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Abstract
Automatic classification of tissue types of region of interest (ROI) plays an important role in

computer-aided diagnosis. In the current study, we focus on the classification of three types

of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-

enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image

into increasingly fine rectangular subregions and computes histograms of local features

from each subregion, exhibits excellent results for natural scene classification. However,

this approach is not applicable for brain tumors, because of the great variations in tumor

shape and size. In this paper, we propose a method to enhance the classification perfor-

mance. First, the augmented tumor region via image dilation is used as the ROI instead of

the original tumor region because tumor surrounding tissues can also offer important clues

for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form

subregions. We evaluate the efficacy of the proposed method on a large dataset with three

feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix

(GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using

augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75%

from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoWmodel,

respectively. In addition to region augmentation, ring-form partition can further improve the

accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate

that the proposed method is feasible and effective for the classification of brain tumors in

T1-weighted CE-MRI.

Introduction
Nowadays, digital images in the medical field are increasingly being used for diagnosis. Early
identification of brain tumors is important to treat the tumors effectively. Given the high soft-
tissue contrast and zero exposure to ionizing radiation, MRI is the most popular technique for
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diagnosing human brain tumors. However, brain tumor classification is not a trivial task. The
conventional method for MRI brain tumor detection and classification is by human inspec-
tion, which depends strongly on the experience of radiologists who review and analyze the
characteristics of images. Moreover, operator-assisted classification methods are impractical
for large amounts of data and are also non-reproducible. Therefore, computer-aided diagnosis
tools are highly desirable to address these problems. Applications of brain tumor classification
can be mainly divided into two categories: (1) classifying brain images into normal and abnor-
mal classes, i.e., whether or not the brain images contain tumors; (2) classification within
abnormal brain images, in other words, discrimination between different types of brain
tumors.

The current study aims to develop an approach that can automatically categorize brain
tumors into different pathological types, which is generally a relatively hard and challenging
problem compared with binary classification (normal and abnormal). Recent studies have pro-
posed numerous automatic and semi-automatic techniques for the detection and segmentation
of brain tumors [1–3]. Once the tumor is detected and segmented, it is then classified. Brain
tumor classification involves two steps, feature extraction and classification. Feature extraction
is a crucial step in classification as more informative features are more likely to improve the
classification accuracy. In many previous studies, intensity and texture features [4,5], such as
first-order statistics [6], GLCM [6–8], Gabor filters [2], and wavelet transform [8], are the most
frequently used methods to describe brain tumor images. Jiang et al. [2] proposed a 3D voxel
classification-based brain tumor segmentation method using Gabor features and AdaBoost
classifier. Selvaraj et al. [6] presented an automatic classification technique based on least
squares support vector machine (SVM) to identify normal and abnormal slices of brain MRI
images, in which first-order and second-order statistics were used. In Javed’s work [4], multi-
class classification was performed using texture features, fuzzy weighting, and SVM. John [8]
proposed a tumor detection and classification approach using discrete wavelet transform and
GLCM.

Although intensity- and texture-based features can effectively represent texture, recent stud-
ies have proved that BoW representations are more robust and discriminative in terms of med-
ical image classification and retrieval [9–12], such as classifying X-ray images on the organ and
pathology levels [9], breast tissue density classification in mammograms [10], and content-
based retrieval of liver lesions [11] and brain tumors [12]. The BoWmethod was originally
used in the text retrieval domain, and it has been successfully adapted to the visual analysis
domain [13,14]. Patch-based BoW representations can be essentially viewed as a generalization
of intensity histograms. The main differences are that pixels are replaced with image patches,
and scalar quantization is replaced with vector quantization. In general, statistical features
extracted by intensity histogram, GLCM, and BoWmethod are computed in a global scale,
which will inevitably ignore spatial information. However, spatial information may be condu-
cive to discrimination between classes. To address this issue, several approaches have been pro-
posed for object recognition tasks [15–18]. Among those methods, the most notable work is
SPM [15], which splits the image into hierarchical cells, computes BoW representation for
each cell, and finally weights and concatenates the results. Notably, these features are not suit-
able for situations in which images contain large geometric transformations, such as rotation
and translation. Brain tumors show great variations in appearance (e.g., shape, size, and inten-
sity), so using symmetrical rectangles to partition tumors is not feasible. A reasonable approach
is to partition the tumor into ring-form subregions according to the distance of pixels to the
boundary of the ROI.

To summarize, the contributions of this paper are twofold:
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1. The augmented tumor region is used as the ROI instead of the original tumor region. Auto-
matically or manually segmented tumor regions are usually used as ROI. However, a previ-
ous study [12] suggested that tumor-surrounding tissues is discriminative between different
tumor categories. As shown by experiments in Subsection 3.2, this simple operation dramat-
ically improves performance.

2. A ring-form partition method is proposed to compensate the loss of spatial information.
Features in each subregion can be extracted separately, so the final concatenated feature
representation will be more discriminative.

The rest of the paper is organized as follows. In Section 2, we propose to directly use the ele-
ments of GLCM as features instead of commonly used second-order texture statistics calcu-
lated from GLCM. We then briefly introduce the pipeline of BoW-based tissue classification.
Moreover, we describe the motivation and implementation details of our proposed tumor
region augmentation and partition method. Experimental results are presented in Section 3.
Section 4 provides the discussions and conclusions of this paper.

Materials and Methods

Ethics statements
This study was approved by the Ethics Committees of Nanfang Hospital and General Hospital,
Tianjin Medical University. Patient records/information was anonymized and de-identified
prior to analysis.

Image data
In clinical settings, usually only a certain number of slices of brain CE-MRI with a large slice
gap, not 3D volume, are acquired and available. A 3D model is difficult to construct with such
sparse data. Hence, the proposed method is based on 2D slices. The brain T1-weighed CE-MRI
dataset was acquired from Nanfang Hospital, Guangzhou, China, and General Hospital, Tianj-
ing Medical University, China, from 2005 to 2010. We collected 3064 slices from 233 patients,
containing 708 meningiomas, 1426 gliomas, and 930 pituitary tumors. The images have an in-
plane resolution of 512×512 with pixel size 0.49×0.49 mm2. The slice thickness is 6 mm and
the slice gap is 1 mm. The tumor border was manually delineated by three experienced radiolo-
gists. Four examples are illustrated in Fig 1.

Fig 1. Illustrations of three typical brain tumors: (a) meningioma; (b) glioma; and (c) pituitary tumor. Red lines indicate the tumor border.

doi:10.1371/journal.pone.0140381.g001
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Intensity normalization
In this study, three methods (i.e., intensity histogram, GLCM, and raw patch-based BoW
model) were used to validate the effectiveness of the proposed method. These methods
strongly rely on the pixel intensities. Given that the intensity values of MRI images are sensi-
tive to acquisition conditions, we normalized the intensity values to make them comparable
with the feature extraction methods mentioned above. For each slice, intensity values at the 1st
and 99th percentiles were computed and used to scale intensity value to [0, 1] through the
min-max method.

Direct use of GLCM as features
Instead of using commonly used second-order statistical features (such as contrast, correlation,
energy, and homogeneity) computed from GLCM, we propose to directly use the lower (or
upper, because GLCM is symmetrical) triangular elements of the isotropic GLCM as features.
Isotropic GLCM [19] is the average of the GLCMs for four directions (0°, 45°, 90°, and 135°).
Elements of GLCM are histogram features that are more suitable for the SPM approach. Pyra-
mid matching with features such as contrast and correlation does not make much sense. As
shown by experiments in Section 4, the direct use of GLCM elements as features yields much
better performance than using second-order statistical features. For notational convenience, we
denote this method as GLCM-element.

Pipeline of BoW-based tissue classification
In this subsection, for completeness, we briefly introduce the pipeline of BoW-based tissue
classification.

• ROI segmentation: The first step is to segment and extract the ROI in the medical image.

• Local features: The next step is to extract local features within the ROI, such as scale-invari-
ant feature transform (SIFT) descriptor [20] and raw patch [21]. For medical images, raw
patch is superior to SIFT descriptor because intensity values in medical images are usually
meaningful and imply the categories of the tissues.

• Dictionary construction: To date, a number of dictionary construction methods, such as k-
means, k-SVD [22], and sparse coding (SC) [23], exist. K-means is the most popular unsu-
pervised technique to learn a dictionary because of its simplicity and effectiveness.

• Histogram representation: This step involves two main procedures, namely, feature coding
and pooling. First, a dictionary with M entries is applied to quantize each local feature of an
image, which converts local features into RM codes. These codes are then pooled together
into a histogram. The simplest and commonly used feature coding method is vector quanti-
zation (VQ), which encodes local features to their nearest words. Other more sophisticated
methods may also be used, such as SC, soft assignment (SA) [24,25], orthogonal matching
pursuit (OMP), locality-constrained linear coding [26], and local anchor embedding [27].
Pooling aggregates the codes of local features. Sum pooling [15] and max pooling [28] are
commonly used. The final implementation issue is that of normalization using L1 norm or
L2 norm.

• Classification: After each ROI is represented as a feature vector, we can train a classifier on
the training set and then classify the ROIs into different tissue types.

Brain Tumor Classification via Tumor Region Augmentation and Partition
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Tumor region augmentation and partition
When using tumor region augmentation and partition, domain knowledge and spatial infor-
mation can be integrated into feature extraction methods to make feature representation more
discriminative.

Instead of directly using segmented tumor region as ROI, we use the augmented tumor
region as ROI. As pointed out in [29,30], it is beneficial to capture a certain amount of context.
Using augmented tumor region as ROI will not only take advantage of the information in the
tumor but also utilize the information provided by tumor-surrounding tissues. Considering
that brain tumors of the same category are often found in similar places, tumor-surrounding
tissues offer important clues for the identification of tumor categories. For example, meningio-
mas are usually adjacent to skull, gray matter, and cerebrospinal fluid. Gliomas typically
involve white matter. Pituitary tumors are adjacent to sphenoidal sinus, internal carotid arter-
ies, and optic chiasma. In light of the above discussion, we enlarge the tumor region via image
dilation with a disk-shaped structuring element of radius R. An appropriate R can be found by
trying several different values.

Inspired by SPM and considering the particular cases of brain tumors, we propose to repeat-
edly split the augmented tumor region into ring-form subregions at increasingly fine resolu-
tions. More specifically, for each pixel in the ROI, we first compute the shortest Euclidian
distance between the pixel and ROI border. Subsequently, for each ROI, the distances of all pix-
els in the ROI are linearly scaled to [0, 1]. Now, let us split the ROI at resolutions 0,. . ., L, such
that 2k ring-form subregions are present at level k. We can implement ring-form partition by
dividing the interval [0, 1] into 2k equal subintervals so that pixels whose distances to the ROI
border fall into the same subinterval form a subregion, for a total of 2k subregions.

After ring-form partition is completed, we can apply SPM to the three feature extraction
methods used in this paper. In the SPM scheme, histograms of local features in each subregion
are weighted and concatenated to generate the final representation of the image for classifica-
tion. An example of tumor region augmentation and partition is illustrated in Fig 2.

Experimental Results

Experimental settings
In the following experiments, the 233 patients were randomly partitioned into five subsets of
roughly equal size. Meanwhile, the number of patients with tumors of the same category was
kept roughly equal across these five subsets. Partitioning according to patients ensures that

Fig 2. Illustration of tumor region augmentation and ring-form partition.We obtain “level 0” from “tumor region” via image dilation. We then split the
augmented tumor region into ring-form subregions at increasingly fine resolution from level 0 to level 2.

doi:10.1371/journal.pone.0140381.g002
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slices from the same patient will not exist in the training and testing set simultaneously. We
used five-fold cross-validation to evaluate the performance. In five-fold cross-validation,
sequentially one subset is used as test set and the remaining four subsets are used as training
set. The average classification accuracy of five rounds was used as the final result.

Unless otherwise mentioned, the following settings were used for BoWmodel and classifica-
tion methods. For BoWmodel, raw patches were densely sampled at each pixel within ROI as
local descriptors. We randomly sampled 100k local descriptors from the training set and used
k-means clustering algorithm for dictionary construction. We used VQ to encode local features
to their nearest words, followed by average pooling (sum pooling + L1 normalization) to gener-
ate the final histogram representations. For classification methods, SVM with HIK kernel was
used to classify brain tumors into three types. Multiclass classification was performed using
one-against-one voting rule. The optimal penalty parameter C of SVM was determined using
five-fold cross-validation on the training set. Note that the parameter C was adjusted on the
independent training set without any testing sample involved.

Effectiveness of tumor region augmentation
We augmented the tumor region via image dilation with a disk-shaped structuring element of
radius R. To study the effectiveness of tumor region augmentation, we simply chose and fixed
the parameters of feature extraction methods, and only changed the radius R of disk-shaped
structuring element. Specifically, for intensity histogram, the intensity values were quantized to
10 levels. For GLCM-element (see section 2.3), the intensity values were quantized to 10 levels
and the co-occurrence distance was set to 1. For BoWmodel, the patch size and dictionary size
were set to 5×5 and 300, respectively. We set R to 0, 8, 16, 24, and 32 pixels.

Table 1 shows the detailed results of the three feature extraction methods mentioned above.
Compared with using tumor region as ROI (R = 0), using augmented tumor region as ROI sig-
nificantly improves the performance, which demonstrates that tumor-surrounding tissues also
provide important clues for the identification of tumor categories. As can be seen from Table 1,
when the radius is too large, the accuracies for all the three methods begin to decrease slightly.
This phenomenon may result from that too much information irrelevant to tumor categories is
included. When the radius R is equal to 8, the highest accuracies are obtained for all the three
feature extraction methods. Therefore, we set R to 8 for all methods in the following
experiments.

As a comparison with GLCM-element, we also tested the performance of second-order sta-
tistical features calculated from GLCM. Following the same setting as [19], GLCMs for four
directions were computed. From each GLCM, the four features (i.e., contrast, correlation,
energy, and homogeneity) were calculated, resulting in 16 texture features per image. Using the
augmented tumor region as ROI, the highest result of second-order statistical features is
74.51%, whereas the lowest result of GLCM-element is 78.18%. This indicates that from

Table 1. Classification results of three methods (%). The highest results of eachmethod are shown in
bold.

R\methods intensity histogram GLCM-element BoW

0 71.39 78.18 83.54

8 82.31 84.75 88.19

16 80.39 82.79 86.86

24 79.67 82.60 87.58

32 78.68 82.41 87.26

doi:10.1371/journal.pone.0140381.t001
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GLCM to second-order statistical features, this kind of operation will lose useful and discrimi-
native information.

Besides measuring the overall classification accuracy, we also provided confusion matrices
to show how errors are distributed between different classes, as well as sensitivity and specific-
ity measures for each category. Tables 2, 3 and 4 show the confusion matrices for each of the
three feature extraction methods. To contrast the results without/with using region augmenta-
tion, the numbers before slashes are results without using region augmentation, while the num-
bers after slashes are highest results with using region augmentation. As can be seen from the
three confusion matrices, the sensitivity of gliomas is much higher than those of meningiomas
and pituitary tumors, which indicates it is easy to distinguish gliomas from the other two kinds
of tumors. Although using the augmented tumor region as ROI improves the overall classifica-
tion accuracy, it will increase the classification errors between meningiomas and gliomas.

To provide a more intuitive understanding of the effectiveness of region augmentation, we
applied linear discriminant analysis (LDA) to reduce the features down to 2D. LDA is a power-
ful approach to learn a subspace that preserves the variance between classes. The projection
matrix with maximum class separability information are the eigenvectors corresponding to the

largest eigenvalues of S�1
w Sb where Sw is the within-class scatter matrix and Sb is the between-

class scatter matrix. In most cases, Sw is close to singular, so we actually compute the eigenvec-
tors of (Sw+λI)

−1Sb where λ is a small constant and I is a unit matrix. Fig 3 shows the scatter
plots for BoWmethod without/with using region augmentation. The radius R was set to 8 for

Table 2. Confusion matrix for intensity histogram. The numbers before slashes are results without region augmentation, while the numbers after
slashes are highest results with region augmentation.

True\Auto Meningioma Glioma Pituitary tumor sensitivity

Meningioma 428/524 36/63 244/121 60.5%/74.0%

Glioma 37/46 1262/1291 127/89 88.5%/90.5%

Pituitary tumor 240/134 192/91 498/705 53.5%/75.8%

Specificity 88.2%/92.4% 86.1%/90.6% 82.6%/90.2%

doi:10.1371/journal.pone.0140381.t002

Table 3. Confusion matrix for GLCM-element. The numbers before slashes are results without region augmentation, while the numbers after
slashes are highest results with region augmentation.

True\Auto Meningioma Glioma Pituitary tumor sensitivity

Meningioma 491/555 46/53 171/100 69.4%/78.4%

Glioma 31/51 1293/1306 102/69 90.7%/91.6%

Pituitary tumor 173/122 146/73 611/735 65.7%/79.0%

Specificity 91.3%/92.7% 88.3%/92.3% 87.2%/92.1%

doi:10.1371/journal.pone.0140381.t003

Table 4. Confusion matrix for BoW. The numbers before slashes are results without region augmentation, while the numbers after slashes are
highest results with region augmentation.

True\Auto Meningioma Glioma Pituitary tumor sensitivity

Meningioma 532/571 35/57 141/80 75.1%/80.6%

Glioma 29/44 1330/1326 67/56 93.3%/93.0%

Pituitary tumor 125/75 108/54 697/801 74.9%/86.1%

Specificity 93.5%/94.9% 91.3%/93.2% 90.3%/93.6%

doi:10.1371/journal.pone.0140381.t004
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region augmentation. It can be seen that using augmented tumor region as ROI makes features
representation more discriminative and separable.

Impact of parameters
In this section, we further discussed the impact of different parameters of feature extraction
methods. We set the radius R to the optimal value obtained in Section 3.2 for each of the three
feature extraction methods. For intensity histogram, the quantized gray levels were set to 10,
20, 40, and 80. For GLCM-element, the quantized gray levels were also set to 10, 20, and 40,
and the co-occurrence distances were set to 1, 2, 3, and 4. For BoW, the sizes of image patch
were set to 5×5, 7×7, and 9×9, and the sizes of dictionary were set to 300, 600, and 900.

Fig 4 shows the classification accuracies of different parameter combinations for the three
feature extraction methods. For intensity histogram, paired t-test on the performance measures
estimated by cross-validation revealed that the accuracy changes between different parameters
were not significant (p> 0.1 at significance level of 0.05). We set gray level to 20 for intensity
histogram in the following experiments. For GLCM-element, a larger co-occurrence distance
usually gives a better performance (e.g. paired t-test p = 0.01 between distance = 1 and 4 at gray
level 20), and we set gray level to 20 and co-occurrence distance to 4 in the following experi-
ments. For BoW, it seems that a smaller patch size and a larger dictionary size provide better
performance, but paired t-test revealed that the improvements were not significant (e.g. paired
t-test p = 0.34 between dictionary size = 300 and 600 at patch size 7×7). To balance the trade-off
between computational cost and accuracy, we set patch size to 5×5 and dictionary size to 300 in
the following experiments. In general, BoW outperforms low-level feature extraction methods.

Effectiveness of ring-form partition
Following the experimental design of Lazebnik [15], Table 5 lists the performance achieved
using only the highest level of the pyramid (the “single-level” columns), as well as the perfor-
mance of the complete matching scheme using multiple levels (the “pyramid” columns). Com-
pared with no region partition (L = 0), region partition significantly improves the classification

Fig 3. 2D scatter plots of dimension-reduced features for BoWmethod to showmore intuitively that using region augmentationmakes feature
representationsmore discriminative. The left without using region augmentation; the right with using region augmentation. The color red, green, and blue
represent meningiomas, gliomas, and pituitary tumors, respectively.

doi:10.1371/journal.pone.0140381.g003
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accuracies of all the three feature extraction methods (paired t-test p = 0.01 at significance level
of 0.05). In most cases, pyramid representations slightly outperform single-level representations,
but the improvements are not statistically significant based on paired t-test. Similarly, BoW
results in better performance than the other two low-level feature extraction methods (paired t-
test p = 0.048 when comparing the highest results between GLCM-element and BoW).

Additionally, we also computed confusion matrices and sensitivity and specificity measures
for each category without/with partition (Tables 6, 7 and 8). And we used the same dimension

Fig 4. Impact of parameters of the three feature extractionmethods.

doi:10.1371/journal.pone.0140381.g004

Table 5. Classification results of three methods (%) with the spatial pyramid scheme.

intensity histogram GLCM-element BoW

L single-level pyramid single-level pyramid single-level pyramid

0 82.49 86.28 87.79

1 86.28 86.90 88.53 88.33 91.28 91.14

2 87.14 87.06 88.83 89.23 90.81 91.13

3 87.50 87.54 89.64 89.72 90.86 91.02

doi:10.1371/journal.pone.0140381.t005

Table 6. Confusion matrix for intensity histogram. The numbers before slashes are results without partition, while the numbers after slashes are
highest results with partition.

True\Auto Meningioma Glioma Pituitary tumor sensitivity

Meningioma 518/562 64/31 126/115 73.2%/79.4%

Glioma 48/38 1292/1363 86/25 90.6%/95.6%

Pituitary tumor 134/130 81/42 715/758 76.9%/81.5%

Specificity 92.3%/92.9% 91.1%/95.5% 90.1%/93.4%

doi:10.1371/journal.pone.0140381.t006
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reduction technique described in Section 3.2 to visualize that using ring-form partition can
make the feature representation more discriminative, as shown in Fig 5. We used the highest
results of partition to compute the confusion matrices and to plot the scatter plots.

Comparison of different components in BoWmethod
Comparison of different coding, pooling, and normalization methods. Specifically, the

selected feature coding approaches are VQ and SA. For SA, we selected the k-nearest neighbor-
hood or “localized” version of Liu’s [24] (here we name it as SA-k) and set the bandwidth of
Gaussian kernel to 0.5 in our experiments. Two pooling methods (i.e. sum pooling and max
pooling) and two normalization methods (i.e. L1 normalization and L2 normalization) were

Table 7. Confusion matrix for GLCM-element. The numbers before slashes are results without partition, while the numbers after slashes are high-
est results with partition.

True\Auto Meningioma Glioma Pituitary tumor sensitivity

Meningioma 556/582 45/26 107/100 78.5%/82.2%

Glioma 35/25 1328/1376 63/25 93.1%/96.5%

Pituitary tumor 99/99 73/40 758/791 81.5%/85.1%

Specificity 94.3%/94.7% 92.8%/96.0% 92.0%/94.1%

doi:10.1371/journal.pone.0140381.t007

Table 8. Confusion matrix for BoW. The numbers before slashes are results without partition, while the numbers after slashes are highest results
with partition.

True\Auto Meningioma Glioma Pituitary tumor sensitivity

Meningioma 569/609 62/23 77/76 80.4%/86.0%

Glioma 45/27 1318/1374 63/25 92.4%/96.4%

Pituitary tumor 75/80 54/38 801/812 86.1%/87.3%

Specificity 94.9%/95.5% 92.9%/96.3% 93.4%/95.3%

doi:10.1371/journal.pone.0140381.t008

Fig 5. 2D scatter plots of dimension-reduced features for BoWmethod to showmore intuitively that using ring-form partition makes feature
representationsmore discriminative. The left without using ring-form partition; the right with using ring-form partition. The color red, green, and blue
represent meningiomas, gliomas, and pituitary tumors, respectively.

doi:10.1371/journal.pone.0140381.g005
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used. Normalization was performed on per-region subvectors. We jointly evaluated the perfor-
mance of different combinations. To extract BoW representations, region augmentation with
radius R equal to 8 and 2-region partition were used. We set patch size and dictionary size to
5×5 and 300, respectively. As can be seen from Table 9, max pooling dramatically drops the
performance, and using L1-normaliztion or L2-normalization makes little difference.

Comparison of different classification methods. We also compared three classification
methods (i.e. SVM, sparse representation-based classification (SRC) [31], and k nearest neigh-
bors (kNN) classifier) using 2-region BoW representations. K-means, VQ, sum pooling, and
L1-normalization were used in BoW approach. OMP was used to solve the L1-regularized min-
imization problem in SRC. As shown in Table 10, SVM shows the best performance among the
methods.

Discussions and Conclusions
Good visual feature is crucial to produce satisfactory classification results. In essence, the three
types of feature extraction methods tested in this study are essentially analogous because all of
them represent an image as a histogram of local features. The reason for the considerable dif-
ference in their results is that they use different local features. Intensity histogram uses single
pixel and completely disregards the information of its adjacent pixels, thereby resulting in the
worst results. GLCM-element characterizes pairwise relations between two neighboring pixels
and provides better results. BoW utilizes image patch as a local feature, which considers the
relations between multiple pixels. Hence, BoW histogram representation is more informative
and discriminative, yielding the best result.

We believe that the performance of BoW can be further improved using discriminative
visual dictionary learning methods [32,33] and sparse coding-based feature coding methods
[23,26,27]. K-means is an unsupervised clustering algorithm. Given that we already know the
labels of the training samples, supervised dictionary learning methods can be applied to con-
struct a more discriminative dictionary. Besides, sparse coding-based feature coding methods
can ameliorate the quantization loss of VQ, which will make the codes more discriminative.

Another aspect that may improve the performance is to involve more complicated image
preprocessing procedures. MR images is susceptible to noise, so inhomogeneity correction and
noise removal algorithms [34,35] can be applied before feature extraction. Although we only
use the simple min-max method to normalize intensity values, the experimental results are
promising.

Table 9. Comparison of different coding, pooling, and normalization methods in BoW (%).

coding\pooling-normalization sum/L1 norm sum/L2 norm max/L1 norm max/L2 norm

VQ 91.25 91.15 85.58 85.91

SA-2 90.75 91.29 82.46 82.70

SA-5 90.79 90.84 82.59 83.60

SA-10 90.53 90.70 83.65 83.93

doi:10.1371/journal.pone.0140381.t009

Table 10. Comparison of different classification methods (%).

SVM SRC 1NN 3NN 7NN 15NN 45NN

91.14 86.55 80.01 81.69 83.14 83.37 83.09

doi:10.1371/journal.pone.0140381.t010
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In this study, the potential of tumor-surrounding tissues is explored by simply augmenting
the tumor region. This simple operation significantly improves the performance, which verifies
that tumor-surrounding tissues offer important clues for the identification of the categories of
brain tumors. We also present a ring-form partition scheme to compensate the loss of spatial
information of local features. Experimental results on three feature extraction methods and a
large dataset of T1-weighted CE-MRI brain tumors demonstrate the effectiveness of the pro-
posed method. We believe that the proposed method may also be generalized to other applica-
tions, such as liver lesion classification.
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