# Code for different variants of U-Net # Some parts taken from https://github.com/milesial/Pytorch-UNet # Implements light (half feature channels) and lighter (quarter number of # feature maps) U-Net import torch import torch.nn as nn import torch.nn.functional as F def count_trainable_parameters(model): # to count trainable parameters return sum(p.numel() for p in model.parameters() if p.requires_grad) class double_conv(nn.Module): def __init__(self, in_ch, out_ch): super(double_conv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, x): x = self.conv(x) return x class inconv(nn.Module): def __init__(self, in_ch, out_ch): super(inconv, self).__init__() self.conv = double_conv(in_ch, out_ch) def forward(self, x): x = self.conv(x) return x class down(nn.Module): def __init__(self, in_ch, out_ch): super(down, self).__init__() self.mpconv = nn.Sequential( nn.MaxPool2d(2), double_conv(in_ch, out_ch) ) def forward(self, x): x = self.mpconv(x) return x class up(nn.Module): def __init__(self, in_ch, out_ch): super(up, self).__init__() self.up = nn.Upsample( scale_factor=2, mode='bilinear', align_corners=True) self.conv = double_conv(in_ch, out_ch) def forward(self, x1, x2): #x1 = self.up(x1) x1 = nn.functional.interpolate(x1, scale_factor=2, mode='nearest') # input is CHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad( x1, (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2)) x = torch.cat([x2, x1], dim=1) x = self.conv(x) return x class outconv(nn.Module): def __init__(self, in_ch, out_ch): super(outconv, self).__init__() self.conv = nn.Conv2d(in_ch, out_ch, 1, bias=False) def forward(self, x): x = self.conv(x) return x # U-Net class UNet(nn.Module): def __init__(self, in_channels, out_channels): super(UNet, self).__init__() self.inc = inconv(in_channels, 64) self.down1 = down(64, 128) self.down2 = down(128, 256) self.down3 = down(256, 512) self.down4 = down(512, 512) self.up1 = up(1024, 256) self.up2 = up(512, 128) self.up3 = up(256, 64) self.up4 = up(128, 64) self.outc = outconv(64, out_channels) def forward(self, x): # x1 = self.inc(x.permute(0, 3, 1, 2)) x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) x = self.outc(x) return x class UNetEncoder(nn.Module): def __init__(self, in_channels): super(UNetEncoder, self).__init__() self.inc = inconv(in_channels, 64) self.down1 = down(64, 128) self.down2 = down(128, 256) self.down3 = down(256, 512) self.down4 = down(512, 512) def forward(self, x): # x1 = self.inc(x.permute(0, 3, 1, 2)) x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) return x1, x2, x3, x4, x5 class UNetDecoder(nn.Module): def __init__(self, out_channels): super(UNetDecoder, self).__init__() self.up1 = up(1024, 256) self.up2 = up(512, 128) self.up3 = up(256, 64) self.up4 = up(128, 64) self.outc = outconv(64, out_channels) def forward(self, X): x1, x2, x3, x4, x5 = X x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) x = self.outc(x) return x class UNetHalfsizeEncoder(nn.Module): def __init__(self, in_channels): super(UNetEncoder, self).__init__() self.inc = inconv(in_channels, 32) self.down1 = down(32, 64) # down(64, 128) self.down2 = down(64, 128) # down(128, 256) self.down3 = down(128, 256) # down(256, 512) self.down4 = down(256, 256) # down(512, 512) def forward(self, x): # x1 = self.inc(x.permute(0, 3, 1, 2)) x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) return x1, x2, x3, x4, x5 class UNetHalfsizeDecoder(nn.Module): def __init__(self, out_channels): super(UNetDecoder, self).__init__() self.up1 = up(512, 128) # up(1024, 256) self.up2 = up(256, 64) # up(512, 128) self.up3 = up(128, 32) # up(256, 64) self.up4 = up(64, 32) # up(128, 64) self.outc = outconv(32, out_channels) def forward(self, X): x1, x2, x3, x4, x5 = X x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) x = self.outc(x) return x