# Autogenerated via: # python ~/code/watch/dev/maintain/mirror_package_geowatch.py from geowatch.tasks.invariants.fit_segment import parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, parser, main def __getattr__(key): import geowatch.tasks.invariants.fit_segment as mirror return getattr(mirror, key) def __dir__(): import geowatch.tasks.invariants.fit_segment as mirror return dir(mirror) if __name__ == '__main__': from argparse import ArgumentParser parser = ArgumentParser() ###train hyperparameters parser.add_argument('--max_epochs', type=int, default=50) parser.add_argument('--workers', type=int, default=8) parser.add_argument('--batch_size', type=int, default=128) parser.add_argument('--step_size', type=int, default=10) parser.add_argument('--lr_gamma', type=float, default=.1) parser.add_argument('--weight_decay', type=float, default=1e-5) parser.add_argument('--learning_rate', type=float, default=.0001) parser.add_argument('--save_dir', default='geowatch/tasks/invariants/logs') parser.add_argument('--gpus', type=int, default=1) parser.add_argument('--drop_rate', type=float, default=.1) ###dataset parser.add_argument('--dataset', type=str, help='Choose from: spacenet, onera, or kwcoco.', default='kwcoco') ### kwcoco arguments parser.add_argument('--train_dataset', type=str, default='') parser.add_argument('--vali_dataset', type=str, default='') parser.add_argument('--sensor', type=str, nargs='+', default=['S2', 'L8']) parser.add_argument('--bands', type=str, nargs='+', default=['shared']) ### spacenet arguments parser.add_argument('--remove_clouds', help='spacenet specific argument', action='store_true') parser.add_argument('--normalize_spacenet', help='spacenet specific argument', action='store_true') ### onera arguments parser.add_argument('--onera_data_folder', help='Path to Onera. Only relevant if train_dataset and/or vali_dataset are onera.', type=str, default='/localdisk0/SCRATCH/watch/onera/') #To do: allow for pretrained weights in this architecture ### pretraining arguments # parser.add_argument('--pretrained_checkpoint', type=str, help='path to pretrained checkpoint. Leave blank for change detection training without pretraining.', default='') # parser.add_argument('--pretrained_multihead', action='store_true', help='indicate if the pretrained checkpoint was trained in a multihead fashion') # parser.add_argument('--pretrained_encoder_only', action='store_true') ### main argument parser.add_argument('--patch_size', type=int, default=64) parser.add_argument('--num_channels', type=int, default=6) parser.add_argument('--pos_class_weight', type=float, help='Weight on positive class for segmentation. Only used on binary labels.', default=1) parser.add_argument('--num_images', type=int, default=2) parser.add_argument('--attention_layers', type=int, nargs='+', default=[1, 2, 3, 4]) parser.add_argument('--positional_encoding', action='store_true') parser.add_argument('--positional_encoding_mode', type=str, help='addition or concatenation', default='concatenation') parser.add_argument('--binary', help='Condense annotations to binary as opposed to site classification. Choose 0 to use classification labels.', type=int, default=1) parser.add_argument('--check_val_every_n_epoch', type=int, default=1) parser.add_argument('--dataset_style', type=str, default='gridded') parser.add_argument('--ignore_boundary', type=int, default=3) parser.add_argument('--bas', type=int, default=1) args = parser.parse_args() main(args)