
 

 

 

 

 

 

Digital Design and Verification of I3C protocol 

 

 
 

Omar Mohamed Rizk, Salah-Eldin Attia Sayed, Youssef Soliman Mohammed, 

 Abd-El Rahman Mohammed Kamal, Marina Mounir Fouad  

 

 

Electronics and Communications Engineering Department Faculty of Engineering, Helwan 

University 

 

 

 

 

 

 

 

 

 

 

 

 

 

July 2025 

 



                                                                                                              

               

4th Year of Electronics and Communication Engineering Department 

 

 

Design and Verification of I3C protocol 
 

 

 

 

 

         Names:  

- Marina Mounir Fouad Shamandi 

- Salah Eldin Attia Sayed  

- Youssef Soliman Mohammed Fathallah 

- Omar Mohamed Rizk Ibrahim  

- Abd El-Rahman Mohamed Kamal El-Din  

 

 

 

 

                                                                          Supervised By 

                                                               Dr. Mohamed EL-Dakroury 

                                                               Eng. Abdulkareem Mohamed 

                                                               Eng: Ahmed Abdelsalam 

 

 

 

                                                                                           Sponsored By 

                                                                             ST Microelectronics 



Declaration 

We hereby certify that this project submitted as part of our partial 

fulfillment of BSc in Electronics and Communications Engineering is 

entirely our own work, that we have exercised reasonable care to 

ensure its originality and does not to the best of our knowledge breach 

any copyrighted materials and have not been taken from the work of 

others and to the extent that such work has been cited and 

acknowledged within the text of our work. Signed 

 

 

 

 



Acknowledgment 
 

 

All praise for ALLAH, our only lord and ruler. If it weren’t for ALLAH’s 

help and mercy, we wouldn’t be able to make it this far into the Project.  

 

We thank our supervisor, Dr. Mohamed EL-Dakroury, for encouraging us 

throughout the year and for his support and guidance. 

  

Thanks to our mentors in STMicroelectronics Inc, Eng.Abdulkareem 

Mohamed, Eng. Ahmed Abd-Elsalam for their dedication and guidance. Also, we 

would like to thank Dr. Ahmed Salah for providing us with the required 

Hardware kit for completing our project. 

 

 Finally, we would like to express our gratitude to our parents and close 

friends. Without their understanding and encouragement in the past few years, it 

would have been impossible for us to complete our studies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5  

Abstract 
 

This thesis presents the design and verification of the MIPI I3C protocol  for 

STMicroelectronics     microcontrollers (MCUs), focusing on a complete functional  

implementation and validation of the protocol. The I3C protocol is a modern serial  

communication standard that integrates the advantages of I²C and SPI, offering 

higher speed, improved power efficiency, and dynamic address assignment, 

making it well-suited for embedded systems and MCU-based applications. 

The project involves the design, integration, and verification of an I3C 

Controller that facilitates efficient communication between I3C Targets and 

Controllers, ensuring  data integrity, arbitration handling, and error detection. The 

design is implemented in Verilog  HDL and verified through an extensive testbench 

environment, incorporating APB-based register access, private messaging, 

asynchronous FIFOs, and frame management. Functional validation is conducted 

using simulation and FPGA-based prototyping, ensuring compliance with 

STMicroelectronics' MCU requirements. 

Verification is performed using a comprehensive testbench, including APB 

register read/write operations, private message transactions, and real-time data 

exchanges. 

The implementation is evaluated based on protocol compliance, timing 

performance, and resource utilization, ensuring the design meets the 

specifications of STMicroelectronics' MCU communication frameworks. 

 The results of this thesis demonstrate a fully functional I3C Controller, 

successfully  Integrated and verified for MCU-based applications, providing a 

reliable and efficient communication solution. This work contributes to the 

advancement of I3C Protocol implementations and lays the foundation for future 

enhancements and optimizations in embedded system designs. 
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       Chapter 1: Introduction 
1.1 Communication Protocols 

Communication protocols have been a main part of the Electronics and Communications Industry, 

especially protocols that focus on the Inter-Integrated Circuit communication, like communication 

between two blocks in a processor, or the communication between the processor itself and other blocks in 

the system, or even the communication between the whole system and other peripherals like the 

communication between the processor and the sensor. 

Communication Protocols act as the traffic light that governs the roads, preventing any 

congestions, accidents or failure to reach destinations, here our traffic light is the protocol itself which is 

being controlled by the controller or in the old naming the “Master”, our road is the bus, and our cars 

are the messages that need to be delivered between the controller and the destinations which are our 

targets or in the old naming “Slaves”, also a communication could occur between each destination and 

the others without the need of the main controller in the name of D2D (Device to Device 

Communication) which new protocols like MIPI I3C cover. 

There are many communication protocols that specialize in the Inter-Integrated Circuit 

communications like: SPI, UART, I2C and now I3C, each protocol excels in a set of jobs and is needed 

when the application requires a specific feature, like the use of SPI when devices count is a priority or 

the use of I2C when low cost is required. 

1.2 From I2C to I3C 

I2C is a great communication protocol when it comes to a processor that needs to relate to a set of 

devices, as mentioned above, its low cost made it a go-to in many scenarios, especially in embedded 

systems and IOT. To keep up with the increasing revolutionary requirements of the industry, I2C new 

versions were released, which their low- cost ability to communicate worked perfectly with the required 

jobs, it worked good enough that there was no need for a major update, only newer versions of the same 

I2C were developed. 

The changing in requirements has made I2C so limited and problematic, with the increasing use of 

sensors, especially Wireless Devices, hence a new upgrade in the communication protocols had to be 

done, and a new protocol with a huge update to the I2C is developed to solve the problems that none of 

the old protocols had the ability to solve including Bandwidth and Pin count with respect to increasing the 

number of sensors. 
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1.3 Motivation for MIPI I3C 

I3C was developed to face sensor integration problems by providing fast , low cost , low power and 

managed two wire digital interface with a backward compatibility with legacy I2C devices. I3C Main 

Concerns were the use of low Energy for Data and control Transfers while reducing numbers of physical 

pins used by the interface. 
 

 

Figure 1 Typical IoT Device Architecture 

 

I3C Main Purposes: 

- Improve I2C Features. 

- Multi drop between host processors and peripheral Devices. 

- Providing an easier design for System Design Engineers. 

This last point has been a great addition to I3C’s set of features as it saved time, cost and 

effort that used to be needed to implement interfaces between each device and the protocol, 

but thanks to the I3C target BCR and DCR which we will discuss shortly, it has become an 

easy task for System Engineers to integrate or work with MIPI I3C.
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So, if we want to preview a comparison between these protocols, The I2C and The MIPI I3C: 
Table 1 Comparison Between I2C and MIPI I3C 

Feature I3C I2C 

Speed & Efficiency High-Speed & Power-Efficient Less Speed & Power-Efficient 

Address Assignment Dynamic Address Assignment Static Address Assignment 

Maximum Clock Speed SDR Mode: 12.5 MHz 

HDR-DDR Mode: 25 MHz 

HDR-TSL Mode: 33 MHz 

Standard Mode: 100 KHz 

Fast Mode: 400 KHz 

Fast Mode+: 1 MHz 

High-Speed Mode: 3.4 MHz 

Driver Type Push-Pull & Open Drain Open Drain Only 

Effective Data Rate 33.3 Mbps 3 Mbps 

 

 

Figure 2 I3C Modes Vs I2C Effective Energy Range per 1kB (μJ) 

 

 

Figure 3 I3C Modes Vs I2C Effective Bitrates for 12.5 MHz Clock (Mbps) 
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1.4 MIPI I3C Main System 

The Generic I3C System would be: 

 
 

Figure 4 MIPI I3C System Diagram 

 

 

From the System Diagram, we can notice that The I3C System mainly consists of three pillars, The 

Controller, The Target, and The Bus itself, as each one has a specific role: 

- The Controller: It controls the bus and governs communication with the target. 

- The Target: It is the destination that receives the data and checks for any errors. 

- The Bus: It carries the data between the controller and the target, and it consists of two main 

parts: 

o SDA (Serial Data): A bi-directional data pin that carries data between devices. 

o SCL (Serial Clock): can either be a clock pin or a bi-directional data pin in certain HDR-

Modes. 
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1.5  Introduction to Push-Pull Based Communication 
Many Communication protocols have worked with the well-known Open-Drain Circuit such as 

I2C, as Open-Drain enabled point-to-point (2-ports) based communication good enough that no other 

circuit was needed, but technology needed faster communication, which is done with the help of Push-

Pull circuits. 

 

1.5.1 Open Drain Circuit 

Here, the SDA and SCL lines are always pulled up to the 

VDD through the Pull-Up resistor that may be connected in any 

of these ways: 

1. As a Passive Resistor connected to VDD 

2. As a Passive Resistor Connected to a Current 

Source 

3. In any other approach that ensures that the SDA rises 

within the allowed Data Rising Time (trDA), Targets 

with output low voltage level (Vol) can drive SDA 

low within the allowed (trDA) 

Open-Drain Circuits work as follows: 

 

• Pushing Down 
When NMOS turns on, SDA and SCL are Pulled Low 

Hence, Quick transition occurs from high to low as NMOS pulls 

charge from any bus capacitance from SDA, SCL: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Open-Drain Circuit 

 

 
 

Figure 6 Push Down Case in Open Drain Circuits 

The speed of the transition is determined by NMOS drive strength and the bus Capacitance on 

SDA and SCL. 

Device 
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• Pulling Up 
When NMOS turns OFF, SDA or SCL is released and returns 

high through the pullup resistor. 

Hence, exponential rise occurs: 

 

Figure 7  Pulling Up Case in Open Drain Circuits 
 

The exponential transition is determined by capacitance on SDA or SCL and Pull-Up resistor 

size. 

 

 

1.5.2 Push-Pull Circuit 

Here, the SDA and SCL lines are either pulled up to VDD or 

pushed down to GND. 

Push-Pull Circuits work as follows: 

 
 

 

 

• Pushing Down 

When NMOS is ON and PMOS is OFF: 

- Lines are discharged to GND 

- SDA and SCL will be 0 

                                             Figure 8 Push-Pull Circuit 

 

 

 
Figure 9 Push Down Case in Push-Pull Circuits 

A Fast discharge occurs as current runs through NMOS acting as a short circuit to GND. 

Device 
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• Pulling Up 

When NMOS is OFF and PMOS is ON: 

- Lines are charged from VDD 

- SDA and SCL will be 1 

 

 

 

Figure 10 Pulling Down Case in Push-Pull Circuits 

Fast charging occurs as current runs through PMOS acting as a short circuit to the Line. 

 

Here, depending on the working behavior of Push-Pull circuits, more than one device can be connected 

to one line with the ability to call all these devices at once, which wouldn’t have happened with Open-

Drain circuits where we can connect more than one device on the Bus but only targeting one device at 

once. 

But a problem may occur in this case if one of these connected devices has NMOS ON while the other 

devices have it OFF with the line being connected to VDD, which will then cause the line to discharge 

to GND and hence Bus contention output at indeterminate state occurs which may damage this device: 

 

Figure 11 Push-Pull Discharging Problem 

This will be solved by using Keeper Circuits, which can be installed by different methods: 

- By using keeper Circuits form the controller of the I3C 

- By using a separate Keeper Circuit on the bus 

Using the keeper Circuit of the I3C controller may be an overhead task for designers, hence the second 

approach is usually the go to. 
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1.5.3 Keeper Circuits 

The Problem here is when the output is floating, which occurs most of the time in push- pull 

circuits when the output isn't driven. 

The basis keeper circuits could be designed as follows: 

 

 
Figure 12 Keeper Circuit 

 

This circuit will help keep the bus pulled to VDD when it’s floating (not driven) and when 

There is a push request, it will win the fight as the keeper has weak transistor (small w/l) 

A Domino Circuit or a NORA Circuit can also be used to solve push-pull discharging problems. 

So, the innovation in the MIPI I3C circuitry was the integration of Push-Pull circuits with other additions to 

the Hardware of the MIPI I3C, the next chapter will go through the Innovation of MIPI I3C Protocol 

Features and Algorithms including different messaging techniques and words, with a new In-band 

integrated commands (CCC) support. 
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Chapter 2: MIPI I3C Protocol 

 
MIPI I3C Protocol is a major upgrade to the I2C Protocol, both sharing the same built as a Block 

Diagram with Controller and Targets communicating over 2 lines SDA for Serial Data and SCL for Serial 

Clock except for the I2C having addition separate wires for each required interrupt signal, which is solved 

in MIPI I3C in the feature of In-Band-Interrupt as illustrated in Chapter 2 section 2.9, MIPI I3C having 

only 2 wires made it easy to be compatible to interface with other peripherals and systems easily, with a 

backward compatibility to communicate with Legacy I2C devices that could co-exist on the same bus, also 

MIPI I3C has introduced Dynamic Addressing which is an Upgrade to the old Static Addressing while 

maintaining the ability to Statically Address the I2C Legacy devices that could co-exist on the same bus, 

with other features as Sharing Controller ownership in what is known as Controller Role Handoff where 

the device that has the controller role called “Active Controller”, the ability to receive directly form 

recently powered on devices that wasn’t on since the start of messaging in what is called Hot-Join, having 

Two modes of Communication each supporting different speeds, the first is Single Data Rate (SDR) and 

the other is High Data Rate (HDR). 

 

In this Chapter we will go through MIPI I3C Protocol Specifications, including its features, 

focusing on SDR Mode Communication, but first, an introduction to MIPI I3C two types of messaging and 

I3C Modes of communication. 

 

2.1  MIPI I3C Message Types 

MIPI I3C has two types of messaging: 

1. Direct Messaging: 
Active Controller directly messaging one Target or vice versa. (Using 

the address of the required target to call) 

2. Broadcast Messaging: 
Active Controller broadcasts a message for all the available targets on the bus excluding 

the legacy I2C device which doesn’t support this messaging type. (using a special 

address that all targets can receive from (7’h7E)) 
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2.2 MIPI I3C Communication Modes 

2.2.1 I3C Single Data Rate (SDR Mode) 

This mode is like the I2C modes of communication but with the enhanced messaging of the previous 

section, the SDR Mode speed is 12.5 MHZ. 

I3C Bus is always initialized and configured in SDR Mode, as a result most of the essential features are 

covered in SDR Mode. 

SDR Mode is the default mode for MIPI I3C and is used to enter other modes, or sub modes, or states, also is 

used for built in functions as CCCs, IBI, or for transition from I2C to I3C by assignment of Dynamic 

addressing. 

 

2.2.2 I3C High Data Rate (HDR Mode) 

This mode provides high speed communication, having 4 main types: 

- Dual Data Rate (HDR-DDR) (25 MHZ): 

Not so different from I2C Fast mode, but it runs at twice the speed of SDR 

 

- Ternary Symbol Legacy (HDR-TSL) (33 MHZ): 

Significantly different from the I2C, with higher data rates plus ternary coding for buses 

with a mix of I2C and I3C devises 

 

- Ternary Symbol Pure Bus (HDR-TSP) (up to 33.4 MHZ): 
For I3C pure buses only 

 

- Bulk Transport (HDR-BT): 
Gives the highest possible speed, using both data wire (SDA) and clock wire (SCL) to 

transmit data in model leveraging Dual Data Rate over Single, or Double, or Quad- lane 

configurations 

 

The project mainly focuses on SDR Mode Communication, the next sections go through MIPI I3C 

SDR Mode Specifications. 
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2.3 Bus Configurations 
2.3.1 Device Roles 

MIPI I3C Bus can be configured as the link between al the devices existing on it, these devices 

can have different roles as follows: 
 

Table 2 Device Roles on I3C Bus 

Device Type Device Role Description 

 

 

 

 

                  I3C 

Controller 

I3C Primary 

Controller 

Initially configures the 

I3C Bus, has HDR 

Support 

SDR-Only 

Primary 

Controller 

Initially configures the 

I3C Bus, no HDR Support 

I3C 

Secondary 

Controller 

Can control the bus but 

currently operating as 

Target 

SDR-only 

Secondary 

Controller 

Can control the bus but 

currently operating as 

Target, no HDR Support 

 

 

              

I3C 

Target 

I3C Target Ordinary I3C Target, no 

controller capability 

SDR Only 

Target 

Ordinary I3C Target, no 

controller capability, no 

HDR Support 

I2C Target Ordinary I3C Target, no 

controller capability 

 

 

    As shown, Devices on the bus can have different roles, they can either be a Controller or a Target. 

 

• Controller Roles: 

 

The I3C controller device can function as either a Primary Controller or a Secondary Controller. The 

Primary Controller is responsible for controlling and configuring the bus initially, while the Secondary 

Controller can act as both an I3C Controller and Target. The Secondary Controller operates as a target 

until a controller role handoff occurs using the I3C CCC. The handoff passes the active controller role 

from the Primary Controller to the Secondary Controller. The Primary and Secondary Controllers can 

both operate only at SDR and do not support HDR Modes. The I3C bus is always configured in SDR 

Mode. Hence, we can define Controller devices as: 
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− Primary Controller: 

It’s the controller device that initially configure the I3C Bus and serves as the first active controller, 

only one device on the bus can be primary controller, supports both SDR mode and at least one HDR 

Mode, while the SDR only Primary Controller supports only SDR. 

 

− Secondary Controller: 

It’s any device on the bus other than the active controller that have I3C Controller Capability, more 

than one device can be secondary controller, it behaves as a target until it requests the Active Controller 

role, supports both SDR Mode and at least one HDR Mode, while SDR only Secondary Controllers 

supports only SDR. 

 

• Target Roles: 

The target devices on the I3C Bus can either be I3C only targets which are the ordinary devices 

that can interface with I3C and have no Controller role capabilities, or SDR-only targets which can only 

communicate in SDR Mode and will ignore any messages in other HDR Modes , I3C Bus can also has 

I2C Target devices which are legacy devices that could only understand I2C- based messages, these 

devices cannot have I3C Controller or Target capabilities. 

 

− Targets: 

The old common known as Slave, which is the device that is always listening to bus for relevant CCC 

sent by the active controller and respond to it, Always supports SDR Mode and may at least support 

one HDR Mode unless it was a SDR only I3C Target which supports only SDR, it doesn’t generate the 

clock in the SDR Mode, it should at least support one of the dynamic address methods, it also can 

request IBI, generate Hot-join, request to become Active controller if it supports the I3C Controller 

Capability. 
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                       Based on the I3C device roles, a generic MIPI I3C Bus block Diagram can be as follows: 

 

Figure 13 MIPI I3C Bus Block Diagram 

From the block diagram, target devices can be either a one target device or a set of targets device called 

“Composite Devices”, some of them may have virtual targets, these composite devices can be classified 

into these types: 

 

1. Shared Peripheral and virtual targets: 

- Shall maintain separate configuration for each Virtual Target, including the assigned Dynamic 

Address. 

- Initiates the Hot-Join Request during Bus Initialization or whenever necessary. 

- Handles the signaling and framing for HDR Modes (if supported) 

- Participate in Broadcast and Direct CCC flows, both in SDR and HDR Modes. 

 
 

Figure 14 Shared Peripheral Device 
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For virtual targets: 

Each Virtual target has its own dynamic address which Receives data for Private Write transfers 

addressed to its Dynamic Address and provides data to the shared Peripheral logic for responding to 

Private Read transfers and raising In-Band Interrupt requests. 

 

2. I3C Secondary Controller: 

It has the ability to act as both the target (when it’s Controller Capability is not active) and 

as a controller (when its controller capability is active) 

 
 

Figure 15 I3C Secondary Controller 

 

3. Bridges and Routing devices: 

Bridges Connect the I3C Bus to different protocol Bus(SPI OR I2C) while Routing devices 

Connect the I3C Bus to another I3C Bus 
  

Figure 16 I3C Bridging and Routing Devices 
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2.3.2 Point to Point Communication 

Another use case for I3C Bus is Point to Point Connection as: 
 

Figure 17 Point to Point Connection 
 

Where controller assigns the same dynamic address to one or more I3C Devices only one of which supports 

Read Transactions and In Band Interrupts 

 

2.3.3 MIPI I3C Device Characteristics 

All the mentioned I3C Devices have ton of features, it’s not necessary for a device to enable all its 

features, as the enabled features will appear in Characteristics Registers associated with the device and its 

roles, these features could be: 
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2.3.3.1 Bus Characteristics Registers (BCR) 

It’s a read only register that includes I3C’s compliant device’s roles and capabilities to be used in 

Dynamic Address Assignment and Common Command Codes. 

 
Table 3 Bus Characteristics Registers 

 

So, BCR will be an 8 bits registers, that would be encoded in a way that for each bit’s value it 

reflects on Device role, Capabilities, and speed limitations. 

 

2.3.3.2 Device Characteristics Registers (DCR) 

It’s a read only register that includes I3C’s compliant device’s type to be used in Dynamic 

Address Assignment and Common Command Codes. 
Table 4 Device Characteristics Registers 

 

 

So, DCR will be 8 bits register, that would be encoded by the connected device Vendors, describing the 

device type, for example: 
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2.4 Bus Conditions 
MIPI I3C Bus will have many states, but for the features (Hot-Join, IBI, Controller role request) 

of the I3C to be allowed on the bus, it should be in a specific condition for each feature to be valid, these 

conditions come after detecting a stop pattern as follows: 

 

Figure 18 MIPI I3C Bus Conditions 

1. Bus Free Condition 

After a specific duration from the stop pattern being detected, the bus will enter Bus Free 

Condition depending on the devices on the bus as: 

- For Pure Bus (I3C Devices only): the duration is tCAS (38.4 ns) 

- For Mixed Bus of I3C and FM+ I2C Devices: the duration is tBUF (0.5 us) 

- For Mixed Bus of I3C and FM I2C Devices: the duration is tBUF (1.3 us) 

 

2. Bus Available Condition 

A Target may only issue a START Request (for an In-Band Interrupt, or for a Controller Role 

Request) after a Bus Available Condition, which I3C bus enter after a duration of tAVAL (1.0 us) from 

the stop pattern being detected. 

 

3. Bus Idle Condition 

The I3C Bus Idle Condition is defined in order to help ensure Bus stability during Hot-Join events, and 

is defined as a period during which the SDA and SCL lines both sustain High level for a duration of at 

least tIDLE (200 us) from stop pattern detected 
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2.5 Bus Communication 

2.5.1 I3C Message Elements 

The primary protocol and mode of I3C is SDR (Single Data Rate) Mode which is based on the I2C 

standard protocol with notable variations. 

The I2C message illustrated below consists of START condition, 7-bit ADDRESS, 1-bit R/W, 1-bit 

address ACK/NACK, Single/Multiple frame/s of 8-bit DATA with 1-bit data ACK/NACK and ends 

with STOP condition. 
Figure 19 I2C Message 

The I3C START (S) and STOP (P) have the same signaling as I2C but with different time 

parameters summarized in the following table. 
 

                               Figure 20 START Condition                                                             Figure 21  STOP Condition       

 

Table 5 START and STOP Timing Parameters 

tCAS Clock After START = 38.4 ns to 50 ms 

(depending on ENTASX) 

tSU_OD Setup Time of SDA Signal = 3 ns 

tLOW_OD Low Period of SCL Clock = 200 ns 

tCBP Clock Before STOP = tCAS(min) /2 = 19.2 ns 
 

 

The previous time parameters reaffirm the fact of supporting the communication with I2C 

legacy devices where the I3C Controller still has to ensure that all targets are able to see the START 

condition with the Open-Drain drive. 
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The I3C Repeated START (Sr) and STOP is tolerated any time that SCL is High while the 

Controller controls SDA or SDA is Open-Drain. This is unlike I2C, which wants STOP or Repeated 

START only after a NACK of an address, or after ACK/NACK of data. 

Although I3C SDR also prefers STOP and Repeated START to be used only in those situations, and 

after an I3C Broadcast Address is ACKed, it does not disallow them in any other location. However, 

appearance of a STOP or Repeated START in the middle of an Address or in the middle of data is 

interpreted to cancel that Address or data. 

The I3C Address Header has the same signaling as I2C Address Header that consists of 7-bit 

Address and R/W bit to determine whether the previous Target address is for Reading operation ‘1’ or 

Writing operation ‘0’. The difference comes in timing of both addresses as the I3C Address has the 

ability of optimization for some cases of un-arbitrable addresses. 

Data Words for I3C differs from I2C’s in the 9th bit. This bit followed by 8-bit Data Word is 

called T-bit that represent the Parity bit for Writing Data and the Transition bit for Reading Data. 

Transition bit indicates whether the I3C Target wants to abort the messaging, or it is the decision of 

I3C Controller based on the number of Data Frames defined in the beginning of the message. 
 

Figure 22 T-bit When Target Ends Read and Controller Generates STOP 

 

Figure 23 T- bit When Target and Controller Agree to Continue Read Message 

 

In I3C, the SCL line is only driven by the Controller. Normally this drive is Push-Pull, but it can 

also be Open Drain. 

An I3C Message is defined as everything from the initial START (or Repeated START) to the next 

Repeated START or STOP. 
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2.5.2 SDR Message Types 

An I3C Message is an SDR Message if: 

• The Address in the Address Header is 7’h7E (the I3C Broadcast Address). All I3C Targets shall 

match the Address value 7’h7E. No I2C Target will match Address 7’h7E, because that value is 

reserved and unused in I2C. 

• The Address in the Address Header matches Target’s Dynamic Address. All I3C Targets shall 

match their own Dynamic Address. (It is permitted to then NACK the Header if needed.) 

 

All I3C Targets shall ignore all Messages with Addresses other than 7’h7E or the I3C Controller 

Assigned Address and shall await either the Repeated START or the STOP. I3C Targets shall not 

transmit on the Bus in response to a non-matching Address. 

Legacy I2C Targets will ignore any Message not addressed to them and will await the next START or 

STOP. Legacy I2C Targets may also not see some or all the I3C Messages and Modes due to the speed 

of SCL signaling. 

 

Figure 24 I3C Message Types 
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2.5.3 Role of I3C Target 

An I3C Target is a functional role that is embodied or presented by an I3C Device. Such a Device 

may be a standalone physical Device that presents only one Target, or it may be a composite Device that 

presents multiple Virtual Targets using shared Peripheral logic. In either case, each Target (which may be 

a Virtual Target) presented on the I3C Bus may be assigned its own unique Dynamic Address, and the 

Controller can address it independently for transfers. 

Many such I3C Device implementations are possible that might embody or present one or more active 

I3C Target roles. For composite I3C Devices that present multiple Virtual Targets, the shared Peripheral 

logic might handle many of the underlying functions that would normally be handled by internal logic for 

a single, standalone I3C Device that only presented a single Target on the I3C Bus. For simplicity, the 

remainder of this section treats both options equally, referring to “Target” in a generic sense. The I3C 

Target does not have to know whether it is on a Legacy I2C Bus or an I3C Bus. If it has an I2C Static 

Address, then it may participate using that Address up until it is assigned a Dynamic Address. Once 

assigned a Dynamic Address, unless asked to Reset, it shall only operate as an I3C Target. 

An I3C Capable Target may act as an I2C Device before it gets its Dynamic Address (DA) assigned. 

However, the Target shall ACK the START with Address 7’h7E. (The only exception would be if the 

Target is choosing to remain an I2C-only Device on a given Bus or use, in which case it would leave its 50 

ns Spike Filter enabled.) 

 

2.5.3.1 Before Receiving a Dynamic Address 

The Target shall process all required Broadcast CCCs, including: 

• ENTDAA (0x07) – Enter Dynamic Address Assignment 

• RSTDAA (0x06) – Reset Dynamic Address Assignment 

• ENEC (0x00) – Enable Target Event Command 

• DISEC (0x01) – Disable Target Event Command 

The Target may choose to understand and process the SETAASA CCC and shall disregard all Directed 

CCC commands but shall properly recognize the ends of Directed CCCs (i.e., either Repeated START 

followed by 7’h7E, or STOP). 

When no Dynamic Address has been assigned yet, the Target may either support or ignore non- Required 

and Conditionally Required Broadcast CCCs. The I3C Target shall ignore TE0 type errors related to 

incorrect Addresses only. 
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2.5.3.2 After Receiving a Dynamic Address 

The Address Header Matching procedure is initiated after the START or Repeated START signal 

for any of the specified addresses, such as the I3C Broadcast Address (7h’7E / RnW 0). Upon receiving a 

matching message, the target is obligated to acknowledge and process the message at least through the 

first byte of data, unless the target has chosen to remain an I²C-only device on a given bus with the 50 ns 

Spike Filter enabled. 

If a 7'h7E Broadcast Message contains a byte of data, the message is a CCC. If the CCC is required, the 

target must remain ready to respond even if it is processing previously sent messages (such as 

GETSTATUS) or has not yet received a Dynamic Address that includes the ENTHDRn CCCs. In the case 

of a Mode Change CCC, it may result in the Target entering one of the following modes: Dynamic 

Address Assignment (DAA) Mode, High Data Rate (HDR) Mode, or Target's assigned Dynamic Address 

or assigned Group Addresses. 

If the Target has no dynamic address, it shall participate in the Dynamic Address Assignment (DAA) 

mode and wait for the STOP condition if it already has an assigned dynamic address. If the Target 

supports the HDR mode, it shall enter the HDR process and detect the HDR Exit Pattern if the HDR mode 

is not supported. 

Finally, when the Target is assigned a dynamic or group address, it has the option to either acknowledge 

and process the message as I3C SDR or ignore any bits up until the next STOP or Repeated START by 

NACKing the message. 

 

2.5.3.3 I3C Target Acting as an I²C Target with Static Address 

• On a Legacy I2C Bus: I3C Target can deal safely with all messaging as it is already coming from a 

Legacy I²C Controller. This will be done acting as standard I²C Target using an I²C Fm/Fm+ Spike 

Filter of 50 ns (or more) if it has one. 

• On an I3C Bus: I3C Target’s I²C Fm/Fm+ Spike Filter of 50 ns shall disable once it sees a Message 

from an I3C Controller (ACK then disable), the first I3C Address Header emitted with Fm/Fm+ 

timing parameters after Bus initialization (i.e., a START followed by 7’h7E and a RnW bit of 0). 

 

 

2.5.4 I3C Address Header 

The Address Header following a START is an Arbitrable Address Header, while the Address 

Header following a repeated START shall not Arbitrated. This means the START and at least the first 

Address bit and ACK/NACK are issued on SDA using Open Drain Bus drive, similar to I2C. However, 

some of the Arbitrable Address Header may be driven on SDA using Push-Pull and higher speed which is 

considered an Arbitration Optimization. Using the I3C Arbitrable Address Header, I3C Targets may 

transmit any of three requests to the I3C Controller: 
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A. An In-Band Interrupt 

This is equivalent to toggling a wire to get the Controller’s attention. The In-Band Interrupt 

request shall be made using Target’s Dynamic Address with a RnW bit of 1. 
 

Figure 25 In-Band Interrupt Request Frame 

 

B. A Controller Role Request 

An I3C Device shall not make such a request unless it is marked as a Controller-capable Device in 

its BCR register. The Controller Role Request may be made by a Secondary Controller wishing to 

gain the Controller Role from the Active Controller, or by the Primary Controller after it has 

relinquished the Controller Role and now wishes to regain it from the Active Controller. The 

Controller Role Request shall include the Device’s Dynamic Address with a RnW bit of 0. 

Figure 26 Controller Role Request Frame 

 

C. A Hot-Join Request 

An I3C Target shall only make such a request when becoming available after the I3C Bus is 

operational. The Hot-Join Request shall be made using the reserved Hot-Join Address (i.e., 7’h02). 
 

 

Figure 27 Hot-Join Request 

 

 

The I3C Targets are required to make requests to the I3C Controller in only two Bus conditions. 

Firstly, in the Bus Free Condition, a START is issued on the Bus. The Target may then transmit its 

Dynamic Address or the Hot-Join Address (7'h02) following the START by adhering to the I3C Address 

Arbitration rules. Secondly, in the Bus Available Condition, the Target may issue a START by pulling 

the SDA Low. The Controller shall then pull SCL Low within tCAS and also pull SDA Low (overlapping 

the Target pulling it Low). Once the Controller has pulled SCL Low, the Target shall control the SDA 

line in Open Drain mode (i.e., either pull Low or release High) and finally issue its Address in the normal 

way. 
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2.5.4.1 Consequence of Starting a Frame with Target Address 

The I3C Controller normally should start a Frame with 7'h7E (for all I3C Messages) or an I²C 

static address (when sending only to a legacy I²C target). However, in both cases, the address may undergo 

arbitration. Hence, the Controller must monitor the line to identify any In-Band Interrupt request, 

Controller Role Request (such as a Secondary Controller requesting to become the Active Controller), or 

Hot-Join Request. If no such request is detected, the Controller can proceed normally. However, if any of 

these requests are detected, the Controller should ACK or NACK the request and proceed accordingly. If 

the Controller intends to start an I3C Message with an I3C Dynamic Address, special provisions must be 

made as the same I3C Target may initiate an IBI or a Controller Role Request, which may result in one of 

three things happening: 

 

 

1. The Addresses match, but the difference is caught on the RnW bit, and the Controller was initiating 

a Private Write (i.e., RnW = 0) while the Target was attempting to send an IBI request (i.e., RnW 

= 1). In this case, the Controller wins (i.e., an IBI with RnW = 1 loses), and the Target shall ACK 

or NACK the Private Write. The Target shall defer its IBI and may retry at a later opportunity. 
 

 

Figure 28 Private Write by I3C Controller VS IBI Request by I3C Target 

2. The Addresses match, but the difference is caught on the RnW bit, and the Controller was 

initiating a Private Read (i.e., RnW = 1) while the Target was attempting to send a Controller Role 

Request (i.e., RnW = 0). In this case, the Target wins (i.e., a Private Read with RnW = 1 loses), 

and the Controller must ACK or NACK the Controller Role Request. The Controller shall defer its 

Private Read and may retry at a later opportunity. 

 

 
Figure 29 Private Read by I3C Controller VS Controller Role Request by I3C Targe
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3. The Addresses match and the RnW bits also match, and so neither Controller nor Target will ACK 

since both are expecting the other side to provide ACK. As a result, each side might think it had 

"won" arbitration, but neither side would continue, as each would subsequently see that the other 

did not provide ACK. 

If RnW = 0 (i.e., if the Controller was initiating a Private Write while the Target was attempting to 

send a Controller Role Request), then the Target shall defer its Controller Role Request and may 

retry at a later opportunity. 

If RnW = 1 (i.e., if the Controller was initiating a Private Read while the Target was attempting to 

send an IBI request), then the Target shall defer its IBI request, and may retry at a later opportunity. 

 
 

Figure 30 Private Write by I3C Controller VS Controller Role Request by I3C Target 

 

Figure 31 Private Read by I3C Controller VS IBI Request by I3C Target 

 

For either value of RnW: Due to the NACK, the Controller shall defer the Private Write or Private 

Read and should typically transmit the Target Address again after a Repeated START (i.e., the next one 

or anyone prior to a STOP in the Frame). Since the Address Header follows a Repeated START and is not 

arbitrated, the Controller will always win. 
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2.5.4.2 I3C Target Address Restrictions 

The I3C Controller may choose Dynamic Addresses from a set of values as follows: 

 

Table 6 I3C Target Address Restrictions 

Target Dynamic Address 

Binary Hex Restriction Description 

000 0000 7’h00 Shall not use I3C Reserved 

000 0001 7’h01 Shall not use I3C Reserved: For use with SETDASA CCC in special 

Point-to-Point Communication 

000 0010 7’h02 Shall not use I3C Reserved: Hot-Join Address 

000 0011 7’h03 Optional Marked ‘Reserved’ by I2C 

000 0100 7’h04   

000 0101 7’h05  Available for use only if no Legacy I2C Devices 

supporting I2C “High-Speed Mode” are present on the 

Bus 
000 0110 7’h06 Conditional 

000 0111 7’h07   

000 1000 

011 1101 7’h08 – 7’h3D Available for use 54 Addresses 

011 1110 7’h3E Shall not use I3C Reserved: Broadcast Address single bit error detect 

011 1111 

101 1101 7’h3F – 7’h5D Available for use 31 Addresses 

101 1110 7’ h5E Shall not use I3C Reserved: Broadcast Address single bit error detect 

101 1111 

110 1101 7’h5F – 7’h6D Available for use 15 Addresses 

110 1110 7’h6E Shall not use I3C Reserved: Broadcast Address single bit error detect 

110 1111 

111 0101 7’h6F – 7’h75 Available for use 7 Addresses 

111 0110 7’h76 Shall not use I3C Reserved: Broadcast Address single bit error detect 

111 0111 7’h77 Available for use 1 Address 

111 1000 7’h78  Available for use only if no Legacy I2C Devices are present on 

the Bus 111 1001 7’h79 Conditional 

111 1010 7’h7A Shall not use I3C Reserved: Broadcast Address single bit error detect 

111 1011 7’h7B Conditional 

Available for use only if no Legacy I2C Devices are 

present on the Bus 

111 1100 7’h7C Shall not use I3C Reserved: Broadcast Address single bit error detect 

111 1101 7’h7D Conditional Available for use only if no Legacy I2C Devices 

supporting I2C “Device ID Mode” are on the Bus 

111 1110 7’h7E Shall not use I3C Reserved: Broadcast Address single bit error detect 

111 1111 7’h7F Shall not use I3C Reserved: Broadcast Address single bit error detect 
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2.6 SDR Data Word 

In I3C SDR, the Data Words match I2C only in the sense that they are both 9 bits long, I3C SDR 

Data Words differ from I2C in three ways: 

1. Handoff from Address ACK to SDR Controller Write Data. 

2. Ninth Bit of SDR Controller Written Data as Parity. 

3. Ninth Bit of SDR Target Returned (Read) Data as End-of-Data. 

 

 

2.6.1 Handoff From Address ACK to SDR Controller Write Data 

The end of any Address Header (whether Arbitrated or not) is an ACK or NACK by the one or 

more addressed Targets, using Open Drain on SDA. When the Address Header results in an ACK, and the 

Message is SDR Write from Controller, the SDA line has to be turned from Open Drain to Push-Pull for 

the first data bit. To do that safely, I3C SDR specifies how the handoff is to occur. 
 

 
Figure 32 Transition from Address ACK to Mandatory Byte During IBI 
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1. The I3C Target shall hold the SDA line Low during the ACK (while SCL is Low). 

• This shall be an Open Drain SCL Low period. 

2. After the I3C Target sees the rising edge of SCL, it releases the SDA line to High-Z. 

• The I3C Target shall release the SDA line using normal (Push-Pull) timing (release the SDA 

line as soon as it sees SCL rising). 

3. After the rising edge of SCL, the I3C Controller shall drive the SDA line Low. 

• As a result, both Controller and Target will be driving the SDA line Low for a short overlap 

(which is safe). 

4. On the falling edge of SCL the I3C Controller shall begin driving data on the SDA line, using 

Push-Pull drive When the Address Header results in a NACK, the Controller may choose to: 

either: 

1. Continue the transaction, by generating a Repeated START. 

or: 

2. Relinquish the Bus, by generating a STOP. 

 

2.6.2 Ninth Bit of SDR Controller Written Data As Parity 

In I2C, the ninth Data bit written by the Controller is an ACK by the Target. By contrast, in I3C 

the ninth Data bit written by the Controller is the Parity of the preceding eight Data bits. Therefore, in I3C 

the Target shall not drive the SDA line for Data written by the Controller in SDR. In SDR terms, the 

ninth bit of Write data is referred to as the T-Bit (for ‘Transition’). 

T (Parity) bit writes shall always be kept valid through the SCL High period. In the case of a T-

Bit representing the last data byte, the write is therefore kept valid through the SCL High period, and the 

next SCL Low can then be used to either change the SDA, or not change the SDA, in preparation for the 

Repeated START or STOP that follows. 

The ninth data bit of each SDR Data Word written by the I3C Controller (also referred to as the T-

Bit) is a Parity bit, calculated using odd parity. Parity can help in detecting noise- caused errors on the 

line. The value of this Parity bit shall be the XOR of the 8 Data bits with 1. 

• A: Data[7:0] 

• B: 1 

• out: odd Parity 

Figure 33 Parity Bit Using X OR 
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2.6.3 Ninth Bit of SDR Target Returned (Read) Data as End-of-Data 

In I2C, the ninth Data bit from Target to Controller is an ACK by the Controller. By contrast, in 

I3C this bit allows the Target to end a Read and allows the Controller to Abort a Read. In SDR terms, the 

ninth bit of Read data is referred to as the T-Bit (for ‘Transition’) 

In I2C, Read from Target has the issue that only the Controller ends the Read, so the Target has 

no ability to control the amount of data it returns. In I3C SDR, by contrast, the Target controls the number 

of data Words it returns; but it also allows the I3C Controller to abort the Read prematurely when 

necessary. This mechanism is controlled purely by the ninth (T) Data bit of each SDR Data Word 

returned by the I3C Target. 

 

The ninth bit is returned by the Target in one of two ways: 

1) The I3C Target returns the ninth bit as 0 (SDA Low) to end the Message: 

• The Target shall set SDA Low on the falling edge of SCL. 

• On the following rising edge of SCL, the Target shall set SDA to High-Z. 

• The I3C Controller shall drive SDA Low on the rising edge of SCL, thereby overlapping with 

the Target. 

• The I3C Controller then shall issue either a STOP, or a Repeated START. 

 

2) The I3C Target returns the ninth bit as 1 (SDA High) to continue the Message 

(and permit the Controller to abort the Message): 

• The Target shall set SDA High on the falling edge of SCL. 

• On the following rising edge of SCL, the Target shall set SDA to High-Z. 

Thereby Parking the Bus for the SCL High period: 

i. If the I3C Controller is able to continue the reply from the Target, then it shall do nothing. 

ii. If the I3C Controller wants to abort the Message, then it shall drive SDA Low after the rising edge 

of SCL. 

 

The I3C Target returns the ninth bit as 1 (SDA High) to continue the Message (and 

permit the Controller to abort the Message): 

• The Target shall monitor the SDA on the falling edge of SCL: 

• If SDA is High, then the Target shall continue with the next data value. 

• If SDA is Low (i.e., if there has been a Repeated START), then the Message has been 

aborted, and the Target shall not drive SDA after that. 
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Chapter 3: Main Features 
3.1 Dynamic Address Assignment 

Addressing in I3C protocol is dynamic, unlike I2C. which means that I3C targets will have 

addresses assigned to them dynamically after they’ve already joined the bus. 

We will discuss the operation, limitations, and sequence of Dynamic address assignment procedure that 

occurs during the bus initialization. 

The Primary Controller acts as the authority for the initial configuration of the Bus and all Devices, 

including any Legacy I2C Devices. Since it acts as the Bus’s first Active Controller, during Bus 

initialization. it also performs the Dynamic Address Assignment procedure as part of configuring all I3C 

Devices that require a Dynamic Address. 

a Controller must be responsible for performing a Dynamic Address Assignment 

procedure, in order to provide a unique Dynamic Address to each I3C Device (i.e., with Target or 

Secondary Controller role) that is connected to the Bus. 

Once a Target or Secondary Controller receives a Dynamic Address, that Dynamic Address shall be used 

in all subsequent transactions on the I3C Bus. 

 

The Controller controls the Dynamic Address Assignment process. This process includes an 

Address Arbitration procedure like I2C’s. The I3C Arbitration procedure differs from I2C by using the 

values of the 48-bit Provisioned ID and the Device’s I3C Characteristic Registers (that is, BCR and DCR), 

concatenated. The Device on the I3C Bus with the lowest concatenated value wins each Arbitration round 

in turn, and the Controller assigns a unique Dynamic Address to each winning Device. 

 

3.1.1 Data Given From The Host 

Before the primary controller starts the dynamic address assignment procedure, information about 

the bus from the host should be given. This information includes: 

a) Number of I3C targets on the bus, in addition to number of I3C targets that have I2C static addresses. 

b) Number of I2C targets on the bus. 

c) Static addresses of both I3C targets and I2C targets. 
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3.1.2 Address Assignment Rules 

There are some addresses restricted from usage in dynamic address assignment due to different 

reasons, mainly due to I3C reserved addresses, or a single bit error in similar addresses that will lead to 

one of the I3C reserved addresses. 

• 7’h ( 00 , 01 , 02 , 7E , 7F ) are all I3C reserved addresses. 

• 7’h ( 3E , 5E , 6E , 76 , 7A , 7C , 7F ) are all restricted because if a single bit error occurs it will 

be seen as an I3C reserved address. 

 

Address assignment follows the incremental rule beginning from the address 7’h08. 

Meaning the 1st winning device will receive the target address 7’h08, the 2nd winning device will 

receive the following address 7’h09 and so on. The last address to be used is 7’h3D. 

 
 

Figure 34 Dynamic Addresses Available for Use 

 

3.1.3 Dynamic address assignment procedure 
The Dynamic Address Assignment process is fully performed in Open Drain mode, For Open 

Drain the Controller shall drive the SCL line with clocks at the appropriate Open Drain speed for the 

Devices present on the I3C Bus. 

1) The active controller starts the procedure by initiating a start, then sending the Broadcast 7’h7E 

(Write), to inform the devices on the bus that the controller will hold the bus and send data. 

Figure 35 Broadcast Write For DAA 

2) After receiving the acknowledgement from any device on the bus, the I3C controller initiates the 

ENTDAA CCC (0x07) accompanied with the parity bit, which informs the devices on the bus about 

beginning the dynamic address assignment procedure. 

 

 

 
 

Figure 36 ENTDAA CCC 

 



50  

3) The active controller initiates a repeated start, to send again the Broadcast 7’h7E (read) but with a read 

bit this time, that informs the targets that the arbitration process will start and that they should send 

their data according to the arbitration rules. 

 

 

 

Figure 37 Broadcast Read For Target Data 

4) The Active Controller shall drive only the SCL line. and releasing the SDA line to a High-Z state, 

allowing SDA to go to High level via the Bus Pull-Up resistor. To allow the devices on the bus to start 

the arbitration process and driving the SDA. 

Every I3C Device that is eligible to participate and responds to the I3C Broadcast Address sent in The 

last step shall drive the SDA line with its own 48-bit Provisioned ID (using Big Endian bit order), until 

it loses Dynamic Address Arbitration. 

The 48-bit Provisioned ID shall be transferred continuously, starting with the most significant bit 

(bit[47]), with no delimitation or ACK/NACK pulse. 

 

After that the I3C Device that did not yet lose the Arbitration shall then transfer its Bus Characteristics 

Register (BCR) and Device Characteristic Register (DCR) until it eventually loses Dynamic Address 

Arbitration. 
 

Figure 38 Target's 8 Bytes Data 
 

 

The device whose concatenated Provisioned ID, BCR, and DCR have the lowest value will win the 

arbitration round, due to the nature of arbitration. 

 

5) The active controller regains control over the SDA line, in order to send the assigned address to the 

winning device, the address is 7-bit wide chosen according to the addressing rules specified in the last 

section. The 8th bit is a parity bit of the serialized address. The target then shall ACK the received 

address if the parity check is correct. 

 

 
 

 

  Figure 39 Dynamic Address Assigned with Odd Parity 
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6) In this step, the I3C controller has managed to assign a dynamic address to the 1st winning device, so 

it shall repeat the procedure again from step 3, sending the Broadcast command 7’h7E with (read) bit. 

To continue with the other devices on the bus (that have lost the arbitration) 

If the controller receives ACK to the broadcast, this means that there is targets that yet to be assigned 

an address. While if the controller received NACK to the broadcast, this means that all the targets on 

the bus have already been assigned an address and it should end the dynamic address process. 

 

7) If the controller received NACK to the broadcast in the last step, it would end the dynamic address 

procedure buy initiating a STOP on the bus (SDA Line). 

 

3.1.4 ENTDAA Frame Format 

Figure 40 I3C broadcast ENTDAA CCC– Sent by the Controller 

3.1.5 Dynamic Address Assignment Error Case and Handling 
As mentioned in step 5 in the dynamic address assignment procedure, the controller assigns the 

address to the winning device accompanied by the parity bit and waits for ACK/NACK from the 

target. 

 

✓ If the Target ACKS, the address then the parity is correct, and address is assigned. 

 If the target NACKS the address then the parity is not correct, and the target should not take 

this address as the assigned dynamic address. 

 

In the last case, the controller repeats the flow again, the last winning device will win the 

arbitration again due to the nature of arbitration. Then the controller will assign the same address 

to the target. 

 

The error case occurs if the same target NACKS the same address twice. In this case the controller 

should terminate the dynamic address assignment and notify the error handling mechanisms. Then 

redo the dynamic address assignment procedure again, but, only for the devices that did not yet 

receive their dynamic address. 
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3.2 Hot-Join Mechanism 

The I3C protocol allows devices to join the bus after it has already configured via the hot join 

mechanism. The hot-join mechanism is that a hot joining device informs the controller that it has joined 

the bus after the configuration, so it needs to receive a dynamic address in order to be able to participate in 

bus transactions. 

 

Hot-Join may be used for: 

• I3C Devices mounted on the same board, but de-powered until needed. Such Devices shall not 

violate electrical limits for Targets when de-powered (or while transitioning). 

• I3C Devices mounted on a module/board that is physically inserted after the I3C Bus has already 

been configured. This specification does not attempt to address how that physical insertion is 

handled; however, such insertion shall not disrupt the SCL and SDA lines, including respecting all 

electrical limits. 

3.2.1 Hot-Join Flow Procedure 

1) For a hot joining target to inform the controller of joining the bus, it must wait for the suitable time 

(after a start to participate in arbitration) to send an IBI request, with the reserved address for hot-join 

7’h02 with a Write bit. 

Unlike a typical IBI request, hot-join request doesn’t have a data payload, or a mandatory data 

byte. This address basically requesting a dynamic address assignment procedure. 

 

2) The active controller shall either ACK the request indicating that it’s seen it and at some point, it will 

begin the dynamic address assignment procedure again or NACK the request, which is rejecting the 

hot join for now and the device must try again later. 

• In the case of ACK. The target knows that the controller accepted the request, and it must wait for 

the dynamic address procedure to start, without sending any more requests. 

• But if the controller NACKs the request, the hot-joining device has the right to re-initiate it again 

in the eligible time. 

 

3) The active controller should eventually send the CCC ENTDAA, for starting the dynamic address 

assignment procedure, only targets that have not yet received a dynamic address will participate, 

including hot-joining devices. 

Controller ACK in a Hot-Join Request does not imply that the Dynamic Address Assignment will 

necessarily start immediately. The Controller may wait for a potentially prolonged period before issuing 

the ENTDAA CCC. 
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3.2.2 Hot-Join Frame Format 
  

  

Figure 41 Hot-join request transfer, as controller/target 

 

 

3.2.3 Hot-Join Target Requirements 

1 The first time the Hot-Joining Target connects to the I3C Bus, the Target shall wait for the appropriate 

opportunity to send the Hot-Join Request, based on its eligibility, a Hot- Joining Target using the standard 

method shall become eligible after waiting for a period of at least Bus Idle Condition (tIDLE) and 

ensuring that the Bus remains Idle (i.e., that SDA and SCL are both High). 

2 The Hot-Joining Target shall, when eligible, send the Hot-Join Request on the I3C Bus, following a 

START. 

The Target shall send the Hot-Join Request, by either waiting for a START, or requesting a 

START by pulling SDA Low (for the standard method only). After the START, the Target shall 

drive the Address of 7’h02/W into the Arbitrable Address Header. 

3 The Hot-Joining Target shall conditionally continue sending the Hot-Join Request on each subsequent 

START (i.e., at the next appropriate opportunity) until and unless the Active Controller provides an ACK 

for the Hot-Join Request. 

4 Once the Hot-Joining Target sees the Active Controller ACK or NACK the Hot-Join Request, it shall 

follow all normative requirements for the Role of an I3C Target (i.e., one that has not yet received its 

Dynamic Address). 

The passive Hot-Join method works the same basic way, except with a modification to the 

conditions of eligibility for a Hot-Joining Target. A standard Hot-Joining Target must first wait for at 

least the Bus Idle Condition, and then it may pull SDA Low, or it may wait for a START. A passive Hot-

Joining Target will first wait for an SDR Frame ending in STOP, and then wait for the next START, 

which must be issued by either the Active Controller or any other Target that can request a START. 
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Table 7 Hot-Join Standard Vs Passive Mehods  

Hot-Join Request 

Standard Method Passive Method 

• Wait for bus idle (both SCL and SDA are • Target doesn’t have a timer. 

high for more than tidle ). • Must wait for a START request b 

• Target pulls SDA = 0 or wait for START. another target, or the controller 

• Wait for Controller SCL=0. after the end of SDR frame. 

• Send 7’h02/W. • After START it sends 7’h02/W 

• Wait for ACK/NACK. • Has higher delay than standard 

method 
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3.3 In-Band Interrupt 

3.3.1 Priority level 

It’s the level that controls the order in which in band interrupt requests are processed. During 

dynamic address assignment, the Controller assigns lower addresses to Targets with higher priority that 

arbitrated sooner so they also can request IBI or control requests sooner. So, targets with lower addresses 

have higher priorities. 

 

3.3.2 Interrupt request 

I3C target shall wait for a start condition or issue a start if the bus is in the bus available condition 

by pulling SDA line low and waiting for the controller to pull SCL low. After the start condition it can put 

its address on the line and participate in the arbitration process. After the start condition the target drives 

SDA line with its address followed by RnW bit and it should be one at the interrupt request. The 

controller processes the IBI requests using priority level order and the target that lost arbitration may issue 

another IBI request in the next bus available condition. When the controller receives interrupt request it 

can do one of three actions: 

- Refuse IBI request without disabling interrupts: 

Controller can do so by sending NACK to the target after receiving the Interrupt request and target 

can try again after START or Bus available condition. 

- Refuse IBI request without disabling interrupts: 

Controller can do so by sending NACK to the target and sends a repeated start, then it sets the 

DISINT bit in DISEC CCC “Disable target events” so the target will not send the IBI request 

again until the target events is enabled again . 

- Accept the IBI request: 

Controller accepts the IBI request by sending ACK bit after receiving the request. Controller’s 

action after the IBI depends on the Target’s BCR [2] bit, If the BCR[2]=0 Controller has to read 

the mandatory data byte MDB which contains some information about the event that happened and 

the size of the data to be received from the target, After the MDB, target can send additional IBI data 

bytes and the controller can accept these bytes or terminate it. Mandatory data byte is sent using 

push pull and here is a figure representing the frame of the IBI sequence. 

 
 

 

Figure 42 IBI sequence with mandatory data byte 

 

If the BCR[2] = 0 in the target, then it doesn’t have MDB, and the controller may take any 

valid action to terminate the frame after providing the ACK bit using STOP condition. 
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3.3.3 Mandatory Data Byte (MBD) 

The mandatory data byte is the data that follows the dynamic address when a device sends an IBI 

request. Availability of the mandatory data byte is determined by the BCR[2] register in the bus 

characteristic register. The target takes over the line after the IBI ACK and Controller can’t decline this byte 

and must wait for T-bit to terminate any subsequent data. The MDB gives the controller additional 

information about the event that has happened and what information the target wants to send. The MDB is 

divided into two fields: 

• Interrupt Group Identifier: the three most significant bits MDB[7:5]. 

• Specific Group Identifier: the five least significant bits MDB[4:0]. 
 

Figure 43 MDB Field Format 

 

All the values of the MDB Identifier values and their description are specified in MIPI Specification for 

I3C Basic Version 1.1.1 09-Jun-2021 section 5.1.6.2.1. 

 

 

 

 

3.3.4 IN-Band Interrupt    Frame Format 
 

 
Figure 44 IBI transfer, as controller/target 
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3.4 Common Command Codes (CCCs) 

Common Command codes (CCCs) are standardized set of commands that act like a contract 

between the controller and the targets used to communicate with each other. Most of the commands have 

the same frame structure except a few according to STMicroelectronics standard. 

They can be classified as follows: 

1- Broadcast CCCs: those CCCs are addressed to all I3C targets on the bus, and they’re 

always written CCCs. 

2- Direct CCCs: those CCCs are addressed to a specific target on the bus, and they can be Read, 

write, and Read/write CCCs. 
 

3.4.1 Enter Activity State 0-3 (ENTAS0-ENTAS3) 
     

 

Those 4 CCCs can be Broadcast Write or Direct Write. They’re used to inform one or all targets     

that the active controller won’t be active for a specific time based on which ENTAS is sent. The command 

codes for Enter Activity State 0-3 can be summarized in the next table: 
 

Table 8 Enter Activity State 0-3 Command Codes 

 

Minimum Bus activity interval for each Activity state can be summarized in the next table: 
Table 9 Minimum Bus activity interval 

 

Figure 45 ENTASx Broadcast Format 
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Figure 46 ENTAS Direct Format 

 

  
  

3.4.2 Get Device Status (GETSTATUS) 
 

 It’s a direct CCC used to get request from a particular target to return its current status and its 

command code is 0x90. 

It has 2 formats: 

1- GETSTATUS format 1 returns the two bytes consisting of MSB and LSB. 

Figure 47 GETSTATUS Format 1 

                                                                                     

   
   

Table 10 GETSTATUS MSB-LSB 
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2- GETSTATUS format 2 with a defining byte returns a variable number of Bytes depending on the 

defining byte used.For example, using PRECR defining byte which is used to allow the active 

controller to query the secondary controller about its current state whether it entered a deep sleep 

mode or still processing data. 
 

Figure 48 GETSTATUS Format 2 using PRECR 

Table 11 GETSTATUS MSB-LSB 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.3 Target Reset Action (RSTACT) 
 

 This Broadcast, Direct Read, and Direct Write CCC is used to configure the next Target Reset action  

and may be used to retrieve a Target’s reset recovery timing. The RSTACT CCC is used in conjunction with 

 the Target Reset Pattern, i.e., the reset action previously configured in a Target via the RSTACT CCC is 

triggered when the immediately following Target Reset Pattern is received. 

 

• For the Broadcast and Direct Write formats, the Defining Byte indicates which Target Reset action 

 (including taking no action) is to be configured (values 0x00 through 0x7F).  

• Defining Bytes 0x00 and 0x01 are required: A Target shall support these operations and shall  

ACK its Target Address if issued as a Direct CCC.  

• Support for other Defining Bytes (values 0x02 through 0x7F) is optional and depends on  

other conditions or support for other capabilities. If a Target does not support such an operation,  

then it shall NACK its Target Address for such a Defining Byte, as well as any related Defining 

 Bytes defined for the Direct Read format (values 0x82 through 0xFF) if issued as a Direct CCC. 
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• For the Direct Read format, the Defining Byte may also indicate the Controller’s desire to read back the 

Target’s reset recovering timing or other parameters for the operation (values 0x81 through 0xFF).  

• If the CCC is NACKed and the related reset operation is supported, then the Controller should 

assume the default reset return times of 1 ms to reset the Peripheral (i.e., the reset operation for 

Defining Byte 0x01) and 1 second to reset the whole Target Device (i.e., the reset operation for 

Defining Byte 0x02). 

Figure 49 I3C broadcast CCC write (excepted ENTDAA, RSTACT) 

 

 

 
Figure 50   "I3C Direct CCC Write – 1st Part / Multiple 2nd Parts (Except RSTACT)" 
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Figure 51 "I3C Direct CCC Read – 1st Part / Multiple 2nd Parts (Except RSTACT)" 

 
Table 12 List of supported I3C CCCs, as controller/target 

 

 

CCC name 

 

CCC value 

 

Read /write 

With/without 

defining byte 

With/without 

sub-command 

byte 

With/without 

optional data 

byte(s) 

Use as 

controller 

Use as 

target, raised 

I3C_EVR 

event 

When target: 

specific 

action 

Broadcast CCCs 

ENEC 0x00 
 

 

 

 

 

 

 

 

 

 

 

Write 

 

 

 

 

No 

defining/sub- 

command 

byte 

With one 

data byte 

(enable target 

events byte) 

x X, INTUPDF Update and 

enable 

I3C_DEVR0: 

HJEN, CREN, 

IBIEN if any 

DISEC 0x01 With one 

data byte 

(disable 

target events 

byte) 

X X, INTUPDF  

ENTASx 

 x = 0...3 
0x02 No data byte X X, ASUPDF  

RSTDAA 0x06 - X X, DAUPDF  

ENTDAA 0x07 - X X, DAUPDF  

SETMWL 0x09 With two 

data byte 
X X, 

MWLUPDF 

 

SETMRL 0x0A With 2 or 3 

data bytes 
X X, MRLUPDF Update 

I3C_MAXRLR 

SETAASA 0x29 No 

defining/sub-

command 

byte 

 

 

 

 

No data byte 

x 
  

RSTACT 0x2A With 

defining byte 

(0x00, 0x01 

or 0x02) 

X X, RSTF after 

detected reset 

pattern 

Update 

I3C_DEVR0: 

RSTACT[1:0] 

and set 

RSTVAL = 1 
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Table 13 List of supported I3C CCCs, as controller/target (continued) 

 

 

 

 

 

 

CCC name 

 

CCC value 

 

Read /write 

With/without defining 

byte With/without 

sub-command byte 

With/without 

optional data 

byte(s) 

Use as controller Use as target, 

raised I3C_EVR 

event 

When target: specific 

action 

 

 

 

Direct CCCs 

Action if ACK (if I3C target 

Address = 

I3C_DEVR0.DA[6:0] and 

I3C_DEVR0.DAVAL = 1) 

(else NACK) 

ENEC 0x80 
 

 

 

 

 

 

 

 

 

 

 

Write 

 
 

 

 
 

 

 
 

No defining/sub- 

command byte 

With one data byte (enable 

target events byte) x 
X, INTUPDF Update and enable 

I3C_DEVR0: HJEN, 

CREN, IBIEN if any 

DISEC 0x81 With one data 

byte (disable 

target events 
byte) 

X 
X, INTUPDF Update and disable 

I3C_DEVR0: HJEN, 

CREN, IBIEN if any 

ENTASx 

 x = 0...3 
0x82 No data byte X 

X, ASUPDF Update 

I3C_DEVR0.AS[1:0] 

SETDASA 0x87 No data byte X 
X, DAUPDF - 

SETNEWDA 0x88 With one data 

byte 
X 

X, DAUPDF Update I3C_DEVR0: 

DA[6:0] (and set DAVAL = 

1) 

SETMWL 0x89 With two data 
bytes 

X 
X, MWLUPDF Update I3C_MAXWLR 

SETMRL 0x8A With two or 

three data bytes 
X 

X, MRLUPDF Update I3C_MAXRLR 

GETMWL 0x8B 
 

 

 

 

Read 

With two data 

bytes 
X X, GETF Return data bytes from 

I3C_MAXWLR[15:0]. 

Refer to Section49.16.19 

GETMRL 0x8C With two or three 

data bytes 
X X, GETF Return data bytes from 

I3C_MAXRLR[15:0] and if 

I3C_BCR.BCR2 = 1 return 

third byte from 

I3C_MAXRLR.IBIP[2:0]. 

Refer to Section49.16.18 

GETPID 0x8D With six data bytes X X, GETF Return data bytes from 

I3C_EPIDR. Refer to 

Section49.16.28 

GETBCR 0x8E With one data byte X X, GETF Return data byte from 

I3C_BCR[7:0]. Refer to 

Section49.16.23. 

GETDCR 0x8F X X, GETF Return I3C_DCR[7:0]. 

Refer to Section49.16.24. 

GETSTATUS 0x90 With or without 
defining byte 

(TGTSTAT, 

PRECR) 

With two data 

bytes (format 1 or 

format 2 with 

PRECR) 

 

X 

X, STAF if format 

1 X, GETF if 

format 2 

Return 2 data bytes, as 

detailed in Section49.9.9. 

GETMXDS 0x94 With or without 

defining byte 

(WRRDTURN, 
CRHDLY) 

With two data 

bytes (format 1) or 

5 data bytes 

(format 2 or format 

3 with 

WRRDTURN) or 1 

data byte (format 3 

with CRHDLY) 

 

X 

 

 

 

 

X, GETF 

Return data byte(s) from 

I3C_GETMXDSR. Refer to 

Section49.16.27. 

D2DXFER 0x97 Write With defining byte With defining byte X - - 

SETXTIME 0x98 With sub- 
command byte 

With sub command 

byte 
X - - 

GETXTIME 0x99 Read No defining/sub- 

command byte 

No defining/sub- 

command byte 
X - - 

RSTACT 0x9A Read/ Write With defining byte 
(0x00, 0x01, or 

0x02) 

 
With defining 

byte (0x00, 

0x01, or 0x02) 

X X, RSTF if 
detected reset 

pattern 

Read: return data byte 
from RSTACT[1:0] in 

the I3C_DEVR0 

register. 
Write: update 

I3C_DEVR0: 

RSTACT[1:0] and set 
RSTVAL = 1 
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3.5 I²C Legacy Communication 

      I3C is designed to be backward compatible with I²C, allowing seamless communication with legacy 

I²C devices while benefiting from enhanced performance and features.In mixed bus environments, an I3C 

controller can operate in I²C-compatible mode, where it communicates with legacy I²C targets using 

standard I²C clock stretching,Start and Stop conditions and acknowledge (ACK/NACK) mechanisms. 

Additionally, I3C devices recognize and respond to traditional I²C transactions, including 7-bit and 10-bit 

addressing, ensuring interoperability. While I²C devices operate at their standard speeds (100 kHz, 400 kHz, 

or 1 MHz), I3C targets can utilize dynamic clocking and in-band interrupt (IBI) capabilities when 

interacting with other I3C devices, optimizing bus efficiency.  

         This dual compatibility allows for a smooth transition from I²C to I3C while maintaining support for 

existing I²C peripherals. 

        The figure below presents both a legacy I2C and typical read register-based device transfer 

 (write register address followed by data reads), and a legacy I2C typical write register-based  

device transfer (write register address followed by data writes). 

3.5.1 I²C Legacy Frame Format 

 

 

 

 

 

 

Figure 52  Legacy I2C write messages - as controller 

 
 

 

 

 

 

 

 

 

 

 
Figure 53  Legacy I2C read messages - as controller 
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Chapter 4: STM I3C System Architecture 

 
This chapter details the hardware architecture of the custom-designed MIPI I3C Controller. 

The design was approached with a modular philosophy to ensure clear separation of concerns, 

facilitate verification, and produce a synthesizable IP core suitable for integration into a larger 

System-on-Chip (SoC). The primary interface for system-level integration is a 32-bit AMBA APB 

slave port, while the protocol-level logic is managed by a dedicated kernel. 

 

Figure 54 I3C Block Diagram 

 

The overall architecture, illustrated in Figure 4.1, is partitioned into three primary functional 

units: the APB Interface, the I3C Kernel, and the I3C Bus Interface. The design operates on two 

main clock domains: i3c_pclk for the APB bus and system register access, and i3c_ker_clk for the 

core protocol logic, which are decoupled using asynchronous fifos. The following sections will 

provide a detailed description of each component. 
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4.1 APB Interface Block 

 
The APB Interface block serves as the bridge between the I3C controller and the host processor 

or system bus. It is responsible for all configuration, control, and data-transfer operations initiated by 

the system. It adheres to the AMBA APB protocol specification, ensuring standard-compliant 

integration. This block contains the following sub-modules: 

• I3C Registers: This is the primary control and status plane for the controller. A dedicated 

address space is mapped to a set of registers accessible via APB read/write transactions. You 

should include a detailed Register Map table here. These registers include: 

• Control Registers: To start/stop I3C transactions, configure the controller mode (e.g., 

Controller, Target), and issue specific commands. 

• Configuration Registers: To set the I3C bus speed by programming clock dividers, 

define the controller's own address, etc. 

• Status Registers: To provide real-time feedback to the processor, indicating FIFO 

levels (empty, full, thresholds), transfer completion, error conditions, and interrupt 

sources. 

 

4.2 Registers 
The I3C registers must be accessed with a 32-bit word-aligned address. 

4.2.1  I3C message control register (I3C_CR) 
Address offset: 0x000 

                 Reset value: 0x0000 0000 

 

 

 This register must be used to control the message to emit on the I3C bus: 

 • when I3C acts as controller (bit[30] = MTYPE[3] = 0): if there is no CCC code to be  

emitted bits[29:27] = MTYPE[2:0] differ from 110; else the alternate register description  

Section 49.16.2 must be considered. 

 • when I3C acts as target (bit[30] = MTYPE[3] = 1).  

When I3C acts as controller: 

 • If the control FIFO (C-FIFO) is not full (CFNFF = 1 in the I3C_EVR register), writing 

into  

this register means pushing a new control word into the C-FIFO; either by software, or  

automatically by DMA, as defined by CDMAEN in the I3C_CFGR register. 

 • If C-FIFO is empty and a restart must be emitted with a new control word, the I3C  

hardware asserts the control FIFO error underrun flag (COVR = 1 in the I3C_SER  
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register). If enabled by ERRIE = 1 in the I3C_IER register, an interrupt is generated. 

 • After the last message of the frame is completed (a message with MEND = 1 in the  

I3C_CR register), the I3C hardware asserts the frame completed flag (FCF = 1 in the  

I3C_EVR register) and the corresponding interrupt, if enabled. 

 When I3C acts as target, this register is used in register mode: 

 • Software writes into this register to initiate a command (IBI, controller-role or 

    hot-join request) on the I3C bus. 

 • C-FIFO is disabled, and there is no DMA mode neither for control words. 

 

Bit 31 MEND: Message end type/last message of a frame (when the I3C acts as controller) 

 0: this message from controller is followed by a repeated start (Sr), before another 

message  

must be emitted 

 1: this message from controller ends with a stop (P), being the last message of a frame 

Bits 30:27 MTYPE[3:0]: Message type (whatever I3C acts as controller/target) 

 Condition: when I3C acts as I3C controller 

 0000: SCL clock is forced to stop until a next control word is executed  

Bits[26:0] are ignored. On a CE1 error detection (ERRF = 1 in the I3C_EVR register and 

CODERR[3:0] =  

0001 in the I3C_SER register) where a start/restart/stop is prevented from being 

generated, the software  

must use this message type for SCL “stuck at” recovery. Refer to Table 540. 

 0001: header message 

 Bits[26:0] are ignored. If the addressed target is not responding with an ACK to a 

private/direct message, as  

an escalation stage after a failed GETSTATUS tentative, the software must program this 

with EXITPTRN = 1  

in the I3C_CFGR register, so that an HDR exit pattern is emitted on the bus, whatever 

the header is ACK-ed  

or NACK-ed (to avoid the target to consider that the I3C bus is in HDR mode). Refer to 

Table 540 and MIPI  

specification about escalation handling. 

 0010: private message (refer to Figure 667) 

 Bits[23:17] (ADD[6:0]) are the emitted 7-bit dynamic address. 

 Bit[16] (RNW) is the emitted RnW bit. 

 Bits[15:0] (DCNT[15:0]) are the number of programmed data bytes. 

 The transferred private message is:– 

 {S / S + 0b111_1110 + RnW = 0 + Sr/Sr+*} + 7-bit DynAddr + RnW + (8-bit Data + 

T)* + Sr/P.–– 

 After an S (start), depending upon bit NOARBH in the I3C_CFGR register, the 

arbitrable header  

(0b111_1110 + RnW = 0) is inserted or not. 

 Sr+*: after an Sr (repeated start), the hardware automatically inserts (0b111_1110 + 

RnW = 0) if  
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needed, if it follows a previous message without ending by a P (stop). 

 0011: direct message (second part of an I3C SDR direct CCC command) (refer to 

Figure 660) 

 Bits[23:17] (ADD[6:0]) are the emitted 7-bit dynamic address. 

 Bit[16] (RNW) is the emitted RnW bit. 

 Bits[15:0] (DCNT[15:0]) are the number of programmed data bytes. 

 The transferred direct message is: Sr + 7-bit DynAddr + RnW + (8-bit Data + T)* + Sr/P 

 0100: legacy I2C message (refer to Figure 669) 

 Bits[23:17] (ADD[6:0]) are the emitted 7-bit static address. 

 Bit[16] (RNW) is the emitted RnW bit. 

 Bits[15:0] (DCNT[15:0]) are the number of programmed data bytes. 

 The transferred legacy I2C message is: – 

 {S / S + 0b111_1110 + RnW = 0 + Sr/Sr+*} + 7-bit StaAddr + RnW + (8-bit data + T)* 

+ Sr/P.–– 

 After an S, depending on NOARBH, the arbitrable header (0b111_1110 + RnW = 0) is 

inserted or not. 

 Sr+*: after an Sr (repeated start), the hardware automatically inserts (0b111_1110 + 

RnW = 0) if  

needed (if it follows a previous message without ending by a P (stop)). 

 Others: reserved 

 Condition: when I3C acts as I3C target 

 1000: hot-join request (W) (refer to Figure 671) 

 The transferred hot-join request is {S +} 0b000_0010 addr + RnW = 0. 

 Writing the control word initiates the hot-join request if target is allowed to do so 

(HJEN = 1 in the  

I3C_DEVR0 register), either actively after a bus idle condition via the hardware issuing 

a start request (SDA  

low) and waiting for the controller to activate SCL clock, or passively if the controller 

initiates a concurrent  

message. 

 1001: controller-role request (W) (refer to Figure 672) 

 The transferred controller-role request is {S +} DA[6:0] + RnW = 0 (DA in the 

I3C_DEVR0 register) 

 Writing the control word initiates the controller-role request if target is allowed to 

 do so (CREN = 1 and  

DAVAL = 1 in the I3C_DEVR0 register), either actively after a bus idle condition via 

the hardware issuing a  

start request (SDA low) and waiting for the controller to activate SCL clock, or passively 

if the controller  

initiates a concurrent message. 

 1010: IBI (in-band interrupt) request (R) (refer to Figure 670) 

 Bits[15:0] (DCNT[15:0]) are the number of the IBI data payload (including the first 

MDB), if any. 

 The transferred IBI request is {S +} DA[6:0] + RnW = 1 + optional IBI data payload. 
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Writing the control word  

initiates the IBI request if target is allowed to do so (IBIEN = 1 and DAVAL = 1 in the 

I3C_DEVR0.register),  

either actively after a bus idle condition via the hardware issuing a start request (SDA 

low) and waiting for  

the controller to activate SCL clock, or passively if the controller initiates a concurrent 

message. 

 When acknowledged from controller, the transmitted IBI payload data (optional, 

depending upon BCR2 in  

the I3C_BCR register) is defined by DCNT[15:0] in the I3C_CR register and 

I3C_IBIDR, and must be  

consistently programmed vs. the IBI payload data size defined by IBIP[2:0] in the 

I3C_IBIDR register. 

 Others: reserved 

 Bits 26:24 Reserved, must be kept at reset value. 

 

Bits 23:17 ADD[6:0]: 7-bit I3C dynamic / I2C static target address (when I3C acts as 

controller) 

    When I3C acts as controller, this field is used if MTYPE[3:0] = 0010 (private message), 

    or MTYPE[3:0] = 0011 (direct message), or MTYPE[3:0] = 0100 (legacy I2C message) 

Bit 16 RNW: Read / non-write message (when I3C acts as controller) 

        When I3C acts as controller, this field is used if MTYPE[3:0] = 0010 (private message), or 

MTYPE[3:0] = 0011 (direct message), or MTYPE[3:0] = 0100 (legacy I2C message), to emit 

the RnW bit on the I3C bus. 

     0: write message 

     1: read message 

 Bits 15:0 DCNT[15:0]: Count of data to transfer during a read or write message, in bytes 

(whatever I3C acts as controller/target) 

     When I3C acts as controller, this field is used if MTYPE[3:0] = 0010 (private message), or 

MTYPE[3:0] = 0011 (direct message), or MTYPE[3:0] = 0100 (legacy I2C message), to set  

the number of exchanged data bytes on the bus. In case of a private or legacy I2C read/write 

message, this field must be non-null. 

 When I3C acts as target, this field is used if MTYPE[3:0] = 1010 (IBI request) and if any 

IBI  

data payload (data to be transmitted if BCR2 = 1 in the I3C_BCR register), to set the 

number  

of bytes of the IBI data payload (1, 2, 3, or 4). 

 Linear encoding up to 64 Kbytes - 1 

 0x0000: no data to transfer 

 0x0001: 1 byte 

 0x0002: 2 bytes 

 ... 

 0xFFFF: 64 Kbytes - 1 byte 
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4.2.2  I3C message control register [alternate] (I3C_CR) 
             Address offset: 0x000 

             Reset value: 0x0000 0000 

 
 

This write register description must be used to control the message for when the controller  

has to emit a CCC (whatever is the type of the CCC: for a CCC broadcast, a CCC direct, or  

a CCC Enter HDR). 

 This is the alternate description of register I3C_CR, for when MTYPE[3:0] = 0110. Else 

refer  

to Section 49.16.1. 

 If the control FIFO (also known as C-FIFO) is not full (CFNFF = 1 in the I3C_EVR register),  

writing into this register means pushing a new control word into the C-FIFO; either by the  

software or automatically by DMA, as defined by the CDMAEN bit in the I3C_CFGR 

register. 

 When the last message of the frame is completed (a message with MEND = 1 in the  

I3C_CR register), the I3C hardware asserts the frame completed flag (FCF = 1 in the  

I3C_EVR register) and the corresponding interrupt, if enabled. 

 

Bit 31 MEND: Message end type/last message of a frame (when I3C acts as controller) 

 0: this message from controller is followed by a repeated start (Sr), before another 

message must be emitted 

 1: the message from the controller ends with a stop (P), being the last message of a frame 

 Bits 30:27 MTYPE[3:0]: Message type (when I3C acts as controller) 

 Condition: when I3C acts as I3C controller 

 0110: broadcast/direct CCC command (refer to Table 539, Figure 660, Figure 661,  

Figure 662) 

 Bits[23:16] (CCC[7:0]) are the emitted 8-bit CCC code 

 Bits[15:0] (DCNT[15:0]) are the number of the CCC defining bytes, or  

 CCC sub-    command  

bytes, or CCC data bytes. 

 If Bit[23] = CCC[7] = 1: this is the first part of an I3C SDR direct CCC command 

 The transferred direct CCC command (first part) message is: – 

 {S / S + 0b111_1110 +RnW = 0 / Sr+*} + (direct CCC + T) + (8-bit Data + T)*  

   +  Sr–– 

 After an S (start), depending upon NOARBH in the I3C_CFGR register, the  

              arbitrable header (0b111_1110 + RnW = 0) is inserted or not. 
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              Sr+*: after an Sr (repeated start), the hardware automatically inserts (0b111_1110 +  

              R/W). 

              If Bit[23] = CCC[7] = 0: this is an I3C SDR broadcast CCC command 

              (including specific  ENTDAA, refer to Figure 661) 

              The transferred broadcast CCC command message is: – 

             {S / S + 0b111_1110 + RnW = 0 / Sr+*} + (broadcast CCC + T) + (8-bit Data + T) 

               * +  Sr/P–– 

            After an S (start), depending on NOARBH, the arbitrable header  

            (0b111_1110 + RnW = 0) is inserted or not. 

            Sr+*: after an Sr (repeated start), the hardware automatically inserts (0b111_1110 +  

            R/W). 

 Others: reserved 

 Bits 26:24 Reserved, must be kept at reset value. 

 Bits 23:16 CCC[7:0]: 8-bit CCC code (when I3C acts as controller) 

If bit[23] = CCC[7] = 1, this is the first part of an I3C SDR direct CCC command. 

 If bit[23] = CCC[7] = 0, this is an I3C SDR broadcast CCC command (including    

ENTDAA). 

 Bits 15:0 DCNT[15:0]: Count of related data to the CCC command to transfer as CCC 

defining bytes, or  

CCC sub-command bytes, or CCC data bytes, in bytes 

 Linear encoding up to 64 Kbytes - 1. 

 0x0000: no data to transfer. 

 Note: Value mandatory when emitting ENTDAA broadcast CCC (refer to Figure 661). 

0x0001: 1 byte 

   Note: Value mandatory when emitting RSTACT direct/broadcast CCC (refer to Figure 

662). 

 0x0002: 2 bytes 

 ... 

 0xFFFF: 64 Kbytes - 1 byte 

 

4.2.3  I3C configuration register (I3C_CFGR) 
 Address offset: 0x004 

 Reset value: 0x0000 0000 
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This register is used to configure: 

 • features that apply when the I3C acts as controller or target: RX-FIFO and TX-FIFO  

  management (RXDMAEN, RXTHRES, RXFLUSH, TXDMAEN, TXTHRES, TXFLUSH),  

I3C peripheral role (CRINIT) 

 • dedicated features when the I3C acts as a controller: frame-based control-word  

triggering (TSFSET), FIFOs management (TMODE, SMODE, SFLUSH, SDMAEN,  

CDMAEN), and miscellaneous ones (HJACK, HKSDAEN, EXITPTRN, RSTPATRN,  

NOARBH) 

 The configuration fields CRINIT, HKSDAEN can be modified only when EN = 0. This  

condition is respected if they are modified at the same time when EN is set to 1  

(it is not necessary to set EN later on, with another write operation). 

 

Bit 31 Reserved, must be kept at reset value. 

Bit 30 TSFSET : Frame transfer set (software trigger) (when I3C acts as controller) 

 This bit can only be written. When I3C acts as I3C controller: 

 0: no action 

 1: setting this bit initiates a frame transfer by causing the hardware to assert the flag CFNFF  

in the I3C_EVR register (C-FIFO not full and a control word is needed) 

 Note: If this bit is not set, the other alternative for the software to initiate a frame transfer        is 

to directly write the first control word register (I3C_CR) while C-FIFO is empty  (CFEF = 1 in 

the I3C_EVR register). Then, if the first written control word is not tagged as a message end 

(MEND = 0 in the I3C_CR register), it causes the hardware to assert CFNFF. 

 Bits 29:24 Reserved, must be kept at reset value. 

 Bit 23 Reserved, must be kept at reset value. 

 Bit 22 Reserved, must be kept at reset value. 

 Bit 21 CFLUSH: C-FIFO flush (when I3C acts as controller) 

 This bit can only be written. 

 0: no action 

 1: flush C-FIFO 

Bit 20 CDMAEN: C-FIFO DMA request enable (when I3C acts as controller) 

 When I3C acts as controller: 

 0: DMA mode is disabled for C-FIFO- Software writes and pushes control word(s) into C-FIFO 

(writes I3C_CR register), as  

needed for a given frame - A next control word transfer can be written by software either via 

polling on the flag  

CFNFF = 1 in the I3C_EVR register, or via interrupt notification (enabled by CFNFIE = 1 in the 

I3C_IER register). 

 1: DMA mode is enabled for C-FIFO- DMA writes and pushes control word(s) into C-FIFO 

(writes I3C_CR register), as needed  

for a given frame.- A next control word transfer is automatically written by the programmed 

hardware (via  

the asserted C-FIFO DMA request from the I3C and the programmed DMA channel). 

 Bit 19 TMODE: Transmit mode (when I3C acts as controller) 

   When I3C acts as controller, this bit is used for the C-FIFO and TX-FIFO management vs. the 



72  

emitted frame on the I3C bus. 

  0: C-FIFO and TX-FIFO are not preloaded before starting to emit a frame transfer.  

      A frame transfer starts as soon as the first control word is present in C-FIFO. 

 1: C-FIFO and TX-FIFO are first preloaded (also TX-FIFO if needed, depending on the frame 

format) before starting to emit a frame transfer. Refer to Section 49.10.2 for more details. 

 Bit 18 SMODE: S-FIFO enable / status receive mode (when I3C acts as controller) 

 When I3C acts as controller, this bit is used to enable the FIFO for the status  

 (S-FIFO) of the exchanged message on the I3C bus. 

 When I3C acts as target, this bit must be cleared. 

 0: S-FIFO is disabled - Status register (I3C_SR) is used without FIFO mechanism.- There is no 

SCL stalling if a new status register content is not read.- Status register must be read before 

being overwritten by the hardware.- Must have SDMAEN = 0 in the I3C_CFGR register. 

 1: S-FIFO is enabled. - Each message status must be read.- There is SCL stalling when the S-FIFO 

is full and a next message status must be read.- S-FIFO overrun error is reported after the 

maximum SCL clock stalling time. 

 Bit 17 SFLUSH: S-FIFO flush (when I3C acts as controller) 

 This bit can be written and used only when I3C acts as controller. 

 0: no action 

 1: flush S-FIFO 

Bit 16 SDMAEN: S-FIFO DMA request enable (when I3C acts as controller) 

 This bit must be cleared if SMODE = 0 in the I3C_CFGR register (S-FIFO is 

disabled). In other words, DMA mode cannot be used if S-FIFO is disabled. Then the 

status register I3C_SR can be read or not. 

 This bit can be set or cleared if SMODE = 1 (S-FIFO is enabled). In other words, 

status  

register I3C_SR must be read for each message, either by software, or via an allocated 

DMA channel. 

 0: DMA mode is disabled for reading status register I3C_SR- SMODE = 0: software can 

read the I3C_SR register after a completed frame (FCF = 1 in  

the I3C_EVR register) or an error (ERRF = 1 in the I3C_EVR register). Via polling on  

these register flags or via interrupt notification (enabled by FCIE = 1 and ERRIE = 1 in 

the  I3C_IER register).- SMODE = 1: software must read and pop a status word from 

S-FIFO (read I3C_SR register) after each asserted flag SFNEF = 1. Via polling on this 

register flag or via interrupt notification (enabled by SFNEIE = 1 in the I3C_IER 

register). 

 1: DMA mode is enabled for reading status register I3C_SR- Must have SMODE = 1 in 

the I3C_CFGR register (S-FIFO enabled)- DMA reads and pops status word(s) from 

S-FIFO (it reads I3C_SR register)- Status word(s) are automatically read by the 

programmed hardware (via the asserted  

S-FIFO DMA request from the I3C and the programmed DMA channel). 

 Bit 15 Reserved, must be kept at reset value. 

 Bit 14 TXTHRES: TX-FIFO threshold (whatever I3C acts as controller/target) 

 This threshold defines, compared to the TX-FIFO level, when the TXFNFF flag is set 

in the I3C_EVR register (and consequently if TXDMAEN = 1 when is asserted a 
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DMA TX request). 

 0: 1-byte threshold 

  TXFNFF is set when 1 byte must be written in TX-FIFO (in I3C_TDR). 

 1: 1-word / 4-byte threshold TXFNFF is set when 1 word / 4 bytes must be written in   

TX-FIFO (in the I3C_TDWR register). If the a number of the last transmitted data is 

not a multiple of 4 bytes (XDCNT[1:0] = 00 in the I3C_SR register), only the relevant 

1, 2, or 3 valid LSB bytes of  the last word are taken into account by the hardware, and 

sent on the I3C bus. 

 Bit 13 TXFLUSH: TX-FIFO flush (whatever I3C acts as controller/target) 

 This bit can only be written. 

 When the I3C acts as target, this bit can be used to flush the TX-FIFO on a private 

read if the controller has aborted the data read (driven low the T bit), and there is/are 

remaining data in the TX-FIFO (ABT = 1, and XDCNT[15:0] in the I3C_SR register 

< TGTTDCNT[15:0] in the I3C_TGTTDR register). 

 0: no action 

 1: flush TX-FIFO 

 Bit 12 TXDMAEN: TX-FIFO DMA request enable (whatever I3C acts as controller/target) 

 0: DMA mode is disabled for TX-FIFO- Software writes and pushes a data byte/word 

into TX-FIFO (writes I3C_TDR or I3C_TDWR register), to be transmitted over the 

I3C bus. - A next data byte/word must be written by the software either via polling on 

the flag TXFNFF = 1 or via interrupt notification (enabled by TXFNFIE = 1). 

 1: DMA mode is enabled for TX-FIFO- DMA writes and pushes data byte(s)/word(s) 

into TX-FIFO (writes I3C_TDR or I3C_TDWR register). - A next data byte/word 

transfer is automatically pushed by the programmed hardware  

 (via the asserted TX-FIFO DMA request from the I3C and the programmed DMA  

channel). 

 Bit 11 Reserved, must be kept at reset value. 

 Bit 10 RXTHRES: RX-FIFO threshold (whatever I3C acts as controller/target) 

 This threshold defines, compared to the RX-FIFO level, when the RXFNEF flag in the  

 I3C_EVR register is set (and consequently if RXDMAEN = 1 when is asserted a DMA 

RX request). 

 0: 1-byte threshold 

  RXFNEF is set when 1 byte must be read in RX-FIFO (in the I3C_RDR register). 

  

1: 1-word/4-bytes threshold 

 RXFNEF is set when 1 word / 4 bytes is/are to be read in RX-FIFO (in I3C_RDWR). 

In the case of a number of last received data being not a multiple of 4 bytes, only the 

relevant 1, 2 or 3 valid LSB bytes of the last word are to be considered by the 

software. The number of effective received data bytes is reported by XDCNT[15:0] in 

the I3C_SR register. 

 Bit 9 RXFLUSH: RX-FIFO flush (whatever I3C acts as controller/target) 

 This bit can only be written. 

 0: no action 

 1: flush RX-FIFO 
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 Bit 8 RXDMAEN: RX-FIFO DMA request enable (whatever I3C acts as controller/target) 

 0: DMA mode is disabled for RX-FIFO- Software reads and pops a data byte/word    from 

RX-FIFO (it reads I3C_RDR or I3C_RDWR register).- A next data byte/word must be read 

by the software either via polling flag RXFNEF = 1 in  

 the I3C_EVR register, or via interrupt notification (enabled by RXFNEIE = 1 in the  

    I3C_IER register). 

 1: DMA mode is enabled for RX-FIFO- DMA reads and pops data byte(s)/word(s)   from RX-

FIFO (reads I3C_RDR or I3C_RDWR register).- A next data byte/word is automatically 

read by the programmed hardware (via the  

asserted RX-FIFO DMA request from the I3C and the programmed DMA channel). 

 Bit 7 HJACK: Hot-join request acknowledge (when I3C acts as a controller) 

 0: hot-join request is not acknowledged 

 After the NACK, the controller continues as initially programmed (the hot-joining target is 

aware of the NACK and must emit another hot-join request later on). 

 1: hot-join request is acknowledged 

 After the ACK, the controller continues as initially programmed. The software is notified 

by the HJ interrupt (flag HJF is set in the I3C_EVR register), and must initiate the 

ENTDAA sequence later on, potentially preventing other hot-join requests with a disable 

target events command (DISEC, with DISHJ = 1). 

 Bit 6 Reserved, must be kept at reset value. 

 Bit 5 HKSDAEN: High-keeper enable on SDA line (when I3C acts as a controller) 

 0: High-keeper is disabled 

 1: High-keeper is enabled, and the weak pull-up is effective on the T bit, instead of  

     the open drain class pull-up. 

 Note: This bit can be modified only when EN = 0 in the I3C_CFGR register. 

 

Bit 4 EXITPTRN: HDR exit pattern enable (when I3C acts as a controller) 

 This bit can be modified only when there is no on-going frame. 

 0: HDR exit pattern is not sent after the issued message header (MTYPE[3:0] = 0001 in the 

I3C_CR register). This is used to send the header, to test ownership of the bus when there 

is a suspicion of a problem after controller-role hand-off (new controller did not assert its 

controller-role by accessing the previous one in less than the delay defined by the activity 

state). 

 1: HDR exit pattern is sent after the issued message header (MTYPE[3:0] = 0001).  

     This is used on a controller error detection and escalation handling, in case of a not 

responding target to a private message or a direct read CCC. 

 The HDR exit pattern is sent whatever the message header {S/Sr + 0x7E addr + W} is 

ACKed or NACK-ed.. 

 Bit 3 RSTPTRN: HDR reset pattern enable (when I3C acts as a controller) 

 This bit can be modified only when there is no on-going frame. 

 0: standard stop emitted at the end of a frame 

 1: HDR reset pattern is inserted before the stop of any emitted frame that includes  

      a RSTACT CCC command 

 Bit 2 NOARBH: No arbitrable header after a start (when I3C acts as a controller) 
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 This bit can be modified only when there is no on-going frame. 

 0: An arbitrable header (0b111_1110 + RnW = 0) is emitted after a start and before 

         a legacy I2C message or an I3C SDR private read/write message (default). 

  1: No arbitrable header- The target address is emitted directly after a start in case of  

 a legacy I2C message or an I3C SDR private read/write message. - This is a more performing 

option (when the emission of the 0x7E arbitrable header is useless), but must be used only 

when the controller is sure that the addressed target device  

cannot emit concurrently an IBI or a controller-role request (to insure no misinterpretation and 

no potential conflict between the address emitted by the controller in open-drain mode and 

the same address a target device can emit after a start, for IBI or MR). 

 Bit 1 CRINIT: Initial controller/target role 

 This bit can be modified only when EN = 0 in the I3C_CFGR register. 

 0: target role Once enabled by setting EN = 1, the peripheral initially acts as a target. I3C does 

not drive SCL line and does not enable SDA pull-up, until it eventually acquires the 

controller role. 

 1: controller role Once enabled by setting EN = 1, the peripheral initially acts as  

a controller. It has the I3C controller role, so drives SCL line and enables SDA pull-up, until it 

eventually offers the controller role to an I3C secondary controller. 

 Bit 0 EN: I3C enable (whatever I3C acts as controller/target) 

 0: I3C is disabled 

- Except registers, the peripheral is under reset (partial reset). 

- Before clearing EN, when I3C acts as a controller, all the possible target requests must 

be disabled using DISEC CCC. 

- When I3C acts as a target, software must not disable the I3C, unless a partial reset is 

needed. 

 

 

 1: I3C is enabled  

In this state, some register fields cannot be modified (like CRINIT, HKSDAEN for the 

I3C_CFGR). 

 

4.2.4  I3C receives data byte register (I3C_RDR) 

 

     Bits 31:8 Reserved: must be kept at reset value. 

     Bits 7:0 RDB0[7:0]: 8-bit received data on I3C bus. 
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 Byte-Based Read (RXTHRES = 0) 

• Reads one byte at a time (stored in LSB of a 32-bit word). 

•  If RXDMAEN = 1, DMA manages to read automatically. 

•  If RXDMAEN = 0, software must check RXFNEF flag before reading. 

•  If FIFO is full, an overrun error (DOVRF) is triggered. 

 

 

4.2.5 I3C transmit data byte register (I3C_TDR) 

 

     Bits 31:8 Reserved: must be kept at reset value.  

     Bits 7:0 TDB0[7:0]: 8-bit data to transmit on I3C bus. 

  Byte-Based Writing (TXTHRES = 0) Transmits one byte at a time. 

• TXDMAEN = 1: Data transfer is managed automatically via DMA. 

• TXDMAEN = 0: Software must wait for TXFNFF = 1 before writing. 

• If TX-FIFO is empty and the data is delayed, a data underrun error (DOVR) occurs. 

4.2.6  I3C event register (I3C_EVR) 
Address offset: 0x050 

 Reset value: 0x0000 0003 

 This is a read register, used for reporting event flags. 

 

Bit 31 GRPF: Group addressing flag (when the I3C acts as target) 

 When the I3C acts as target (and is typically controller-capable), this flag is asserted by  

hardware to indicate that the broadcast DEFGRPA CCC (define list of group addresses)    has 

been received. Then, software can store the received data for when getting controller role. 

 The flag is cleared when software writes 1 into the corresponding CGRPF bit in the I3C_CR 

register. 
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 Bit 30 DEFF: DEFTGTS flag (when the I3C acts as target) 

 When the I3C acts as target (and is typically controller capable), this flag is asserted by  

hardware to indicate that the broadcast DEFTGTS CCC (define list of targets) has been  

received. Then, software can store the received data for when getting the controller role. 

 The flag is cleared when software writes 1 into the corresponding CDEFF bit in the  

I3C_CEVR register. 

 Bit 29 INTUPDF: Interrupt/controller-role/hot-join update flag (when the I3C acts as target) 

 When the I3C acts as target, this flag is asserted by hardware to indicate that the direct or  

 broadcast ENEC/DISEC CCC (enable/disable target events) has been received, where a  

 target event is either an interrupt/IBI request, a controller-role request, or an hot-join request. 

 Then, software must read respectively IBIEN, CREN, or HJEN in the I3C_DEVR0 register. 

 The flag is cleared when software writes 1 into the corresponding CINTUPDF bit in the  

  I3C_CEVR register. 

 Bit 28 ASUPDF: Activity state update flag (when the I3C acts as target) 

 When the I3C acts as target, this flag is asserted by hardware to indicate that the direct or  

broadcast ENTASx CCC (with x = 0...3) has been received. Then, software must read  

AS[1:0] in the I3C_DEVR0 register. 

 The flag is cleared when software writes 1 into the corresponding CASUPDF bit in the  

I3C_CEVR register. 

Bit 27 RSTF: Reset pattern flag (when the I3C acts as target) 

 When I3C acts as target, this flag is asserted by hardware to indicate that a reset pattern has 

been detected (14 SDA transitions while SCL is low, followed by repeated start, then stop). 

 Then, when not in Stop mode, software must read RSTACT[1:0] and RSTVAL in the  

  I3C_DEVR0 register, to know the required reset level. 

- If RSTVAL = 1: when the RSTF is asserted (and/or the corresponding interrupt if  

enabled), RSTACT[1:0] in the I3C_DEVR0 register dictates the reset action to be  

performed by the software, if any. 

-  If RSTVAL = 0: when the RSTF is asserted (and/or the corresponding interrupt if  

enabled), the software must issue an I3C reset after a first detected reset pattern,  

and a system reset on the second one. 

 When in Stop mode, the corresponding interrupt can be used to wake up the device. 

 The flag is cleared when software writes 1 into the corresponding CRSTF bit in the I3C_CEVR 

register. 

 Bit 26 MRLUPDF: Maximum read length update flag (when the I3C acts as target) 

 When the I3C acts as target, this flag is asserted by hardware to indicate that a direct  

 SETMRL CCC (set max read length) has been received. Then, software must read  

 MRL[15:0] in the I3C_MAXRLR register to get the maximum read length value. 

 The flag is cleared when software writes 1 into the corresponding CMRLUPDF bit in  

the I3C_CEVR register. 

 Bit 25 MWLUPDF: Maximum write length update flag (when the I3C acts as target) 

 When the I3C acts as target, this flag is asserted by hardware to indicate that a direct  

SETMWL CCC (set max write length) has been received. Then, software must read  

MWL[15:0] in the I3C_MAXRLR register to get the maximum write length value. 
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 The flag is cleared when software writes 1 into the corresponding CMWLUPDF bit in      the 

I3C_CEVR register. 

 Bit 24 DAUPDF: Dynamic address update flag (when the I3C acts as target) 

 When the I3C acts as target, this flag is asserted by hardware to indicate that a dynamic  

address update has been received via any of the broadcast ENTDAA, RSTDAA and direct 

SETNEWDA CCC. Then, software must read DA[6:0] and DAVAL in the I3C_DEVR0 register 

to get the dynamic address update. 

 The flag is cleared when software writes 1 into the corresponding CDAUPDF bit in the  

I3C_CEVR register. 

 Bit 23 STAF: Get status flag (when the I3C acts as target) 

 When the I3C acts as target, this flag is asserted by hardware to indicate that a direct  

GETSTATUS CCC of format 1 (without defining byte or with defining byte TGTSTAT) has 

been received. 

 The flag is cleared when software writes 1 into the corresponding CSTAF bit in the  

I3C_CEVR register. 

 Bit 22 GETF: Get flag (when the I3C acts as target) 

 When the I3C acts as target, this flag is asserted by hardware to indicate that any direct CCC of 

get type (GET*** CCC) except the GETSTATUS of format 1 (but including GETSTATUS of 

format 2) has been received. 

 The flag is cleared when software writes 1 into the corresponding CGETF bit in the  

 I3C_CEVR register. 

Bit 21 WKPF: Wake-up/missed start flag (when the I3C acts as target) 

 When the I3C acts as target, this flag is asserted by hardware to indicate that a start has  

been detected (an SDA falling edge followed by an SCL falling edge) but on the next SCL 

falling edge, the I3C kernel clock is (still) gated. Thus an I3C bus transaction may have been 

lost by the target. 

 The corresponding interrupt can be used to wake up the device from a low power  

 (Sleep or Stop) mode. 

 The flag is cleared when software writes 1 into the corresponding CWKPF bit in the  

 I3C_CEVR register. 

 Bit 20 Reserved, must be kept at reset value. 

 Bit 19 HJF: Hot-join flag (when the I3C acts as controller) 

 When the I3C acts as controller, this flag is asserted by hardware to indicate that an hot join 

request has been received. 

 The flag is cleared when software writes 1 into the corresponding CHJF bit in the I3C_CEVR 

register. 

 Bit 18 CRUPDF: Controller-role update flag (when the I3C acts as target) 

 When the I3C acts as target, this flag is asserted by hardware to indicate that it has now  

 gained the controller role after the completed controller-role hand-off procedure. 

 The flag is cleared when software writes 1 into the corresponding CCRUPDF bit in the  

 I3C_CEVR register. 

 Bit 17 CRF: Controller-role request flag (when the I3C acts as controller) 

 When the I3C acts as controller, this flag is asserted by hardware to indicate that a controller 

role request has been acknowledged and completed (by hardware). The software must then 
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issue a GETACCCR CCC (get accept controller role) for the controller-role hand-off 

procedure. 

 The flag is cleared when software writes 1 into the corresponding CCRF bit in  

 the  I3C_CEVR register. 

 Bit 16 IBIENDF: IBI end flag (when the I3C acts as target) 

 When the I3C acts as target, this flag is asserted by hardware to indicate that an  

 IBI transfer has been received and completed (IBI acknowledged and IBI data bytes 

 read by controller if any). 

The flag is cleared when software writes 1 into the corresponding CIBIENDF bit in the  

I3C_CEVR register. 

 

 

 Bit 15 IBIF: IBI flag (when the I3C acts as controller) 

 When the I3C acts as controller, this flag is asserted by hardware to indicate that an IBI  

request has been received. 

 The flag is cleared when software writes 1 into the corresponding CIBIF bit in the   I3C_CEVR 

register. 

 Bits 14:12 Reserved, must be kept at reset value. 

 Bit 11 ERRF: Flag (whatever the I3C acts as controller/target) 

 This flag is asserted by hardware to indicate that an error occurred.Then, software must   read 

I3C_SER to get the error type. 

 The flag is cleared when software writes 1 into the corresponding CERRF bit in the  

I3C_CEVR register. 

Bit 10 RXTGTENDF: Target-initiated read end flag (when the I3C acts as controller) 

 When the I3C acts as controller, and only if the S-FIFO is disabled (SMODE = 0 in the  

I3C_CFGR register), this flag is asserted by hardware to indicate that the target has  

prematurely ended a read transfer. Then, software must read the status register I3C_SR to  

check information related to the last message and get the number of received data bytes on the 

prematurely read transfer (XDCNT in the I3C_SR register). 

 The flag is cleared when software writes 1 into the corresponding CRXTGTENDF bit in the 

I3C_CEVR register. 

 Bit 9 FCF: Frame complete flag (whatever the I3C acts as controller/target) 

 When the I3C acts as controller, this flag is asserted by hardware to indicate that a frame has 

been (normally) completed on the I3C bus, for example, when a stop is issued. 

 When the I3C acts as target, this flag is asserted by hardware to indicate that a message  

 addressed to/by this target has been (normally) completed on the I3C bus, for example, when a 

next stop or repeated start is then issued by the controller. 

 The flag is cleared when software writes 1 into the corresponding CFCF bit in the I3C_CEVR 

register. 

 Bit 8 Reserved, must be kept at reset value. 

 Bit 7 RXLASTF: Last read data byte/word flag (when the I3C acts as controller) 

 When the I3C acts as controller, this flag is asserted by hardware to indicate that the last data 

byte/word (depending upon RXTHRES in the I3C_CFGR register) of a message must be read 

from the RX-FIFO. The flag is de-asserted by hardware when the last data byte/word of a 
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message is read. 

Bit 6 TXLASTF: Last written data byte/word flag (whatever the I3C acts as controller/target) 

 This flag is asserted by hardware to indicate that the last data byte/word (depending upon  

TXTHRES in the I3C_CFGR register) of a message must be written to the TX-FIFO. The flag is 

de-asserted by hardware when the last data byte/word of a message is written. 

 Bit 5 RXFNEF: RX-FIFO not empty flag (whatever the I3C acts as controller/target) 

 This flag is asserted/de-asserted by hardware to indicate that a data byte must/must not be read 

from the RX-FIFO. 

 Note: The software must wait for RXFNEF = 1 (by polling or via the enabled interrupt) before 

reading from RX-FIFO (reading from I3C_RDR or I3C_RDWR, depending upon  

RXTHRES). 

 Bit 4 TXFNFF: TX-FIFO not full flag (whatever the I3C acts as controller/target) 

 This flag is asserted/de-asserted by hardware to indicate that a data byte/word must/must not be 

written to the TX-FIFO. 

 Note: The software must wait for TXFNFF = 1 (by polling or via the enabled interrupt) before 

writing to TX-FIFO (writing to I3C_TDR or I3C_TDWR, depending upon TXTHRES). 

 Note: When the I3C acts as target, if the software intends to use the TXFNFF flag for writing 

into I3C_TDR/I3C_TDWR, it must have configured and set the TX-FIFO preload (write 

PRELOAD in the I3C_TGTTDR register). 

 Bit 3 SFNEF: S-FIFO not empty flag (when the I3C acts as controller) 

 When the I3C acts as controller, if the S-FIFO is enabled (SMODE = 1 in the I3C_CFGR  

register), this flag is asserted by hardware to indicate that a status word must be read from  

the S-FIFO. The flag is de-asserted by hardware to indicate that a status word is not to be  

read from the S-FIFO. 

Bit 2 CFNFF: C-FIFO not full flag (when the I3C acts as controller) 

 When the I3C acts as controller, this flag is asserted by hardware to indicate that a control word 

must be written to the C-FIFO. The flag is de-asserted by hardware to indicate that a control 

word is not to be written to the C-FIFO. 

 Note: The software must wait for CFNFF = 1 (by polling or via the enabled interrupt) before 

writing to C-FIFO (writing to I3C_CR). 

  

Bit 1 TXFEF: TX-FIFO empty flag (whatever the I3C acts as controller/target) 

 This flag is asserted by hardware to indicate that the TX-FIFO is empty. 

 This flag is de-asserted by hardware to indicate that the TX-FIFO is not empty. 

 Bit 0 CFEF: C-FIFO empty flag (whatever the I3C acts as controller) 

 This flag is asserted by hardware to indicate that the C-FIFO is empty when controller, and that 

the I3C_CR register contains no control word (none IBI/CR/HJ request) when target. 

 This flag is de-asserted by hardware to indicate that the C-FIFO is not empty when controller, 

and that the I3C_CR register contains one control word (a pending IBI/CR/HJ request) when 

target. 

 Note: When the I3C acts as controller, if the C-FIFO and TX-FIFO preload is configured  

(TMODE = 1 in the I3C_CFGR register), the software must wait for TXFEF = 1 and  

CFEF = 1 before starting a new frame transfer. 
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4.2.7 I3C own device characteristics register (I3C_DEVR0) 

Address offset: 0x060 

 Reset value: 0x00000000 

 When the I3C peripheral acts as target, this register is used to write or read its own device  

characteristics. 

 When the I3C peripheral acts as controller, the field DA[6:0] is used to write and store its  

own dynamic address 

 
Bits 31:25Reserved, must be kept at reset value. 

 Bit 24RSTVAL: Reset action is valid (when the I3C acts as target) 

 This bit is asserted by hardware to indicate that the RSTACT[1:0] field has been updated on the 

reception of a broadcast or direct write RSTACT CCC (target reset action) and is valid. 

 This bit is cleared by hardware when the target receives a frame start. 

 When the device is not in Stop mode: 

– If RSTVAL = 1: when RSTF in the I3C_EVR register is asserted (and/or the corresponding 

interrupt if enabled), RSTACT[1:0] in the I3C_DEVR0 register dictates the reset action to be 

performed by the software, if any. 

– If RSTVAL = 0: when RSTF is asserted (and/or the corresponding interrupt if  

enabled), the software must issue an I3C reset after a first detected reset pattern,  

and a system reset on the second one. 

 When in Stop mode, the corresponding interrupt can be used to wake up the device. 

 

Bits 23:22RSTACT[1:0]: Reset action/level on received reset pattern  

(when the I3C acts as target) 

 This read field is used by hardware on the reception of a direct read RSTACT CCC in order to 

return the corresponding data byte on the I3C bus. 

 This read field is updated by hardware on the reception of a broadcast or direct write  

RSTACT CCC (target reset action). 

 Only the defining bytes 0x00, 0x01 and 0x02 are mapped, and RSTACT[1:0] = Defining  

Byte[1:0]. 

 00: no reset action 

 01: first level of reset: the application software must either: 

 a) partially reset the peripheral, by a write and clear of the enable bit of the I3C  

configuration register (write EN = 0). This resets the I3C bus interface and the I3C kernel  

sub-parts, without modifying the content of the I3C APB registers (except the EN bit). 

 b) fully reset the peripheral, including all its registers, via a write and set of the I3C reset  
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control bit of the RCC (reset and clock controller) register. 

 10: second level of reset: the application software must issue a warm reset, also known  

 as   a system reset.  

This (see Section11: Reset and clock control (RCC)) has the same impact as a  

pin reset (NRST = 0): 

– the software writes and sets the SYSRESETREQ control bit of the AITR register, when  

   the device is controlled by a Cortex®-M. 

– the software writes and sets SYSRST = 1 in the RCC_GRSTCSETR register, when the  

device is controlled by a Cortex®-A. 

 11: no reset action 

 

 Bits 21:20AS[1:0]: Activity state (when the I3C acts as target) 

 This read field is updated by hardware on the reception of a ENTASx CCC (enter activity  

state, with x = 0-3): 

 00: activity state 0 

 01: activity state 1 

 10: activity state 2 

 11: activity state 3 

 Bit 19HJEN: Hot-join request enable (when the I3C acts as target) 

 This bit is initially written by software when EN = 0, and is updated by hardware on the  

 reception of DISEC CCC with DISHJ= 1 (cleared) and the reception of ENEC CCC with  

 ENHJ= 1 (set). This bit can only be written by software when EN = 0 in the I3C_CFGR  

register. 

 0: hot-join request disabled 

 1: hot-join request enabled 

 Bit 18Reserved, must be kept at reset value. 

 Bit 17CREN: Controller-role request enable (when the I3C acts as target) 

 This bit is initially written by software when EN = 0, and is updated by hardware on the  

reception of DISEC CCC with DISCR = 1 (cleared) and the reception of ENEC CCC with  

ENCR=1 (set). This bit can only be written by software when EN = 0 in the I3C_CFGR  

register. 

 0: controller-role request disabled 

 1: controller-role request enabled 

Bit 16 IBIEN: IBI request enable (when the I3C acts as target) 

 This bit is initially written by software when EN = 0, and is updated by hardware on the  

reception of DISEC CCC with DISINT = 1 (cleared) and the reception of ENEC CCC with  

ENINT = 1 (set). This bit can only be written by software when EN = 0 in the I3C_CFGR  

register. 

 

 0: IBI request disabled 

 1: IBI request enabled 

 Bits 15:8 Reserved, must be kept at reset value. 

 Bits 7:1 DA[6:0]: 7-bit dynamic address 

 When the I3C acts as controller, this field can be written by software, for defining its own  
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dynamic address. 

 When the I3C acts as target, this field is updated by hardware on the reception of either the  

broadcast ENTDAA CCC or the direct SETNEWDA CCC. 

 Bit 0 DAVAL: Dynamic address is valid (when the I3C acts as target) 

 When the I3C acts as controller, this bit can be written by software, for validating its own  

dynamic address, for example before a controller-role hand-off. 

 When the I3C acts as target, this bit is asserted by hardware on the acknowledge of the  

broadcast ENTDAA CCC or the direct SETNEWDA CCC, and this field is cleared by  

hardware on the acknowledge of the broadcast RSTDAA CCC. 

 

 

• TX-FIFO (Transmit FIFO): A memory buffer used to store data that the host processor 

intends to transmit over the I3C bus. Its primary function is to decouple the fast, bursty writes 

from the processor over the APB bus from the slower, serial transmission by the I3C Kernel. 

This prevents the processor from having to wait for each byte to be sent. 

• RX-FIFO (Receive FIFO): A memory buffer that stores data received from the I3C bus by 

the Kernel. This allows the Kernel to receive data at the I3C bus speed and store it, while the 

host processor can read it out in bursts at its own pace. Crucially, both the TX and RX fifos 

are asynchronous (or dual-clock) fifos that perform the vital function of Clock Domain 

Crossing (CDC) between the i3c_pclk and i3c_ker_clk domains. 

• C-FIFO (Command FIFO): This advanced feature allows the host to queue a sequence of 

I3C commands (e.g., Write 3 bytes, then Read 8 bytes). The I3C Kernel can then execute this 

sequence autonomously, reducing the processor's management overhead and interrupt 

frequency. 

• S-FIFO (Status FIFO): Paired with the C-FIFO, this buffer stores the completion status of 

each command executed from the C-FIFO. After a sequence is complete, the processor can 

read this FIFO to check the outcome of each individual operation. 

 

4.3 I3C Kernel 

 
The Kernel is the core intelligence of the I3C controller. It operates in the i3c_ker_clk domain 

and is responsible for all aspects of protocol execution on the I3C bus itself. 

• Controller & Target Finite State Machines (fsms): These are the heart of the Kernel. 

• The Controller FSM implements the logic for when the device is acting as the bus master. It 

sequences through the protocol states required to generate START conditions, transmit 

addresses and commands, manage data transfers, and generate STOP conditions. 

• The Target FSM implements the logic for when the device is acting as a slave. It monitors the 

bus for its address, responds to commands from the controller, and manages In-Band Interrupt 

(IBI)requests. 

(You should include a simplified state diagram for at least the Controller FSM here). 

• Data & Control Serialization/Deserialization: This logic block acts as the interface between 

the parallel data world (inside the fifos and registers) and the serial world of the I3C bus. 

When transmitting, it takes a byte from the TX-FIFO and shifts it out bit-by-bit. When 

receiving, it shifts in bits from the bus, assembles them into a byte, and pushes the byte into 
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the RX-FIFO. 

• Bus Protocol Management: This higher-level logic oversees the rules of the I3C protocol. It 

includes functionality for bus arbitration (if multiple controllers are present), the handling of 

Common Command Codes (cccs) for tasks like Dynamic Address Assignment, and the 

management of Hot-Join events. 

• Clock & Timings Management: This critical block is responsible for generating the I3C 

clock (I3C_SCL) from the faster i3c_ker_clk. It uses programmable dividers (configured via 

the APB registers) to produce various standard I3C clock speeds. It also ensures that all 

protocol timing parameters, such as setup and hold times for the data line (I3C_SDA) relative 

to the clock, are strictly met. 

 

4.4 I3C Bus Interface 

 
This block forms the physical connection between the digital logic of the kernel and the physical 

pads of the integrated circuit. 

• Bus Input & Output Control: This module manages the bi-directional nature of 

the I3C_SDA line and the output-driving of the I3C_SCL line. For I3C, this requires logic to 

control open-drain output drivers (to pull the lines low) and input buffers (to sense the state of 

the lines). 

• GPIO Logic: This block indicates that the physical I3C_SDA and I3C_SCL pins are 

connected through General Purpose Input/Output pads. This logic is responsible for 

configuring these pads to operate in the correct mode for I3C (e.g., open-drain output enable, 

input buffer enable, slew rate control) as directed by the Bus Input & Output Control module. 
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Chapter 5: STM I3C Controller Design 

This is the crucial Block Diagram for the I3C protocol 

 

Figure 62 Communication Mechanism Between Blocks 

 

 

5.1 SCL Generation 

5.1.1 Functionality and Implementation 

The SCL generation module is responsible for generating the serial clock (SCL) signal on the SCL 

line at two different data rates: Push-Pull (12.5 MHz) and Open-Drain (400 KHz). The module takes a 50 

MHz clock as input from the clock divider. The module consists of two main sub-blocks: a finite state 

machine (FSM) and a counter. The FSM has two states, LOW and HIGH, which control whether the SCL 

line is held low or high. The internal signal "switch" is used in conjunction with another counter to toggle 

the state of the SCL signal. The counter value depends on the desired frequency, counting to 125 or 2 

cycles for the Open-Drain or Push-Pull data rates, respectively. 

The module also supports the ability to disable the clock using the " i_pvt_stop" input signal. 

When this signal is active, the FSM remains in HIGH state, keeping the clock signal constant and the 

SCL line continuously high.
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5.1.2 SCL Block 

5.1.3 Block I/Os 

 
Signal Direction Description 

i_sys_clk input 50 MHz clock input 

i_engine_en input Enable signal to initiate the operation 

i_if_pp_od input Used to select the type of SCL signal generation: 1 or 

Push-Pull mode, and 0 for Open-Drain mode 

i_tcas input Clock after start timing (used for START bit timing) 

i_pvt_stop input Indication for stopping the operation and drive SCL 

high 

o_scl output Generated SCL signal 

 
 

5.2 Frame Counter 

5.2.1 Functionality and Implementation 

 

The number of frames required for data transmission in either the SDR mode 

or the I2C mode is determined by the host. The host specifies the maximum number of 

frames to be sent or received by writing this value into the register file. In our system, 

we use a signal called "i_fcnt_no_frms," which is an 8-bit wide signal directly output 

from the register file. This signal serves the purpose of determining the number of 

frames to be transmitted or received. The block has one output “o_fcnt_last_frame” 

that goes high when the last frame is being transmitted informing the I3C Engine or 

the other blocks to stop transmitting or receiving the data frames. 
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5.2.2 Block Diagram 
 

Figure 64 Frame Counter Block Diagram 

 

 

5.2.3 Block I/Os 
 

Signal Direction Description 

i_sys_clk input 50 MHz clock input 

i_sys_rst_n input Asynchronous active-low reset signal 

i_frame_cnt_no_frames input Number of data bytes chose by software 

i_frame_cnt_en input Enable signal for frame counting 

i_read_write_sel input Selection between read and write operations 

i_tx_rx_i2c input Signal to count data bytes in I2C 

i_regf_ccc_command input Count number of data for some commands  

o_i2c_rxfifo_end output Indication for last frame in I2C 

o_frame_cnt_last_frame output Indication for last frame 
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5.3 Timer 

 

5.3.1 Functionality and Implementation 

 
To ensure compliance with the I3C protocol's strict timing specifications, a dedicated 

hardware timer module was implemented. This module is responsible for generating two 

critical timing delays mandated by the standard: t_cas (Clock After START) and t_aval (Bus 

Available Condition). The module is designed to be controlled directly by the I3C Kernel's 

main Finite State Machine (FSM), offloading the complexity of stateful counting and 

allowing the FSM to operate more efficiently. 

 

The timer module is a synchronous digital circuit that contains two independent, parallel 

timing units within a single module: one for the t_cas parameter and one for 

the t_aval parameter. This parallel architecture allows both timing functions to be 

conceptually separate and simplifies the control logic, at the minor expense of requiring 

two separate counter registers. 

 

This implementation provides a robust and simple-to-control timing utility. By delegating 

the counting task to this module, the I3C Kernel's FSM design is significantly simplified, as 

it only needs to manage the level-sensitive enable signals rather than initiating and 

monitoring a pulse-based handshake. 

 

5.3.2 Block Diagram 
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5.3.3 Block I/Os 

 
 

Signal Direction Description 

i_sys_clk input 50 MHz clock input 

i_sys_rst_n input Asynchronous active-low reset signal 

i_tx_rx_tcas_en input Enable signal from the I3C 

Kernel,The t_cas timer is active for the entire 

duration that this signal is held high. 

i_tx_rx_taval_en input Enable signal for the t_aval timer 

i_regf_tcas input  A 7-bit value loaded from the I3C register 

file, defining the target count for 

the t_cas delay. This makes the delay 

programmable by the host processor 

i_regf_taval input An 8-bit value from the register file defining 

the target count for the t_aval delay 

o_pvt_tcas_dn output A signal that pulses high for a single clock 

cycle to indicate that the t_cas timer has 

completed its count 

o_pvt_taval_dn output A single-cycle pulse indicating the completion 

of the t_aval timer 

 

 



90  

5.4 SDA Interface 
 

5.4.1 Functionality and Implementation 
 

This block contains the TX and RX of the kernel. It has 9 operating modes that are defined 

 using the” i_pvt_tx_rx_mode” signal from FSM block. 

Table 28 Controller Tx Operating Modes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• START_BIT: Generates the start bit by waiting till the SCL is high and then pulling the sda low 

for time “tcas” that is output from the timer block. 

• SERIALIZING: It’s the core of the SDA interface and this mode serializes the 8-bit data packets 

and addresses from the register file and sends them on the SDA line.  

• DESERIALIZING: It’s the core of the SDA interface and this mode deserializes the 8-bit data packets 

and addresses from SDA line and sends them to the register file.  

• STOP: It sends stop bit by waiting for SCL line to be high and then pulls SDA line to high. 

• ONE_NACK_TX: Used by the controller wants to terminate the request when the target sends 

its address by leaving the bus on the high impedance state. 

• ZERO_ACK_TX: Used when the controller wants to send the ACK bit after accepting the request. 

• REPEATED_START: Like the start bit, but the repeated start usually comes between two frames 

without a STOP bit. 

• ACK_NACK_RX: The controller receives ACK or NACK from the target. 

 

• DETECT_START: The controller detects a start from the target in IBI and hot-join. 

 

i_pvt_tx_rx_mode Value Operating Mode 

0000 START_BIT 

0001 RE_START_BIT 

0010 SERIALIZING 

0011 DESERIALIZING 

0100 ZERO_ACK_TX 

0101 ONE_NACK_TX 

0111 ACK_NACK_RX 

1000 STOP 

1001 DETECT_START 
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5.4.2 Block I/Os 

 

Signal Direction Description 

i_sys_clk input 50 MHz clock input 

i_sys_rst_n input Asynchronous active-low reset signal 

i_scl input Serial clock signal 

i_tx_rx_en input Enable signal from the FSM block 

i_t_bit input Ninth bit sent with data byte 

i_regf_wr_rd input Used to select the Read / Write operation: 1 for 

Read and 0 for Write 

i_regf_cr_init input Used to select between: 1 for Controller and 0 for 

Target 

i_pvt_size_mode input Size selection for serializing / deserializing state: 

00 for Address, 01 for Data and 10 for CCC 

address/Data 

i_pvt_tx_rx_mode input Mode for selection of functions  

i_sda_data input SDA bus input  

i_address_7e input Indication signal to send 7e address 

i_ctrl_first_time input To differentiate between sending first address(7e) 

or target address  

i_ctrl_daa input Enable Signal for daa operation 

i_ctrl_ccc input Enable Signal for CCC operation 

i_ctrl_i2c input Enable Signal for I2C operation 

i_ctrl_i2c_data_r input Signal to differentiate between I3C and i2C data 

i_regf_ccc_cmd input 8-bit CCC command from register file 

i_daa_7e_read input Signal for read operation in DAA to read ID,BCR 

and DCR of the target 

i_regf_data input Frame Data read from the register file 

i_regf_address input Target Address  

i_ser_en input Serializer enable signal 
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i_taval_done input Done signal from Timer block that indicates of 

completing bus available condition 

i_tcas_done input Done signal from Timer block that indicates of 

completing clock after start time 

i_devri_tgt_address input Target address stored in register file in DAA 

o_scl_pp_od output Used to select the type of SCL signal generation: 1 

for Push-Pull mode, and 0 for Open-Drain mode 

o_sda_data output Serialized data output on the line 

 output  

o_pvt_mode_done output Indicator for Pvt_Msg block about mode done 

o_pvt_ack_nack output Ack output for the Pvt_Msg block 

sda_oen output Enable signal for SDA tri-state buffer 

o_regf_address output Received Address to be stored in a register file  

o_reg_ibidr output  

o_reg_ibidcnt output Number of data bytes in IBI 

o_is_ibi_req output  

o_start_detect output Start detection signal in IBI and hot-join sent to 

FSM block 

o_taval_idle output Enable signal for timer block to start the bus 

available condition 

o_tcas output Enable signal for timer block to start the clock after 

start time 

o_last_frame_ibi output Indication signal for last data byte in IBI 

o_address_match output Indication signal for matching address in IBI and 

hot-join to be sent to FSM block 

o_is_hj_req output  

o_regf_data output Received Data to be stored in a register file  
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4.1.1 Register File 

4.1.1.1 Functionality and Implementation 

Simple register file with depth 1024. We communicate with the host via this register file, 

so we write for the host in specific defined addresses, and we read from the host the data that it 

writes in the register file and the host is modeled as a testbench. The addresses of the register 

file are chosen based on the message we want to convey, and they are defined as follows: 
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5.5 FSM Block 

5.5.1 Functionality and Implementation 

- The FSM block is responsible for controlling the flow of all operations read or write messages 

and makes the frame. It controls the SDA interface block of transmitting and receiving frames. 

It sends and receives the data in both data rates, push-pull, and open-drain. It does so by 

controlling all the universal blocks. 

 

- This FSM contains 10 states that are being controlled using the ”current_state” and “next_state”  
signals 

 

 

 

 

 

 

 
 

 

 

• IDLE: Idle state for controller. 

• TCAS: Clock after start state, the state after bus available condition is achieved. 

• START_CONDITION: To send start bit on the SDA line by driving it low. 

• ADDRESS: Serializing the target’s address stored in register file. 

• ACK_WAITING: Wait for ACK/NACK from target state and to send ACK/NACK as a 

response to target’s request. 

• SERIALIZING_DATA: Serializing/Deserializing data state. 

• COMMAND: To send an 8-bit command in CCC operations. 

• REPEATED_START: Same as start condition but comes between two frames without stop bit. 

• STOP: To send a stop bit by driving SDA line high when SCL is high. 

 

current_state  Value STATE 

0000 IDLE 

0001 TCAS 

0010 START_CONDITION 

0011 ADDRESS 

0100 ACK_WAITING 

0101 SERIALIZING_DATA 

0110 COMMAND 

0111 REPEATED_START 

1000 RECIEVE_ADDRESS 

1001 STOP 
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Figure 142 XILINX ARTIX-7 FPGA 

Chapter 6 

6 MIPI I3C Controller Implementation 

6.5 FPGA Board Features 
The chosen FPGA is XILINX ARTIX-7 xc7a35tcpg236-1 from Digilent and Xilinx: 

 

It supports the following features: 

Table 46 Artix-7 FPGA Specifications 
 

System Clock Up to 450 MHZ 

Logic cells 33,280 in 5200 slices 

Block RAM 1800 Kbits 

DSP Slices 90 

Pmod I/Os 
3 connectors 

(each supports 8 I/Os) 

Switches 16 

Buttons 5 

User LED 16 

7-Seg 4-Digit 

VGA 12-bit 

USB HID Host 

I/O Voltage 3.3 V 
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6.6 Timing Constraints 

In general, there are a variety of constraints that need to be met for the design to be 

validated, as: 

- Timing Constraints 

- Modeling the world external to the Block 

- Optimization goals and Timing Exceptions 

But for the design requirements and the fact that it will go through FPGA Prototyping 

requirements only, meaning no ASIC based constraints would be needed, hence, only Timing 

Constraints will be our interest. 

Timing Constraints can generally cover: 

- Primary clock Generation 

- Generated Clock 

- Transition Delay 

- Clock Uncertainty 

- CDC Constraints 

- Input/Output Delay 

- External Feedback Delay 

- Logical Exclusive Clock Groups 

- Physical Exclusive Clock Groups 

 

For our FPGA Requirements, we will only have an interest in Primary Clock, Generated Clock, 

Input/Output Delay and Clock Uncertainty. 

 

There are no multi-clock domains in our I3C Design as the System Clock only feeds the clock 

divider which in-turns feeds all the blocks, so there is no need to for CDC constraints, and the 

other constraints like Transition Delay and External Feedback are mainly considered when 

dealing with ASICs. 



97  

- Primary Clock and Generated Clock 
 

Figure 143 clock and generated clock generation constraints 

 

 

- Input/Output Delay Constraints 
 

Figure 144 Input/Output Delay Constraints 

 

 

- Clock Uncertainty 
 

Figure 145 Clock Uncertainty Constraints 

 

 

- FPGA Environment Setting 
 

Figure 146 FPGA Environment Setting 
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- Pin Mapping 
 

 

Figure 147 Pin Mapping 
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Figure 149 FPGA Kit Pins reset and controller enable 

controller valid and done 

scl and sda 

Time Budget: 

We agreed for a clock budget as follows: 

 

     

3 ns 3 ns 3 ns Logic delay slack 
 

20 ns 
Figure 148 Design Time Budget 

Normally, clock uncertainty especially setup delay would be 15 ~ 30 % from clock period, 

same for input and output delays, so here we have: 

- Setup delay = 3 ns 

- Input delay = 3 ns (max value = 3 ns while min value = 1 ns) 

- Output delay = 3 ns (max value = 3 ns while min value = 1 ns) 

- Logic will have a free delay of 11 ns before we get negative slack 

Also, for pin mapping, pins on the FPGA Kit will be as follows: 
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6.7 Vivado Xilinx – AMD FPGA Flow 

6.7.1 Elaboration 

Resulted schematic from Elaboration: 
 

Figure 150 Elaboration output schematic 

If we wanted to look in depth of a certain block after elaboration, we will find that our 

design translated to gates, muxs and Flip-Flops, for example, controller-tx block after 

elaboration: 

Figure 151 controller_tx after elaboration 
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6.7.2 Synthesis 

Resulted schematic from Synthesis: 
 

 

Figure 152 synthesis output schematic 

 

 

Also, If we wanted to look in depth of a certain block after synthesis, we will find that our 

design translated to LUTs for example, controller-tx block after synthesis: 

Figure 153 controller_tx after synthesis 
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For timing after synthesis, we get the following: 

 

Figure 154 timing result after synthesis 

We can notice a positive slack of 1.780 ns, that resulted after multiple iterations of solving 

timing violations that resulted due to our restricted old Time budget, where we assumed 

setup time to be 4 ns and input/output delay of 4 ns which resulted in the following: 

 

Figure 155 negative slack violation 

 

 

And the resulted utilization pf resources after synthesis: 

 

Figure 156 utilization after synthesis 
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Resulted Clock Network and Interaction: 
 

Figure 157 clock network 

 

 

Figure 158 clock interaction 

 

And for system power usage estimation after synthesis: 

We can notice that dynamic power is 6% of the total power, which is valid. 
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Figure 159 implementation results 

6.7.3 Implementation 

Resulted Implementation of our design on the device: 

Figure 160 zoom on LUTs of the design 
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For timing after implementation, we get the following: 

 

Figure 161 timing after implementation 

 

 

Utilization after implementation: 

 

Figure 162 utilization after implementation 

 

 

Notice that Artix-7 FPGA has optimized Area usage which appear when we compare 

utilization after synthesis Figure 99 and utilization after implementation Figure 105 
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6.7.4 Bitstream Generation 

After finalizing the flow above, the next station of the flow would be FPGA Program and 

debugging section, b clicking Generate Bitstream we get a .bit file that is a hex file of the 

designed system: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 163 bitstream file 
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6.8 FPGA Debugging 
After uploading the bitstream file on the FPGA, debugging the design on the FPGA 

Hardware is required and here, Integrated Logic Analyzer is one of the best approaches 

that assures a Function-Like simulation but with signals running on a real-time hardware. 

 

− First, Designing the Integrated Logic Analyzer (ILA): 

From IP Catalogue, we choose Debugging and Verification and then choose ILA: 
 

Figure 164 ILA from IP Cata;ogue 

Then we design our ILA as follows: 
 

Figure 165 ILA Design 
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Figure 167 schematic after synthesis 

This will result in a module of the ILA that we can instantiate in our top module and 

connect the signals we would like to monitor to the probes inputs of the ILA: 

Figure 166 ILA Instance 

 

 

Here we would like to debug our design by monitoring these signals: 

− sda and scl: as they are our main bus, and all the data will be on them 

− reset and enable: to program the ILA to trigger when bot change to monitor bus starting 

conditions 

− rx and tx mode signals: to monitor the state of the bus driving blocks which are our 

controller_tx and controller_rx 

 

 

− Second, Re-running the FPGA Flow including the ILA: 

The Logic Analyzer will be integrated in our system as follows: 
 

Figure 168 Integrated Logic Analyzer 
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Resulted timing after implementation with ILA: 
 

Figure 169 timing after implementation with ILA 

Notice the huge increase in the total number of endpoints due to the integration of the ILA. 

 

Hence, we can connect our FPGA and upload our new bitstream file including the ILA, 

and a use case we can use the ILA is checking the bus initialization with the start condition 

timing examination as follows: 

 

Figure 170 start condition on FPGA using ILA 

Our trigger setup here is when the controller_en signal equals 1 and the reset signal equals 

1, which reflects the start of the I3C Flow. 

 

The Red Trigger cursor rises when both the reset signal and the enable signal are 1, 

announcing the start of the bus to be initialized, and the ILA shows a capture of the 

waveform after this condition, where the start condition occur as the scl signal falls to 0 

while sda is high and then the sda signal falls to 0 after tCAS from the scl falling time. 
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6.9 How to choose the perfect FPGA for your Design? 
Before we stick to our ARTIX-7 FPGA, we took a little trip in FPGA world that different 

vendors offer and also different models form the same vendor, we worked with the 

following FPGAs in our design and got the same results functionally, but they are far 

different in optimization and constraining aspects: 

1. XILINX SPARTAN-7 XC7S15: from Xilinx AMD 
 

Figure 171 XILINX SPARTAN-7 XC7S15 FPGA 

2. ALTERA CYCLONE IV FPGA: from Intel Altera 

Figure 172 ALTERA CYCLONE IV FPGA 

3. XILINX ARTIX-7 xc7a35tcpg236-1: from Xilinx AMD and Digilent 
 

Figure 173 XILINX ARTIX-7 xc7a35tcpg236-1 
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After using the three FPGAs with our design, we found the following results: 

 

- For Timing Closure strictness: using the same timing constraints for the three. 

Table 47 Timing Closure for the Three FPGAs 

 

 

 

Spartan-7 

FPGA 

It was moderate for our assumed time budget: 

we based our time budget to be mainly strict, just for our design to be 

compatible with any timing environment whatever how strict it gets, and 

Spartan-7 showed great timing results with a positive slack of 0.571 ns: 

 

 

 

 

Altera 

Cyclone IV 

The loosest timing closure of them all: 

With the same constraints that we used for the other FPGAs; timing closure 

was met with a 6.7 ns positive slack: 

 
 

 

 

 

Artix-7 

FPGA 

The strictest timing closure of them all: 

As we used the same constraints that we used for Spartan-7 FPGA but resulted 

in a negative slack of 0.220 ns: 
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- For Area Optimization: using no area constraints, leaving optimization up to each FPGA 

Table 48 Area optimization of the three FPGAs 

 

 

 

 

Spartan-7 

FPGA 

It was moderate, with a difference of only one LUT from Artix-7: 

490 used LUTs, 689 Slice Registers and 92 total Muxs and 599 Slices are used 
 

 

 

 

 

 

Altera 

Cyclone IV 

Nearly no area optimization occurred: 

After Fitting and utilization, the results are far free of any optimization compared 

to the two Xilinx’s FPGAs, as 1775 LUTs with a total of 1203 registers were used 
 

  

 

 

 

 

 

Artix-7 

FPGA 

The strictest Area optimization (in numbers) with no difference from Spartan- 

7 FPGA: The resulted utilization of FPGA resources has proved that there are 

489 used LUTs, 689 Slice Registers and 92 total Muxs and 590 Slices 

 

From these results, Artix-7 FPGA is the strictest in Timing and Area Closures, hence we used it 

to assure the strictest test and prototyping were met to make sure that our IP is ready to be used 

in strict timing or area environment. 
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