#!/bin/bash DVC_DATA_DPATH=$(geowatch_dvc --tags="phase2_data" --hardware="hdd") DVC_EXPT_DPATH=$(geowatch_dvc --tags="phase2_expt") WORKDIR=$DVC_EXPT_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop4-2022-08-08-TA1-S2-WV-PD-ACC KWCOCO_BUNDLE_DPATH=$DVC_DATA_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali.kwcoco.json EXPERIMENT_NAME=Drop4_BASELINE_Template DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion fit \ --config=config.yaml \ --data.train_dataset="$TRAIN_FPATH" \ --data.vali_dataset="$VALI_FPATH" \ --data.batch_size=2 \ --data.time_steps=3 \ --model.init_args.name=$EXPERIMENT_NAME \ --trainer.default_root_dir="$DEFAULT_ROOT_DIR" \ --trainer.accelerator="gpu" \ --trainer.devices=1 \ --trainer.precision=16 \ --trainer.max_steps=20000 # Predict python -m geowatch.tasks.fusion.predict \ --test_dataset="$TEST_FPATH" \ --package_fpath="$DEFAULT_ROOT_DIR"/final_package.pt \ --pred_dataset="$DVC_EXPT_DPATH"/predictions/pred.kwcoco.json # Inspect the channels in the prediction file geowatch stats "$DVC_EXPT_DPATH"/predictions/pred.kwcoco.json # Evaluate python -m geowatch.tasks.fusion.evaluate \ --true_dataset="$TEST_FPATH" \ --pred_dataset="$DVC_EXPT_DPATH"/predictions/pred.kwcoco.json \ --eval_dpath="$DVC_EXPT_DPATH"/predictions/eval