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ABSTRACT: Despite the outstanding progress in photonic sensor
devices, a major limitation for its application as label-free
biosensors for biomedical analysis lies in the surface biofunction-
alization step, that is, the reliable immobilization of the
biorecognition element onto the sensor surface. Here, we report
the integration of bottom-up synthesized nanoporous graphene
onto bimodal waveguide interferometric biosensors as an atomi-
cally precise biofunctionalization scaffold. This combination
leverages the high sensitivity of bimodal waveguide interferometers
and the large functional surface area of nanoporous graphene to
create highly sensitive, selective, and robust biosensors for the
direct immunoassay detection of C-reactive protein (CRP), an
inflammatory biomarker widely used in the clinical diagnosis of

# Nanoporous graphene
Photodetector

Bimodal Waveguide Biosensors

infections and sepsis. The limit of detection was determined at 3 ng/mL, which is well below the clinical cutoff levels required for the
diagnostic detection of CRP in patient samples. This innovative approach holds promise for transforming diagnostics, environmental
monitoring, and various fields requiring precise biomolecular detection.

KEYWORDS: 2D materials, on-surface synthesis, nanoporous graphene, biofunctionalization, interferometric waveguide,

photonic biosensor, diagnosis

B INTRODUCTION

Nanoporous graphene (NPG) is a two-dimensional (2D)
nanostructured material characterized by a high surface-to-
volume ratio, chemical stability, and a high density and
periodic arrangement of reactive pores." The combination of
these properties in a single atomically thin and mechanically
robust sheet makes NPG an ideal platform for its integration as
a biofunctionalization scaffold in biosensors. Presynthesized
functional NPG sheets could serve as a precise template for the
efficient immobilization of bioreceptors with a controlled
distribution and grafting density. However, the exploitation of
the maximum potential of this material depends on the ability
to create atomically precise periodic nanopores. To date, top-
down methods have been inadequate because they typically
produce randomly located pores with varied sizes.” Conversely,
bottom-up methods provide atomic precision in NPG, which
can be tailored with specific pore sizes and functionalities
through the selection of suitable molecular building
blocks."*~® Naturally, NPG has a high density of hydrogenated
bonds at the chemically reactive pore edges, offering active
sites for chemical postmodiﬁcation.7 In addition, various
strategies have been developed over the past few years to
create graphene nanoribbons containing functional chemical
groups.”*~'* Although only a few of the on-surface synthesized
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graphene nanoribbons have led to nanoporous gra-
phene, """ it is expected that soon the variety of
nanoporous graphene with functionalized groups will develop
largely driven by the rise of the on-surface synthesis field. The
achieved accurate control over the structure and composition
of bottom-up synthesized NPG material could provide a
functional, atomically precise, and versatile interface that could
simplify and improve the sensor biofunctionalization proce-
dures.”> Recently, the use of solution-based graphene nano-
ribbons has recently been published as a versatile strategy for
covalent anchoring of bioreceptors, allowing selective and
sensitive detection of analytes.'® This alternative approach
could represent significant progress in the development of
biofunctionalization procedures with respect, for instance, to
those based on silanization approaches,'” which are still quite
complex and laborious, requiring a wide range of parameters to
be controlled and optimized. Suboptimal optimization of these
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processes could lead to low sensitivity, selectivity, and
reproducibility of the final biosensor device.

In this work, we develop the unexplored integration of
bottom-up synthesized NPG as a biofunctionalization scaffold
for silicon photonics biosensors. We have applied a functional
NPG template as a biofunctionalization interface for one of the
most sensitive and widely demonstrated silicon photonics
biosensors, the bimodal waveguide (BiMW) interferometer, a
device invented and fully developed in our group.'®™*° This
biosensor operates on the principle of light confinement and
propagation along a straight optical waveguide made of silicon
nitride (Si;N,), generating an evanescent field that is highly
sensitive to refractive index (RI) changes occurring on the
sensor surface, such as those caused by biomolecular
interaction. In particular, the bimodal waveguides are designed
to work within the visible range, allowing for the confined
propagation of two light modes (the fundamental and the first-
order modes), whose respective evanescent fields behave
differently to the RI changes happening in the sensing window.
This results in different propagation wave parameters, causing
an interferometric phase shift (A®) at the waveguide output
that can be readily monitored. This sensing principle allows for
the direct detection and quantification of specific analytes in a
few minutes when the sensor surface is functionalized with the
corresponding bioreceptor, reaching sensitivities in the 107
molar (nM) to 107" molar (fM) range in a label-free format
and without any amplification.”' ~*° Besides, the BIMW sensors
are fabricated through well-established cost-effective standard
microelectronics production techniques at clean-room foun-
dries, facilitating their integration in small-footprint devices
with multiplexing capacity for the parallel analysis of different
analytes,”” " which is key for point-of-care (POC) testing and
precision diagnostics. However, the BIMW surface biofunc-
tionalization remains one of the major challenges for its
technology transfer and clinical implementation, as happens to
many other biosensors, being one of the bottlenecks for their
ample commercialization. With our proposal of incorporating
functional NPG into BIMW sensors, we intend to provide a
solution to this problem. For that, we integrate a
presynthesized template for precise and eflicient anchoring of
bioreceptors via chemical cross-linking to the activated pore
regions. The novel NPG-BiMW device has been studied and
optimized in terms of interferometric sensing performance and
it has been demonstrated as a functional biosensor for the
direct immunoassay detection of C-reactive protein (CRP), an
inflammatory biomarker widely used in clinical diagnosis.

B EXPERIMENTAL SECTION

Materials. Organic solvents (acetone, ethanol, methanol, and
isopropanol) were purchased from Panreac (Barcelona, Spain).
Reagents for the transfer, chlorhydric acid (HCl), potassium
iodide/iodine solution (KI/L,); for sensor characterization, dimethyl
sulfoxide (DMSO); for carboxylic acid activation, N-(3- dimethyl
aminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-
hydroxysulfosuccinimide (sulfo-NHS); salts for phosphate buffered
saline solution (PBS) 10 mM (10 mM PBS, 2.7 mM KCl, 137 mM
NaCl, pH 7.4), and MES 0.1 M (2-(N-morpholino) ethanesulfonic
acid, pH 5.5), ethanolamine (EA 1 M, pH 8), and bovine serum
albumin (BSA) were provided by Sigma-Aldrich/Merck (Steinheim,
Germany). Milli-Q water was employed for all the buffer preparation.
Recombinant anti-CRP antibody (4C28, C6 cm®) was purchased
from HyTest (Turku, Finland), and CRP protein from BBI solutions
(Freiburg, Germany). For the microfluidics fabrication, Sylgard 184
PDMS and elastomer were acquired from Darwin Microfluidics
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(Spain). All biomolecules employed in this work were prepared in the
same buffer by serial dilution from high-concentration stocks,
ensuring identical sample matrix components.

NPG Sample Preparations. Commercial gold thin films (300 nm
thickness, Georg Albert PVD) on mica substrate (ca. 1.3 cm X 0.8
cm) were used to grow the NPG material. Gold substrates were
introduced on an ultrahigh vacuum (UHV) chamber with a base
pressure of 1 X 107° mbar. Substrates were prepared by repeated
sputter—annealing cycles using Ar" ions at an energy of 1 keV and
annealing to ca. 470 °C. The synthesis of 10,10-dibromo 9,9-
bianthracene (DP-DBBA) used as NPG molecular precursor, has
been reported previously.' Topographic measurements were carried
out using a commercial Aarhus 150 variable temperature scanning
tunneling microscope (STM) in constant current mode. Image
processing was performed using WSxM software.**

BiMW Sensor Chip. The BiIMW is fabricated at wafer-scale at the
ICTS cleanroom facility of the National Microelectronics Center
(IMB-CNM-CSIC, Barcelona, Spain) as previously described.'® Each
BiMW sensor microchip (3 cm X 1 cm) contains an array of 20
individual Si;N, straight rib bimodal waveguides (3 ym width, rib of
1-3 nm and 250 um pitch between waveguides), with a single-mode
region (150 nm core thickness) where only the fundamental mode
can propagate, followed by a step junction to excite the fundamental
and first-order modes on the bimodal region (340 nm core thickness),
a sensing window of 15 mm X 0.05 mm is opened at the bimodal
region. Detailed description of the BIMW sensing mechanism, data
acquisition, and data analysis is provided in the Supporting
Information (Section A, SI). Specific coating of SiO, on the sensing
waveguides as a spacer layer and for reduction of the sensing area is
done by electron beam deposition (AJA International Inc. ATC-8E,
Orion). Before use, the BIMW chip is cleaned by sonication of
different acetone, ethanol, and water cycles for S min, finishing with
1:1 (v/v) methanol/hydrochloric acid (MeOH/HCI) solution for 10
min at 60 °C, then rinsed with Milli-Q H,O and dried under an N,
stream.

NPG Transfer onto the BiMW. The transfer of NPG onto the
BiMW sensor is adapted from a previously reported procedure.'
Briefly, first, the NPG/gold film is detached from the mica substrate
by immersing it in an HCl 37% bath solution for 3 h. Later, the
sample is moved to a Milli-Q H,O bath solution and left floating.
After fishing and adhering the NPG/Au film to the BIMW device, it is
annealed on a hot plate at 150 °C for 20 min. Finally, a gold etchant
KI/1, solution (0.2/0.05 M) is applied for 1 h at 40 °C. The NPG-
BiMW chip is rinsed and sonicated for 20 min with Milli-Q H,O and
isopropanol and dried under nitrogen flow.

RAMAN and XPS Characterization. Raman spectroscopy was
performed by using a WITec Raman spectrometer, using a 532 nm
excitation laser (P = 0.5 mW), with a S0X focal objective, 600 g/mm
grating, 0.5 mW maximum power, and 0.05 s acquisition time. The
Raman spectra were processed using WITec Project Five software.
The oxidized-NPG samples were analyzed by an X-ray spectroscopy
(XPS) SPECS PHOIBOS 150 hemispherical spectrometer (SPECS
GmbH, Berlin, Germany), equipped with a monochromatic
aluminum Ko radiation X-ray source at a base pressure of ca. 5 X
107"" mbar, with a pass energy of 20 eV and a step size of 0.05 eV.

Antibody Immobilization and CRP Protein Detection. Before
antibody immobilization, NPG was functionalized by oxygen plasma
treatment in a Femto equipment from Diener electronic (Aname,
Spain). The plasma chamber was filled with O, gas for 1 min at a
pressure of 445 sccm, and NPG was exposed to 12 s of oxygen
reaction followed by 1 h of annealing at 180 °C on a hot plate. The
NPG-BiMW device is mounted on the optical setup to carry out the
biosensing assay on the individual waveguides by employing the
microfluidics platform. Carboxyl (COOH), epoxy (COC), carbonyl
(CHO), and hydroxyl (OH) groups provided by the NPG layer are
activated through EDC/NHS reaction (0.2 M EDC/0.05 M NHS in
MES buffer 0.1 M, pH 5.5). Next, a solution with anti-CRP antibody
(20 pg/mL in MES buffer) is injected at 20 yL/min. The remaining
activated oxide groups are blocked with ethanolamine (1 M, pH 9) for
2 min. Milli-Q water was used as the running buffer during the
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Figure 1. Bottom-up on-surface synthesis of nanoporous graphene. (a) Molecular structure of the DP-DBBA used as a precursor on this synthesis.
7—13-GNR was obtained after the Ullmann coupling and subsequent cyclodehydrogenation reactions induced at steps T, and T,, respectively. At
T, the GNRs interconnect leading to the generation of the NPG structure. (b) Topographic STM images of the synthesized NPG. STM image
parameters: overview (195 X 195 nm? I= 1.1 nA and V,= 2.0 V) and zoom-in (17.5 X 17.5 nm? I= 2.4 nA and V,= 0.8 V).
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Figure 2. (a) Schematic of the polymer-free wet-transfer method used to integrate NPG onto the BIMW sensors. After separating the mica from
the gold film-NPG, the latter is picked by the BIMW chip. (b) Photograph of the BiIMW chip covered with NPG and a thin gold film over the
sensing area. (c) Optical microscopy image of an NPG-coated waveguide after the thin gold layer has been removed. The NPG is visible due to a
change in contrast. (d) Characteristic Raman spectra of bare BIMW (blue), NPG-BiMW (red), and Au(111)-NPG growth substrate (brown). The
G- and D-bands are observed at 1601.0 and 1332.4 cm™, respectively.

immobilization step and was then changed to slightly diluted PBS
buffer (0.9x PBS, pH 7.4) for CRP detection. CRP solutions were
prepared in 1X PBS at different concentrations (0.05—1 ug/mL) and
injected at 10 yL/min at increasing concentrations. The minimal
dilution of the running buffer does not affect the biological activity of
antibodies, and it enhances signal clarity by inducing a bulk refractive
index change for the protein samples. For the biosurface regeneration,
HCI (10 mM, pH 2) was injected for 1 min. All experiments were
performed at a constant temperature of 23 °C.

Biosensor Data Analysis. Data was analyzed using Origin Pro
2018 (OriginLab, MA) and GraphPad Prism 9 (GraphPad Software,
CA). Calibration curves were plotted as the mean and standard
deviation of the acquired sensor response (A®) over the analyte
concentration. Data points were fitted to a linear regression model for

1642

bulk sensitivity evaluation, and to a one-site specific binding model
curve for biosensing experiments. The LOD, defined as the smallest
concentration distinguishable from the blank, was determined as the
concentration corresponding to three times the standard deviation of
the baseline for over 1000 data points. All sensor signals, including
blank signals, were obtained by duplicate measurements with different
biosensors.

B RESULTS AND DISCUSSION

NPG Synthesis and Transfer onto BiMW Sensors.
Pristine nanoporous graphene (NPG) was prepared following
a previously reported bottom-up synthesis route.' The process
starts with a surface-assisted Ullmann coupling (T, = 200 °C)
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Figure 3. (a) Schematic of the BIMW device showing waveguides with varied lengths of the sensing area window (4.5, 9.3, and 13.1 mm). (b)
Cross-section schematics of the NPG-BiMW device with the SiO, spacer layer between the Si;N, waveguide and the NPG coating. The refractive
index of each material is indicated. The schematic is not at scale. (c) Output signal intensity measured for NPG-BiMW devices fabricated with
variable thickness of the SiO, spacer layer and lengths of the sensing area. Data points correspond to the mean and standard deviation of five
different waveguides. (d) Temporal evolution of the interference pattern induced by a bulk RI change on three waveguides of the NPG-BiMW chip
with different sensing lengths: 13.1, 9.3, and 4.5 mm. Arrows indicate the sample entrance to and exit from the sensing area.

of 10,10’-dibromo-2,2’-diphenyl-9,9’-bianthracene (DP-
DBBA) to form long anthracene-based polymers, followed by
the cyclodehydrogenative aromatization (T, = 400 °C) of the
intermediate polymeric chains to obtain a series of consecutive
pairs of 7 and 13 C atom wide chains, and hence we label the
ribbon 7—13-GNR (Figure la). Finally, the 7-13-GNR
interconnect laterally via dehydrogenative coupling (T; =
450 °C) to form NPG in a yield close to 100%.

The key ingredient for achieving a high-yield and long-range
order observed in the final NPG product occurs as a
consequence of the extraordinary length of the polymeric
intermediates achieved and their parallel alignment driven by
the reconstruction of the Au(111) herringbone substrate, ¥
The structure was characterized in each step of the hierarchical
synthetic route by scanning tunneling microscopy (STM). The
resulting NPG network exhibits domains as large as 70 X S0
nm?, containing atomically precise pores of 0.9 X 0.4 nm?, with
an apparent height of 0.18 nm (Figure 1b).

The integration of the NPG in the BiMW sensors is
performed through a wet-transfer and polymer-free approach.
In this method, the mica substrate of the NPG sample is
detached in an HCI bath, leaving the thin gold layer-NPG
floating in H,O. This gold layer, with the NPG on top, is then
transferred to the sensor device through direct mechanical
contact. Subsequently, the gold is etched away using a gold
etchant solution, and the biosensor surface is thoroughly
cleaned with several H,O rinsing steps followed by extended
sonication. The schematics of the transfer process are shown in
Figure 24, resulting in a single layer of NPG uniformly covering
all the waveguide devices (Figure 2b). After the gold etching
procedure, the NPG-BiMW surface is characterized by optical
microscopy and Raman spectroscopy, as depicted in Figure
2¢,d. The transfer integrity of nanoporous graphene onto the
waveguides was examined using optical microscopy, with high-
contrast regions confirming the NPG presence (Figure 2c).
The uncoated areas were quantified, showing that between
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97—98% of the waveguide area is completely covered with
NPG (Section B, SI). We characterized the NPG with Raman
spectroscopy before the transfer, onto the gold film, and later
onto the BIMW to confirm the result of the transfer process.
Characteristic Raman features of NPG display G- and D-bands
at 1601.0 and 1332.4 cm™, respectively. The NPG Raman
features are evident on the Au(111) growth substrate and after
the transfer onto the BIMW (Figure 2d).

Engineering and Optimization of the NPG-BiMW
Photonic Biosensor System. Previous studies of silicon-
based waveguides coated with graphene operating in the near-
infrared region have shown high optical losses due to the
evanescent field interacting with the graphene layer’* as it
has a high imaginary part of the refractive index value
(—1.52i).”" In contrast, the NPG displays a significantly lower
imaginary part of the refractive index value (—0.395i),*"
substantially reducing the light attenuation effect (Figure S4c,
Section C, SI). Still, this value is far from negligible, and we
could also expect limitations in light propagation on the NPG-
BiMW system.”” To understand and minimize this effect, we
performed numerical mode analysis and evaluated the
attenuation constant (@) of the NPG-BiMW, using the
theoretical refractive index (n = 1.665—0.395i) of the NPG
layer®® (Figure S4c, Section C, SI). The study was performed
for the fundamental mode (TE,,) in a cross-section waveguide,
resulting in an attenuation constant @ = 0.85 dB/cm for bare
BiMW and a = 80.6 dB/cm for the NPG-BiMW, indicating an
increase in the optical losses of the waveguide induced by the
presence of the NPG. To reduce this attenuation, we proposed
the strategy of including a spacer layer of SiO, (n = 1.46)
between the NPG and the Si;N, waveguide, which would act
as a buffer due to the negligible imaginary part of its refractive
index (Figure 3b).*” We studied the variation of @ with the
increase in the SiO, thickness (ranging from 10 to 100 nm)
and the results show a total attenuation reduction of 62% (21.2
dB/cm) for the NPG-BIMW with 60 nm thick SiO, layer,
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respect to the NPG-BIMW device without SiO, layer.
However, it should be noted that increasing the spacing
layer thickness may reduce the overall sensor sensitivity due to
a decrease in the evanescent field intensity in contact with the
sample. Additionally, previous works have also suggested that
the effective coverage length of graphene onto photonic Si;N,
waveguides also influences light propagation, indicating that
the accumulated overlap of the evanescent field over a certain
distance might result in complete light attenuation.’® This
could be especially relevant for the design of our bimodal
interferometer, given that the two propagating modes
(fundamental and first-order modes) have different evanescent
field penetrations, and the different interactions with the NPG
layer might affect the sensing interferometric behavior.

Based on the numerical calculations, BIMW devices were
modified by adding a SiO, spacer waveguide coating of
different thicknesses (10, 25, 50, 60, and 100 nm) and also by
reducing the sensing window lengths (4.5, 7.5, 9.3, and 13.1
mm) (Figure 3a—c). The reduction of the sensing window was
performed by partially passivating the sensing area with a thick
SiO, cladding (360 nm), which fully covers the evanescent
field penetration and avoids contact with the sample (Figure
S7, Section D, SI). First, we compared the phase shift (A®)
values of the different SiO,-coated BIMW to in-solution RI
variations (An). From this refractometric sensing evaluation,
we determined that the maximum SiO, thickness suitable for
effective refractometric sensing is around 50—60 nm, providing
a competitive sensor resolution in the range of 107 RIU
(Figure S8b, Section D, SI). Next, we evaluated the signal
intensity of the light propagated along the NPG-BiMW with
different SiO, thicknesses (10, 25, 50, and 60 nm) and sensing
window lengths (7.5 and 13.1 mm) (Figure 3c). A cutoff value
of 1 pA was established as the minimum signal intensity to
ensure sufficient signal-to-noise ratio (SNR) for biosensor
evaluation. With these conditions, we observed that even with
a relatively long sensing window (13.1 mm), the 60 nm spacer
layer was sufficient to allow light propagation with an
appropriate output intensity. Furthermore, because of the
structural modifications made to allow light propagation with
the new NPG-BiMW sensor, additional adjustment of the
biosensor was performed to adapt the optical setup to the
optimum working wavelength. Based on calculations of the
effective refractive index difference (An.;) between the
fundamental and the first-order modes, the ideal wavelengths
for our new biosensor would fall between 532—632 nm,
therefore, we selected a 532 nm laser diode as a light source
(Figure SSa, section C, SI).

Finally, the interferometric behavior of the NPG-BiMW
system was assessed. Considering the differential attenuation
effect of the NPG over the evanescent field of the two light
propagating modes, we experimentally optimized the sensing
window length of the device to ensure an interferometric
output. Figure 3d shows the sensor responses obtained from
several waveguides of the same chip but with different sensing
window lengths (13.1, 9.3, and 4.5 mm, respectively) upon the
introduction of a different refractive index solution (0.8%
DMSO, An = 0.01062 RIU). As can be observed, only the
waveguide with a 4.5 mm sensing length allowed the formation
of the expected interferometric pattern at the output (i.e., I,,=
—Ijown)- On one hand, these results confirm that the
accumulated contact of the evanescent field with the NPG
induces different attenuation effects on the two modes of light,
which directly affects their propagation condition and
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subsequently the interferometric behavior of the device. By
selecting the 4.5 mm sensing length, we complete the
optimized engineering of the new NPG-BIMW system,
demonstrating a fully operative interferometric sensor coated
with a presynthesized NPG template for direct cross-linking of
bioreceptors. To further confirm the reliability of our results,
we characterized five different sensor devices with lengths of
4.5 mm, as well as several with shorter lengths. All devices
tested exhibited interferometric signals at the output.
Demonstration of the NPG-BiMW Biosensor for
Label-Free Biomolecular Analysis. Before addressing the
NPG biofunctionalization, the NPG-BiMW was evaluated as a
refractometric sensor by performing bulk sensitivity calibration
to changes in the refractive index (An) of the medium. The
bulk calibration was performed for the SiO,-coated BiMW
device with and without the NPG integration. Figure 4 depicts

2.0,
« Si0,-BiMW
—_ LOD= 8.77 -10°°RIU
T 1.5/ . NPG-Si0,-BIMW A
E LOD=5.90-10°RIU ¥~
Q10 L
e 2
Q0.5 i
0.0f <~
0.000 0.005 0.010 0.015
An (RIU)

Figure 4. Bulk sensitivity calibration curve of the SiO,-coated BIMW
sensor (green) and the NPG-BiMW sensor (orange). The data points
correspond to the phase shift (A®) value obtained with triplicate
measurements of increasing DMSO dilutions (0.4—1.2% DMSO).

the phase shift (A®) measured inflow for each concentration
of DMSO (ranging from 0.4—1.2%, An = 0.00495—0.01637
RIU). The device sensitivity, determined by the slope of the
curve, resulted in 92 27-rad/RIU for the BiIMW device without
NPG and 84.5 2z-rad/RIU for the NPG-BiMW. These values
are in good agreement with our preliminary simulations
(Figure S6, Section C, SI), indicating a slight but negligible
detrimental effect of the NPG on the BIMW sensor sensitivity.
Likewise, the limit of detection (LOD), corresponding to the
smallest detectable signal and calculated as the signal
corresponding to three times the background noise (..,
standard deviation of the baseline), was determined at 8.77 X
107® RIU for the SiO, coated BiMW and 5.90 X 10~° RIU for
the NPG-BiMW. This increase in the LOD for the NPG-
BiMW is mainly attributed to the higher background noise
(standard deviation of the baseline) observed for the NPG-
BiMW (6 = 1.7 X 107*) compared to the SiO, coated BIMW
(6 = 026 X 1073). The increased background noise of the
NPG-BiMW sensor could be attributed to the increase in the
attenuation losses of the waveguide after NPG coating, as the
SNR is generally proportional to the output signal intensity."'
Notwithstanding, our NPG-BiMW sensor shows a remarkable
refractometric sensitivity within the same order of magnitude
as other silicon nanophotonic sensors, like Mach—Zehnder
interferometer or ring resonators (ranging between 107> and
1077 RIU),"* and it might be superior to other label-free
optical sensor technologies, like plasmonics or photonic
crystals, generally ranging between 10~* and 107 RIU.*7*
Lastly, we carried out the functionalization of the NPG-
BiMW biosensor and demonstrated its performance for
relevant biomolecular analysis. For that, we addressed the
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Figure S. (a) Schematics of the NPG biofunctionalized structure and the subsequent covalent immobilization of antibodies through EDC/NHS
cross-linking to COOH groups introduced at the NPG structure. The surface is blocked with ethanolamine to avoid unspecific bindings. (b)
Overlaid real-time sensorgrams for the detection of CRP at the same concentration and of the negative control (BSA) for specificity test. (c)
Statistical comparison between specific and unspecific samples measured in the same NPG-BiMW sensor device. (d) Calibration curve for CRP
detection at different concentrations (0.05—1 pg/mL). Each data point corresponds to the mean + SD of the duplicate measurements performed

on different NPG-BiMW sensor devices.

immobilization of monoclonal antibodies on the NPG scaffold
for the specific detection of C-reactive protein (CRP). CRP is
an acute-phase biomarker protein whose levels in the blood
increase dramatically in response to inflammation, infection,
and tissue damage. It is commonly targeted for diagnosing
infections and sepsis, chronic inflammatory diseases, assessing
cardiovascular risk, monitoring sur%ical complications, and
evaluating therapeutic responses.””*® The procedure is
illustrated in Figure Sa. Taking advantage of the high reactivity
of the nanopore regions, we introduced oxide-based reactive
chemical groups (COOH, COC, CHO, OH) within the NPG
scaffold by exposing the NPG-BiMW chip to a few seconds of
O, plasma process (12 s). The method was optimized to
minimize defects at the NPG structure, by characterizing and
confirming the structural integrity of the graphene through
XPS, and the appearance of oxygen-containing functional
groups was also verified (Figure S10, section E, SI). The
subsequent anchoring of antibodies was done through the well-
established carbodiimide-based chemistry, which enables the
cross-linking of COOH groups but also COC and CHO to
abundant primary amines (NH,) in the antibody. This
biofunctionalization process (Figure Sa) begins by injecting a
0.2 M EDC/0.05 M NHS solution in MES buffer. This step
replaces the NPG oxygen-functional groups with highly
reactive NHS esters. To preserve the stability of the NHS
esters for subsequent antibody binding, Milli-Q water is used
as running buffer, providing a slightly acidic pH that is more
suitable than conventional neutral-pH buffers (e.g, PBS).
Immediately after EDC/NHS activation, an anti-CRP antibody
solution (20 ug/mL in PBS, pH 7.4) is flowed over the sensor,
enabling covalent binding to the active NHS groups and
forming stable amide bonds. Finally, unreacted NHS groups
are inactivated with an ethanolamine solution. The anti-CRP
antibody immobilization process was monitored in real-time
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(Figure Slla, Section F, SI), showing a significant phase shift
for antibody binding to the NHS-NPG surface. The successful
formation of a covalent bond and the biolayer stability were
proven by injecting a low-pH solution (HCI 10 mM, pH 2),
which would disrupt any noncovalent interactions, showing a
decrease in the sensor signal (data not shown). Upon NPG
biofunctionalization was completed, the running buffer was
changed to PBS pH 7.4 to ensure the biological activity of
antibodies and maximum detection efficiency. Sequential
detection cycles of CRP were performed to further assess the
robustness of the antibody-functionalized NPG-BiMW sensor
surface. CRP samples diluted in PBS buffer at a fixed
concentration (1 ug/mL) were flowed over the biosensor,
followed by a 1 min regeneration step using a 10 mM HCI
solution. This short regeneration treatment with a low-
concentration acidic solution effectively disrupts the anti-
gen—antibody interaction while preserving the antibodies’
biological activity, allowing for subsequent detection measure-
ments.””*" The experiment was repeated up to 9 cycles,
showing a similar biosensor response for all cases (Figure
5b,5c). This confirmed the stability of the biofunctionalized
NPG scaffold and the good reproducibility of the biosensor
assay. Besides, the detection specificity was evaluated by
introducing a nontarget protein of a similar molecular weight
(BSA) as negative control, which did not produce any
significant biosensor response (i.e., baseline returns to initial
position) (Figure Sb,c).

Finally, the analytical sensitivity of the NPG-BiMW
biosensor was evaluated by carrying out a CRP detection
calibration. Different samples of CRP at increasing concen-
trations (0.05—1 pg/mL) were evaluated by duplicate and the
biosensor response was plotted and fitted to a one-site binding
saturation model (Figure Sd). Additionally, sensor quality
controls were performed intermittently by testing a CRP
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sample of 1 ug/mL. The LOD was determined at 3 ng/mL,
which is in the same order of magnitude as those obtained with
conventional BIMW sensors biofunctionalized through silani-
zation procedures (7 ng/mL),”" and falls within the typical
range of LODs achieved with label-free photonic biosensors for
direct, nonamplified CRP detection (0.1—10 ng/mL).>* It is
worth noting that the LOD achieved by the NPG-BiIMW is
well below the clinical cutoff levels required for the diagnostic
detection of CRP in patient samples,” therefore showing
promising technology application prospects within the medical

field.

B CONCLUSIONS

In this work, we have combined bottom-up synthesized
nanoporous graphene with a silicon-based nanophotonic
biosensor, representing a major advancement in simplifying
biofunctionalization strategies for biosensor technology. This
integration harnesses the high sensitivity of bimodal waveguide
interferometers and the large functional surface area of
nanoporous graphene to create highly sensitive, selective, and
robust biosensors for the direct immunoassay detection of
CRP, a crucial inflammatory biomarker in the clinical diagnosis
of infections and sepsis. Our biosensor proved to be highly
specific and sensitive, with an excellent limit of detection
(LOD = 3 ng/mL) comparable to similar devices, below the
sepsis diagnosis cutoff levels. The NPG biointerface remained
stable and reproducible, exhibiting low variation in the
detection, even after 9 regeneration cycles.

With this innovation proof-of-concept and experimental
validation, our work opens new avenues in designing and
integrating NPG as atomically precise biofunctionalization
scaffolds. Controlling pore size and geometry during on-surface
synthesis can benefit the bioreceptor density and distribution
control, with prospective applications for the optimal detection
of different biological targets, such as small molecules, proteins,
nucleic acids, or pathogens and cells. Furthermore, the
possibility to intrinsically functionalize the NPG pore regions
with specific reactive groups, such as amines or thiols, may
greatly expand the portfolio of cross-linking strategies that can
be easily adapted to a wide variety of bioreceptors, including
antibodies, peptides, DNA probes, or aptamers.
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