# OLDER Drop1: # Takes ~18GB on a 3090 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc mkdir -p $DVC_DPATH/training/$HOSTNAME/$USER/Drop1_S2_L8_GSD10/configs python -m geowatch.tasks.fusion.fit \ --channels="coastal|blue|green|red|nir|swir16|swir22" \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --time_steps=8 \ --chip_size=128 \ --batch_size=2 \ --accumulate_grad_batches=8 \ --num_workers=4 \ --gpus=1 \ --learning_rate=1e-3 \ --weight_decay=1e-4 \ --dropout=0.1 \ --window_size=8 \ --train_dataset=$DVC_DPATH/drop1-S2-L8-aligned-c1/train_gsd10_data.kwcoco.json \ --vali_dataset=$DVC_DPATH/drop1-S2-L8-aligned-c1/vali_gsd10_data.kwcoco.json \ --default_root_dir=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_S2_L8_GSD10/runs/DirectCD_smt_it_stm_s12_v3 \ --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_S2_L8_GSD10/runs/DirectCD_smt_it_stm_s12_v3/final_package.pt \ --dump=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_S2_L8_GSD10/configs/DirectCD_smt_it_stm_s12_v3.yml # Build the experiment configs CUDA_VISIBLE_DEVICES=0 mkdir -p $DVC_DPATH/training/$HOSTNAME/$USER/Drop1/configs python -m geowatch.cli.coco_add_watch_fields \ --src $DVC_DPATH/drop1-S2-L8-aligned-c1/train_data.kwcoco.json \ --dst $DVC_DPATH/drop1-S2-L8-aligned-c1/train_gsd10_data.kwcoco.json \ --target_gsd 10 python -m geowatch.cli.coco_add_watch_fields \ --src $DVC_DPATH/drop1-S2-L8-aligned-c1/vali_data.kwcoco.json \ --dst $DVC_DPATH/drop1-S2-L8-aligned-c1/vali_gsd10_data.kwcoco.json \ --target_gsd 10 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc mkdir -p $DVC_DPATH/training/$HOSTNAME/$USER/Drop1_S2_L8_GSD10/configs python -m geowatch.tasks.fusion.fit \ --channels="coastal|blue|green|red|nir|swir16|swir22" \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --time_steps=8 \ --chip_size=128 \ --batch_size=2 \ --accumulate_grad_batches=8 \ --num_workers=4 \ --gpus=1 \ --learning_rate=1e-3 \ --weight_decay=1e-4 \ --dropout=0.1 \ --window_size=8 \ --train_dataset=$DVC_DPATH/drop1-S2-L8-aligned-c1/train_gsd10_data.kwcoco.json \ --vali_dataset=$DVC_DPATH/drop1-S2-L8-aligned-c1/vali_gsd10_data.kwcoco.json \ --default_root_dir=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_S2_L8_GSD10/runs/DirectCD_smt_it_stm_s12_v3 \ --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_S2_L8_GSD10/runs/DirectCD_smt_it_stm_s12_v3/final_package.pt \ --dump=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_S2_L8_GSD10/configs/DirectCD_smt_it_stm_s12_v3.yml DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc CUDA_VISIBLE_DEVICES=1 \ python -m geowatch.tasks.fusion.fit \ --config=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_S2_L8_GSD10/configs/DirectCD_smt_it_stm_s12_v3.yml \ --default_root_dir=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_S2_L8_GSD10/DirectCD_smt_it_stm_s12_v3 \ --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_S2_L8_GSD10/DirectCD_smt_it_stm_s12_v3/final_package.pt python -m geowatch.tasks.fusion.predict --test_dataset=$DVC_DPATH/drop1-S2-L8-aligned-c1/vali_data.kwcoco.json \ --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1/DirectCD_smt_it_stm_s12_v3/final_package.pt \ --pred_dataset=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1/DirectCD_smt_it_stm_s12_v3/pred.kwcoco.json python -m geowatch.tasks.fusion.evaluate --true_dataset=$DVC_DPATH/drop1-S2-L8-aligned-c1/vali_data.kwcoco.json \ --pred_dataset=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1/DirectCD_smt_it_stm_s12_v3/pred.kwcoco.json --eval_dpath=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1/DirectCD_smt_it_stm_s12_v3/eval # TODO Create configs for the base set of experiments # Takes ~14GB on a 3090 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_SUBPATH=$DVC_DPATH/drop1_S2_aligned_c1 CUDA_VISIBLE_DEVICES=0 \ python -m geowatch.tasks.fusion.fit \ --train_dataset=$DVC_SUBPATH/train_data.kwcoco.json \ --vali_dataset=$DVC_SUBPATH/vali_data.kwcoco.json \ --time_steps=7 \ --channels="coastal|blue|green|red|nir|swir16|swir22" \ --chip_size=192 \ --chip_overlap=0.66 \ --time_overlap=0.3 \ --method="MultimodalTransformerDotProdCD" \ --arch_name=smt_it_stm_small \ --batch_size=4 \ --accumulate_grad_batches=4 \ --num_workers=12 \ --gpus=1 2>/dev/null # Can run on a 1080ti DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_SUBPATH=$DVC_DPATH/drop1-S2-L8-LS-aligned-v2 CUDA_VISIBLE_DEVICES=1 \ python -m geowatch.tasks.fusion.fit \ --train_dataset=$DVC_SUBPATH/train_data.kwcoco.json \ --vali_dataset=$DVC_SUBPATH/vali_data.kwcoco.json \ --time_steps=7 \ --channels="coastal|blue|green|red|nir|swir16|swir22" \ --chip_size=192 \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --batch_size=1 \ --accumulate_grad_batches=8 \ --num_workers=12 \ --gpus=1 2>/dev/null ##### TEAMFEATS V1 ##### CHANNEL_SPEC="inv_sort1|inv_sort2|inv_sort3|inv_sort4|inv_sort5|inv_sort6|inv_sort7|inv_sort8|B05|B07|swir16|B09|nir|coastal|B06|inv_overlap1|inv_overlap2|inv_overlap3|inv_overlap4|inv_overlap5|inv_overlap6|inv_overlap7|inv_overlap8|inv_shared1|inv_shared2|inv_shared3|inv_shared4|inv_shared5|inv_shared6|inv_shared7|inv_shared8|inv_shared9|inv_shared10|inv_shared11|inv_shared12|inv_shared13|inv_shared14|inv_shared15|inv_shared16|inv_shared17|inv_shared18|inv_shared19|inv_shared20|inv_shared21|inv_shared22|inv_shared23|inv_shared24|inv_shared25|inv_shared26|inv_shared27|inv_shared28|inv_shared29|inv_shared30|inv_shared31|inv_shared32|inv_shared33|inv_shared34|inv_shared35|inv_shared36|inv_shared37|inv_shared38|inv_shared39|inv_shared40|inv_shared41|inv_shared42|inv_shared43|inv_shared44|inv_shared45|inv_shared46|inv_shared47|inv_shared48|inv_shared49|inv_shared50|inv_shared51|inv_shared52|inv_shared53|inv_shared54|inv_shared55|inv_shared56|inv_shared57|inv_shared58|inv_shared59|inv_shared60|inv_shared61|inv_shared62|inv_shared63|inv_shared64|blue|inv_augment1|inv_augment2|inv_augment3|inv_augment4|inv_augment5|inv_augment6|inv_augment7|inv_augment8|red|cirrus|swir22|B8A|green|r|g|b" DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc python -m geowatch.tasks.fusion.fit \ --channels="$CHANNEL_SPEC" \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --time_steps=4 \ --chip_size=96 \ --batch_size=1 \ --accumulate_grad_batches=8 \ --num_workers=4 \ --gpus=1 \ --learning_rate=1e-3 \ --weight_decay=1e-4 \ --dropout=0.1 \ --window_size=8 \ --train_dataset=$DVC_DPATH/drop1-S2-aligned-c1-old/train_data_teamfeats.kwcoco.json \ --vali_dataset=$DVC_DPATH/drop1-S2-aligned-c1-old/vali_data_teamfeats.kwcoco.json \ --default_root_dir=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V1/runs/DirectCD_smt_it_stm_s12_v3 \ --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V1/runs/DirectCD_smt_it_stm_s12_v3/final_package.pt \ --dump=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V1/configs/DirectCD_smt_it_stm_s12_v3.yml DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc CUDA_VISIBLE_DEVICES=1 \ python -m geowatch.tasks.fusion.fit \ --config=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V1/configs/DirectCD_smt_it_stm_s12_v3.yml \ --default_root_dir=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V1/DirectCD_smt_it_stm_s12_v3 \ --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V1/DirectCD_smt_it_stm_s12_v3/final_package.pt python -m geowatch.tasks.fusion.predict --test_dataset=$DVC_DPATH/drop1-S2-L8-aligned-c1/vali_data.kwcoco.json \ --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V1/DirectCD_smt_it_stm_s12_v3/final_package.pt \ --pred_dataset=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V1/DirectCD_smt_it_stm_s12_v3/pred.kwcoco.json python -m geowatch.tasks.fusion.evaluate --true_dataset=$DVC_DPATH/drop1-S2-L8-aligned-c1/vali_data.kwcoco.json \ --pred_dataset=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V1/DirectCD_smt_it_stm_s12_v3/pred.kwcoco.json --eval_dpath=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V1/DirectCD_smt_it_stm_s12_v3/eval ##### TEAMFEATS V2 ##### #CHANNEL_SPEC="blue|inv_sort1|inv_sort2|inv_sort3|inv_sort4|inv_sort5|inv_sort6|inv_sort7|inv_sort8|B05|B07|swir16|B09|nir|coastal|B06|inv_overlap1|inv_overlap2|inv_overlap3|inv_overlap4|inv_overlap5|inv_overlap6|inv_overlap7|inv_overlap8|inv_shared1|inv_shared2|inv_shared3|inv_shared4|inv_shared5|inv_shared6|inv_shared7|inv_shared8|inv_shared9|inv_shared10|inv_shared11|inv_shared12|inv_shared13|inv_shared14|inv_shared15|inv_shared16|inv_shared17|inv_shared18|inv_shared19|inv_shared20|inv_shared21|inv_shared22|inv_shared23|inv_shared24|inv_shared25|inv_shared26|inv_shared27|inv_shared28|inv_shared29|inv_shared30|inv_shared31|inv_shared32|inv_shared33|inv_shared34|inv_shared35|inv_shared36|inv_shared37|inv_shared38|inv_shared39|inv_shared40|inv_shared41|inv_shared42|inv_shared43|inv_shared44|inv_shared45|inv_shared46|inv_shared47|inv_shared48|inv_shared49|inv_shared50|inv_shared51|inv_shared52|inv_shared53|inv_shared54|inv_shared55|inv_shared56|inv_shared57|inv_shared58|inv_shared59|inv_shared60|inv_shared61|inv_shared62|inv_shared63|inv_shared64|inv_augment1|inv_augment2|inv_augment3|inv_augment4|inv_augment5|inv_augment6|inv_augment7|inv_augment8|red|cirrus|swir22|B8A|green" #CHANNEL_SPEC="coastal|green" #DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc #python -m geowatch.tasks.fusion.fit \ # --channels="$CHANNEL_SPEC" \ # --method="MultimodalTransformer" \ # --arch_name=smt_it_stm_p8 \ # --time_steps=4 \ # --chip_size=96 \ # --batch_size=1 \ # --accumulate_grad_batches=8 \ # --num_workers=4 \ # --gpus=1 \ # --learning_rate=1e-3 \ # --weight_decay=1e-4 \ # --dropout=0.1 \ # --window_size=8 \ # --dump=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V2/configs/DirectCD_smt_it_stm_s12_v4.yml #cat $DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V2/configs/DirectCD_smt_it_stm_s12_v4.yml #DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc #python -m geowatch.tasks.fusion.fit \ # --config=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V2/configs/DirectCD_smt_it_stm_s12_v4.yml \ # --default_root_dir=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V2/runs/DirectCD_smt_it_stm_s12_v4 \ # --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V2/runs/DirectCD_smt_it_stm_s12_v4/final_package.pt \ # --train_dataset=$DVC_DPATH/drop1-S2-L8-aligned-old/data_gsd10_train.kwcoco.json \ # --vali_dataset=$DVC_DPATH/drop1-S2-L8-aligned-old/data_gsd10_vali.kwcoco.json # #--test_dataset=$DVC_DPATH/drop1-S2-L8-aligned-old/data_gsd10_vali.kwcoco.json \ #python -m geowatch.tasks.fusion.predict # --test_dataset=$DVC_DPATH/drop1-S2-L8-aligned-old/data_gsd10_vali.kwcoco.json \ # --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V2/DirectCD_smt_it_stm_s12_v4/final_package.pt \ # --pred_dataset=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V2/DirectCD_smt_it_stm_s12_v4/pred.kwcoco.json #python -m geowatch.tasks.fusion.evaluate # --true_dataset=$DVC_DPATH/drop1-S2-L8-aligned-old/data_gsd10_vali.kwcoco.json \ # --pred_dataset=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V2/DirectCD_smt_it_stm_s12_v4/pred.kwcoco.json # --eval_dpath=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V2/DirectCD_smt_it_stm_s12_v4/eval #python -m geowatch.cli.coco_add_watch_fields \ # --src $DVC_DPATH/drop1-S2-L8-aligned-old/data_gsd10_train.kwcoco.json \ # --dst $DVC_DPATH/drop1-S2-L8-aligned-old/data_gsd10_train.kwcoco.json \ # --target_gsd 10 #python -m geowatch.cli.coco_add_watch_fields \ # --src $DVC_DPATH/drop1-S2-L8-aligned-old/data_gsd10_vali.kwcoco.json \ # --dst $DVC_DPATH/drop1-S2-L8-aligned-old/data_gsd10_vali.kwcoco.json \ # --target_gsd 10 #DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc #python -m geowatch.tasks.fusion.fit \ # --method="MultimodalTransformer" \ # --arch_name=smt_it_stm_p8 \ # --time_steps=4 \ # --channels="green" \ # --chip_size=96 \ # --batch_size=1 \ # --accumulate_grad_batches=8 \ # --num_workers=4 \ # --gpus=1 \ # --learning_rate=1e-3 \ # --weight_decay=1e-4 \ # --dropout=0.1 \ # --window_size=8 \ # --default_root_dir=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V2/runs/DirectCD_smt_it_stm_s12_v4 \ # --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Drop1_TeamFeats_V2/runs/DirectCD_smt_it_stm_s12_v4/final_package.pt \ # --train_dataset=$DVC_DPATH/drop1-S2-L8-aligned-old/data_gsd10_train.kwcoco.json \ # --vali_dataset=$DVC_DPATH/drop1-S2-L8-aligned-old/data_gsd10_vali.kwcoco.json # OLDER ONERA: # TRAINING COMMANDS AUTO_DEVICE=$(python -c "import netharn; print(netharn.XPU.coerce('auto').device.index)") echo "AUTO_DEVICE = $AUTO_DEVICE" DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc CUDA_VISIBLE_DEVICES=$AUTO_DEVICE \ python -m geowatch.tasks.fusion.fit \ --train_dataset=$DVC_DPATH/extern/onera_2018/onera_train.kwcoco.json \ --vali_dataset=$DVC_DPATH/extern/onera_2018/onera_test.kwcoco.json \ --default_root_dir=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DirectCD_smt_it_stm_s12_v2 \ --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DirectCD_smt_it_stm_s12_v2/final_package.pt \ --method=MultimodalTransformer \ --arch_name=smt_it_stm_s12 \ --window_size=8 \ --learning_rate=1e-3 \ --weight_decay=1e-4 \ --dropout=0.1 \ --terminate_on_nan=True \ --time_steps=2 \ --chip_size=128 \ --batch_size=2 \ --gpus=1 \ --accumulate_grad_batches=8 \ --num_workers=12 python -m geowatch.tasks.fusion.predict \ --test_dataset=$DVC_DPATH/extern/onera_2018/onera_test.kwcoco.json \ --gpus 1 \ --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DirectCD_smt_it_stm_s12_v2/final_package.pt \ --pred_dataset=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DirectCD_smt_it_stm_s12_v2/pred/pred.kwcoco.json # NOTES: This does not handle the first frame predictions well. python -m geowatch.tasks.fusion.evaluate \ --true_dataset=$DVC_DPATH/extern/onera_2018/onera_test.kwcoco.json \ --pred_dataset=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DirectCD_smt_it_stm_s12_v2/pred/pred.kwcoco.json --eval_dpath=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DirectCD_smt_it_stm_s12_v2/pred/eval # 1080ti # TRAINING COMMANDS AUTO_DEVICE=$(python -c "import netharn; print(netharn.XPU.coerce('auto').device.index)") echo "AUTO_DEVICE = $AUTO_DEVICE" DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc CUDA_VISIBLE_DEVICES=$AUTO_DEVICE \ python -m geowatch.tasks.fusion.fit \ --train_dataset=$DVC_DPATH/extern/onera_2018/onera_train.kwcoco.json \ --vali_dataset=$DVC_DPATH/extern/onera_2018/onera_test.kwcoco.json \ --default_root_dir=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DirectCD_smt_it_stm_s12_v1 \ --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DirectCD_smt_it_stm_s12_v1/final_package.pt \ --method=MultimodalTransformer \ --arch_name=smt_it_stm_s12 \ --window_size=8 \ --learning_rate=1e-3 \ --weight_decay=1e-4 \ --dropout=0.12 \ --terminate_on_nan=True \ --time_steps=2 \ --chip_size=128 \ --batch_size=2 \ --gpus=1 \ --accumulate_grad_batches=8 \ --num_workers=8 python -m geowatch.tasks.fusion.predict \ --test_dataset=$DVC_DPATH/extern/onera_2018/onera_test.kwcoco.json \ --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DirectCD_smt_it_stm_s12_v1/final_package.pt \ --pred_dataset=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DirectCD_smt_it_stm_s12_v1/pred/pred.kwcoco.json \ --gpus 1 python -m geowatch.tasks.fusion.evaluate \ --true_dataset=$DVC_DPATH/extern/onera_2018/onera_test.kwcoco.json \ --pred_dataset=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DirectCD_smt_it_stm_s12_v1/pred/pred.kwcoco.json \ --eval_dpath=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DirectCD_smt_it_stm_s12_v1/pred/eval AUTO_DEVICE=$(python -c "import netharn; print(netharn.XPU.coerce('auto').device.index)") echo "AUTO_DEVICE = $AUTO_DEVICE" DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc CUDA_VISIBLE_DEVICES=$AUTO_DEVICE \ python -m geowatch.tasks.fusion.fit \ --train_dataset=$DVC_DPATH/extern/onera_2018/onera_train.kwcoco.json \ --vali_dataset=$DVC_DPATH/extern/onera_2018/onera_test.kwcoco.json \ --workdir=$DVC_DPATH/training/$HOSTNAME/$USER \ --method=MultimodalTransformerDotProdCD \ --arch_name=smt_it_stm_s12 \ --window_size=8 \ --learning_rate=1e-3 \ --weight_decay=1e-4 \ --dropout=0.1 \ --terminate_on_nan=True \ --time_steps=2 \ --chip_size=128 \ --batch_size=2 \ --gpus=1 \ --accumulate_grad_batches=8 \ --num_workers=6 # Reproduce the VNIR experiment # TRAINING COMMANDS AUTO_DEVICE=$(python -c "import netharn; print(netharn.XPU.coerce('auto').device.index)") echo "AUTO_DEVICE = $AUTO_DEVICE" DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc CUDA_VISIBLE_DEVICES=0 \ python -m geowatch.tasks.fusion.fit \ --train_dataset=$DVC_DPATH/extern/onera_2018/onera_train.kwcoco.json \ --vali_dataset=$DVC_DPATH/extern/onera_2018/onera_test.kwcoco.json \ --default_root_dir=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DotProd_smt_it_stm_s12_vnir_11GB_v3 \ --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DotProd_smt_it_stm_s12_vnir_11GB_v3/deploy_Onera_DotProd_smt_it_stm_s12_vnir_v1.pt \ --method=MultimodalTransformerDotProdCD \ --channels="B05|B06|B07|B08|B8A" \ --arch_name=smt_it_stm_s12 \ --window_size=8 \ --patience=400 \ --max_epochs=1000 \ --learning_rate=1e-3 \ --weight_decay=1e-4 \ --dropout=0.12 \ --time_steps=2 \ --chip_size=128 \ --batch_size=4 \ --gpus=1 \ --accumulate_grad_batches=8 --auto_lr_find=True \ --num_workers=8 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc CUDA_VISIBLE_DEVICES=0 \ python -m geowatch.tasks.fusion.fit \ --train_dataset=$DVC_DPATH/extern/onera_2018/onera_train.kwcoco.json \ --vali_dataset=$DVC_DPATH/extern/onera_2018/onera_test.kwcoco.json \ --default_root_dir=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DotProd_smt_it_stm_s12_vnir_11GB_v4 \ --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DotProd_smt_it_stm_s12_vnir_11GB_v4/deploy_Onera_DotProd_smt_it_stm_s12_vnir_v1.pt \ --method=MultimodalTransformerDotProdCD \ --channels="B05|B06|B07|B08|B8A" \ --arch_name=smt_it_stm_s12 \ --window_size=8 \ --patience=400 \ --max_epochs=1000 \ --learning_rate=3.3-04 \ --weight_decay=1e-4 \ --dropout=0.12 \ --time_steps=2 \ --chip_size=128 \ --batch_size=4 \ --gpus=1 \ --accumulate_grad_batches=8 --auto_lr_find=False \ --num_workers=8 2>/dev/null python -m geowatch.tasks.fusion.predict \ --test_dataset=$DVC_DPATH/extern/onera_2018/onera_test.kwcoco.json \ --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DotProd_smt_it_stm_s12_vnir_11GB_v3/deploy_Onera_DotProd_smt_it_stm_s12_vnir_v1.pt \ --pred_dataset=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DotProd_smt_it_stm_s12_vnir_11GB_v3/pred/pred.kwcoco.json \ --gpus 1 python -m geowatch.tasks.fusion.evaluate \ --true_dataset=$DVC_DPATH/extern/onera_2018/onera_test.kwcoco.json \ --pred_dataset=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DotProd_smt_it_stm_s12_vnir_11GB_v3/pred/pred.kwcoco.json \ --eval_dpath=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DotProd_smt_it_stm_s12_vnir_11GB_v3/pred/eval # TRAINING COMMANDS AUTO_DEVICE=$(python -c "import netharn; print(netharn.XPU.coerce('auto').device.index)") echo "AUTO_DEVICE = $AUTO_DEVICE" DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc python -m geowatch.tasks.fusion.fit --help | grep tune -C 10 CUDA_VISIBLE_DEVICES=1 \ python -m geowatch.tasks.fusion.fit \ --train_dataset=$DVC_DPATH/extern/onera_2018/onera_train.kwcoco.json \ --vali_dataset=$DVC_DPATH/extern/onera_2018/onera_test.kwcoco.json \ --default_root_dir=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DotProd_smt_it_stm_s12_vnir_11GB_v6 \ --package_fpath=$DVC_DPATH/training/$HOSTNAME/$USER/Onera/DotProd_smt_it_stm_s12_vnir_11GB_v6/deploy_Direct_smt_it_stm_s12_vnir_11GB_v5.pt \ --method=MultimodalTransformer \ --channels="B05|B06|B07|B08|B8A" \ --arch_name=smt_it_stm_s12 \ --window_size=8 \ --patience=400 \ --max_epochs=1000 \ --learning_rate=3e-4 \ --weight_decay=1e-5 \ --dropout=0.10 \ --terminate_on_nan=True \ --time_steps=2 \ --chip_size=128 \ --batch_size=3 \ --gpus=1 \ --accumulate_grad_batches=8 --auto_lr_find=False \ --num_workers=8 2>/dev/null