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Abstract
Both polygenicity (i.e., many small genetic effects) and confounding biases, such as cryptic 
relatedness and population stratification, can yield an inflated distribution of test statistics in 
genome-wide association studies (GWAS). However, current methods cannot distinguish between 
inflation from true polygenic signal and bias. We have developed an approach, LD Score 
regression, that quantifies the contribution of each by examining the relationship between test 
statistics and linkage disequilibrium (LD). The LD Score regression intercept can be used to 
estimate a more powerful and accurate correction factor than genomic control. We find strong 
evidence that polygenicity accounts for the majority of test statistic inflation in many GWAS of 
large sample size.
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INTRODUCTION
Variants in LD with a causal variant show elevated test statistics in association analysis 
proportional to the LD (measured by r2) with the causal variant1–3. The more genetic 
variation an index variant tags, the higher the probability that this index variant will tag a 
causal variant. In contrast, inflation from cryptic relatedness within or between cohorts4,5,6 

or population stratification purely from genetic drift will not correlate with LD Score.

Under a polygenic model, such that effect sizes are drawn independently from distributions 
with variance proportional to p(1-p)−1/2 where p is minor allele frequency (MAF), then the 
expected χ2-statistic of variant j is

(1)

where N is sample size; M is the number of SNPs, such that h2/M is the average heritability 
explained per SNP; a measures the contribution of confounding biases, such as cryptic 

relatedness and population stratification; and  is the LD Score of variant j, which 
measures the amount of genetic variation tagged by j and (a full derivation of this equation 
is provided in the Supplementary Note). This relationship holds for meta-analyses, and also 
for ascertained studies of binary phenotypes, in which case h2 is on the observed scale. 
Consequently, if we regress χ2statistics from GWAS against LD Score (LD Score 
regression), the intercept minus one is an estimator of the mean contribution of confounding 
bias to the inflation in the test statistics.

RESULTS
Overview of Methods

We estimated LD Scores from the European ancestry samples in the 1000 Genomes Project7 

(EUR) using an unbiased estimator8 of r2 with 1 centiMorgan (cM) windows, singletons 
excluded (MAF > 0.13%) and no r2 cutoff. Standard errors were estimated by jackknifing 
over blocks of individuals, and we used these standard errors to correct for attenuation bias 
in LD Score regression (i.e., the downward bias in the magnitude of the regression slope that 
results when the regressor is measured noisily, see Online Methods).

For LD Score regression, we excluded variants with EUR MAF < 1% because the LD Score 
standard errors for these variants were very high (note: variants included in LD Score 
regression are a subset of variants included in LD Score estimation). In addition, we 
excluded loci with extremely large effect sizes or extensive long-range LD from all 
regressions, because these can be considered outliers in such an analysis and would have 
disproportionate influence on the regression (Online Methods).

An important consideration in the estimation of LD Score is the extent to which the sample 
from which we estimate LD Score matches the sample for the association study. If there is 
mismatch between LD Scores from the reference population and the target population used 
for GWAS, then LD Score regression can be biased in two ways. First, if LD Scores in the 
reference population are equal to LD Scores in the target population plus mean-zero noise, 
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then the intercept will be biased upwards and the slope downwards. This is conceptually 
equivalent to increasing the measurement error of LD Score. Secondly and perhaps more 
importantly, consider the scenario where there is a directional bias in average LD Score such 
that the LD Scores in the reference population are systematically higher or lower than in the 
target population. Under such a scenario, then the LD Score regression intercept will be 
biased downwards or upwards, respectively (Online Methods).

To explore the stability of LD Score across European populations, we estimated LD Scores 
using each of the 1000 Genomes EUR subpopulations separately (Utah Residents with 
Northern and Western European Ancestry (CEU), British in England and Scotland (GBR), 
Toscani in Italia (TSI) and Finnish in Finland (FIN)). The LD Scores from all four 
subpopulations were highly correlated, but mean LD Score increased with latitude 
(Supplementary Table 8), consistent with the observation that Southern European 
populations have gone through less severe bottlenecks than Northern European populations9. 
For example, in comparison to the combined EUR LD Score, the mean LD Score for FIN 
was 7% larger, and the mean LD Score for TSI was 8% smaller. We evaluated the impact of 
these differences on the behavior of the LD Score regression analysis and find that the EUR 
reference panel is adequate for studies in outbred populations of predominantly northern 
European ancestry, such as European American or UK populations (see Online methods). 
For other populations, a different reference panel should be used.

Under strong assumptions about the effect sizes of rare variants, the slope of the LD Score 
regression can be re-scaled to be an estimate of the heritability explained by all SNPs used 
in the estimation of the LD Scores (Supplementary Table 1). Relaxing these assumptions in 
order to obtain a robust estimate of the heritability explained by all 1000 Genomes SNPs is a 
direction for further research; however, we note that the LD Score regression intercept is 
robust to these assumptions.

Simulations with Polygenic Genetic Architectures
To verify the relationship between linkage disequilibrium and χ2statistics, we performed a 
variety of simulations to model scenarios with population stratification, cryptic relatedness 
and polygenic architecture.

To model a polygenic quantitative trait, we assigned per-allele effect sizes drawn from N(0, 
h2/(2p(1-p))−1/2/M) to varying numbers of causal variants and for varying heritabilities in an 
approximately unstructured cohort of 1000 Swedes. In all simulation settings, the average 
LD Score regression intercept was close to one. We note that if there are few causal variants, 
the LD Score regression estimates are still unbiased, but the standard errors become very 
large, meaning that this approach is best suited to polygenic traits (Supplementary Figures 
3–5).

Simulations with Confounding
The model assumes that that there is no systematic correlation between FST and LD Score 
(see Supplementary Note). This assumption may be violated in practice as a result of linked 
selection (i.e., positive selection10 and background selection11). If there were a positive 
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correlation between LD Score and FST , the LD Score regression intercept would 
underestimate the contribution of population stratification to the inflation in χ2statistics. To 
quantify the bias that this might introduce into the LD Score regression intercept, we 
performed a series of simulations with real population stratification.

We obtained un-imputed genotypes from Psychiatric Genomics Consortium (PGC) controls 
from seven European cohorts genotyped on the same array (Supplementary Table 2). To 
simulate population stratification on a continental scale, we assigned case/control status 
based on cohort membership, then computed association statistics for each pair of cohorts 
(note that in this simulation setup the expected mean χ2-statistic is 1+bNFST, where b is the 
correlation between phenotype and ancestry and N is sample size, ref 12). To simulate 
population stratification on a national scale, we computed the top three principal 
components within each cohort, then computed association statistics using each of these 
principal components as phenotypes. Quantile-quantile (QQ) plots from simulations with 
population stratification and polygenicity show indistinguishable patterns of inflation (Fig. 
1a,b), but the average LD Score regression intercept was approximately equal to λGC in 
simulations with population stratification (see Supplementary Table 3a for simulations with 
continental-scale stratification and Supplementary Table 4a for simulations with national-
scale stratification), and near 1 in simulations with polygenicity (Supplementary Figures 1–
5). Furthermore the qualitative appearance of the pattern of inflation as a function of LD 
Score was completely different in each set of simulations (Fig 1c,d). The observed 
correlations between FST and LD Score in all simulations were negligible (generally 10−5 to 
10−4, see Supplementary Tables 3b and 4b). We note that in simulations with population 
stratification, the LD Score regression slope was slightly greater than zero on average 
(Supplementary Tables 3c, 4c), likely a result of linked selection. Nevertheless, the 
performance of the LD Score regression intercept was comparable to λGC, and so would be 
suitably conservative if used as a correction factor, despite the small bias in the slope.

Simulations with Confounding and Polygenicity
To simulate a more realistic scenario where both polygenicity and bias contribute 
simultaneously to test statistic inflation, we obtained genotypes from approximately 22,000 
individuals from throughout Europe from the Wellcome Trust Case-Control Consortium 213. 
We simulated polygenic phenotypes with causal SNPs drawn from the first halves of 
chromosomes, leaving all SNPs on the second halves of chromosomes null. In addition, we 
included an environmental stratification component aligned with the first principal 
component of the genotype data, representing Northern vs. Southern European ancestry. In 
this setup, the mean χ2 among SNPs on the second halves of chromosomes measures the 
average contribution of stratification. We performed similar simulations with cryptic 
relatedness using data from the Framingham Heart Study14, which includes close relatives. 
In all simulation replicates, the LD Score regression intercept was approximately equal to 
the mean χ2 among null SNPs (Supplementary Table 5), which demonstrates that LD Score 
regression can partition the inflation in test statistics even in the presence of both bias and 
polygenicity.
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Finally, we modeled studies of a polygenic binary phenotype with case-control 
ascertainment using a simulated genotypes and a liability threshold model, and verified that 
LD Score regression is not noticeably biased by case-control ascertainment (Supplementary 
Table 6).

Frequency-Dependent Genetic Architectures
LD Score regression works optimally when variance explained per SNP is uncorrelated with 
LD Score (this means that rare variants have larger effect sizes than common variants, which 
may be appropriate for a disease phenotype under moderate negative selection). A potential 
limitation of LD Score regression is that variance explained per SNP may be correlated with 
LD Score for some phenotypes. For an example where this might occur, consider a 
phenotype that is selectively neutral, so that per-allele effect size is uncorrelated with MAF 
(which means that variance explained is positively correlated with MAF, as additive genetic 
variance is defined as 2pqa2 where p and q are the major and minor allele frequency and a is 
the additive genetic effect). Since LD Score is also positively correlated with MAF, in this 
case we would expect variance explained to be positively correlated with LD Score, which 
will introduce downward bias in the LD Score regression intercept and upward bias in the 
LD Score regression slope, leading to an underestimate of potential bias.

To quantify the magnitude of the bias that MAF-dependent genetic architectures could 
introduce, we simulated a frequency-dependent genetic architecture where effect size was 
uncorrelated with MAF (Online Methods). For most phenotypes, this model should 
represent a reasonable bound of the genetic architecture. We observed minimal bias: in these 
simulations, the mean LD Score regression intercept was 0.994 (Supplementary Figure 6, 
Supplementary Table 7). Nevertheless, there exist extreme genetic architectures where LD 
Score regression is not effective: for instance if all causal variants are rare (MAF < 1%, 
which may be an appropriate model for a phenotype under extreme negative selection), then 
LD Score regression will often generate a negative slope, and the intercept will be exceed 
the mean χ2 (Supplementary Figure 7).

Real Data
Finally, we applied LD Score regression to summary statistics from GWAS representing 
more than 20 different phenotypes15–32 (see Table 1 and Supplementary Figures 8a–w. 
Metadata about the studies in the analysis are presented in Supplementary Tables 10a,b). For 
all studies, the slope of the LD Score regression was significantly greater than 0, and the LD 
Score regression intercept was substantially less than λGC (mean difference 0.11), 
suggesting that polygenicity significantly contributes to the increase in mean χ2 and 
confirming that correcting test statistics by dividing by λGC is unnecessarily conservative. 
As an example, Figure 2 displays the LD Score regression for the most recent schizophrenia 
GWAS, restricted to ~70,000 European individuals33. The low intercept of 1.07 and 
indicates at most a small contribution of bias, and that the mean χ2 of 1.613 results mostly 
from polygenicity. LD Score plots for all other GWAS included in table 1 can be found in 
Supplementary Figures 8a–w. As with any inference procedure that relies on a model of 
genetic architecture, it is possible that our results may be biased by model misspecifications 
other than those that we have simulated directly (e.g., if independent effect sizes are a poor 
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model, perhaps because coupled alleles have a tendency to have effects in the same 
direction). This may explain the moderate inflation in the LD Score regression intercept that 
we observe in some large GWAS that are likely well-calibrated. Note that upward bias in the 
LD Score regression intercept means only that the intercept may be conservative as a 
correction factor.

DISCUSSION
Whenever possible, it is preferable to obtain all relevant genotype data and correct for 
confounding biases directly34–38; post-hoc correction of test statistics is no substitute for 
diligent quality control. However, in the event that only summary data are available, or if a 
conservative correction is desired, we propose that the LD Score regression intercept 
provides a more robust quantification of the extent of inflation from confounding bias than 
λGC (or intergenic λGC, Supplementary Table 8). Since λGCincreases with sample size in the 
presence of polygenicity (even without confounding bias)3, the gain in power obtained by 
correcting test statistics with the LD Score regression intercept instead of λGC will become 
even more substantial for larger GWAS. Extending this method to non-European 
populations such as East Asians or West Africans is straightforward given appropriate 
reference panels, but extension to admixed populations is the subject of future research.

In conclusion, we have developed LD Score regression, a method to distinguish between 
inflated test statistics from confounding bias and polygenicity. Application of LD Score 
regression to over 20 complex traits confirms that polygenicity accounts for the majority of 
test statistic inflation in GWAS results and this approach can be used to generate a 
correction factor for GWAS that retains more power than λGC, especially at large sample 
sizes. We have made available for download a Python command line tool for estimating LD 
Score and performing LD Score regression, and a database of LD Scores suitable for 
European-ancestry samples (URLs). Research in progress aims to apply this method to 
estimation of components of heritability, genetic correlation and the calibration of mixed 
model association statistics.

ONLINE METHODS
Estimation of LD Score

We estimated European LD Scores from 378 phased European individuals (excluding one 
individual from a pair of cousins) from the 1000 Genomes Project reference panel using the 
–ld-mean-rsq option implemented in the GCTA39 software package (with flags --ld-mean-
rsq –ld-rsq-cutoff 0 –maf 0.00001; we implemented a 1centiMorgan (cM) window using the 
–ld-wind flag and modified .bim files with physical coordinates replaced with genetic 
coordinates as described in the next paragraph – note that a 1cM window be achieved more 
conveniently using the flags –l2 and –ld-wind-cm in the LDSC software package by the 
authors). The primary rationale for using a sequenced reference panel containing several 
hundred individuals for LD Score estimation rather than a genotyped GWAS control panel 
with several thousand individuals was that even after imputing off-chip genotypes, the 
variants available from a genotyping array only account for a subset of all variants. Using 
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only a subset of all variants for estimating LD Score produces estimates that are biased 
downwards.

We used a window of radius 1cM around the index variant for the sum of r2’s (using the 
genetic map and phased genotypes from the IMPUTE2 website, see URLs), no r2 cutoff, and 
excluded singletons (MAF < 0.13%). The standard estimator of the Pearson correlation 
coefficient has upward bias of approximately 1 / N, where N is sample size, so we employed 

an approximately unbiased estimator of LD Score given by  where r̂2 

denotes the standard, biased estimator of the squared Pearson correlation. Note that it is 

possible to have , which is a mathematically necessary feature of any unbiased 
estimator of r2. Thus, some estimated LD Scores will be less than 1. In practice, almost all 
variants with estimated LD Score less than 1 were rare: only 0.01% of variants with MAF > 
5% had estimated LD Scores below 1.

We examined the effect of varying the window size on our estimates of LD Score, and found 
that our estimates of LD Score were robust to choice of window size. The mean difference 
in LD Scores estimated with a 1 cM window and a 2 cM window was less than 1% of the 
mean LD Score (Supplementary Figure 9), and all LD Scores estimated with window sizes 
larger than 1 cM had squared correlations > 0.99 (Supplementary Table 7). This observation 
also addresses concerns about inflation in the LD Score from the intra-European population 
structure in the 1000 Genomes reference panel. The mean inflation in the 1 cM LD Score 
from population structure can be approximately bounded by the mean difference between a 
1 cM LD Score and a 2 cM LD Score. Since this difference is < 1% of the mean LD Score, 

URLs

1. 1000 Genomes genetic map and haplotypes: http://mathgen.stats.ox.ac.uk/impute/
data_download_1000G_phase1_integrated.html

2. LD Score database: ftp://atguftp.mgh.harvard.edu/brendan/1k_eur_r2_hm3snps_se_weights.RDS

3. Simulation and regression code for this paper: https://github.com/bulik/ld_score

4. Software tool for LD Score estimation and estimation of variance components from summary statistics: http://github.com/
bulik/ldsc/

5. GIANT Consortium summary statistics: http://www.broadinstitute.org/collaboration/giant/index.php/
GIANT_consortium_data_files

6. PGC and TAG Consortium summary statistics: https://pgc.unc.edu/Sharing.php#SharingOpp

7. IIBDGC summary statistics (NB these summary statistics are meta-analyzed with immunochip data, which is not 
appropriate for LD Score regression): http://www.ibdgenetics.org/downloads.html

8. CARDIoGRAM summary statistics: http://www.cardiogramplusc4d.org/downloads/

9. DIAGRAM summary statistics: http://diagram-consortium.org/downloads.html

10. Rheumatoid Arthritis summary statistics: http://www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/Stahl_etal_2010NG/

11. Blood Pressure summary statistics: http://www.georgehretlab.org/icbp_088023401234-9812599.html

12. MAGIC consortium summary statistics: http://www.magicinvestigators.org/downloads/

13. GEFOS consortium summary statistics: http://www.gefos.org/?q=content/data-release

14. SSGAC summary statistics: http://ssgac.org/Data.php

Bulik-Sullivan et al. Page 7

Nat Genet. Author manuscript; available in PMC 2015 September 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript

http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html
http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html
ftp://atguftp.mgh.harvard.edu/brendan/1k_eur_r2_hm3snps_se_weights.RDS
https://github.com/bulik/ld_score
http://github.com/bulik/ldsc/
http://github.com/bulik/ldsc/
http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://pgc.unc.edu/Sharing.php#SharingOpp
http://www.ibdgenetics.org/downloads.html
http://www.cardiogramplusc4d.org/downloads/
http://diagram-consortium.org/downloads.html
http://www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/Stahl_etal_2010NG/
http://www.georgehretlab.org/icbp_088023401234-9812599.html
http://www.magicinvestigators.org/downloads/
http://www.gefos.org/?q=content/data-release
http://ssgac.org/Data.php


we conclude that bias from population structure is not significantly inflating our estimates of 
LD Score.

We estimated LD Score standard error via a delete-one jackknife over the 378 phased 
individuals in the 1000 Genomes European reference panel. We found that the LD Score 
standard error was positively correlated with MAF and with LD Score itself. Jackknife 
estimates of LD Score standard error became extremely large for variants with MAF < 1%, 
so we excluded variants with 1000 Genomes European sample MAF < 1% from all LD 
Score regressions.

Intra-European LD Score Differences
In order to quantify the magnitude of intra-European differences in LD Score, we estimated 
LD Scores using each of the 1000 Genomes European subpopulations: Utah Residents with 
Northern and Western European Ancestry (CEU), British in England and Scotland (GBR), 
Toscani in Italia (TSI) and Finnish in Finland (FIN). The LD Scores from the four 
subpopulations were all highly correlated but the mean LD Score was not constant across 
populations. The mean LD Scores (MAF > 1%) were EUR, 110; CEU, 109; GBR, 104; FIN, 
117; TSI, 102. The observation that the mean LD Score in the Finnish (FIN) population was 
elevated is consistent with a recent bottleneck in the genetic history of Finland40, and the 
observation that the mean LD Score in the Southern European TSI population is lower is 
consistent with reports that Southern European populations have gone through less severe 
bottlenecks than Northern European populations.

Intra-European differences in LD Score can be a source of bias in the LD Score regression 
intercept. For instance, if one attempts to perform LD Score regression using the 1000 
Genomes European LD Score on a GWAS with all samples from Finland, then the LD Score 
regression intercept may be biased upwards. Similarly, if one attempts to perform LD Score 
regression using the 1000 Genomes European LD Score on a GWAS with all samples from 
Italy, the LD Score regression intercept may be biased downwards. If we make the 
approximation that the intra-European differences in LD Score can be described by an 
additive term plus 5% noise (i.e., if we assume that the FIN LD Score equals the pan-
European LD Score plus seven, which is a worst-case scenario among linear relationships 
between the two LD Scores in terms of bias in the intercept), then the bias introduced into 
the LD Score regression intercept by using the pan-European LD Score to perform LD Score 
regression on a Finnish GWAS will be 7 multiplied by the slope of the LD Score regression 
plus 5% of mean(χ2)-1, where 7 is the difference between the reference population LD Score 
and the GWAS population LD Score. Since all of the mean European subpopulation LD 
Scores that we have estimated are within ± 8 of the mean pan-European LD Score, we 
estimate that the bias in the LD Score regression intercept from intra-European LD Score 
differences is at most ±10 times the LD Score regression slope. For the real GWAS analyzed 
in Table 1, this corresponds to a worst-case difference of approximately ±10% in the 
estimate of the proportion of the inflation in the mean χ2 that results from confounding bias, 
with a higher probability of upward bias (because the noise term in the relationship between 
target and reference LD Score always causes upward bias in the LD Score regression 
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intercept, while systematic directional differences in target and reference LD Scores can bias 
the LD Score regression intercept in either direction).

Regression Weights
In order to produce an efficient regression estimator, we must deal with two problems. First, 
χ2-statistics at SNPs in LD are correlated. Second, the χ2-statistics of variants with high LD 
Score have higher variance than the χ2-statistics of variants with low LD Score 
(heteroskedasticity).

The statistically optimal solution to the correlation problem is to perform generalized lease 
squares (GLS) with the variance-covariance matrix of χ2-statistics. However, this matrix is 
intractable under our model. As an approximation, we correct for correlation by weighting 
variant j by the reciprocal of the LD Score of variant j counting LD only with other SNPs 
included in the regression. Precisely, if we let S denote the set of variants included in the LD 
Score regression then the LD Score of variant j counting LD only with other SNPs included 

in the regression is  Weighting by 1/lj(S) would be equivalent to GLS 
with the full variance-covariance matrix of χ2-statistics if the genome consisted of LD 
blocks and r2 (in the population) was either zero or one. We estimate lj(S) for the set of 
variants S described in the section Application to Real Data using the same procedure we 
used to estimate the full 1000 Genomes LD Score. Since our estimates of l̂j can be negative 
and regression weights must be positive, we weight by 1/max(l̂j,1).

To account for heteroskedasticity, we weight by , which is the reciprocal of 

the conditional variance function  under our model if we make the additional 
assumption that per-normalized genotype effect sizes are normally distributed (note that 
violation of this assumption does not bias the regression, it only increases the standard error. 
A derivation is provided in the Supplementary Note).

Attenuation Bias
Standard least-squares and weighted least-squares regression theory assumes that the 
explanatory variable (also referred to as the independent variable, or X) is measured without 
error. If the explanatory variable is measured with error, then the magnitude of the 
regression slope will be biased toward zero. This form of bias is known as attenuation bias. 
If the explanatory variable is measured with error, but the variance of this error is known, 
then it is possible to produce an unbiased regression slope by multiplying the slope by a 
disattenuation factor, which is equal to the squared weighted Pearson correlation between 
the noisy estimates of the explanatory variable and the true value of the explanatory 
variable. We provide an R script that can estimate this disattenuation factor given LD Scores 
and jackknife estimates of LD Score standard errors (see URLs).

Simulations
When performing simulations with polygenic genetic architectures using genotyped or 
imputed data, variants in the 1000 Genomes reference panel not included in the set of 
genotypes used for simulation cannot contribute to the simulated phenotypes, and so should 
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not contribute to the LD Score used for simulations. Precisely, for the simulations with 
polygenicity and the simulations with polygenicity and bias, we used LD Scores where 
estimates of r2 were derived from the 1000 Genomes European reference panel, but the sum 
of r2’s was taken over only those SNPs included in the simulations. For the simulations with 
frequency-dependent genetic architecture, we estimated LD Scores from the same genotypes 
used for simulations, because we wanted to quantify the bias introduced by frequency-
dependent genetic architecture even when LD Scores are estimated with little noise. For the 
simulations with pure population stratification, we used an LD Score estimated from all 
1000 Genomes variants, since there was no simulated polygenic architecture in these 
simulations. For simulations with pure population stratification, the details of the cohorts 
used are given in supplementary table 1.

It is difficult to use real genotypes to simulate ascertained studies of a binary phenotype with 
low population prevalence: to obtain 1000 cases with a simulated 1% phenotype, one would 
need to sample on expectation 100,000 genotypes, which is not feasible. We therefore 
generated simulated genotypes at 1.1 million SNPs with mean LD Score 110 and a 
simplified LD structure where r2 is either 0 or 1, and all variants had 50% minor allele 
frequency. We generated phenotypes under the liability threshold model with all per-
normalized genotype effect sizes (i.e., effects on liability) drawn i.i.d. from a normal 
distribution, then sampled individuals at random from the simulated population until the 
desired number of cases and controls for the study had been reached. The R script that 
performs these simulations is available online (URLs).

Application to Real Data
The majority of the sets of summary statistics that we analyzed did not contain information 
about sample minor allele frequency or imputation quality. In order to restrict to a set of 
common, well-imputed variants, we retained only those SNPs in the HapMap 3 reference 
panel41 for the LD Score regression. To guard against underestimation of LD Score from 
summing only LD with variants within a 1cM window, we removed variants in regions with 
exceptionally long-range LD42 from the LD Score regression (NB LD with these variants 
were included in the estimation of LD Score). Lastly, we excluded pericentromeric regions 
(defined as ± 3 cM from a centromere) from the LD Score regression, because these regions 
are enriched for sequence gaps, which may lead to underestimation of LD Score, and 
depleted for genes, which may reduce the probability of association to phenotype43,44. The 
final set of variants retained for LD Score regression on real data consisted of approximately 
1.1 million variants.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Results from selected simulations. (a) QQ plot with population stratification (λGC = 1.32, 
LD Score regression intercept = 1.30). (b) QQ plot with polygenic genetic architecture with 
0.1% of SNPs causal (λGC = 1.32, LD Score regression intercept = 1.006) (c) LD Score plot 
with population stratification. Each point represents an LD Score quantile, where the x-
coordinate of the point is the mean LD Score of variants in that quantile and the y-coordinate 
is the mean χ2 of variants in that quantile. Colors correspond to regression weights, with red 
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indicating large weight. The black line is the LD Score regression line. (d) As in panel c but 
LD Score plot with polygenic genetic architecture.
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Figure 2. 
D Score regression plot for the current schizophrenia meta-analysis33. Each point represents 
an LD Score quantile, where the x-coordinate of the point is the mean LD Score of variants 
in that quantile and the y-coordinate is the mean χ2 of variants in that quantile. Colors 
correspond to regression weights, with red indicating large weight. The black line is the LD 
Score regression line. The line appears to fall below the points on the right because this is a 
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weighted regression in which the points on the left receive the largest weights (Online 
Methods).
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