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Abstract

High Entropy Nitrides (HENs) represent a distinctive class of advanced materials

characterized by the incorporation of multiple principal elements bonded with nitrogen.

Their diverse compositional space and configurational complexity endow them with ex-

ceptional properties, including high hardness, oxidation resistance, and thermal

stability. Despite their promising potential, the prediction of structural stability and

phase classification of HENs poses a significant challenge due to the absence of robust

computational models.

This research addresses this critical issue by employing amachine learning-based

approach to classify the phases and predict the structural stability of HENs. By utiliz-

ing a combination of structural and thermodynamic descriptors, several machine

learning models were developed, including K-Nearest Neighbors (KNN),Random

Forest (RF), Support Vector Machine (SVM), and Gaussian Naive Bayes

(GNB). Techniques such as ADASYN were implemented to balance the dataset,

thereby enhancing the performance of the models.

Among the various models, the KNN demonstrated the highest prediction accuracy

and robustness. This work significantly contributes to the data-driven discovery of

stable HENs, providing a pathway to expedite experimental synthesis and characteri-

zation efforts.
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1 Introduction

High Entropy Nitrides (HENs) represent a cutting-edge class of multi-principal element

ceramics. Unlike conventional compounds that typically involve one or two primary el-

ements, HENs integrate four or more metallic elements in nearly equiatomic proportions.

The incorporation of multiple elements introduces high configurational entropy, which

stabilizes simple solid solution phases even at elevated temperatures. This thermodynamic

advantage results in unique combinations of physical and chemical properties, including su-

perior hardness, thermal conductivity, and resistance to wear and corrosion.

However, this same complexity that gives HENs their unique properties also poses sig-

nificant challenges for researchers. The traditional methods of predicting phases based on

binary or ternary phase diagrams are inadequate in the high-dimensional compositional

space of HENs. Consequently, there is a growing interest in leveraging machine learning

(ML) techniques to understand and predict the structural stability and phase formation in

these materials. By utilizing advanced algorithms and computational datasets, ML offers a

promising avenue for accelerating material discovery and optimizing the properties of HENs.

2 Research Objective

The primary aim of this study is to design and validate machine learning models that

can achieve the following objectives:

1. Accurate Phase Classification: Effectively classify the phase stability of High En-

tropy Nitrides (HENs), distinguishing between single-phase and multi-phase com-

positions based on engineered features.

2. Structural Stability Prediction: Predict the structural stability of HENs utilizing a

semi-synthetic dataset generated from both literature and computational modeling,

thereby enhancing the reliability of predictions.

3. Addressing Class Imbalance: Tackle the challenge of class imbalance by employing

oversampling techniques such as ADASYN (Adaptive Synthetic Sampling Approach
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for Imbalanced Learning) to improve the predictive performance of the models.

3 Approach

To tackle the challenges associated with predicting the structural stability and phase classi-

fication of High-Entropy Nitrides (HENs), the following methodology was employed:

1. Dataset Generation: A semi-synthetic dataset was generated using an atomic en-

vironment mapping based structural plot, leveraging existing datasets to enhance

the quality and diversity of the data.

2. Sorting Criteria Development: Two distinct sorting criteria were developed for

both quinary and quaternary compositions to produce candidates for the single-

phase class.

3. Synthetic Data Generation: The ADASYN (Adaptive Synthetic Sampling Ap-

proach for Imbalanced Learning) technique was implemented to generate a synthetic

dataset from structural modeling and literature data, effectively oversampling the mi-

nority class to improve model training.

4. Machine Learning Implementation: Four machine learning algorithms were imple-

mented: K-Nearest Neighbors (KNN), Random Forest (RF), Support Vector

Machine (SVM), and Gaussian Naive Bayes (GNB). These models were trained

on both balanced and imbalanced datasets to evaluate their performance.

5. Feature Pool Design: A comprehensive feature pool was designed, incorporating

both structural and thermodynamic parameters to enhance the predictive capabilities

of the models.
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4 Dataset Construction and Feature Engineering

4.1 Data Generation

To construct a representative dataset, a comprehensive approach was adopted, integrat-

ing both literature data and semi-synthetic samples. Structural modeling tools were

utilized to generate atomic environment plots and structural descriptors for various

quaternary and quinary nitride compositions.

In addition to the generated data, supplementary information was sourced from ther-

modynamic simulations and empirical observations. This multifaceted data collection

strategy ensures a robust dataset that captures the complexity and diversity of High Entropy

Nitrides (HENs), facilitating more accurate predictions and analyses in subsequent machine

learning applications.

Table 1: Thermodynamic Parameters for Selected HEN Compositions

Alloy ∆Sconf ∆Hmix ∆G (Formation)
TiZrHfVNbTa-N -0.1387 0.756 Multi-phase
(Zr-Ti-Cr-Nb-Si)N 13.3809 -42.400 Multi-phase
(Al0.5CrFeNiTi0.25)Nx 13.3809 -22.720 Single-phase
(FeCoNiCuAlCrV)N 13.8644 -7.600 Single-phase
Hf-Nb-Ti-V-Zr-N 13.3809 0.160 Multi-phase

4.2 Sorting Criteria

Empirical sorting rules were applied to identify potentially stable single-phase compositions.

These were derived from observed tendencies in MN-type nitrides:

• Atomic Packing Efficiency (1.34 ≤ Xp ≤ 1.94)

• Atomic Radius Mismatch (1.89 ≤ Prad ≤ 2.54)

• Enthalpy of Mixing (−2.72 ≤ ∆Hmix ≤ 0.76)
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Figure 1: Correlation analysis between atomic radius mismatch (Prad) and electronegativity
difference (∆χ). Red circles indicate successful single-phase formations, while blue squares
denote multi-phase compositions.

4.3 Feature Selection

To develop effective machine learning models for phase prediction and stability classi-

fication of High Entropy Nitrides (HENs), a comprehensive set of structural and ther-

modynamic descriptors was curated. These features were selected based on their known

relevance to phase formation, thermodynamic behavior, and configurational complexity in

multi-component systems.

The input features used for training the machine learning models were meticulously

designed through careful analysis of structural and thermodynamic attributes derived from

atomic environment mapping and existing datasets. These features directly influence

the stability and phase formation in HENs. The final feature pool includes:
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• Atomic Environment Mapping Parameters: Extracted from structural plots rep-

resenting local atomic arrangements.

• Atomic Packing Efficiency (Xp): Reflects how densely atoms are packed in the

lattice.

• Radius Ratio (Prad): Accounts for mismatch in atomic sizes among constituent

elements.

• Enthalpy of Mixing (∆Hmix): Indicates thermodynamic stability of the mixture.

• Electronegativity (Pauling and Mulliken): Captures variations in bonding ten-

dencies between elements.

• Atomic Mismatch: Quantifies lattice distortion due to size differences.

• Pseudo Potential Ratio: Encodes relative electronic interactions among atoms.

• Entropy and Configurational Parameters: Derived from mixing complexity across

quaternary and quinary compositions.

These features were systematically curated from the generated structural mappings and

semi-synthetic datasets developed during this study. The selection process was driven by

their observed influence on phase differentiation and structural behavior across quaternary

and quinary nitride compositions. Emphasis was placed on incorporating both atomic-scale

descriptors and thermodynamic estimators, which collectively capture the configura-

tional complexity and interaction dynamics within High Entropy Nitrides.

These engineered variables constituted the foundational input set for training the clas-

sification algorithms, enabling the models to effectively learn and generalize the underlying

phase formation patterns in a high-dimensional compositional space.
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5 Methodology

5.1 Handling Class Imbalance

In the dataset constructed for this study, single-phase High Entropy Nitride (HEN) compo-

sitions were significantly outnumbered by multi-phase samples. This inherent class imbal-

ance presents a critical challenge to the performance and generalizability of machine learning

classifiers, as models tend to exhibit bias toward the majority class.

To mitigate this issue, the Adaptive Synthetic Sampling (ADASYN) technique

was employed. ADASYN generates synthetic samples for the minority class by adapting

the density distribution in feature space. The algorithm prioritizes harder-to-learn in-

stances, thereby enhancing the classifier’s sensitivity to underrepresented data. This ap-

proach ensures a more balanced training dataset, facilitating improved phase discrimination

in high-dimensional compositional spaces.

By employing ADASYN, the study aims to enhance the robustness of the machine learn-

ing models, allowing for more accurate predictions and better understanding of the structural

stability and phase classification of HENs.

• K-Nearest Neighbors (KNN): A non-parametric algorithm that classifies new sam-

ples based on the majority class among their k nearest neighbors in the feature space.

Its simplicity and interpretability make it well-suited for structured datasets.

• Random Forest (RF): An ensemble learning method based on decision trees, where

multiple classifiers are trained on bootstrapped subsets of the data. The aggregated

predictions help reduce variance and prevent overfitting.

• Support Vector Machine (SVM): A robust classifier that constructs an optimal

hyperplane to maximize the margin between different classes. It is particularly effective

in high-dimensional spaces and scenarios with clear class separability.

• Gaussian Naive Bayes (GNB): A probabilistic model based on Bayes’ theorem

with an assumption of feature independence and Gaussian distribution. Despite its

simplicity, it provides competitive results on small- to medium-scale datasets.
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Each model was trained and validated on both the original and the ADASYN-augmented

datasets. Their performance was assessed using standard classification metrics such as ac-

curacy, precision, recall, F1-score, and ROC-AUC, allowing a comprehensive evaluation of

each algorithm’s predictive power in the context of HEN phase classification.

6 Model Comparison

The evaluation of various machine learning models is crucial for determining their effec-

tiveness in classifying High Entropy Nitrides (HENs). The comparison of evaluation metrics

and ROC curves for different models is illustrated in Figure 2. Key observations include:

• Evaluation Metrics: The bar chart on the left presents scores for multiple evaluation

metrics, including accuracy, precision, recall, F1 score, and Kappa. All models,

including Support Vector Machine (SVM), Decision Tree, Random Forest,

Naive Bayes, and K-Nearest Neighbors (KNN), demonstrate comparable perfor-

mance, with scores consistently above 0.85. This indicates that each model is capable

of effectively classifying the phases of HENs.

• ROC Curve Analysis: The ROC curves on the right provide insights into the true

positive rates against false positive rates for each model. The Random Forest

model exhibits the highest area under the curve (AUC) at 0.97884, indicating superior

performance in distinguishing between single-phase and multi-phase compositions. In

contrast, the Decision Tree model shows the lowest AUC at 0.90248, suggesting it

may be less effective in this classification task.

• Model Robustness: The close proximity of the ROC curves for SVM,Naive Bayes,

and KNN indicates that these models are robust and reliable for phase classification,

making them suitable candidates for further exploration in material discovery applica-

tions.
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Figure 2: Comparison of evaluation metrics and ROC curves for various machine learning
models used in classifying High Entropy Nitrides. The left panel shows evaluation scores,
while the right panel illustrates the ROC curves for each model.

7 Analysis of Learning Curves and ROC Metrics

The analysis of learning curves and Receiver Operating Characteristic (ROC) met-

rics is essential for evaluating the performance of machine learning models. The left panel

of Figure 3 displays the learning curves, which plot the training and cross-validation

accuracy scores against the number of training examples.

The training accuracy, represented by the red line, remains consistently high, indicat-

ing that the model is effectively fitting the training data. In contrast, the cross-validation

accuracy, shown in green, exhibits variability, suggesting that the model’s generalization

capability may be limited. This discrepancy indicates potential overfitting, where the

model performs well on training data but struggles with unseen examples.

Such insights are crucial for refining model parameters and improving overall predictive

performance, guiding future iterations of model development.

The right panel of Figure 10 presents the ROC curves, which provide valuable insights

into the model’s classification performance across various thresholds. The area under

the curve (AUC) values for the Multi Phase and Single Phase classes are both 0.97,
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Figure 3: Learning curves showing training and cross-validation accuracy scores.

indicating strong discrimination ability.

Additionally, the micro-average AUC of 0.98 and macro-average AUC of 0.97 fur-

ther confirm the model’s robustness in distinguishing between classes. These metrics suggest

that the model is well-suited for the classification task; however, continuous monitoring and

validation are recommended to ensure sustained performance.

Figure 4: ROC curves for different classes and average metrics.

In summary, the analysis of the learning curves and ROC metrics underscores the

importance of balancing model complexity and generalization capabilities. The find-

ings indicate that while the model demonstrates strong performance, further refinement
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may be necessary to enhance its generalization to new data. Continuous evaluation and

adjustment will be essential to optimize the model’s effectiveness in practical applications.

8 Results and Evaluation

8.1 Model Performance Before ADASYN

KNN achieved the highest training and test accuracy prior to oversampling:

• Training Accuracy: 99.63%

• Test Accuracy: 93.4%

8.2 Feature Importance Analysis

The bar chart presented in Figure 5 illustrates the mean absolute differences for various

structural and thermodynamic descriptors relevant to High Entropy Nitrides (HENs). This

analysis provides valuable insights into the relative importance of each feature in predicting

phase stability. Key observations include:

• Dominant Feature: The descriptor rA/rC exhibits the highest mean absolute dif-

ference, indicating its significant influence on phase formation. This suggests that

variations in atomic radius ratios are critical for determining stability in HENs.

• Comparative Importance: Other notable features include ∆χmulliken and δ, which

also show substantial mean absolute differences. Their contributions highlight the

importance of electronic and structural factors in phase stability.

• Less Influential Features: Conversely, descriptors such as ∆Hmix and V EC demon-

strate lower mean absolute differences, suggesting that they may have a lesser impact

on the classification of single-phase versus multi-phase compositions.

• Implications for Model Training: The findings underscore the necessity of priori-

tizing features with higher mean absolute differences during model training, as they are
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likely to enhance the predictive accuracy of the machine learning models employed

in this study.

Figure 5: Mean absolute differences for various structural and thermodynamic descriptors.
The height of each bar indicates the relative importance of the feature in predicting phase
stability.

8.3 Pairwise Correlation Analysis

The pairwise correlation plots illustrated in Figure 6 provide a comprehensive examination of

the interrelationships among various structural and thermodynamic descriptors pertinent to

High Entropy Nitrides (HENs). The following observations can be drawn from the analysis:

• Distinct Clusters: The plots reveal clear clusters for single-phase (blue) andmulti-

phase (orange) compositions. This differentiation suggests that specific descriptors can

effectively categorize the two phases, which is crucial for accurate classification.

• Significant Correlations: Notable positive correlations are observed between ∆χmulliken

and ∆Hmix, as well as between δ and Smixing. These relationships indicate that these

features are instrumental in influencing phase stability.

• Variability in Multi-Phase Compositions: The distribution of multi-phase data

points across various descriptors highlights a greater variability in their properties. This
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variability may complicate the classification process, necessitating advanced modeling

techniques.

• Feature Selection Importance: The analysis underscores the critical need for judi-

cious feature selection in model training. Certain descriptors exhibit stronger corre-

lations with phase formation, which can enhance the predictive power of the model.

Figure 6: Pairwise correlation plots depicting the relationships between structural and ther-
modynamic descriptors for High Entropy Nitrides. Blue points represent single-phase com-
positions, while orange points denote multi-phase compositions.

8.4 Model Performance Metrics

8.4.1 Correlation Analysis

The correlation matrix presented in Figure 7 illustrates the relationships between various

structural and thermodynamic descriptors used in the classification of High Entropy Nitrides

(HENs). Key observations include:

• Significant Correlations: The descriptor ∆χpauling shows a strong positive correla-

tion with δ (0.52) and ∆Hmix(0.54).
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• Negative Correlations: Notably, ∆χmulliken exhibits a strong negative correlation

with ∆Hmix (-0.39) and δ (-0.27), suggesting that as one parameter increases, the

other tends to decrease, which could be pivotal for model training.

• Diverse Relationships: The varying degrees of correlation among descriptors high-

light the complexity of the compositional space in HENs, emphasizing the need for

careful feature selection in model development.

Figure 7: Correlation matrix of structural and thermodynamic descriptors.

Figure 8: Model performance metrics: Accuracy and F1 Score.
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8.5 Observations from the Normalized Confusion Matrix

The normalized confusion matrix provides critical insights into the performance of the ma-

chine learning model for classifying High Entropy Nitrides (HENs):

1. Single Phase Accuracy: The model exhibits a 99% accuracy in predicting single-

phase compositions, indicating a strong capability to identify stable materials.

2. Multi Phase Performance: The accuracy for multi-phase predictions stands at

76%, suggesting that while the model is generally effective, it faces challenges in dis-

tinguishing complex multi-phase systems.

3. False Negatives: A mere 1% false negative rate for single-phase classifications

highlights the model’s reliability in correctly identifying stable single-phase materials.

4. False Positives: The 24% false positive rate for multi-phase predictions indicates

a significant number of incorrect classifications, pointing to areas for improvement in

model training and feature selection.
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Figure 9: Correlation Matrix of Engineered Features

8.6 Model Performance After ADASYN

8.6.1 Observations from the ROC Curve

The Receiver Operating Characteristic (ROC) curve analysis provides valuable insights into

the performance of the machine learning model for classifying High Entropy Nitrides (HENs).

The following observations can be made from the ROC curves presented in Figure 10:

1. True Positive Rate: The ROC curves for both single-phase and multi-phase classi-

fications demonstrate high true positive rates, with areas under the curve (AUC) of

0.95 for each class. This indicates that the model is effective in distinguishing between

stable single-phase and multi-phase materials.
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2. Micro-Average Performance: The micro-average ROC curve, with an AUC of

0.98, suggests that the model performs exceptionally well across all classes, effectively

capturing the overall performance in a multi-class setting.

3. Macro-Average Performance: The macro-average ROC curve, with an AUC of

0.95, indicates that the model maintains a balanced performance across different

classes, reinforcing its reliability in classifying both single-phase and multi-phase com-

positions.

4. Model Robustness: The proximity of the ROC curves to the top-left corner of the

plot signifies a robust model with a low false positive rate, further validating its utility

in practical applications for material classification.

These findings highlight the model’s strong predictive capabilities, particularly in the

context of high-dimensional compositional spaces inherent in HENs. Continuous refinement

and validation of the model will be essential for enhancing its accuracy and applicability in

material discovery.
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Figure 10: ROC curves for classifying High Entropy Nitrides, illustrating the performance
of the model across different phases.

9 Discussion

The KNN model consistently outperformed other models in terms of both accuracy and

generalizability. The implementation of ADASYN proved effective in mitigating the

imbalance problem, leading to more reliable classification of single-phase compositions.

While theRandom Forest and Support Vector Machine (SVM)models also demon-

strated strong performance, they were slightly more prone to overfitting. In contrast, the

Gaussian Naive Bayes model, although fast and efficient, exhibited relatively lower accu-

racy due to its strong distributional assumptions.

These findings highlight the importance of selecting appropriate models and techniques

for the classification of High Entropy Nitrides (HENs), emphasizing the need for ongoing
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refinement and validation to enhance predictive performance in practical applications.

10 Conclusion

This study effectively demonstrates the application of machine learning models for phase

prediction and stability analysis of High Entropy Nitrides (HENs). By leveraging

structural and thermodynamic features, the proposed framework accurately identifies

stable compositions, particularly after class rebalancing using the ADASYN technique.

This research not only facilitates data-driven material discovery but also lays the ground-

work for future investigations into high-entropy ceramics and alloys.

11 Impact

The K-Nearest Neighbors (KNN) model achieved impressive performance metrics,

with an accuracy of 99.63% on the training dataset and 93.4% on the test dataset fol-

lowing cross-validation. These results underscore the model’s effectiveness in predicting

the structural stability of High Entropy Nitrides (HENs).
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