
making in other domains (e.g., Vodrahalli et al., 2022).

To examine this potential, we investigated the relationship between the factor loadings and label
classification probabilities. To calculate factor loadings, we leveraged the Eugene-Springfield
Community Sample dataset (see Goldberg & Saucier, 2016). First, we subset the items overlapping
between the response data and the testing set used in the content analysis experiment. This resulted in
100 items. We removed missing cases from the Eugene-Springfield Community Sample dataset,
leaving 461 responses for the analysis. We conducted an exploratory factor analysis (EFA) in R
using polychoric item correlations in the psych package (Revelle, 2021). Then, we flagged poorly
performing items using data from the EFA analysis.10 Lastly, we correlated classification probabil-
ities with absolute factor loadings from the exploratory factor analysis—Table 7 describes these
results.

After ranking items by classification probabilities generated by DeBERTa, we found that only
16% of the top quartiles were flagged as poorly performing items from EFA in contrast with 60%

Table 7. Item Factor Loadings and Transformer Model Predicted Class Logit Scores.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1. ProbA − −.33 −.20 −.05 −.32 .32 −.30 .17 .16 −.29
2. ProbC − −.37 −.17 −.28 .08 .76 −.44 −.20 −.19
3. ProbE − −.11 −.21 .02 −.28 .54 −.19 −.14
4. ProbN − −.19 −.02 −.24 −.19 .77 −.34
5. ProbO − −.06 −.16 −.18 −.29 .78
6. FacA − −.24 −.13 −.11 −.10
7. FacC − −.29 −.26 −.08
8. FacE − −.08 −.17
9. FacN − −.35
10. FacO −

Note. Factor analyzed responses based on 461 respondents and 100 items. Factor loadings (Fac) calculated using item
polychoric correlations. Cell values represent correlation between the absolute value of factor loadings and classification Logit
Scores (Logit) from the fine-tuned DeBERTa model. Subscripts represent Big Five factors agreeableness (A), conscientiousness
(C), extraversion (E), neuroticism (N), and openness (O). Maximum correlations with each factor are in bold. DeBERTa=
decoding-enhanced Bidirectional Encoder Representations from Transformers with disentangled attention; Prob= probability.
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of items in the bottom quartile. Results also indicate that 90% of the items with less than a .95 clas-
sification probability had issues arising from EFA. This finding suggests a transformer’s classifica-
tion probabilities may be useful when flagging items that will perform poorly during factor analysis.
To elaborate on this relationship, we examined the correlations between predicted label probabilities
and factor loadings; Table 7 illustrates these results. Interestingly, all the EFA factors correlated
uniquely to just one of the label probability variables—with four out of the five factors being
highly correlated (r= .54–.78). While DeBERTa’s classification probabilities were not identical to
factors loadings, there seems to be a strong enough relationship to warrant further research.

Recommendation. Results suggest that, by applying well-estimated cutoffs to classification probabil-
ities, transformer models could help flag potentially problematic items before data collection. These
results could help researchers and practitioners navigate issues that may arise during scale develop-
ment (e.g., Block, 1995; Hopwood & Donnellan, 2010; Preacher & MacCallum, 2003). Researchers
could estimate these thresholds for themselves. The process—for those developing scales where
archival factor analytic data exists—would begin by using finalized scale items (i.e., items that per-
formed well during factor analysis) to train a classification model. Next, researchers could input
poorly performing items, removed items, and cross-loading items (identified by archival EFA data
or past research) into the model for prediction. The predicted classification probabilities of the
poorly performing items would help researchers to better estimate a lower bound for the prediction
threshold. Hypothetically, text classification has the potential to replace factor analysis; however, for
now, we advise against this. Underscoring this suggestion is the fact that the class labels used to train
the proposed classification models are derivatives of factor analysis, given the Big Five model is
based in factor analysis (Costa & McCrae, 1995). This implies that scale developers, especially
those of novel scales, should use factor analysis to establish their class labels.

Discussion
The overarching goal of our research was to propose a state-of-the-art text classification technique for
content analyzing personality items. To support this goal, we first introduced transformer models,
elaborated on their advantages, and described considerations researchers should have when applying
transformers for text classification. Then, we evaluated the proposed approach against human raters
and alternative text classification techniques. We continued by addressing several lingering questions
that researchers and practitioners may have when performing the methods described. Now, in the
subsequent sections, we expand on the contributions to scale development, the limitations of this
study, and avenues for future research.

Contributions to Personality Scale Development
Although researchers have demonstrated NLP applications in the organizational context (e.g.,
Pandey & Pandey, 2019; Short et al., 2010; Speer, 2021), the present study provides several novel
contributions. First, we apply text classification for a novel purpose, to help automate and enhance
the content validation of traditional psychological scales. Importantly, our proposed method
would improve the efficiency of scale development in the technologically fast-changing test environ-
ment. Overall, researchers should be optimistic about the potential of transformers to automate, if not
drastically augment, the content analysis process.

Second, while performing text classification, we introduced researchers and practitioners to several
emerging NLP models with significant potential. Specifically, we illustrate text classification using several
transformer models, which researchers have yet to widely adopt in the organizational and psychological
sciences (Boyd & Schwartz, 2021; Eichstaedt et al., 2020; Kennedy et al., 2021)—we find just one
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example of transformers applied for text classification (i.e., Min et al., 2021). Still, we demonstrated how
transformers could save considerable time and effort by simplifying the text classification process
without compromising performance. We hope the methods described here help excite researchers—both
familiar and unfamiliar—about transformers, so much so that researchers and practitioners may look to
apply these models to help solve their particular problems. Third, we provide several step-by-step tutorials
for training transformer models. Given that NLP tutorials often cater to those outside the organizational and
psychological sciences (Kobayashi et al., 2018a), we hope our materials help ease non-experts into theworld
of transformer models. Fourth, we end this research by addressing several important questions when apply-
ing transformers to automate the content validation process. Our recommendations for overcoming the ques-
tions presented produce several significant implications. For example, transformers may give scale
developers insight into a scale’s factor structure before administering the scale, offer immediate and empir-
ical feedback to item writers, and help to map the broad spectrum of personality systematically.

Lastly, we hope our research illustrates the general appeal of text classification using scale items as
a research methodology. For those looking to publish organizational and psychological research,
there is an immense number of research opportunities for leveraging archival or existing data. For
example, one could compare text classification indices or text similarity indices (e.g., cosine distance)
of scale items to published convergence and divergence effect sizes (e.g., Bainbridge et al., 2022;
Schwaba et al., 2020). Also, future research could extend some of the empirical demonstrations
we present by, for instance, examining the ability of classification probabilities to predict poorly per-
forming items. Researchers could perform these studies without collecting scale responses from
participants.

Limitations and Future Work
Here, we point out areas for improvement. First, although the methods presented generalize to addi-
tional psychological constructs, our illustration focuses on the Big Five model of personality in which
open-source data are widely available. A few-shot or zero-shot model could be used for developing
scales measuring psychological constructs where labeled data is scarce (Rahman et al., 2018).11

Additionally, since we classified Likert statements, researchers classifying longer documents (e.g.,
essays, job descriptions, and cover letters) must consider document length when preprocessing.
We recommend that researchers split (i.e., chunk) documents into sentences and then perform the
classification task. Researchers can aggregate sentence-level predictions up to the document level
when interpreting results. Second, there are several limitations related to our research procedures.
Notably, our raters did not have the ability to classify items as “Other” or “not applicable.”
Additionally, our primary demonstration did not train the text classification models to classify a
sixth “Other” label in addition to the Big Five labels. Still, we provide a tutorial (see
“Fine-Tuning Transformer for Big Five Inclusion” in our GitHub repository) and discussion on
how to navigate this issue (see the “Question 3: How to Account for “Other” [Non-Big Five]
Items?” section). Future research could compare classification accuracy under this rating scenario
(i.e., with the addition of an “Other” category). Third, there are limitations regarding technology.
Although we provide our tutorials in a virtual environment, we acknowledge there are still significant
hardware requirements for those wanting to use transformers on their local computers. As a final lim-
itation related to technology, since we used GPT-3 for few-shot classification, those researchers
wanting to replicate our few-shot tutorial should apply for an access key.12

There is a broad spectrum of opportunity for future research like the research presented here. First,
there are NLP applications beyond text classification that may add value to scale development and
assessment. Researchers could apply “masked language modeling,” for example, to examine
advanced lexical patterns in items and their impact on psychometric indices of scale items (e.g.,
Cutler & Condon, 2022). Second, future research could also explore the convergence between
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NLP-based indices (e.g., classification probabilities and cosine similarity) and common psychometric
indices such as item factor loadings. Third, future research could extend transformers to address
several of the substantive questions facing the broader area of personality. For instance, by using
a transformer trained to classify Big Five and non-Big Five items or a generative model (e.g.,
GPT-3) trained to produce “blended” or cross-loading items, researchers could thoroughly
examine problems related to the representativeness and relevance of current Big Five inventories.
Fourth, we hope researchers continue to put effort in constructing openly available data sources,
such as the IPIP (Goldberg et al., 2006) and SAPA project (Condon, 2018). These resources are crit-
ically important to research of this nature. Fifth, there is potential for researchers and practitioners to
extend the proposed approaches to the development of cognitive and noncognitive scales beyond
those measuring Big Five personality. Finally, future research should continue to compare trans-
former models to human raters in various contexts (e.g., nominal groups, timed rating sessions, or
different classification tasks).

Conclusion
This article demonstrates a novel NLP-based approach to content analysis using state-of-the-art pre-
trained transformer models. By applying transformers for text classification, we illustrate an auto-
mated approach to the content validation of Big Five personality scales. When compared to tradi-
tional approaches to text classification, our proposed method can drastically reduce the effort
involved without compromising performance—performing as well as (if not better than) human
raters when classifying personality items by their trait label. We hope this research provides a spring-
board into the world of transformers for scale developers and the field more broadly.
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Notes

1. To clarify, NLP is a domain of computer-assisted methods for analyzing text data generated by humans
(Liddy, 2001)—a subset of AI-based techniques relevant to text and speech data.

2. For simplicity, we use the terms “class(es)” and “label(s)” interchangeably.
3. Despite using the term “content validity” in earlier parts of this article, readers should note that this study

more accurately focuses on content relevance—one of the two subcomponents of content validity (Haynes
et al., 1995). The additional component—content representativeness—is not central to our investigation,
though we elaborate on this issue in the latter parts of this article.

4. RNN and LSTM models must account for all words appearing before a target word when updating the con-
textual embedding of that word. This method is highly inefficient, computationally expensive, and encodes
words one at a time (Azunre, 2021).

5. For example, a source task might be predicting a word given surrounding words or predicting the next sen-
tence given the sentence prior. Typically, pre-trained models perform source tasks millions of times (e.g.,
Devlin et al., 2019) using a broad and vast spectrum of text documents (e.g., Wikipedia articles, digitized
books, social media posts, web pages).

6. Researchers should keep in mind that “tokens” are not synonymous with “words,” since some words can be
composed of two to three tokens. For example, the word “other’s” results in the tokens [other, ’, s] (see Song
et al., 2021).

7. Following a reviewer’s suggestion, we conducted additional experiments with a nonlinear support-vector
machine (i.e., SVM with radial-basis kernel). Our results showed that using a nonlinear support vector
machine showed no significant improvement. This may be a result of several factors. First, we did not
tune model hyper-parameters (as we wanted to make our analysis as straightforward as possible).
Second, in cases like ours where the number of features is larger than the number of test cases, a linear
kernel may perform well (Hsu et al., 2010). Given there was no meaningful difference in performance
and linear SVMs are more efficient in terms of training time (Kowsari et al., 2019), we used a linear
SVM (in addition to XGBoost) as our selected classifiers.

8. Using the direct-consensus method, we treated the most common label as the predicted label. In the case of a
tie, we randomly sampled one of the viable options. This approach resulted in a rater classification accuracy
of 76.4%.

9. While we do not describe training a binary classification transformer like the one suggested in detail, we
provide a dataset (see ∼/raw-data/supplemental-item-data.csv) and the “Fine-Tuning
Transformer for Big Five Inclusion” tutorial (see project’s GitHub repository) to perform such a task.

10. Specifically, we flagged items with a communality below .20, an absolute factor loading below .40, a sec-
ondary factor loading that was >75% of the primary loading, and items that loaded to factors that did not
align with their actual label.

11. Those interested in applying this approach to assessments with fewer items should see the Few-Shot
Learning with Transformers in this project’s code repository or the Zero-Shot Classification pipeline in
Python’s Transformers library (Wolf et al., 2020).

12. See https://beta.openai.com/ to register for a GPT-3 access key.
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