# Ours # location: server location: local data: type: semantic_seg name: watch num_classes: 4 window_size: 7 image_size: 128 time_steps: 1 weights: [0.01, 3, 1, 2] channels: red|green|blue|nir|swir16|swir22 # channels: B02|B03|B04|B05|B06|B07|B08|B11|B12 local: model_save_dir: /home/native/projects/data/smart_watch/models/ train_dir: /media/native/data/data/smart_watch_dvc/Drop1-Aligned-L1-2022-01/ test_dir: /media/native/data/data/smart_watch_dvc/Drop1-Aligned-L1-2022-01/ train_coco_json: /media/native/data/data/smart_watch_dvc/Drop2-Aligned-TA1-2022-01/data_nowv_train.kwcoco.json test_coco_json: /media/native/data/data/smart_watch_dvc/Drop2-Aligned-TA1-2022-01/data_nowv_vali.kwcoco.json val_dir: server: model_save_dir: /data4/peri/smart_watch/models/ train_dir: /data4/peri/datasets/smart_watch/processed/drop0_aligned_v2.1/ test_dir: /data4/peri/datasets/smart_watch/processed/drop0_aligned_v2.1/ val_dir: /data4/peri/datasets/smart_watch/processed/drop0_aligned_v2.1/ rain_coco_json: /data4/datasets/smart_watch_dvc/extern/onera_2018/onera_train.kwcoco.json test_coco_json: /data4/datasets/smart_watch_dvc/extern/onera_2018/onera_test.kwcoco.json training: backbone: resnet34 #resnet18 #resnet101, resnet50 model_name: deeplab #shallow_seg, deeplabWS, resnet_enc, deeplab model_feats_channels: [64, 128, 256, 512, 256] #[64, 128, 256, 512, 256], [32, 32, 64, 64, 128], [64, 64, 128, 256, 512], [32, 32, 64, 128, 256], [64, 128, 256, 512, 256, 256] # this needs to match the correct number of layers in the model gn_n_groups: 32 num_channels: 13 out_features_dim: 10 weight_std: True beta: False # pretrained: /home/native/projects/data/smart_watch/models/experiments_onera/tasks_experiments_onera_trainWin_7_modelName_resnet_2021-10-18-13:27/experiments_epoch_0_loss_11.28138166103723_valmF1_0.6866047574166068_valChangeF1_0.49019877611815305_time_2021-10-18-14:15:27.pth pretrained: False distributed: False learning_rate: 0.005 # best: 0.00007 # resume: /home/native/projects/data/smart_watch/models/experiments_iarpa/tasks_experiments_iarpa_2022-01-27-17:08/experiments_epoch_28_loss_55.225655170587395_valmF1_nan_valChangeF1_0.0031579150989931425_time_2022-01-28-08:57:52.pth resume: False train_val_test_split: [0.95, 0.02, 0.03] epochs: 200 start_epoch: 0 batch_size: 64 drop_last_batch: True momentum: 0.9 weight_decay: 0.0001 num_workers: 0 test_with_full_supervision: 1 model_single_input: False model_diff_input: False n_samples: 5 high_confidence_threshold: train_cutoff: 0.4 val_cutoff: 0.4 train_low_cutoff: 0.0 val_low_cutoff: 0.0 evaluation: use_crf: False crf_t: 1 crf_scale_factor: 1 inference_window: 7 batch_size: 1 procedures: train: True validate: True