/****************************************************************************** * Copyright (c) 2011-2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ #include "fmha.h" #include "fmha_fprop_kernel_1xN.h" using Kernel_traits = FMHA_kernel_traits< 128, 64, 16, 1, 4, 0x08u>; extern "C" __global__ void fmha_fprop_fp16_128_64_sm80_train_kernel(Fused_multihead_attention_fprop_params params) { fmha::device_1xN(params); } extern "C" __global__ void fmha_fprop_fp16_128_64_sm80_predict_kernel(Fused_multihead_attention_fprop_params params) { fmha::device_1xN(params); } void run_fmha_fp16_128_64_sm80(const Fused_multihead_attention_fprop_params ¶ms, bool is_training, cudaStream_t stream) { auto kernel = is_training ? &fmha_fprop_fp16_128_64_sm80_train_kernel : &fmha_fprop_fp16_128_64_sm80_predict_kernel; constexpr int smem_size_softmax = Kernel_traits::Cta_tile_p::M * Kernel_traits::Cta_tile_p::WARPS_N * sizeof(float); constexpr int smem_size_q = Kernel_traits::Smem_tile_q::BYTES_PER_TILE; constexpr int smem_size_v = Kernel_traits::Smem_tile_v::BYTES_PER_TILE; constexpr int smem_size_o = Kernel_traits::Smem_tile_o::BYTES_PER_TILE; constexpr int smem_size = smem_size_q + std::max(smem_size_v, smem_size_o + smem_size_softmax); if( smem_size >= 48 * 1024 ) { FMHA_CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size)); } dim3 grid(params.h, params.b); kernel<<>>(params); }