#!/bin/bash #DVC_DATA_DPATH=$(geowatch_dvc --tags="phase2_data" --hardware="hdd") DVC_DATA_DPATH=/home/local/KHQ/connor.greenwell/Projects/SMART/smart_watch_dvc # DVC_EXPT_DPATH=$(geowatch_dvc --tags="phase2_expt") DVC_EXPT_DPATH=/home/local/KHQ/connor.greenwell/data/dvc-repos/smart_expt_dvc WORKDIR=$DVC_EXPT_DPATH/training/$HOSTNAME/$USER DATASET_CODE=onera_2018 KWCOCO_BUNDLE_DPATH=$DVC_DATA_DPATH/extern/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/onera_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/onera_test.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/onera_test.kwcoco.json EXPERIMENT_NAME=OSCD_HeterogeneousModel_encoder0_decoder4 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python fit_lightning.py fit \ --config=config.yaml \ --model.init_args.name=$EXPERIMENT_NAME \ --model.init_args.backbone_encoder_depth=0 \ --model.init_args.backbone_encoder_depth=4 \ --data.input_space_scale=native \ --data.train_dataset="$TRAIN_FPATH" \ --data.vali_dataset="$VALI_FPATH" \ --trainer.default_root_dir="$DEFAULT_ROOT_DIR" \ --trainer.accelerator="gpu" \ --trainer.devices=1 \ --trainer.precision=16 \ --trainer.max_steps=20000 EXPERIMENT_NAME=OSCD_HeterogeneousModel_encoder1_decoder4 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python fit_lightning.py fit \ --config=config.yaml \ --model.init_args.name=$EXPERIMENT_NAME \ --model.init_args.backbone_encoder_depth=1 \ --model.init_args.backbone_encoder_depth=4 \ --data.input_space_scale=native \ --data.train_dataset="$TRAIN_FPATH" \ --data.vali_dataset="$VALI_FPATH" \ --trainer.default_root_dir="$DEFAULT_ROOT_DIR" \ --trainer.accelerator="gpu" \ --trainer.devices=1 \ --trainer.precision=16 \ --trainer.max_steps=20000 EXPERIMENT_NAME=OSCD_HeterogeneousModel_encoder3_decoder2 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python fit_lightning.py fit \ --config=config.yaml \ --model.init_args.name=$EXPERIMENT_NAME \ --model.init_args.backbone_encoder_depth=3 \ --model.init_args.backbone_encoder_depth=2 \ --data.input_space_scale=native \ --data.train_dataset="$TRAIN_FPATH" \ --data.vali_dataset="$VALI_FPATH" \ --trainer.default_root_dir="$DEFAULT_ROOT_DIR" \ --trainer.accelerator="gpu" \ --trainer.devices=1 \ --trainer.precision=16 \ --trainer.max_steps=20000 EXPERIMENT_NAME=OSCD_HeterogeneousModel_encoder4_decoder1 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python fit_lightning.py fit \ --config=config.yaml \ --model.init_args.name=$EXPERIMENT_NAME \ --model.init_args.backbone_encoder_depth=4 \ --model.init_args.backbone_encoder_depth=1 \ --data.input_space_scale=native \ --data.train_dataset="$TRAIN_FPATH" \ --data.vali_dataset="$VALI_FPATH" \ --trainer.default_root_dir="$DEFAULT_ROOT_DIR" \ --trainer.accelerator="gpu" \ --trainer.devices=1 \ --trainer.precision=16 \ --trainer.max_steps=20000