# Depth detector DZYNE Technologies Usage: 1. Clone the `smart_watch_dvc` and `geowatch` repositories. 2. From, the `geowatch` repository, build the container. ``` docker build -t geowatch . ``` 3. Start the container. Adjust your `smart_watch_dvc` path as necessary. ``` docker run --rm -it --gpus all \ -v $(pwd)/output:/output \ -v $(pwd)/../smart_watch_dvc:/dvc:ro \ geowatch bash ``` 4. Run the prediction: ``` # DVC_DPATH=/dvc # DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc/ DVC_DPATH=$(geowatch_dvc) KWCOCO_BUNDLE=$DVC_DPATH/Drop1-Aligned-L1 KWCOCO_FPATH=$KWCOCO_BUNDLE/data.kwcoco.json python -m geowatch.tasks.depth.predict \ --dataset $KWCOCO_BUNDLE/data.kwcoco.json \ --output $KWCOCO_BUNDLE/dzyne_depth/depth1.kwcoco.json \ --deployed $DVC_DPATH/models/depth/weights_v1.pt kwcoco subset --src $KWCOCO_BUNDLE/dzyne_depth/depth1.kwcoco.json \ --dst $KWCOCO_BUNDLE/dzyne_depth/depth1_wv.kwcoco.json \ --select_images '.sensor_coarse == "WV"' --channels='red|green|blue' python -m geowatch stats $KWCOCO_BUNDLE/dzyne_depth/depth1_wv.kwcoco.json # Visualize results python -m geowatch visualize --src $KWCOCO_BUNDLE/dzyne_depth/depth1_wv.kwcoco.json \ --viz_dpath=$KWCOCO_BUNDLE/dzyne_depth/_vizdepth \ --channels "depth" --draw_anns=False --animate=True ```