

Digital Design and Verification of I3C protocol

Omar Mohamed Rizk, Salah-Eldin Attia Sayed, Youssef Soliman Mohammed,

 Abd-El Rahman Mohammed Kamal, Marina Mounir Fouad

Electronics and Communications Engineering Department Faculty of Engineering, Helwan

University

July 2025

4th Year of Electronics and Communication Engineering Department

Design and Verification of I3C protocol

 Names:

- Marina Mounir Fouad Shamandi

- Salah Eldin Attia Sayed

- Youssef Soliman Mohammed Fathallah

- Omar Mohamed Rizk Ibrahim

- Abd El-Rahman Mohamed Kamal El-Din

 Supervised By

 Dr. Mohamed EL-Dakroury

 Eng. Abdulkareem Mohamed

 Eng: Ahmed Abdelsalam

 Sponsored By

 ST Microelectronics

Declaration

We hereby certify that this project submitted as part of our partial

fulfillment of BSc in Electronics and Communications Engineering is

entirely our own work, that we have exercised reasonable care to

ensure its originality and does not to the best of our knowledge breach

any copyrighted materials and have not been taken from the work of

others and to the extent that such work has been cited and

acknowledged within the text of our work. Signed

Acknowledgment

All praise for ALLAH, our only lord and ruler. If it weren’t for ALLAH’s

help and mercy, we wouldn’t be able to make it this far into the Project.

We thank our supervisor, Dr. Mohamed EL-Dakroury, for encouraging us

throughout the year and for his support and guidance.

Thanks to our mentors in STMicroelectronics Inc, Eng.Abdulkareem

Mohamed, Eng. Ahmed Abd-Elsalam for their dedication and guidance. Also, we

would like to thank Dr. Ahmed Salah for providing us with the required

Hardware kit for completing our project.

 Finally, we would like to express our gratitude to our parents and close

friends. Without their understanding and encouragement in the past few years, it

would have been impossible for us to complete our studies.

5

Abstract

This thesis presents the design and verification of the MIPI I3C protocol for

STMicroelectronics microcontrollers (MCUs), focusing on a complete functional

implementation and validation of the protocol. The I3C protocol is a modern serial

communication standard that integrates the advantages of I²C and SPI, offering

higher speed, improved power efficiency, and dynamic address assignment,

making it well-suited for embedded systems and MCU-based applications.

The project involves the design, integration, and verification of an I3C

Controller that facilitates efficient communication between I3C Targets and

Controllers, ensuring data integrity, arbitration handling, and error detection. The

design is implemented in Verilog HDL and verified through an extensive testbench

environment, incorporating APB-based register access, private messaging,

asynchronous FIFOs, and frame management. Functional validation is conducted

using simulation and FPGA-based prototyping, ensuring compliance with

STMicroelectronics' MCU requirements.

Verification is performed using a comprehensive testbench, including APB

register read/write operations, private message transactions, and real-time data

exchanges.

The implementation is evaluated based on protocol compliance, timing

performance, and resource utilization, ensuring the design meets the

specifications of STMicroelectronics' MCU communication frameworks.

 The results of this thesis demonstrate a fully functional I3C Controller,

successfully Integrated and verified for MCU-based applications, providing a

reliable and efficient communication solution. This work contributes to the

advancement of I3C Protocol implementations and lays the foundation for future

enhancements and optimizations in embedded system designs.

6

Contents
Chapter 1: Introduction ... 19
1.1 Communication Protocols ... 19

1.2 From I
2

C to I3C ... 19
1.3 Motivation for MIPI I3C ... 20
1.4 MIPI I3C Main System .. 22
1.5 Introduction to Push-Pull Based Communication ... 23

1.5.1 Open Drain Circuit ... 23
1.5.2 Push-Pull Circuit ... 24
1.5.3 Keeper Circuits .. 26

Chapter 2: MIPI I3C Protocol ... 27
2.1 MIPI I3C Message Types... 27
2.2 MIPI I3C Communication Modes ... 28

2.2.1 I3C Single Data Rate (SDR Mode) ... 28
2.2.2 I3C High Data Rate (HDR Mode) ... 28

2.3 Bus Configurations .. 29
2.3.1 Device Roles .. 29
2.3.2 Point to Point Communication .. 33
2.3.3 MIPI I3C Device Characteristics ... 33

2.4 Bus Conditions ... 35
2.5 Bus Communication .. 36

2.5.1 I3C Message Elements .. 36
2.5.2 SDR Message Types .. 38
2.5.3 Role of I3C Target ... 39
2.5.4 I3C Address Header ... 40

2.6 SDR Data Word ... 45
2.6.1 Handoff From Address ACK to SDR Controller Write Data ... 45
2.6.2 Ninth Bit of SDR Controller Written Data As Parity ... 46
2.6.3 Ninth Bit of SDR Target Returned (Read) Data as End-of-Data .. 47

Chapter 3: Main Features .. 48
3.1 Dynamic Address Assignment ... 48

3.1.1 Data Given From The Host .. 48
3.1.2 Address Assignment Rules ... 49
3.1.3 Dynamic address assignment procedure ... 49
3.1.4 ENTDAA Frame Format ... 51
3.1.5 Dynamic Address Assignment Error Case and Handling .. 51

3.2 Hot-Join Mechanism ... 52
3.2.1 Hot-Join Flow Procedure .. 52
3.2.2 Hot-Join Frame Format .. 53
3.2.3 Hot-Join Target Requirements ... 53

3.3 In-Band Interrupt ... 55
3.3.1 Priority level ... 55
3.3.2 Interrupt request ... 55
3.3.3 Mandatory Data Byte (MBD) ... 56
3.3.4 IN-Band Interrupt Frame Format .. 56

3.4 Common Command Codes (CCCs) .. 57
3.4.1 Enter Activity State 0-3 (ENTAS0-ENTAS3) ... 57
3.4.2 Get Device Status (GETSTATUS) .. 58
3.4.3 Target Reset Action (RSTACT) .. 59

7

3.5 I²C Legacy Communication ... 63
3.5.1 I²C Legacy Frame Format .. 63
 63

Chapter 4: STM I3C System Architecture ... 64
4.1 APB Interface Block ... 65
4.2 Registers ... 65

4.2.1 I3C message control register (I3C_CR) .. 65
4.2.2 I3C message control register [alternate] (I3C_CR) .. 69
4.2.3 I3C configuration register (I3C_CFGR) ... 70
4.2.4 I3C receives data byte register (I3C_RDR) .. 75
4.2.5 I3C transmit data byte register (I3C_TDR) ... 76
4.2.6 I3C event register (I3C_EVR) .. 76
4.2.7 I3C own device characteristics register (I3C_DEVR0) ... 81

4.3 I3C Kernel ... 83
4.4 I3C Bus Interface .. 84
Chapter 5: STM I3C Controller Design ... 85

5.1 SCL Generation ... 85
5.2 Frame Counter ... 86
5.3 Timer .. 88
5.4 SDA Interface .. 90
5.5 FSM Block .. 94
5.5.2 Block I/Os ... Error! Bookmark not defined.
5.5.3 FSM ... Error! Bookmark not defined.

5.6 I2C Legacy Mode ... Error! Bookmark not defined.
5.7 Dynamic Address Assignment .. Error! Bookmark not defined.
5.8 Hot-Join Management .. Error! Bookmark not defined.
5.9 In-Band Interrupt Management... Error! Bookmark not defined.
5.10 Controller Role Request Management .. Error! Bookmark not defined.
5.11 Timer .. Error! Bookmark not defined.
5.12 I3C Engine .. Error! Bookmark not defined.

Chapter 5 ... 95
6 MIPI I3C Controller Implementation .. 95

6.5 FPGA Board Features ... 95
6.6 Timing Constraints.. 96
6.7 Vivado Xilinx – AMD FPGA Flow .. 100
6.8 FPGA Debugging .. 107
6.9 How to choose the perfect FPGA for your Design? .. 110

References ... 113

8

List of Figures

FIGURE 1 TYPICAL IOT DEVICE ARCHITECTURE ... 20
FIGURE 2 I3C MODES VS I2C EFFECTIVE ENERGY RANGE PER 1KB (ΜJ) .. 21
FIGURE 3 I3C MODES VS I2C EFFECTIVE BITRATES FOR 12.5 MHZ CLOCK (MBPS) ... 21
FIGURE 4 MIPI I3C SYSTEM DIAGRAM .. 22
FIGURE 5 OPEN-DRAIN CIRCUIT .. 23
FIGURE 6 PUSH DOWN CASE IN OPEN DRAIN CIRCUITS ... 23
FIGURE 7 PULLING UP CASE IN OPEN DRAIN CIRCUITS ... 24
FIGURE 8 PUSH-PULL CIRCUIT ... 24
FIGURE 9 PUSH DOWN CASE IN PUSH-PULL CIRCUITS ... 24
FIGURE 10 PULLING DOWN CASE IN PUSH-PULL CIRCUITS ... 25
FIGURE 11 PUSH-PULL DISCHARGING PROBLEM ... 25
FIGURE 12 KEEPER CIRCUIT .. 26
FIGURE 13 MIPI I3C BUS BLOCK DIAGRAM .. 31
FIGURE 14 SHARED PERIPHERAL DEVICE .. 31
FIGURE 15 I3C SECONDARY CONTROLLER .. 32
FIGURE 16 I3C BRIDGING AND ROUTING DEVICES ... 32
FIGURE 17 POINT TO POINT CONNECTION .. 33
FIGURE 18 MIPI I3C BUS CONDITIONS ... 35
FIGURE 19 I2C MESSAGE ... 36
FIGURE 20 START CONDITION FIGURE 21 STOP CONDITION .. 36
FIGURE 22 T-BIT WHEN TARGET ENDS READ AND CONTROLLER GENERATES STOP.. 37
FIGURE 23 T- BIT WHEN TARGET AND CONTROLLER AGREE TO CONTINUE READ MESSAGE ... 37
FIGURE 24 I3C MESSAGE TYPES ... 38
FIGURE 25 IN-BAND INTERRUPT REQUEST FRAME ... 41
FIGURE 26 CONTROLLER ROLE REQUEST FRAME .. 41
FIGURE 27 HOT-JOIN REQUEST .. 41
FIGURE 28 PRIVATE WRITE BY I3C CONTROLLER VS IBI REQUEST BY I3C TARGET ... 42
FIGURE 29 PRIVATE READ BY I3C CONTROLLER VS CONTROLLER ROLE REQUEST BY I3C TARGE .. 42
FIGURE 30 PRIVATE WRITE BY I3C CONTROLLER VS CONTROLLER ROLE REQUEST BY I3C TARGET .. 43
FIGURE 31 PRIVATE READ BY I3C CONTROLLER VS IBI REQUEST BY I3C TARGET ... 43
FIGURE 32 TRANSITION FROM ADDRESS ACK TO MANDATORY BYTE DURING IBI .. 45
FIGURE 33 PARITY BIT USING X OR .. 46
FIGURE 34 DYNAMIC ADDRESSES AVAILABLE FOR USE .. 49
FIGURE 35 BROADCAST WRITE FOR DAA ... 49
FIGURE 36 ENTDAA CCC .. 49
FIGURE 37 BROADCAST READ FOR TARGET DATA .. 50
FIGURE 38 TARGET'S 8 BYTES DATA.. 50
FIGURE 39 DYNAMIC ADDRESS ASSIGNED WITH ODD PARITY ... 50
FIGURE 40 I3C BROADCAST ENTDAA CCC– SENT BY THE CONTROLLER .. 51
FIGURE 41 HOT-JOIN REQUEST TRANSFER, AS CONTROLLER/TARGET .. 53
FIGURE 42 IBI SEQUENCE WITH MANDATORY DATA BYTE ... 55
FIGURE 43 MDB FIELD FORMAT ... 56
FIGURE 44 IBI TRANSFER, AS CONTROLLER/TARGET .. 56
FIGURE 45 ENTASX BROADCAST FORMAT ... 57
FIGURE 46 ENTAS DIRECT FORMAT ... 58
FIGURE 47 GETSTATUS FORMAT 1 ... 58
FIGURE 48 GETSTATUS FORMAT 2 USING PRECR ... 59
FIGURE 49 I3C BROADCAST CCC WRITE (EXCEPTED ENTDAA, RSTACT) .. 60
FIGURE 50 "I3C DIRECT CCC WRITE – 1ST PART / MULTIPLE 2ND PARTS (EXCEPT RSTACT)" .. 60
FIGURE 51 FIGURE 52 "I3C DIRECT CCC READ – 1ST PART / MULTIPLE 2ND PARTS (EXCEPT RSTACT)" .. 61

9

FIGURE 53 LEGACY I2C WRITE MESSAGES - AS CONTROLLER ... 63
FIGURE 54 LEGACY I2C READ MESSAGES - AS CONTROLLER .. 63
FIGURE 55 I3C CONTROLLER ARCHITECTURE TOP MODULE .. 64

10

List of Tables

TABLE 1 COMPARISON BETWEEN I2C AND MIPI I3C ... 21
TABLE 2 DEVICE ROLES ON I3C BUS .. 29
TABLE 3 BUS CHARACTERISTICS REGISTERS ... 34
TABLE 4 DEVICE CHARACTERISTICS REGISTERS ... 34
TABLE 5 START AND STOP TIMING PARAMETERS .. 36
TABLE 6 I3C TARGET ADDRESS RESTRICTIONS ... 44
TABLE 7 HOT-JOIN STANDARD VS PASSIVE MEHODS ... 54
TABLE 8 ENTER ACTIVITY STATE 0-3 COMMAND CODES .. 57
TABLE 9 MINIMUM BUS ACTIVITY INTERVAL ... 57
TABLE 10 GETSTATUS MSB-LSB ... 58
TABLE 11 GETSTATUS MSB-LSB ... 59
TABLE 12 LIST OF SUPPORTED I3C CCCS, AS CONTROLLER/TARGET ... 61
TABLE 13 LIST OF SUPPORTED I3C CCCS, AS CONTROLLER/TARGET (CONTINUED) .. 62

11

List of Abbreviations

MIPI Mobile Industry Processor Interface

I3C Improved Inter-Integrated Circuit

STM STMicroelectronics

MCU Microcontroller Unit

SDR Single Data Rate

HDR High Data Rate

SDA Serial Data

SCL Serial Clock

HDR-DDR High Data Rate Dual Data Rate Mode

HDR-TSL High Data Rate Ternary Symbol Legacy

HDR-TSP High Data Rate Ternary Symbol Pure

HDR-BT High Data Rate Bulk Transport

DMA Direct Memory Access

D2D Device to Device Communication

IOT Internet of Things

DAA Dynamic Address Assignment

HJ Hot-Join

IBI In-Band Interrupt

CRR Controller Role Request

CRH Controller Role Handoff

TrDA Data Rising Time

Vol Output low voltage level

CCC Common Command Codes

DCR Device Characteristics Registers

BCR Bus Characteristics Registers

LVR Legacy Characteristics Registers

TCBS Clock Before Stop

LUT Look Up Tables

FSCL SCL Frequency

tCAS Clock After Start

tBUF Bus Free Clock

tAVAL Bus Available Clock

tIDLE Bus Idle Clock

APB Advanced Peripheral Bus

19

 Chapter 1: Introduction
1.1 Communication Protocols

Communication protocols have been a main part of the Electronics and Communications Industry,

especially protocols that focus on the Inter-Integrated Circuit communication, like communication

between two blocks in a processor, or the communication between the processor itself and other blocks in

the system, or even the communication between the whole system and other peripherals like the

communication between the processor and the sensor.

Communication Protocols act as the traffic light that governs the roads, preventing any

congestions, accidents or failure to reach destinations, here our traffic light is the protocol itself which is

being controlled by the controller or in the old naming the “Master”, our road is the bus, and our cars

are the messages that need to be delivered between the controller and the destinations which are our

targets or in the old naming “Slaves”, also a communication could occur between each destination and

the others without the need of the main controller in the name of D2D (Device to Device

Communication) which new protocols like MIPI I3C cover.

There are many communication protocols that specialize in the Inter-Integrated Circuit

communications like: SPI, UART, I2C and now I3C, each protocol excels in a set of jobs and is needed

when the application requires a specific feature, like the use of SPI when devices count is a priority or

the use of I2C when low cost is required.

1.2 From I2C to I3C

I2C is a great communication protocol when it comes to a processor that needs to relate to a set of

devices, as mentioned above, its low cost made it a go-to in many scenarios, especially in embedded

systems and IOT. To keep up with the increasing revolutionary requirements of the industry, I2C new

versions were released, which their low- cost ability to communicate worked perfectly with the required

jobs, it worked good enough that there was no need for a major update, only newer versions of the same

I2C were developed.

The changing in requirements has made I2C so limited and problematic, with the increasing use of

sensors, especially Wireless Devices, hence a new upgrade in the communication protocols had to be

done, and a new protocol with a huge update to the I2C is developed to solve the problems that none of

the old protocols had the ability to solve including Bandwidth and Pin count with respect to increasing the

number of sensors.

20

1.3 Motivation for MIPI I3C

I3C was developed to face sensor integration problems by providing fast , low cost , low power and

managed two wire digital interface with a backward compatibility with legacy I2C devices. I3C Main

Concerns were the use of low Energy for Data and control Transfers while reducing numbers of physical

pins used by the interface.

Figure 1 Typical IoT Device Architecture

I3C Main Purposes:

- Improve I2C Features.

- Multi drop between host processors and peripheral Devices.

- Providing an easier design for System Design Engineers.

This last point has been a great addition to I3C’s set of features as it saved time, cost and

effort that used to be needed to implement interfaces between each device and the protocol,

but thanks to the I3C target BCR and DCR which we will discuss shortly, it has become an

easy task for System Engineers to integrate or work with MIPI I3C.

21

So, if we want to preview a comparison between these protocols, The I2C and The MIPI I3C:
Table 1 Comparison Between I2C and MIPI I3C

Feature I3C I2C

Speed & Efficiency High-Speed & Power-Efficient Less Speed & Power-Efficient

Address Assignment Dynamic Address Assignment Static Address Assignment

Maximum Clock Speed SDR Mode: 12.5 MHz

HDR-DDR Mode: 25 MHz

HDR-TSL Mode: 33 MHz

Standard Mode: 100 KHz

Fast Mode: 400 KHz

Fast Mode+: 1 MHz

High-Speed Mode: 3.4 MHz

Driver Type Push-Pull & Open Drain Open Drain Only

Effective Data Rate 33.3 Mbps 3 Mbps

Figure 2 I3C Modes Vs I2C Effective Energy Range per 1kB (μJ)

Figure 3 I3C Modes Vs I2C Effective Bitrates for 12.5 MHz Clock (Mbps)

22

1.4 MIPI I3C Main System

The Generic I3C System would be:

Figure 4 MIPI I3C System Diagram

From the System Diagram, we can notice that The I3C System mainly consists of three pillars, The

Controller, The Target, and The Bus itself, as each one has a specific role:

- The Controller: It controls the bus and governs communication with the target.

- The Target: It is the destination that receives the data and checks for any errors.

- The Bus: It carries the data between the controller and the target, and it consists of two main

parts:

o SDA (Serial Data): A bi-directional data pin that carries data between devices.

o SCL (Serial Clock): can either be a clock pin or a bi-directional data pin in certain HDR-

Modes.

23

1.5 Introduction to Push-Pull Based Communication
Many Communication protocols have worked with the well-known Open-Drain Circuit such as

I2C, as Open-Drain enabled point-to-point (2-ports) based communication good enough that no other

circuit was needed, but technology needed faster communication, which is done with the help of Push-

Pull circuits.

1.5.1 Open Drain Circuit

Here, the SDA and SCL lines are always pulled up to the

VDD through the Pull-Up resistor that may be connected in any

of these ways:

1. As a Passive Resistor connected to VDD

2. As a Passive Resistor Connected to a Current

Source

3. In any other approach that ensures that the SDA rises

within the allowed Data Rising Time (trDA), Targets

with output low voltage level (Vol) can drive SDA

low within the allowed (trDA)

Open-Drain Circuits work as follows:

• Pushing Down
When NMOS turns on, SDA and SCL are Pulled Low

Hence, Quick transition occurs from high to low as NMOS pulls

charge from any bus capacitance from SDA, SCL:

Figure 5 Open-Drain Circuit

Figure 6 Push Down Case in Open Drain Circuits

The speed of the transition is determined by NMOS drive strength and the bus Capacitance on

SDA and SCL.

Device

24

• Pulling Up
When NMOS turns OFF, SDA or SCL is released and returns

high through the pullup resistor.

Hence, exponential rise occurs:

Figure 7 Pulling Up Case in Open Drain Circuits

The exponential transition is determined by capacitance on SDA or SCL and Pull-Up resistor

size.

1.5.2 Push-Pull Circuit

Here, the SDA and SCL lines are either pulled up to VDD or

pushed down to GND.

Push-Pull Circuits work as follows:

• Pushing Down

When NMOS is ON and PMOS is OFF:

- Lines are discharged to GND

- SDA and SCL will be 0

 Figure 8 Push-Pull Circuit

Figure 9 Push Down Case in Push-Pull Circuits

A Fast discharge occurs as current runs through NMOS acting as a short circuit to GND.

Device

25

• Pulling Up

When NMOS is OFF and PMOS is ON:

- Lines are charged from VDD

- SDA and SCL will be 1

Figure 10 Pulling Down Case in Push-Pull Circuits

Fast charging occurs as current runs through PMOS acting as a short circuit to the Line.

Here, depending on the working behavior of Push-Pull circuits, more than one device can be connected

to one line with the ability to call all these devices at once, which wouldn’t have happened with Open-

Drain circuits where we can connect more than one device on the Bus but only targeting one device at

once.

But a problem may occur in this case if one of these connected devices has NMOS ON while the other

devices have it OFF with the line being connected to VDD, which will then cause the line to discharge

to GND and hence Bus contention output at indeterminate state occurs which may damage this device:

Figure 11 Push-Pull Discharging Problem

This will be solved by using Keeper Circuits, which can be installed by different methods:

- By using keeper Circuits form the controller of the I3C

- By using a separate Keeper Circuit on the bus

Using the keeper Circuit of the I3C controller may be an overhead task for designers, hence the second

approach is usually the go to.

26

1.5.3 Keeper Circuits

The Problem here is when the output is floating, which occurs most of the time in push- pull

circuits when the output isn't driven.

The basis keeper circuits could be designed as follows:

Figure 12 Keeper Circuit

This circuit will help keep the bus pulled to VDD when it’s floating (not driven) and when

There is a push request, it will win the fight as the keeper has weak transistor (small w/l)

A Domino Circuit or a NORA Circuit can also be used to solve push-pull discharging problems.

So, the innovation in the MIPI I3C circuitry was the integration of Push-Pull circuits with other additions to

the Hardware of the MIPI I3C, the next chapter will go through the Innovation of MIPI I3C Protocol

Features and Algorithms including different messaging techniques and words, with a new In-band

integrated commands (CCC) support.

27

Chapter 2: MIPI I3C Protocol

MIPI I3C Protocol is a major upgrade to the I2C Protocol, both sharing the same built as a Block

Diagram with Controller and Targets communicating over 2 lines SDA for Serial Data and SCL for Serial

Clock except for the I2C having addition separate wires for each required interrupt signal, which is solved

in MIPI I3C in the feature of In-Band-Interrupt as illustrated in Chapter 2 section 2.9, MIPI I3C having

only 2 wires made it easy to be compatible to interface with other peripherals and systems easily, with a

backward compatibility to communicate with Legacy I2C devices that could co-exist on the same bus, also

MIPI I3C has introduced Dynamic Addressing which is an Upgrade to the old Static Addressing while

maintaining the ability to Statically Address the I2C Legacy devices that could co-exist on the same bus,

with other features as Sharing Controller ownership in what is known as Controller Role Handoff where

the device that has the controller role called “Active Controller”, the ability to receive directly form

recently powered on devices that wasn’t on since the start of messaging in what is called Hot-Join, having

Two modes of Communication each supporting different speeds, the first is Single Data Rate (SDR) and

the other is High Data Rate (HDR).

In this Chapter we will go through MIPI I3C Protocol Specifications, including its features,

focusing on SDR Mode Communication, but first, an introduction to MIPI I3C two types of messaging and

I3C Modes of communication.

2.1 MIPI I3C Message Types

MIPI I3C has two types of messaging:

1. Direct Messaging:
Active Controller directly messaging one Target or vice versa. (Using

the address of the required target to call)

2. Broadcast Messaging:
Active Controller broadcasts a message for all the available targets on the bus excluding

the legacy I2C device which doesn’t support this messaging type. (using a special

address that all targets can receive from (7’h7E))

28

2.2 MIPI I3C Communication Modes

2.2.1 I3C Single Data Rate (SDR Mode)

This mode is like the I2C modes of communication but with the enhanced messaging of the previous

section, the SDR Mode speed is 12.5 MHZ.

I3C Bus is always initialized and configured in SDR Mode, as a result most of the essential features are

covered in SDR Mode.

SDR Mode is the default mode for MIPI I3C and is used to enter other modes, or sub modes, or states, also is

used for built in functions as CCCs, IBI, or for transition from I2C to I3C by assignment of Dynamic

addressing.

2.2.2 I3C High Data Rate (HDR Mode)

This mode provides high speed communication, having 4 main types:

- Dual Data Rate (HDR-DDR) (25 MHZ):

Not so different from I2C Fast mode, but it runs at twice the speed of SDR

- Ternary Symbol Legacy (HDR-TSL) (33 MHZ):

Significantly different from the I2C, with higher data rates plus ternary coding for buses

with a mix of I2C and I3C devises

- Ternary Symbol Pure Bus (HDR-TSP) (up to 33.4 MHZ):
For I3C pure buses only

- Bulk Transport (HDR-BT):
Gives the highest possible speed, using both data wire (SDA) and clock wire (SCL) to

transmit data in model leveraging Dual Data Rate over Single, or Double, or Quad- lane

configurations

The project mainly focuses on SDR Mode Communication, the next sections go through MIPI I3C

SDR Mode Specifications.

29

2.3 Bus Configurations
2.3.1 Device Roles

MIPI I3C Bus can be configured as the link between al the devices existing on it, these devices

can have different roles as follows:

Table 2 Device Roles on I3C Bus

Device Type Device Role Description

 I3C

Controller

I3C Primary

Controller

Initially configures the

I3C Bus, has HDR

Support

SDR-Only

Primary

Controller

Initially configures the

I3C Bus, no HDR Support

I3C

Secondary

Controller

Can control the bus but

currently operating as

Target

SDR-only

Secondary

Controller

Can control the bus but

currently operating as

Target, no HDR Support

I3C

Target

I3C Target Ordinary I3C Target, no

controller capability

SDR Only

Target

Ordinary I3C Target, no

controller capability, no

HDR Support

I2C Target Ordinary I3C Target, no

controller capability

 As shown, Devices on the bus can have different roles, they can either be a Controller or a Target.

• Controller Roles:

The I3C controller device can function as either a Primary Controller or a Secondary Controller. The

Primary Controller is responsible for controlling and configuring the bus initially, while the Secondary

Controller can act as both an I3C Controller and Target. The Secondary Controller operates as a target

until a controller role handoff occurs using the I3C CCC. The handoff passes the active controller role

from the Primary Controller to the Secondary Controller. The Primary and Secondary Controllers can

both operate only at SDR and do not support HDR Modes. The I3C bus is always configured in SDR

Mode. Hence, we can define Controller devices as:

30

− Primary Controller:

It’s the controller device that initially configure the I3C Bus and serves as the first active controller,

only one device on the bus can be primary controller, supports both SDR mode and at least one HDR

Mode, while the SDR only Primary Controller supports only SDR.

− Secondary Controller:

It’s any device on the bus other than the active controller that have I3C Controller Capability, more

than one device can be secondary controller, it behaves as a target until it requests the Active Controller

role, supports both SDR Mode and at least one HDR Mode, while SDR only Secondary Controllers

supports only SDR.

• Target Roles:

The target devices on the I3C Bus can either be I3C only targets which are the ordinary devices

that can interface with I3C and have no Controller role capabilities, or SDR-only targets which can only

communicate in SDR Mode and will ignore any messages in other HDR Modes , I3C Bus can also has

I2C Target devices which are legacy devices that could only understand I2C- based messages, these

devices cannot have I3C Controller or Target capabilities.

− Targets:

The old common known as Slave, which is the device that is always listening to bus for relevant CCC

sent by the active controller and respond to it, Always supports SDR Mode and may at least support

one HDR Mode unless it was a SDR only I3C Target which supports only SDR, it doesn’t generate the

clock in the SDR Mode, it should at least support one of the dynamic address methods, it also can

request IBI, generate Hot-join, request to become Active controller if it supports the I3C Controller

Capability.

31

 Based on the I3C device roles, a generic MIPI I3C Bus block Diagram can be as follows:

Figure 13 MIPI I3C Bus Block Diagram

From the block diagram, target devices can be either a one target device or a set of targets device called

“Composite Devices”, some of them may have virtual targets, these composite devices can be classified

into these types:

1. Shared Peripheral and virtual targets:

- Shall maintain separate configuration for each Virtual Target, including the assigned Dynamic

Address.

- Initiates the Hot-Join Request during Bus Initialization or whenever necessary.

- Handles the signaling and framing for HDR Modes (if supported)

- Participate in Broadcast and Direct CCC flows, both in SDR and HDR Modes.

Figure 14 Shared Peripheral Device

32

For virtual targets:

Each Virtual target has its own dynamic address which Receives data for Private Write transfers

addressed to its Dynamic Address and provides data to the shared Peripheral logic for responding to

Private Read transfers and raising In-Band Interrupt requests.

2. I3C Secondary Controller:

It has the ability to act as both the target (when it’s Controller Capability is not active) and

as a controller (when its controller capability is active)

Figure 15 I3C Secondary Controller

3. Bridges and Routing devices:

Bridges Connect the I3C Bus to different protocol Bus(SPI OR I2C) while Routing devices

Connect the I3C Bus to another I3C Bus

Figure 16 I3C Bridging and Routing Devices

33

2.3.2 Point to Point Communication

Another use case for I3C Bus is Point to Point Connection as:

Figure 17 Point to Point Connection

Where controller assigns the same dynamic address to one or more I3C Devices only one of which supports

Read Transactions and In Band Interrupts

2.3.3 MIPI I3C Device Characteristics

All the mentioned I3C Devices have ton of features, it’s not necessary for a device to enable all its

features, as the enabled features will appear in Characteristics Registers associated with the device and its

roles, these features could be:

34

2.3.3.1 Bus Characteristics Registers (BCR)

It’s a read only register that includes I3C’s compliant device’s roles and capabilities to be used in

Dynamic Address Assignment and Common Command Codes.

Table 3 Bus Characteristics Registers

So, BCR will be an 8 bits registers, that would be encoded in a way that for each bit’s value it

reflects on Device role, Capabilities, and speed limitations.

2.3.3.2 Device Characteristics Registers (DCR)

It’s a read only register that includes I3C’s compliant device’s type to be used in Dynamic

Address Assignment and Common Command Codes.
Table 4 Device Characteristics Registers

So, DCR will be 8 bits register, that would be encoded by the connected device Vendors, describing the

device type, for example:

35

2.4 Bus Conditions
MIPI I3C Bus will have many states, but for the features (Hot-Join, IBI, Controller role request)

of the I3C to be allowed on the bus, it should be in a specific condition for each feature to be valid, these

conditions come after detecting a stop pattern as follows:

Figure 18 MIPI I3C Bus Conditions

1. Bus Free Condition

After a specific duration from the stop pattern being detected, the bus will enter Bus Free

Condition depending on the devices on the bus as:

- For Pure Bus (I3C Devices only): the duration is tCAS (38.4 ns)

- For Mixed Bus of I3C and FM+ I2C Devices: the duration is tBUF (0.5 us)

- For Mixed Bus of I3C and FM I2C Devices: the duration is tBUF (1.3 us)

2. Bus Available Condition

A Target may only issue a START Request (for an In-Band Interrupt, or for a Controller Role

Request) after a Bus Available Condition, which I3C bus enter after a duration of tAVAL (1.0 us) from

the stop pattern being detected.

3. Bus Idle Condition

The I3C Bus Idle Condition is defined in order to help ensure Bus stability during Hot-Join events, and

is defined as a period during which the SDA and SCL lines both sustain High level for a duration of at

least tIDLE (200 us) from stop pattern detected

36

2.5 Bus Communication

2.5.1 I3C Message Elements

The primary protocol and mode of I3C is SDR (Single Data Rate) Mode which is based on the I2C

standard protocol with notable variations.

The I2C message illustrated below consists of START condition, 7-bit ADDRESS, 1-bit R/W, 1-bit

address ACK/NACK, Single/Multiple frame/s of 8-bit DATA with 1-bit data ACK/NACK and ends

with STOP condition.
Figure 19 I2C Message

The I3C START (S) and STOP (P) have the same signaling as I2C but with different time

parameters summarized in the following table.

 Figure 20 START Condition Figure 21 STOP Condition

Table 5 START and STOP Timing Parameters

tCAS Clock After START = 38.4 ns to 50 ms

(depending on ENTASX)

tSU_OD Setup Time of SDA Signal = 3 ns

tLOW_OD Low Period of SCL Clock = 200 ns

tCBP Clock Before STOP = tCAS(min) /2 = 19.2 ns

The previous time parameters reaffirm the fact of supporting the communication with I2C

legacy devices where the I3C Controller still has to ensure that all targets are able to see the START

condition with the Open-Drain drive.

37

The I3C Repeated START (Sr) and STOP is tolerated any time that SCL is High while the

Controller controls SDA or SDA is Open-Drain. This is unlike I2C, which wants STOP or Repeated

START only after a NACK of an address, or after ACK/NACK of data.

Although I3C SDR also prefers STOP and Repeated START to be used only in those situations, and

after an I3C Broadcast Address is ACKed, it does not disallow them in any other location. However,

appearance of a STOP or Repeated START in the middle of an Address or in the middle of data is

interpreted to cancel that Address or data.

The I3C Address Header has the same signaling as I2C Address Header that consists of 7-bit

Address and R/W bit to determine whether the previous Target address is for Reading operation ‘1’ or

Writing operation ‘0’. The difference comes in timing of both addresses as the I3C Address has the

ability of optimization for some cases of un-arbitrable addresses.

Data Words for I3C differs from I2C’s in the 9th bit. This bit followed by 8-bit Data Word is

called T-bit that represent the Parity bit for Writing Data and the Transition bit for Reading Data.

Transition bit indicates whether the I3C Target wants to abort the messaging, or it is the decision of

I3C Controller based on the number of Data Frames defined in the beginning of the message.

Figure 22 T-bit When Target Ends Read and Controller Generates STOP

Figure 23 T- bit When Target and Controller Agree to Continue Read Message

In I3C, the SCL line is only driven by the Controller. Normally this drive is Push-Pull, but it can

also be Open Drain.

An I3C Message is defined as everything from the initial START (or Repeated START) to the next

Repeated START or STOP.

38

2.5.2 SDR Message Types

An I3C Message is an SDR Message if:

• The Address in the Address Header is 7’h7E (the I3C Broadcast Address). All I3C Targets shall

match the Address value 7’h7E. No I2C Target will match Address 7’h7E, because that value is

reserved and unused in I2C.

• The Address in the Address Header matches Target’s Dynamic Address. All I3C Targets shall

match their own Dynamic Address. (It is permitted to then NACK the Header if needed.)

All I3C Targets shall ignore all Messages with Addresses other than 7’h7E or the I3C Controller

Assigned Address and shall await either the Repeated START or the STOP. I3C Targets shall not

transmit on the Bus in response to a non-matching Address.

Legacy I2C Targets will ignore any Message not addressed to them and will await the next START or

STOP. Legacy I2C Targets may also not see some or all the I3C Messages and Modes due to the speed

of SCL signaling.

Figure 24 I3C Message Types

39

2.5.3 Role of I3C Target

An I3C Target is a functional role that is embodied or presented by an I3C Device. Such a Device

may be a standalone physical Device that presents only one Target, or it may be a composite Device that

presents multiple Virtual Targets using shared Peripheral logic. In either case, each Target (which may be

a Virtual Target) presented on the I3C Bus may be assigned its own unique Dynamic Address, and the

Controller can address it independently for transfers.

Many such I3C Device implementations are possible that might embody or present one or more active

I3C Target roles. For composite I3C Devices that present multiple Virtual Targets, the shared Peripheral

logic might handle many of the underlying functions that would normally be handled by internal logic for

a single, standalone I3C Device that only presented a single Target on the I3C Bus. For simplicity, the

remainder of this section treats both options equally, referring to “Target” in a generic sense. The I3C

Target does not have to know whether it is on a Legacy I2C Bus or an I3C Bus. If it has an I2C Static

Address, then it may participate using that Address up until it is assigned a Dynamic Address. Once

assigned a Dynamic Address, unless asked to Reset, it shall only operate as an I3C Target.

An I3C Capable Target may act as an I2C Device before it gets its Dynamic Address (DA) assigned.

However, the Target shall ACK the START with Address 7’h7E. (The only exception would be if the

Target is choosing to remain an I2C-only Device on a given Bus or use, in which case it would leave its 50

ns Spike Filter enabled.)

2.5.3.1 Before Receiving a Dynamic Address

The Target shall process all required Broadcast CCCs, including:

• ENTDAA (0x07) – Enter Dynamic Address Assignment

• RSTDAA (0x06) – Reset Dynamic Address Assignment

• ENEC (0x00) – Enable Target Event Command

• DISEC (0x01) – Disable Target Event Command

The Target may choose to understand and process the SETAASA CCC and shall disregard all Directed

CCC commands but shall properly recognize the ends of Directed CCCs (i.e., either Repeated START

followed by 7’h7E, or STOP).

When no Dynamic Address has been assigned yet, the Target may either support or ignore non- Required

and Conditionally Required Broadcast CCCs. The I3C Target shall ignore TE0 type errors related to

incorrect Addresses only.

40

2.5.3.2 After Receiving a Dynamic Address

The Address Header Matching procedure is initiated after the START or Repeated START signal

for any of the specified addresses, such as the I3C Broadcast Address (7h’7E / RnW 0). Upon receiving a

matching message, the target is obligated to acknowledge and process the message at least through the

first byte of data, unless the target has chosen to remain an I²C-only device on a given bus with the 50 ns

Spike Filter enabled.

If a 7'h7E Broadcast Message contains a byte of data, the message is a CCC. If the CCC is required, the

target must remain ready to respond even if it is processing previously sent messages (such as

GETSTATUS) or has not yet received a Dynamic Address that includes the ENTHDRn CCCs. In the case

of a Mode Change CCC, it may result in the Target entering one of the following modes: Dynamic

Address Assignment (DAA) Mode, High Data Rate (HDR) Mode, or Target's assigned Dynamic Address

or assigned Group Addresses.

If the Target has no dynamic address, it shall participate in the Dynamic Address Assignment (DAA)

mode and wait for the STOP condition if it already has an assigned dynamic address. If the Target

supports the HDR mode, it shall enter the HDR process and detect the HDR Exit Pattern if the HDR mode

is not supported.

Finally, when the Target is assigned a dynamic or group address, it has the option to either acknowledge

and process the message as I3C SDR or ignore any bits up until the next STOP or Repeated START by

NACKing the message.

2.5.3.3 I3C Target Acting as an I²C Target with Static Address

• On a Legacy I2C Bus: I3C Target can deal safely with all messaging as it is already coming from a

Legacy I²C Controller. This will be done acting as standard I²C Target using an I²C Fm/Fm+ Spike

Filter of 50 ns (or more) if it has one.

• On an I3C Bus: I3C Target’s I²C Fm/Fm+ Spike Filter of 50 ns shall disable once it sees a Message

from an I3C Controller (ACK then disable), the first I3C Address Header emitted with Fm/Fm+

timing parameters after Bus initialization (i.e., a START followed by 7’h7E and a RnW bit of 0).

2.5.4 I3C Address Header

The Address Header following a START is an Arbitrable Address Header, while the Address

Header following a repeated START shall not Arbitrated. This means the START and at least the first

Address bit and ACK/NACK are issued on SDA using Open Drain Bus drive, similar to I2C. However,

some of the Arbitrable Address Header may be driven on SDA using Push-Pull and higher speed which is

considered an Arbitration Optimization. Using the I3C Arbitrable Address Header, I3C Targets may

transmit any of three requests to the I3C Controller:

41

A. An In-Band Interrupt

This is equivalent to toggling a wire to get the Controller’s attention. The In-Band Interrupt

request shall be made using Target’s Dynamic Address with a RnW bit of 1.

Figure 25 In-Band Interrupt Request Frame

B. A Controller Role Request

An I3C Device shall not make such a request unless it is marked as a Controller-capable Device in

its BCR register. The Controller Role Request may be made by a Secondary Controller wishing to

gain the Controller Role from the Active Controller, or by the Primary Controller after it has

relinquished the Controller Role and now wishes to regain it from the Active Controller. The

Controller Role Request shall include the Device’s Dynamic Address with a RnW bit of 0.

Figure 26 Controller Role Request Frame

C. A Hot-Join Request

An I3C Target shall only make such a request when becoming available after the I3C Bus is

operational. The Hot-Join Request shall be made using the reserved Hot-Join Address (i.e., 7’h02).

Figure 27 Hot-Join Request

The I3C Targets are required to make requests to the I3C Controller in only two Bus conditions.

Firstly, in the Bus Free Condition, a START is issued on the Bus. The Target may then transmit its

Dynamic Address or the Hot-Join Address (7'h02) following the START by adhering to the I3C Address

Arbitration rules. Secondly, in the Bus Available Condition, the Target may issue a START by pulling

the SDA Low. The Controller shall then pull SCL Low within tCAS and also pull SDA Low (overlapping

the Target pulling it Low). Once the Controller has pulled SCL Low, the Target shall control the SDA

line in Open Drain mode (i.e., either pull Low or release High) and finally issue its Address in the normal

way.

42

2.5.4.1 Consequence of Starting a Frame with Target Address

The I3C Controller normally should start a Frame with 7'h7E (for all I3C Messages) or an I²C

static address (when sending only to a legacy I²C target). However, in both cases, the address may undergo

arbitration. Hence, the Controller must monitor the line to identify any In-Band Interrupt request,

Controller Role Request (such as a Secondary Controller requesting to become the Active Controller), or

Hot-Join Request. If no such request is detected, the Controller can proceed normally. However, if any of

these requests are detected, the Controller should ACK or NACK the request and proceed accordingly. If

the Controller intends to start an I3C Message with an I3C Dynamic Address, special provisions must be

made as the same I3C Target may initiate an IBI or a Controller Role Request, which may result in one of

three things happening:

1. The Addresses match, but the difference is caught on the RnW bit, and the Controller was initiating

a Private Write (i.e., RnW = 0) while the Target was attempting to send an IBI request (i.e., RnW

= 1). In this case, the Controller wins (i.e., an IBI with RnW = 1 loses), and the Target shall ACK

or NACK the Private Write. The Target shall defer its IBI and may retry at a later opportunity.

Figure 28 Private Write by I3C Controller VS IBI Request by I3C Target

2. The Addresses match, but the difference is caught on the RnW bit, and the Controller was

initiating a Private Read (i.e., RnW = 1) while the Target was attempting to send a Controller Role

Request (i.e., RnW = 0). In this case, the Target wins (i.e., a Private Read with RnW = 1 loses),

and the Controller must ACK or NACK the Controller Role Request. The Controller shall defer its

Private Read and may retry at a later opportunity.

Figure 29 Private Read by I3C Controller VS Controller Role Request by I3C Targe

43

3. The Addresses match and the RnW bits also match, and so neither Controller nor Target will ACK

since both are expecting the other side to provide ACK. As a result, each side might think it had

"won" arbitration, but neither side would continue, as each would subsequently see that the other

did not provide ACK.

If RnW = 0 (i.e., if the Controller was initiating a Private Write while the Target was attempting to

send a Controller Role Request), then the Target shall defer its Controller Role Request and may

retry at a later opportunity.

If RnW = 1 (i.e., if the Controller was initiating a Private Read while the Target was attempting to

send an IBI request), then the Target shall defer its IBI request, and may retry at a later opportunity.

Figure 30 Private Write by I3C Controller VS Controller Role Request by I3C Target

Figure 31 Private Read by I3C Controller VS IBI Request by I3C Target

For either value of RnW: Due to the NACK, the Controller shall defer the Private Write or Private

Read and should typically transmit the Target Address again after a Repeated START (i.e., the next one

or anyone prior to a STOP in the Frame). Since the Address Header follows a Repeated START and is not

arbitrated, the Controller will always win.

44

2.5.4.2 I3C Target Address Restrictions

The I3C Controller may choose Dynamic Addresses from a set of values as follows:

Table 6 I3C Target Address Restrictions

Target Dynamic Address

Binary Hex Restriction Description

000 0000 7’h00 Shall not use I3C Reserved

000 0001 7’h01 Shall not use I3C Reserved: For use with SETDASA CCC in special

Point-to-Point Communication

000 0010 7’h02 Shall not use I3C Reserved: Hot-Join Address

000 0011 7’h03 Optional Marked ‘Reserved’ by I2C

000 0100 7’h04

000 0101 7’h05 Available for use only if no Legacy I2C Devices

supporting I2C “High-Speed Mode” are present on the

Bus
000 0110 7’h06 Conditional

000 0111 7’h07

000 1000

011 1101 7’h08 – 7’h3D Available for use 54 Addresses

011 1110 7’h3E Shall not use I3C Reserved: Broadcast Address single bit error detect

011 1111

101 1101 7’h3F – 7’h5D Available for use 31 Addresses

101 1110 7’ h5E Shall not use I3C Reserved: Broadcast Address single bit error detect

101 1111

110 1101 7’h5F – 7’h6D Available for use 15 Addresses

110 1110 7’h6E Shall not use I3C Reserved: Broadcast Address single bit error detect

110 1111

111 0101 7’h6F – 7’h75 Available for use 7 Addresses

111 0110 7’h76 Shall not use I3C Reserved: Broadcast Address single bit error detect

111 0111 7’h77 Available for use 1 Address

111 1000 7’h78 Available for use only if no Legacy I2C Devices are present on

the Bus 111 1001 7’h79 Conditional

111 1010 7’h7A Shall not use I3C Reserved: Broadcast Address single bit error detect

111 1011 7’h7B Conditional

Available for use only if no Legacy I2C Devices are

present on the Bus

111 1100 7’h7C Shall not use I3C Reserved: Broadcast Address single bit error detect

111 1101 7’h7D Conditional Available for use only if no Legacy I2C Devices

supporting I2C “Device ID Mode” are on the Bus

111 1110 7’h7E Shall not use I3C Reserved: Broadcast Address single bit error detect

111 1111 7’h7F Shall not use I3C Reserved: Broadcast Address single bit error detect

45

2.6 SDR Data Word

In I3C SDR, the Data Words match I2C only in the sense that they are both 9 bits long, I3C SDR

Data Words differ from I2C in three ways:

1. Handoff from Address ACK to SDR Controller Write Data.

2. Ninth Bit of SDR Controller Written Data as Parity.

3. Ninth Bit of SDR Target Returned (Read) Data as End-of-Data.

2.6.1 Handoff From Address ACK to SDR Controller Write Data

The end of any Address Header (whether Arbitrated or not) is an ACK or NACK by the one or

more addressed Targets, using Open Drain on SDA. When the Address Header results in an ACK, and the

Message is SDR Write from Controller, the SDA line has to be turned from Open Drain to Push-Pull for

the first data bit. To do that safely, I3C SDR specifies how the handoff is to occur.

Figure 32 Transition from Address ACK to Mandatory Byte During IBI

46

1. The I3C Target shall hold the SDA line Low during the ACK (while SCL is Low).

• This shall be an Open Drain SCL Low period.

2. After the I3C Target sees the rising edge of SCL, it releases the SDA line to High-Z.

• The I3C Target shall release the SDA line using normal (Push-Pull) timing (release the SDA

line as soon as it sees SCL rising).

3. After the rising edge of SCL, the I3C Controller shall drive the SDA line Low.

• As a result, both Controller and Target will be driving the SDA line Low for a short overlap

(which is safe).

4. On the falling edge of SCL the I3C Controller shall begin driving data on the SDA line, using

Push-Pull drive When the Address Header results in a NACK, the Controller may choose to:

either:

1. Continue the transaction, by generating a Repeated START.

or:

2. Relinquish the Bus, by generating a STOP.

2.6.2 Ninth Bit of SDR Controller Written Data As Parity

In I2C, the ninth Data bit written by the Controller is an ACK by the Target. By contrast, in I3C

the ninth Data bit written by the Controller is the Parity of the preceding eight Data bits. Therefore, in I3C

the Target shall not drive the SDA line for Data written by the Controller in SDR. In SDR terms, the

ninth bit of Write data is referred to as the T-Bit (for ‘Transition’).

T (Parity) bit writes shall always be kept valid through the SCL High period. In the case of a T-

Bit representing the last data byte, the write is therefore kept valid through the SCL High period, and the

next SCL Low can then be used to either change the SDA, or not change the SDA, in preparation for the

Repeated START or STOP that follows.

The ninth data bit of each SDR Data Word written by the I3C Controller (also referred to as the T-

Bit) is a Parity bit, calculated using odd parity. Parity can help in detecting noise- caused errors on the

line. The value of this Parity bit shall be the XOR of the 8 Data bits with 1.

• A: Data[7:0]

• B: 1

• out: odd Parity

Figure 33 Parity Bit Using X OR

47

2.6.3 Ninth Bit of SDR Target Returned (Read) Data as End-of-Data

In I2C, the ninth Data bit from Target to Controller is an ACK by the Controller. By contrast, in

I3C this bit allows the Target to end a Read and allows the Controller to Abort a Read. In SDR terms, the

ninth bit of Read data is referred to as the T-Bit (for ‘Transition’)

In I2C, Read from Target has the issue that only the Controller ends the Read, so the Target has

no ability to control the amount of data it returns. In I3C SDR, by contrast, the Target controls the number

of data Words it returns; but it also allows the I3C Controller to abort the Read prematurely when

necessary. This mechanism is controlled purely by the ninth (T) Data bit of each SDR Data Word

returned by the I3C Target.

The ninth bit is returned by the Target in one of two ways:

1) The I3C Target returns the ninth bit as 0 (SDA Low) to end the Message:

• The Target shall set SDA Low on the falling edge of SCL.

• On the following rising edge of SCL, the Target shall set SDA to High-Z.

• The I3C Controller shall drive SDA Low on the rising edge of SCL, thereby overlapping with

the Target.

• The I3C Controller then shall issue either a STOP, or a Repeated START.

2) The I3C Target returns the ninth bit as 1 (SDA High) to continue the Message

(and permit the Controller to abort the Message):

• The Target shall set SDA High on the falling edge of SCL.

• On the following rising edge of SCL, the Target shall set SDA to High-Z.

Thereby Parking the Bus for the SCL High period:

i. If the I3C Controller is able to continue the reply from the Target, then it shall do nothing.

ii. If the I3C Controller wants to abort the Message, then it shall drive SDA Low after the rising edge

of SCL.

The I3C Target returns the ninth bit as 1 (SDA High) to continue the Message (and

permit the Controller to abort the Message):

• The Target shall monitor the SDA on the falling edge of SCL:

• If SDA is High, then the Target shall continue with the next data value.

• If SDA is Low (i.e., if there has been a Repeated START), then the Message has been

aborted, and the Target shall not drive SDA after that.

48

Chapter 3: Main Features
3.1 Dynamic Address Assignment

Addressing in I3C protocol is dynamic, unlike I2C. which means that I3C targets will have

addresses assigned to them dynamically after they’ve already joined the bus.

We will discuss the operation, limitations, and sequence of Dynamic address assignment procedure that

occurs during the bus initialization.

The Primary Controller acts as the authority for the initial configuration of the Bus and all Devices,

including any Legacy I2C Devices. Since it acts as the Bus’s first Active Controller, during Bus

initialization. it also performs the Dynamic Address Assignment procedure as part of configuring all I3C

Devices that require a Dynamic Address.

a Controller must be responsible for performing a Dynamic Address Assignment

procedure, in order to provide a unique Dynamic Address to each I3C Device (i.e., with Target or

Secondary Controller role) that is connected to the Bus.

Once a Target or Secondary Controller receives a Dynamic Address, that Dynamic Address shall be used

in all subsequent transactions on the I3C Bus.

The Controller controls the Dynamic Address Assignment process. This process includes an

Address Arbitration procedure like I2C’s. The I3C Arbitration procedure differs from I2C by using the

values of the 48-bit Provisioned ID and the Device’s I3C Characteristic Registers (that is, BCR and DCR),

concatenated. The Device on the I3C Bus with the lowest concatenated value wins each Arbitration round

in turn, and the Controller assigns a unique Dynamic Address to each winning Device.

3.1.1 Data Given From The Host

Before the primary controller starts the dynamic address assignment procedure, information about

the bus from the host should be given. This information includes:

a) Number of I3C targets on the bus, in addition to number of I3C targets that have I2C static addresses.

b) Number of I2C targets on the bus.

c) Static addresses of both I3C targets and I2C targets.

49

3.1.2 Address Assignment Rules

There are some addresses restricted from usage in dynamic address assignment due to different

reasons, mainly due to I3C reserved addresses, or a single bit error in similar addresses that will lead to

one of the I3C reserved addresses.

• 7’h (00 , 01 , 02 , 7E , 7F) are all I3C reserved addresses.

• 7’h (3E , 5E , 6E , 76 , 7A , 7C , 7F) are all restricted because if a single bit error occurs it will

be seen as an I3C reserved address.

Address assignment follows the incremental rule beginning from the address 7’h08.

Meaning the 1st winning device will receive the target address 7’h08, the 2nd winning device will

receive the following address 7’h09 and so on. The last address to be used is 7’h3D.

Figure 34 Dynamic Addresses Available for Use

3.1.3 Dynamic address assignment procedure
The Dynamic Address Assignment process is fully performed in Open Drain mode, For Open

Drain the Controller shall drive the SCL line with clocks at the appropriate Open Drain speed for the

Devices present on the I3C Bus.

1) The active controller starts the procedure by initiating a start, then sending the Broadcast 7’h7E

(Write), to inform the devices on the bus that the controller will hold the bus and send data.

Figure 35 Broadcast Write For DAA

2) After receiving the acknowledgement from any device on the bus, the I3C controller initiates the

ENTDAA CCC (0x07) accompanied with the parity bit, which informs the devices on the bus about

beginning the dynamic address assignment procedure.

Figure 36 ENTDAA CCC

50

3) The active controller initiates a repeated start, to send again the Broadcast 7’h7E (read) but with a read

bit this time, that informs the targets that the arbitration process will start and that they should send

their data according to the arbitration rules.

Figure 37 Broadcast Read For Target Data

4) The Active Controller shall drive only the SCL line. and releasing the SDA line to a High-Z state,

allowing SDA to go to High level via the Bus Pull-Up resistor. To allow the devices on the bus to start

the arbitration process and driving the SDA.

Every I3C Device that is eligible to participate and responds to the I3C Broadcast Address sent in The

last step shall drive the SDA line with its own 48-bit Provisioned ID (using Big Endian bit order), until

it loses Dynamic Address Arbitration.

The 48-bit Provisioned ID shall be transferred continuously, starting with the most significant bit

(bit[47]), with no delimitation or ACK/NACK pulse.

After that the I3C Device that did not yet lose the Arbitration shall then transfer its Bus Characteristics

Register (BCR) and Device Characteristic Register (DCR) until it eventually loses Dynamic Address

Arbitration.

Figure 38 Target's 8 Bytes Data

The device whose concatenated Provisioned ID, BCR, and DCR have the lowest value will win the

arbitration round, due to the nature of arbitration.

5) The active controller regains control over the SDA line, in order to send the assigned address to the

winning device, the address is 7-bit wide chosen according to the addressing rules specified in the last

section. The 8th bit is a parity bit of the serialized address. The target then shall ACK the received

address if the parity check is correct.

 Figure 39 Dynamic Address Assigned with Odd Parity

51

6) In this step, the I3C controller has managed to assign a dynamic address to the 1st winning device, so

it shall repeat the procedure again from step 3, sending the Broadcast command 7’h7E with (read) bit.

To continue with the other devices on the bus (that have lost the arbitration)

If the controller receives ACK to the broadcast, this means that there is targets that yet to be assigned

an address. While if the controller received NACK to the broadcast, this means that all the targets on

the bus have already been assigned an address and it should end the dynamic address process.

7) If the controller received NACK to the broadcast in the last step, it would end the dynamic address

procedure buy initiating a STOP on the bus (SDA Line).

3.1.4 ENTDAA Frame Format

Figure 40 I3C broadcast ENTDAA CCC– Sent by the Controller

3.1.5 Dynamic Address Assignment Error Case and Handling
As mentioned in step 5 in the dynamic address assignment procedure, the controller assigns the

address to the winning device accompanied by the parity bit and waits for ACK/NACK from the

target.

✓ If the Target ACKS, the address then the parity is correct, and address is assigned.

 If the target NACKS the address then the parity is not correct, and the target should not take

this address as the assigned dynamic address.

In the last case, the controller repeats the flow again, the last winning device will win the

arbitration again due to the nature of arbitration. Then the controller will assign the same address

to the target.

The error case occurs if the same target NACKS the same address twice. In this case the controller

should terminate the dynamic address assignment and notify the error handling mechanisms. Then

redo the dynamic address assignment procedure again, but, only for the devices that did not yet

receive their dynamic address.

52

3.2 Hot-Join Mechanism

The I3C protocol allows devices to join the bus after it has already configured via the hot join

mechanism. The hot-join mechanism is that a hot joining device informs the controller that it has joined

the bus after the configuration, so it needs to receive a dynamic address in order to be able to participate in

bus transactions.

Hot-Join may be used for:

• I3C Devices mounted on the same board, but de-powered until needed. Such Devices shall not

violate electrical limits for Targets when de-powered (or while transitioning).

• I3C Devices mounted on a module/board that is physically inserted after the I3C Bus has already

been configured. This specification does not attempt to address how that physical insertion is

handled; however, such insertion shall not disrupt the SCL and SDA lines, including respecting all

electrical limits.

3.2.1 Hot-Join Flow Procedure

1) For a hot joining target to inform the controller of joining the bus, it must wait for the suitable time

(after a start to participate in arbitration) to send an IBI request, with the reserved address for hot-join

7’h02 with a Write bit.

Unlike a typical IBI request, hot-join request doesn’t have a data payload, or a mandatory data

byte. This address basically requesting a dynamic address assignment procedure.

2) The active controller shall either ACK the request indicating that it’s seen it and at some point, it will

begin the dynamic address assignment procedure again or NACK the request, which is rejecting the

hot join for now and the device must try again later.

• In the case of ACK. The target knows that the controller accepted the request, and it must wait for

the dynamic address procedure to start, without sending any more requests.

• But if the controller NACKs the request, the hot-joining device has the right to re-initiate it again

in the eligible time.

3) The active controller should eventually send the CCC ENTDAA, for starting the dynamic address

assignment procedure, only targets that have not yet received a dynamic address will participate,

including hot-joining devices.

Controller ACK in a Hot-Join Request does not imply that the Dynamic Address Assignment will

necessarily start immediately. The Controller may wait for a potentially prolonged period before issuing

the ENTDAA CCC.

53

3.2.2 Hot-Join Frame Format

Figure 41 Hot-join request transfer, as controller/target

3.2.3 Hot-Join Target Requirements

1 The first time the Hot-Joining Target connects to the I3C Bus, the Target shall wait for the appropriate

opportunity to send the Hot-Join Request, based on its eligibility, a Hot- Joining Target using the standard

method shall become eligible after waiting for a period of at least Bus Idle Condition (tIDLE) and

ensuring that the Bus remains Idle (i.e., that SDA and SCL are both High).

2 The Hot-Joining Target shall, when eligible, send the Hot-Join Request on the I3C Bus, following a

START.

The Target shall send the Hot-Join Request, by either waiting for a START, or requesting a

START by pulling SDA Low (for the standard method only). After the START, the Target shall

drive the Address of 7’h02/W into the Arbitrable Address Header.

3 The Hot-Joining Target shall conditionally continue sending the Hot-Join Request on each subsequent

START (i.e., at the next appropriate opportunity) until and unless the Active Controller provides an ACK

for the Hot-Join Request.

4 Once the Hot-Joining Target sees the Active Controller ACK or NACK the Hot-Join Request, it shall

follow all normative requirements for the Role of an I3C Target (i.e., one that has not yet received its

Dynamic Address).

The passive Hot-Join method works the same basic way, except with a modification to the

conditions of eligibility for a Hot-Joining Target. A standard Hot-Joining Target must first wait for at

least the Bus Idle Condition, and then it may pull SDA Low, or it may wait for a START. A passive Hot-

Joining Target will first wait for an SDR Frame ending in STOP, and then wait for the next START,

which must be issued by either the Active Controller or any other Target that can request a START.

54

Table 7 Hot-Join Standard Vs Passive Mehods

Hot-Join Request

Standard Method Passive Method

• Wait for bus idle (both SCL and SDA are • Target doesn’t have a timer.

high for more than tidle). • Must wait for a START request b

• Target pulls SDA = 0 or wait for START. another target, or the controller

• Wait for Controller SCL=0. after the end of SDR frame.

• Send 7’h02/W. • After START it sends 7’h02/W

• Wait for ACK/NACK. • Has higher delay than standard

method

55

3.3 In-Band Interrupt

3.3.1 Priority level

It’s the level that controls the order in which in band interrupt requests are processed. During

dynamic address assignment, the Controller assigns lower addresses to Targets with higher priority that

arbitrated sooner so they also can request IBI or control requests sooner. So, targets with lower addresses

have higher priorities.

3.3.2 Interrupt request

I3C target shall wait for a start condition or issue a start if the bus is in the bus available condition

by pulling SDA line low and waiting for the controller to pull SCL low. After the start condition it can put

its address on the line and participate in the arbitration process. After the start condition the target drives

SDA line with its address followed by RnW bit and it should be one at the interrupt request. The

controller processes the IBI requests using priority level order and the target that lost arbitration may issue

another IBI request in the next bus available condition. When the controller receives interrupt request it

can do one of three actions:

- Refuse IBI request without disabling interrupts:

Controller can do so by sending NACK to the target after receiving the Interrupt request and target

can try again after START or Bus available condition.

- Refuse IBI request without disabling interrupts:

Controller can do so by sending NACK to the target and sends a repeated start, then it sets the

DISINT bit in DISEC CCC “Disable target events” so the target will not send the IBI request

again until the target events is enabled again .

- Accept the IBI request:

Controller accepts the IBI request by sending ACK bit after receiving the request. Controller’s

action after the IBI depends on the Target’s BCR [2] bit, If the BCR[2]=0 Controller has to read

the mandatory data byte MDB which contains some information about the event that happened and

the size of the data to be received from the target, After the MDB, target can send additional IBI data

bytes and the controller can accept these bytes or terminate it. Mandatory data byte is sent using

push pull and here is a figure representing the frame of the IBI sequence.

Figure 42 IBI sequence with mandatory data byte

If the BCR[2] = 0 in the target, then it doesn’t have MDB, and the controller may take any

valid action to terminate the frame after providing the ACK bit using STOP condition.

56

3.3.3 Mandatory Data Byte (MBD)

The mandatory data byte is the data that follows the dynamic address when a device sends an IBI

request. Availability of the mandatory data byte is determined by the BCR[2] register in the bus

characteristic register. The target takes over the line after the IBI ACK and Controller can’t decline this byte

and must wait for T-bit to terminate any subsequent data. The MDB gives the controller additional

information about the event that has happened and what information the target wants to send. The MDB is

divided into two fields:

• Interrupt Group Identifier: the three most significant bits MDB[7:5].

• Specific Group Identifier: the five least significant bits MDB[4:0].

Figure 43 MDB Field Format

All the values of the MDB Identifier values and their description are specified in MIPI Specification for

I3C Basic Version 1.1.1 09-Jun-2021 section 5.1.6.2.1.

3.3.4 IN-Band Interrupt Frame Format

Figure 44 IBI transfer, as controller/target

57

3.4 Common Command Codes (CCCs)

Common Command codes (CCCs) are standardized set of commands that act like a contract

between the controller and the targets used to communicate with each other. Most of the commands have

the same frame structure except a few according to STMicroelectronics standard.

They can be classified as follows:

1- Broadcast CCCs: those CCCs are addressed to all I3C targets on the bus, and they’re

always written CCCs.

2- Direct CCCs: those CCCs are addressed to a specific target on the bus, and they can be Read,

write, and Read/write CCCs.

3.4.1 Enter Activity State 0-3 (ENTAS0-ENTAS3)

Those 4 CCCs can be Broadcast Write or Direct Write. They’re used to inform one or all targets

that the active controller won’t be active for a specific time based on which ENTAS is sent. The command

codes for Enter Activity State 0-3 can be summarized in the next table:

Table 8 Enter Activity State 0-3 Command Codes

Minimum Bus activity interval for each Activity state can be summarized in the next table:
Table 9 Minimum Bus activity interval

Figure 45 ENTASx Broadcast Format

58

Figure 46 ENTAS Direct Format

3.4.2 Get Device Status (GETSTATUS)

 It’s a direct CCC used to get request from a particular target to return its current status and its

command code is 0x90.

It has 2 formats:

1- GETSTATUS format 1 returns the two bytes consisting of MSB and LSB.

Figure 47 GETSTATUS Format 1

Table 10 GETSTATUS MSB-LSB

59

2- GETSTATUS format 2 with a defining byte returns a variable number of Bytes depending on the

defining byte used.For example, using PRECR defining byte which is used to allow the active

controller to query the secondary controller about its current state whether it entered a deep sleep

mode or still processing data.

Figure 48 GETSTATUS Format 2 using PRECR

Table 11 GETSTATUS MSB-LSB

3.4.3 Target Reset Action (RSTACT)

 This Broadcast, Direct Read, and Direct Write CCC is used to configure the next Target Reset action

and may be used to retrieve a Target’s reset recovery timing. The RSTACT CCC is used in conjunction with

 the Target Reset Pattern, i.e., the reset action previously configured in a Target via the RSTACT CCC is

triggered when the immediately following Target Reset Pattern is received.

• For the Broadcast and Direct Write formats, the Defining Byte indicates which Target Reset action

 (including taking no action) is to be configured (values 0x00 through 0x7F).

• Defining Bytes 0x00 and 0x01 are required: A Target shall support these operations and shall

ACK its Target Address if issued as a Direct CCC.

• Support for other Defining Bytes (values 0x02 through 0x7F) is optional and depends on

other conditions or support for other capabilities. If a Target does not support such an operation,

then it shall NACK its Target Address for such a Defining Byte, as well as any related Defining

 Bytes defined for the Direct Read format (values 0x82 through 0xFF) if issued as a Direct CCC.

60

• For the Direct Read format, the Defining Byte may also indicate the Controller’s desire to read back the

Target’s reset recovering timing or other parameters for the operation (values 0x81 through 0xFF).

• If the CCC is NACKed and the related reset operation is supported, then the Controller should

assume the default reset return times of 1 ms to reset the Peripheral (i.e., the reset operation for

Defining Byte 0x01) and 1 second to reset the whole Target Device (i.e., the reset operation for

Defining Byte 0x02).

Figure 49 I3C broadcast CCC write (excepted ENTDAA, RSTACT)

Figure 50 "I3C Direct CCC Write – 1st Part / Multiple 2nd Parts (Except RSTACT)"

61

Figure 51 "I3C Direct CCC Read – 1st Part / Multiple 2nd Parts (Except RSTACT)"

Table 12 List of supported I3C CCCs, as controller/target

CCC name

CCC value

Read /write

With/without

defining byte

With/without

sub-command

byte

With/without

optional data

byte(s)

Use as

controller

Use as

target, raised

I3C_EVR

event

When target:

specific

action

Broadcast CCCs

ENEC 0x00

Write

No

defining/sub-

command

byte

With one

data byte

(enable target

events byte)

x X, INTUPDF Update and

enable

I3C_DEVR0:

HJEN, CREN,

IBIEN if any

DISEC 0x01 With one

data byte

(disable

target events

byte)

X X, INTUPDF

ENTASx

 x = 0...3
0x02 No data byte X X, ASUPDF

RSTDAA 0x06 - X X, DAUPDF

ENTDAA 0x07 - X X, DAUPDF

SETMWL 0x09 With two

data byte
X X,

MWLUPDF

SETMRL 0x0A With 2 or 3

data bytes
X X, MRLUPDF Update

I3C_MAXRLR

SETAASA 0x29 No

defining/sub-

command

byte

No data byte

x

RSTACT 0x2A With

defining byte

(0x00, 0x01

or 0x02)

X X, RSTF after

detected reset

pattern

Update

I3C_DEVR0:

RSTACT[1:0]

and set

RSTVAL = 1

62

Table 13 List of supported I3C CCCs, as controller/target (continued)

CCC name

CCC value

Read /write

With/without defining

byte With/without

sub-command byte

With/without

optional data

byte(s)

Use as controller Use as target,

raised I3C_EVR

event

When target: specific

action

Direct CCCs

Action if ACK (if I3C target

Address =

I3C_DEVR0.DA[6:0] and

I3C_DEVR0.DAVAL = 1)

(else NACK)

ENEC 0x80

Write

No defining/sub-

command byte

With one data byte (enable

target events byte) x
X, INTUPDF Update and enable

I3C_DEVR0: HJEN,

CREN, IBIEN if any

DISEC 0x81 With one data

byte (disable

target events
byte)

X
X, INTUPDF Update and disable

I3C_DEVR0: HJEN,

CREN, IBIEN if any

ENTASx

 x = 0...3
0x82 No data byte X

X, ASUPDF Update

I3C_DEVR0.AS[1:0]

SETDASA 0x87 No data byte X
X, DAUPDF -

SETNEWDA 0x88 With one data

byte
X

X, DAUPDF Update I3C_DEVR0:

DA[6:0] (and set DAVAL =

1)

SETMWL 0x89 With two data
bytes

X
X, MWLUPDF Update I3C_MAXWLR

SETMRL 0x8A With two or

three data bytes
X

X, MRLUPDF Update I3C_MAXRLR

GETMWL 0x8B

Read

With two data

bytes
X X, GETF Return data bytes from

I3C_MAXWLR[15:0].

Refer to Section49.16.19

GETMRL 0x8C With two or three

data bytes
X X, GETF Return data bytes from

I3C_MAXRLR[15:0] and if

I3C_BCR.BCR2 = 1 return

third byte from

I3C_MAXRLR.IBIP[2:0].

Refer to Section49.16.18

GETPID 0x8D With six data bytes X X, GETF Return data bytes from

I3C_EPIDR. Refer to

Section49.16.28

GETBCR 0x8E With one data byte X X, GETF Return data byte from

I3C_BCR[7:0]. Refer to

Section49.16.23.

GETDCR 0x8F X X, GETF Return I3C_DCR[7:0].

Refer to Section49.16.24.

GETSTATUS 0x90 With or without
defining byte

(TGTSTAT,

PRECR)

With two data

bytes (format 1 or

format 2 with

PRECR)

X

X, STAF if format

1 X, GETF if

format 2

Return 2 data bytes, as

detailed in Section49.9.9.

GETMXDS 0x94 With or without

defining byte

(WRRDTURN,
CRHDLY)

With two data

bytes (format 1) or

5 data bytes

(format 2 or format

3 with

WRRDTURN) or 1

data byte (format 3

with CRHDLY)

X

X, GETF

Return data byte(s) from

I3C_GETMXDSR. Refer to

Section49.16.27.

D2DXFER 0x97 Write With defining byte With defining byte X - -

SETXTIME 0x98 With sub-
command byte

With sub command

byte
X - -

GETXTIME 0x99 Read No defining/sub-

command byte

No defining/sub-

command byte
X - -

RSTACT 0x9A Read/ Write With defining byte
(0x00, 0x01, or

0x02)

With defining

byte (0x00,

0x01, or 0x02)

X X, RSTF if
detected reset

pattern

Read: return data byte
from RSTACT[1:0] in

the I3C_DEVR0

register.
Write: update

I3C_DEVR0:

RSTACT[1:0] and set
RSTVAL = 1

63

3.5 I²C Legacy Communication

 I3C is designed to be backward compatible with I²C, allowing seamless communication with legacy

I²C devices while benefiting from enhanced performance and features.In mixed bus environments, an I3C

controller can operate in I²C-compatible mode, where it communicates with legacy I²C targets using

standard I²C clock stretching,Start and Stop conditions and acknowledge (ACK/NACK) mechanisms.

Additionally, I3C devices recognize and respond to traditional I²C transactions, including 7-bit and 10-bit

addressing, ensuring interoperability. While I²C devices operate at their standard speeds (100 kHz, 400 kHz,

or 1 MHz), I3C targets can utilize dynamic clocking and in-band interrupt (IBI) capabilities when

interacting with other I3C devices, optimizing bus efficiency.

 This dual compatibility allows for a smooth transition from I²C to I3C while maintaining support for

existing I²C peripherals.

 The figure below presents both a legacy I2C and typical read register-based device transfer

 (write register address followed by data reads), and a legacy I2C typical write register-based

device transfer (write register address followed by data writes).

3.5.1 I²C Legacy Frame Format

Figure 52 Legacy I2C write messages - as controller

Figure 53 Legacy I2C read messages - as controller

64

Chapter 4: STM I3C System Architecture

This chapter details the hardware architecture of the custom-designed MIPI I3C Controller.

The design was approached with a modular philosophy to ensure clear separation of concerns,

facilitate verification, and produce a synthesizable IP core suitable for integration into a larger

System-on-Chip (SoC). The primary interface for system-level integration is a 32-bit AMBA APB

slave port, while the protocol-level logic is managed by a dedicated kernel.

Figure 54 I3C Block Diagram

The overall architecture, illustrated in Figure 4.1, is partitioned into three primary functional

units: the APB Interface, the I3C Kernel, and the I3C Bus Interface. The design operates on two

main clock domains: i3c_pclk for the APB bus and system register access, and i3c_ker_clk for the

core protocol logic, which are decoupled using asynchronous fifos. The following sections will

provide a detailed description of each component.

65

4.1 APB Interface Block

The APB Interface block serves as the bridge between the I3C controller and the host processor

or system bus. It is responsible for all configuration, control, and data-transfer operations initiated by

the system. It adheres to the AMBA APB protocol specification, ensuring standard-compliant

integration. This block contains the following sub-modules:

• I3C Registers: This is the primary control and status plane for the controller. A dedicated

address space is mapped to a set of registers accessible via APB read/write transactions. You

should include a detailed Register Map table here. These registers include:

• Control Registers: To start/stop I3C transactions, configure the controller mode (e.g.,

Controller, Target), and issue specific commands.

• Configuration Registers: To set the I3C bus speed by programming clock dividers,

define the controller's own address, etc.

• Status Registers: To provide real-time feedback to the processor, indicating FIFO

levels (empty, full, thresholds), transfer completion, error conditions, and interrupt

sources.

4.2 Registers
The I3C registers must be accessed with a 32-bit word-aligned address.

4.2.1 I3C message control register (I3C_CR)
Address offset: 0x000

 Reset value: 0x0000 0000

 This register must be used to control the message to emit on the I3C bus:

 • when I3C acts as controller (bit[30] = MTYPE[3] = 0): if there is no CCC code to be

emitted bits[29:27] = MTYPE[2:0] differ from 110; else the alternate register description

Section 49.16.2 must be considered.

 • when I3C acts as target (bit[30] = MTYPE[3] = 1).

When I3C acts as controller:

 • If the control FIFO (C-FIFO) is not full (CFNFF = 1 in the I3C_EVR register), writing

into

this register means pushing a new control word into the C-FIFO; either by software, or

automatically by DMA, as defined by CDMAEN in the I3C_CFGR register.

 • If C-FIFO is empty and a restart must be emitted with a new control word, the I3C

hardware asserts the control FIFO error underrun flag (COVR = 1 in the I3C_SER

66

register). If enabled by ERRIE = 1 in the I3C_IER register, an interrupt is generated.

 • After the last message of the frame is completed (a message with MEND = 1 in the

I3C_CR register), the I3C hardware asserts the frame completed flag (FCF = 1 in the

I3C_EVR register) and the corresponding interrupt, if enabled.

 When I3C acts as target, this register is used in register mode:

 • Software writes into this register to initiate a command (IBI, controller-role or

 hot-join request) on the I3C bus.

 • C-FIFO is disabled, and there is no DMA mode neither for control words.

Bit 31 MEND: Message end type/last message of a frame (when the I3C acts as controller)

 0: this message from controller is followed by a repeated start (Sr), before another

message

must be emitted

 1: this message from controller ends with a stop (P), being the last message of a frame

Bits 30:27 MTYPE[3:0]: Message type (whatever I3C acts as controller/target)

 Condition: when I3C acts as I3C controller

 0000: SCL clock is forced to stop until a next control word is executed

Bits[26:0] are ignored. On a CE1 error detection (ERRF = 1 in the I3C_EVR register and

CODERR[3:0] =

0001 in the I3C_SER register) where a start/restart/stop is prevented from being

generated, the software

must use this message type for SCL “stuck at” recovery. Refer to Table 540.

 0001: header message

 Bits[26:0] are ignored. If the addressed target is not responding with an ACK to a

private/direct message, as

an escalation stage after a failed GETSTATUS tentative, the software must program this

with EXITPTRN = 1

in the I3C_CFGR register, so that an HDR exit pattern is emitted on the bus, whatever

the header is ACK-ed

or NACK-ed (to avoid the target to consider that the I3C bus is in HDR mode). Refer to

Table 540 and MIPI

specification about escalation handling.

 0010: private message (refer to Figure 667)

 Bits[23:17] (ADD[6:0]) are the emitted 7-bit dynamic address.

 Bit[16] (RNW) is the emitted RnW bit.

 Bits[15:0] (DCNT[15:0]) are the number of programmed data bytes.

 The transferred private message is:–

 {S / S + 0b111_1110 + RnW = 0 + Sr/Sr+*} + 7-bit DynAddr + RnW + (8-bit Data +

T)* + Sr/P.––

 After an S (start), depending upon bit NOARBH in the I3C_CFGR register, the

arbitrable header

(0b111_1110 + RnW = 0) is inserted or not.

 Sr+*: after an Sr (repeated start), the hardware automatically inserts (0b111_1110 +

RnW = 0) if

67

needed, if it follows a previous message without ending by a P (stop).

 0011: direct message (second part of an I3C SDR direct CCC command) (refer to

Figure 660)

 Bits[23:17] (ADD[6:0]) are the emitted 7-bit dynamic address.

 Bit[16] (RNW) is the emitted RnW bit.

 Bits[15:0] (DCNT[15:0]) are the number of programmed data bytes.

 The transferred direct message is: Sr + 7-bit DynAddr + RnW + (8-bit Data + T)* + Sr/P

 0100: legacy I2C message (refer to Figure 669)

 Bits[23:17] (ADD[6:0]) are the emitted 7-bit static address.

 Bit[16] (RNW) is the emitted RnW bit.

 Bits[15:0] (DCNT[15:0]) are the number of programmed data bytes.

 The transferred legacy I2C message is: –

 {S / S + 0b111_1110 + RnW = 0 + Sr/Sr+*} + 7-bit StaAddr + RnW + (8-bit data + T)*

+ Sr/P.––

 After an S, depending on NOARBH, the arbitrable header (0b111_1110 + RnW = 0) is

inserted or not.

 Sr+*: after an Sr (repeated start), the hardware automatically inserts (0b111_1110 +

RnW = 0) if

needed (if it follows a previous message without ending by a P (stop)).

 Others: reserved

 Condition: when I3C acts as I3C target

 1000: hot-join request (W) (refer to Figure 671)

 The transferred hot-join request is {S +} 0b000_0010 addr + RnW = 0.

 Writing the control word initiates the hot-join request if target is allowed to do so

(HJEN = 1 in the

I3C_DEVR0 register), either actively after a bus idle condition via the hardware issuing

a start request (SDA

low) and waiting for the controller to activate SCL clock, or passively if the controller

initiates a concurrent

message.

 1001: controller-role request (W) (refer to Figure 672)

 The transferred controller-role request is {S +} DA[6:0] + RnW = 0 (DA in the

I3C_DEVR0 register)

 Writing the control word initiates the controller-role request if target is allowed to

 do so (CREN = 1 and

DAVAL = 1 in the I3C_DEVR0 register), either actively after a bus idle condition via

the hardware issuing a

start request (SDA low) and waiting for the controller to activate SCL clock, or passively

if the controller

initiates a concurrent message.

 1010: IBI (in-band interrupt) request (R) (refer to Figure 670)

 Bits[15:0] (DCNT[15:0]) are the number of the IBI data payload (including the first

MDB), if any.

 The transferred IBI request is {S +} DA[6:0] + RnW = 1 + optional IBI data payload.

68

Writing the control word

initiates the IBI request if target is allowed to do so (IBIEN = 1 and DAVAL = 1 in the

I3C_DEVR0.register),

either actively after a bus idle condition via the hardware issuing a start request (SDA

low) and waiting for

the controller to activate SCL clock, or passively if the controller initiates a concurrent

message.

 When acknowledged from controller, the transmitted IBI payload data (optional,

depending upon BCR2 in

the I3C_BCR register) is defined by DCNT[15:0] in the I3C_CR register and

I3C_IBIDR, and must be

consistently programmed vs. the IBI payload data size defined by IBIP[2:0] in the

I3C_IBIDR register.

 Others: reserved

 Bits 26:24 Reserved, must be kept at reset value.

Bits 23:17 ADD[6:0]: 7-bit I3C dynamic / I2C static target address (when I3C acts as

controller)

 When I3C acts as controller, this field is used if MTYPE[3:0] = 0010 (private message),

 or MTYPE[3:0] = 0011 (direct message), or MTYPE[3:0] = 0100 (legacy I2C message)

Bit 16 RNW: Read / non-write message (when I3C acts as controller)

 When I3C acts as controller, this field is used if MTYPE[3:0] = 0010 (private message), or

MTYPE[3:0] = 0011 (direct message), or MTYPE[3:0] = 0100 (legacy I2C message), to emit

the RnW bit on the I3C bus.

 0: write message

 1: read message

 Bits 15:0 DCNT[15:0]: Count of data to transfer during a read or write message, in bytes

(whatever I3C acts as controller/target)

 When I3C acts as controller, this field is used if MTYPE[3:0] = 0010 (private message), or

MTYPE[3:0] = 0011 (direct message), or MTYPE[3:0] = 0100 (legacy I2C message), to set

the number of exchanged data bytes on the bus. In case of a private or legacy I2C read/write

message, this field must be non-null.

 When I3C acts as target, this field is used if MTYPE[3:0] = 1010 (IBI request) and if any

IBI

data payload (data to be transmitted if BCR2 = 1 in the I3C_BCR register), to set the

number

of bytes of the IBI data payload (1, 2, 3, or 4).

 Linear encoding up to 64 Kbytes - 1

 0x0000: no data to transfer

 0x0001: 1 byte

 0x0002: 2 bytes

 ...

 0xFFFF: 64 Kbytes - 1 byte

69

4.2.2 I3C message control register [alternate] (I3C_CR)
 Address offset: 0x000

 Reset value: 0x0000 0000

This write register description must be used to control the message for when the controller

has to emit a CCC (whatever is the type of the CCC: for a CCC broadcast, a CCC direct, or

a CCC Enter HDR).

 This is the alternate description of register I3C_CR, for when MTYPE[3:0] = 0110. Else

refer

to Section 49.16.1.

 If the control FIFO (also known as C-FIFO) is not full (CFNFF = 1 in the I3C_EVR register),

writing into this register means pushing a new control word into the C-FIFO; either by the

software or automatically by DMA, as defined by the CDMAEN bit in the I3C_CFGR

register.

 When the last message of the frame is completed (a message with MEND = 1 in the

I3C_CR register), the I3C hardware asserts the frame completed flag (FCF = 1 in the

I3C_EVR register) and the corresponding interrupt, if enabled.

Bit 31 MEND: Message end type/last message of a frame (when I3C acts as controller)

 0: this message from controller is followed by a repeated start (Sr), before another

message must be emitted

 1: the message from the controller ends with a stop (P), being the last message of a frame

 Bits 30:27 MTYPE[3:0]: Message type (when I3C acts as controller)

 Condition: when I3C acts as I3C controller

 0110: broadcast/direct CCC command (refer to Table 539, Figure 660, Figure 661,

Figure 662)

 Bits[23:16] (CCC[7:0]) are the emitted 8-bit CCC code

 Bits[15:0] (DCNT[15:0]) are the number of the CCC defining bytes, or

 CCC sub- command

bytes, or CCC data bytes.

 If Bit[23] = CCC[7] = 1: this is the first part of an I3C SDR direct CCC command

 The transferred direct CCC command (first part) message is: –

 {S / S + 0b111_1110 +RnW = 0 / Sr+*} + (direct CCC + T) + (8-bit Data + T)*

 + Sr––

 After an S (start), depending upon NOARBH in the I3C_CFGR register, the

 arbitrable header (0b111_1110 + RnW = 0) is inserted or not.

70

 Sr+*: after an Sr (repeated start), the hardware automatically inserts (0b111_1110 +

 R/W).

 If Bit[23] = CCC[7] = 0: this is an I3C SDR broadcast CCC command

 (including specific ENTDAA, refer to Figure 661)

 The transferred broadcast CCC command message is: –

 {S / S + 0b111_1110 + RnW = 0 / Sr+*} + (broadcast CCC + T) + (8-bit Data + T)

 * + Sr/P––

 After an S (start), depending on NOARBH, the arbitrable header

 (0b111_1110 + RnW = 0) is inserted or not.

 Sr+*: after an Sr (repeated start), the hardware automatically inserts (0b111_1110 +

 R/W).

 Others: reserved

 Bits 26:24 Reserved, must be kept at reset value.

 Bits 23:16 CCC[7:0]: 8-bit CCC code (when I3C acts as controller)

If bit[23] = CCC[7] = 1, this is the first part of an I3C SDR direct CCC command.

 If bit[23] = CCC[7] = 0, this is an I3C SDR broadcast CCC command (including

ENTDAA).

 Bits 15:0 DCNT[15:0]: Count of related data to the CCC command to transfer as CCC

defining bytes, or

CCC sub-command bytes, or CCC data bytes, in bytes

 Linear encoding up to 64 Kbytes - 1.

 0x0000: no data to transfer.

 Note: Value mandatory when emitting ENTDAA broadcast CCC (refer to Figure 661).

0x0001: 1 byte

 Note: Value mandatory when emitting RSTACT direct/broadcast CCC (refer to Figure

662).

 0x0002: 2 bytes

 ...

 0xFFFF: 64 Kbytes - 1 byte

4.2.3 I3C configuration register (I3C_CFGR)
 Address offset: 0x004

 Reset value: 0x0000 0000

71

This register is used to configure:

 • features that apply when the I3C acts as controller or target: RX-FIFO and TX-FIFO

 management (RXDMAEN, RXTHRES, RXFLUSH, TXDMAEN, TXTHRES, TXFLUSH),

I3C peripheral role (CRINIT)

 • dedicated features when the I3C acts as a controller: frame-based control-word

triggering (TSFSET), FIFOs management (TMODE, SMODE, SFLUSH, SDMAEN,

CDMAEN), and miscellaneous ones (HJACK, HKSDAEN, EXITPTRN, RSTPATRN,

NOARBH)

 The configuration fields CRINIT, HKSDAEN can be modified only when EN = 0. This

condition is respected if they are modified at the same time when EN is set to 1

(it is not necessary to set EN later on, with another write operation).

Bit 31 Reserved, must be kept at reset value.

Bit 30 TSFSET : Frame transfer set (software trigger) (when I3C acts as controller)

 This bit can only be written. When I3C acts as I3C controller:

 0: no action

 1: setting this bit initiates a frame transfer by causing the hardware to assert the flag CFNFF

in the I3C_EVR register (C-FIFO not full and a control word is needed)

 Note: If this bit is not set, the other alternative for the software to initiate a frame transfer is

to directly write the first control word register (I3C_CR) while C-FIFO is empty (CFEF = 1 in

the I3C_EVR register). Then, if the first written control word is not tagged as a message end

(MEND = 0 in the I3C_CR register), it causes the hardware to assert CFNFF.

 Bits 29:24 Reserved, must be kept at reset value.

 Bit 23 Reserved, must be kept at reset value.

 Bit 22 Reserved, must be kept at reset value.

 Bit 21 CFLUSH: C-FIFO flush (when I3C acts as controller)

 This bit can only be written.

 0: no action

 1: flush C-FIFO

Bit 20 CDMAEN: C-FIFO DMA request enable (when I3C acts as controller)

 When I3C acts as controller:

 0: DMA mode is disabled for C-FIFO- Software writes and pushes control word(s) into C-FIFO

(writes I3C_CR register), as

needed for a given frame - A next control word transfer can be written by software either via

polling on the flag

CFNFF = 1 in the I3C_EVR register, or via interrupt notification (enabled by CFNFIE = 1 in the

I3C_IER register).

 1: DMA mode is enabled for C-FIFO- DMA writes and pushes control word(s) into C-FIFO

(writes I3C_CR register), as needed

for a given frame.- A next control word transfer is automatically written by the programmed

hardware (via

the asserted C-FIFO DMA request from the I3C and the programmed DMA channel).

 Bit 19 TMODE: Transmit mode (when I3C acts as controller)

 When I3C acts as controller, this bit is used for the C-FIFO and TX-FIFO management vs. the

72

emitted frame on the I3C bus.

 0: C-FIFO and TX-FIFO are not preloaded before starting to emit a frame transfer.

 A frame transfer starts as soon as the first control word is present in C-FIFO.

 1: C-FIFO and TX-FIFO are first preloaded (also TX-FIFO if needed, depending on the frame

format) before starting to emit a frame transfer. Refer to Section 49.10.2 for more details.

 Bit 18 SMODE: S-FIFO enable / status receive mode (when I3C acts as controller)

 When I3C acts as controller, this bit is used to enable the FIFO for the status

 (S-FIFO) of the exchanged message on the I3C bus.

 When I3C acts as target, this bit must be cleared.

 0: S-FIFO is disabled - Status register (I3C_SR) is used without FIFO mechanism.- There is no

SCL stalling if a new status register content is not read.- Status register must be read before

being overwritten by the hardware.- Must have SDMAEN = 0 in the I3C_CFGR register.

 1: S-FIFO is enabled. - Each message status must be read.- There is SCL stalling when the S-FIFO

is full and a next message status must be read.- S-FIFO overrun error is reported after the

maximum SCL clock stalling time.

 Bit 17 SFLUSH: S-FIFO flush (when I3C acts as controller)

 This bit can be written and used only when I3C acts as controller.

 0: no action

 1: flush S-FIFO

Bit 16 SDMAEN: S-FIFO DMA request enable (when I3C acts as controller)

 This bit must be cleared if SMODE = 0 in the I3C_CFGR register (S-FIFO is

disabled). In other words, DMA mode cannot be used if S-FIFO is disabled. Then the

status register I3C_SR can be read or not.

 This bit can be set or cleared if SMODE = 1 (S-FIFO is enabled). In other words,

status

register I3C_SR must be read for each message, either by software, or via an allocated

DMA channel.

 0: DMA mode is disabled for reading status register I3C_SR- SMODE = 0: software can

read the I3C_SR register after a completed frame (FCF = 1 in

the I3C_EVR register) or an error (ERRF = 1 in the I3C_EVR register). Via polling on

these register flags or via interrupt notification (enabled by FCIE = 1 and ERRIE = 1 in

the I3C_IER register).- SMODE = 1: software must read and pop a status word from

S-FIFO (read I3C_SR register) after each asserted flag SFNEF = 1. Via polling on this

register flag or via interrupt notification (enabled by SFNEIE = 1 in the I3C_IER

register).

 1: DMA mode is enabled for reading status register I3C_SR- Must have SMODE = 1 in

the I3C_CFGR register (S-FIFO enabled)- DMA reads and pops status word(s) from

S-FIFO (it reads I3C_SR register)- Status word(s) are automatically read by the

programmed hardware (via the asserted

S-FIFO DMA request from the I3C and the programmed DMA channel).

 Bit 15 Reserved, must be kept at reset value.

 Bit 14 TXTHRES: TX-FIFO threshold (whatever I3C acts as controller/target)

 This threshold defines, compared to the TX-FIFO level, when the TXFNFF flag is set

in the I3C_EVR register (and consequently if TXDMAEN = 1 when is asserted a

73

DMA TX request).

 0: 1-byte threshold

 TXFNFF is set when 1 byte must be written in TX-FIFO (in I3C_TDR).

 1: 1-word / 4-byte threshold TXFNFF is set when 1 word / 4 bytes must be written in

TX-FIFO (in the I3C_TDWR register). If the a number of the last transmitted data is

not a multiple of 4 bytes (XDCNT[1:0] = 00 in the I3C_SR register), only the relevant

1, 2, or 3 valid LSB bytes of the last word are taken into account by the hardware, and

sent on the I3C bus.

 Bit 13 TXFLUSH: TX-FIFO flush (whatever I3C acts as controller/target)

 This bit can only be written.

 When the I3C acts as target, this bit can be used to flush the TX-FIFO on a private

read if the controller has aborted the data read (driven low the T bit), and there is/are

remaining data in the TX-FIFO (ABT = 1, and XDCNT[15:0] in the I3C_SR register

< TGTTDCNT[15:0] in the I3C_TGTTDR register).

 0: no action

 1: flush TX-FIFO

 Bit 12 TXDMAEN: TX-FIFO DMA request enable (whatever I3C acts as controller/target)

 0: DMA mode is disabled for TX-FIFO- Software writes and pushes a data byte/word

into TX-FIFO (writes I3C_TDR or I3C_TDWR register), to be transmitted over the

I3C bus. - A next data byte/word must be written by the software either via polling on

the flag TXFNFF = 1 or via interrupt notification (enabled by TXFNFIE = 1).

 1: DMA mode is enabled for TX-FIFO- DMA writes and pushes data byte(s)/word(s)

into TX-FIFO (writes I3C_TDR or I3C_TDWR register). - A next data byte/word

transfer is automatically pushed by the programmed hardware

 (via the asserted TX-FIFO DMA request from the I3C and the programmed DMA

channel).

 Bit 11 Reserved, must be kept at reset value.

 Bit 10 RXTHRES: RX-FIFO threshold (whatever I3C acts as controller/target)

 This threshold defines, compared to the RX-FIFO level, when the RXFNEF flag in the

 I3C_EVR register is set (and consequently if RXDMAEN = 1 when is asserted a DMA

RX request).

 0: 1-byte threshold

 RXFNEF is set when 1 byte must be read in RX-FIFO (in the I3C_RDR register).

1: 1-word/4-bytes threshold

 RXFNEF is set when 1 word / 4 bytes is/are to be read in RX-FIFO (in I3C_RDWR).

In the case of a number of last received data being not a multiple of 4 bytes, only the

relevant 1, 2 or 3 valid LSB bytes of the last word are to be considered by the

software. The number of effective received data bytes is reported by XDCNT[15:0] in

the I3C_SR register.

 Bit 9 RXFLUSH: RX-FIFO flush (whatever I3C acts as controller/target)

 This bit can only be written.

 0: no action

 1: flush RX-FIFO

74

 Bit 8 RXDMAEN: RX-FIFO DMA request enable (whatever I3C acts as controller/target)

 0: DMA mode is disabled for RX-FIFO- Software reads and pops a data byte/word from

RX-FIFO (it reads I3C_RDR or I3C_RDWR register).- A next data byte/word must be read

by the software either via polling flag RXFNEF = 1 in

 the I3C_EVR register, or via interrupt notification (enabled by RXFNEIE = 1 in the

 I3C_IER register).

 1: DMA mode is enabled for RX-FIFO- DMA reads and pops data byte(s)/word(s) from RX-

FIFO (reads I3C_RDR or I3C_RDWR register).- A next data byte/word is automatically

read by the programmed hardware (via the

asserted RX-FIFO DMA request from the I3C and the programmed DMA channel).

 Bit 7 HJACK: Hot-join request acknowledge (when I3C acts as a controller)

 0: hot-join request is not acknowledged

 After the NACK, the controller continues as initially programmed (the hot-joining target is

aware of the NACK and must emit another hot-join request later on).

 1: hot-join request is acknowledged

 After the ACK, the controller continues as initially programmed. The software is notified

by the HJ interrupt (flag HJF is set in the I3C_EVR register), and must initiate the

ENTDAA sequence later on, potentially preventing other hot-join requests with a disable

target events command (DISEC, with DISHJ = 1).

 Bit 6 Reserved, must be kept at reset value.

 Bit 5 HKSDAEN: High-keeper enable on SDA line (when I3C acts as a controller)

 0: High-keeper is disabled

 1: High-keeper is enabled, and the weak pull-up is effective on the T bit, instead of

 the open drain class pull-up.

 Note: This bit can be modified only when EN = 0 in the I3C_CFGR register.

Bit 4 EXITPTRN: HDR exit pattern enable (when I3C acts as a controller)

 This bit can be modified only when there is no on-going frame.

 0: HDR exit pattern is not sent after the issued message header (MTYPE[3:0] = 0001 in the

I3C_CR register). This is used to send the header, to test ownership of the bus when there

is a suspicion of a problem after controller-role hand-off (new controller did not assert its

controller-role by accessing the previous one in less than the delay defined by the activity

state).

 1: HDR exit pattern is sent after the issued message header (MTYPE[3:0] = 0001).

 This is used on a controller error detection and escalation handling, in case of a not

responding target to a private message or a direct read CCC.

 The HDR exit pattern is sent whatever the message header {S/Sr + 0x7E addr + W} is

ACKed or NACK-ed..

 Bit 3 RSTPTRN: HDR reset pattern enable (when I3C acts as a controller)

 This bit can be modified only when there is no on-going frame.

 0: standard stop emitted at the end of a frame

 1: HDR reset pattern is inserted before the stop of any emitted frame that includes

 a RSTACT CCC command

 Bit 2 NOARBH: No arbitrable header after a start (when I3C acts as a controller)

75

 This bit can be modified only when there is no on-going frame.

 0: An arbitrable header (0b111_1110 + RnW = 0) is emitted after a start and before

 a legacy I2C message or an I3C SDR private read/write message (default).

 1: No arbitrable header- The target address is emitted directly after a start in case of

 a legacy I2C message or an I3C SDR private read/write message. - This is a more performing

option (when the emission of the 0x7E arbitrable header is useless), but must be used only

when the controller is sure that the addressed target device

cannot emit concurrently an IBI or a controller-role request (to insure no misinterpretation and

no potential conflict between the address emitted by the controller in open-drain mode and

the same address a target device can emit after a start, for IBI or MR).

 Bit 1 CRINIT: Initial controller/target role

 This bit can be modified only when EN = 0 in the I3C_CFGR register.

 0: target role Once enabled by setting EN = 1, the peripheral initially acts as a target. I3C does

not drive SCL line and does not enable SDA pull-up, until it eventually acquires the

controller role.

 1: controller role Once enabled by setting EN = 1, the peripheral initially acts as

a controller. It has the I3C controller role, so drives SCL line and enables SDA pull-up, until it

eventually offers the controller role to an I3C secondary controller.

 Bit 0 EN: I3C enable (whatever I3C acts as controller/target)

 0: I3C is disabled

- Except registers, the peripheral is under reset (partial reset).

- Before clearing EN, when I3C acts as a controller, all the possible target requests must

be disabled using DISEC CCC.

- When I3C acts as a target, software must not disable the I3C, unless a partial reset is

needed.

 1: I3C is enabled

In this state, some register fields cannot be modified (like CRINIT, HKSDAEN for the

I3C_CFGR).

4.2.4 I3C receives data byte register (I3C_RDR)

 Bits 31:8 Reserved: must be kept at reset value.

 Bits 7:0 RDB0[7:0]: 8-bit received data on I3C bus.

76

 Byte-Based Read (RXTHRES = 0)

• Reads one byte at a time (stored in LSB of a 32-bit word).

• If RXDMAEN = 1, DMA manages to read automatically.

• If RXDMAEN = 0, software must check RXFNEF flag before reading.

• If FIFO is full, an overrun error (DOVRF) is triggered.

4.2.5 I3C transmit data byte register (I3C_TDR)

 Bits 31:8 Reserved: must be kept at reset value.

 Bits 7:0 TDB0[7:0]: 8-bit data to transmit on I3C bus.

 Byte-Based Writing (TXTHRES = 0) Transmits one byte at a time.

• TXDMAEN = 1: Data transfer is managed automatically via DMA.

• TXDMAEN = 0: Software must wait for TXFNFF = 1 before writing.

• If TX-FIFO is empty and the data is delayed, a data underrun error (DOVR) occurs.

4.2.6 I3C event register (I3C_EVR)
Address offset: 0x050

 Reset value: 0x0000 0003

 This is a read register, used for reporting event flags.

Bit 31 GRPF: Group addressing flag (when the I3C acts as target)

 When the I3C acts as target (and is typically controller-capable), this flag is asserted by

hardware to indicate that the broadcast DEFGRPA CCC (define list of group addresses) has

been received. Then, software can store the received data for when getting controller role.

 The flag is cleared when software writes 1 into the corresponding CGRPF bit in the I3C_CR

register.

77

 Bit 30 DEFF: DEFTGTS flag (when the I3C acts as target)

 When the I3C acts as target (and is typically controller capable), this flag is asserted by

hardware to indicate that the broadcast DEFTGTS CCC (define list of targets) has been

received. Then, software can store the received data for when getting the controller role.

 The flag is cleared when software writes 1 into the corresponding CDEFF bit in the

I3C_CEVR register.

 Bit 29 INTUPDF: Interrupt/controller-role/hot-join update flag (when the I3C acts as target)

 When the I3C acts as target, this flag is asserted by hardware to indicate that the direct or

 broadcast ENEC/DISEC CCC (enable/disable target events) has been received, where a

 target event is either an interrupt/IBI request, a controller-role request, or an hot-join request.

 Then, software must read respectively IBIEN, CREN, or HJEN in the I3C_DEVR0 register.

 The flag is cleared when software writes 1 into the corresponding CINTUPDF bit in the

 I3C_CEVR register.

 Bit 28 ASUPDF: Activity state update flag (when the I3C acts as target)

 When the I3C acts as target, this flag is asserted by hardware to indicate that the direct or

broadcast ENTASx CCC (with x = 0...3) has been received. Then, software must read

AS[1:0] in the I3C_DEVR0 register.

 The flag is cleared when software writes 1 into the corresponding CASUPDF bit in the

I3C_CEVR register.

Bit 27 RSTF: Reset pattern flag (when the I3C acts as target)

 When I3C acts as target, this flag is asserted by hardware to indicate that a reset pattern has

been detected (14 SDA transitions while SCL is low, followed by repeated start, then stop).

 Then, when not in Stop mode, software must read RSTACT[1:0] and RSTVAL in the

 I3C_DEVR0 register, to know the required reset level.

- If RSTVAL = 1: when the RSTF is asserted (and/or the corresponding interrupt if

enabled), RSTACT[1:0] in the I3C_DEVR0 register dictates the reset action to be

performed by the software, if any.

- If RSTVAL = 0: when the RSTF is asserted (and/or the corresponding interrupt if

enabled), the software must issue an I3C reset after a first detected reset pattern,

and a system reset on the second one.

 When in Stop mode, the corresponding interrupt can be used to wake up the device.

 The flag is cleared when software writes 1 into the corresponding CRSTF bit in the I3C_CEVR

register.

 Bit 26 MRLUPDF: Maximum read length update flag (when the I3C acts as target)

 When the I3C acts as target, this flag is asserted by hardware to indicate that a direct

 SETMRL CCC (set max read length) has been received. Then, software must read

 MRL[15:0] in the I3C_MAXRLR register to get the maximum read length value.

 The flag is cleared when software writes 1 into the corresponding CMRLUPDF bit in

the I3C_CEVR register.

 Bit 25 MWLUPDF: Maximum write length update flag (when the I3C acts as target)

 When the I3C acts as target, this flag is asserted by hardware to indicate that a direct

SETMWL CCC (set max write length) has been received. Then, software must read

MWL[15:0] in the I3C_MAXRLR register to get the maximum write length value.

78

 The flag is cleared when software writes 1 into the corresponding CMWLUPDF bit in the

I3C_CEVR register.

 Bit 24 DAUPDF: Dynamic address update flag (when the I3C acts as target)

 When the I3C acts as target, this flag is asserted by hardware to indicate that a dynamic

address update has been received via any of the broadcast ENTDAA, RSTDAA and direct

SETNEWDA CCC. Then, software must read DA[6:0] and DAVAL in the I3C_DEVR0 register

to get the dynamic address update.

 The flag is cleared when software writes 1 into the corresponding CDAUPDF bit in the

I3C_CEVR register.

 Bit 23 STAF: Get status flag (when the I3C acts as target)

 When the I3C acts as target, this flag is asserted by hardware to indicate that a direct

GETSTATUS CCC of format 1 (without defining byte or with defining byte TGTSTAT) has

been received.

 The flag is cleared when software writes 1 into the corresponding CSTAF bit in the

I3C_CEVR register.

 Bit 22 GETF: Get flag (when the I3C acts as target)

 When the I3C acts as target, this flag is asserted by hardware to indicate that any direct CCC of

get type (GET*** CCC) except the GETSTATUS of format 1 (but including GETSTATUS of

format 2) has been received.

 The flag is cleared when software writes 1 into the corresponding CGETF bit in the

 I3C_CEVR register.

Bit 21 WKPF: Wake-up/missed start flag (when the I3C acts as target)

 When the I3C acts as target, this flag is asserted by hardware to indicate that a start has

been detected (an SDA falling edge followed by an SCL falling edge) but on the next SCL

falling edge, the I3C kernel clock is (still) gated. Thus an I3C bus transaction may have been

lost by the target.

 The corresponding interrupt can be used to wake up the device from a low power

 (Sleep or Stop) mode.

 The flag is cleared when software writes 1 into the corresponding CWKPF bit in the

 I3C_CEVR register.

 Bit 20 Reserved, must be kept at reset value.

 Bit 19 HJF: Hot-join flag (when the I3C acts as controller)

 When the I3C acts as controller, this flag is asserted by hardware to indicate that an hot join

request has been received.

 The flag is cleared when software writes 1 into the corresponding CHJF bit in the I3C_CEVR

register.

 Bit 18 CRUPDF: Controller-role update flag (when the I3C acts as target)

 When the I3C acts as target, this flag is asserted by hardware to indicate that it has now

 gained the controller role after the completed controller-role hand-off procedure.

 The flag is cleared when software writes 1 into the corresponding CCRUPDF bit in the

 I3C_CEVR register.

 Bit 17 CRF: Controller-role request flag (when the I3C acts as controller)

 When the I3C acts as controller, this flag is asserted by hardware to indicate that a controller

role request has been acknowledged and completed (by hardware). The software must then

79

issue a GETACCCR CCC (get accept controller role) for the controller-role hand-off

procedure.

 The flag is cleared when software writes 1 into the corresponding CCRF bit in

 the I3C_CEVR register.

 Bit 16 IBIENDF: IBI end flag (when the I3C acts as target)

 When the I3C acts as target, this flag is asserted by hardware to indicate that an

 IBI transfer has been received and completed (IBI acknowledged and IBI data bytes

 read by controller if any).

The flag is cleared when software writes 1 into the corresponding CIBIENDF bit in the

I3C_CEVR register.

 Bit 15 IBIF: IBI flag (when the I3C acts as controller)

 When the I3C acts as controller, this flag is asserted by hardware to indicate that an IBI

request has been received.

 The flag is cleared when software writes 1 into the corresponding CIBIF bit in the I3C_CEVR

register.

 Bits 14:12 Reserved, must be kept at reset value.

 Bit 11 ERRF: Flag (whatever the I3C acts as controller/target)

 This flag is asserted by hardware to indicate that an error occurred.Then, software must read

I3C_SER to get the error type.

 The flag is cleared when software writes 1 into the corresponding CERRF bit in the

I3C_CEVR register.

Bit 10 RXTGTENDF: Target-initiated read end flag (when the I3C acts as controller)

 When the I3C acts as controller, and only if the S-FIFO is disabled (SMODE = 0 in the

I3C_CFGR register), this flag is asserted by hardware to indicate that the target has

prematurely ended a read transfer. Then, software must read the status register I3C_SR to

check information related to the last message and get the number of received data bytes on the

prematurely read transfer (XDCNT in the I3C_SR register).

 The flag is cleared when software writes 1 into the corresponding CRXTGTENDF bit in the

I3C_CEVR register.

 Bit 9 FCF: Frame complete flag (whatever the I3C acts as controller/target)

 When the I3C acts as controller, this flag is asserted by hardware to indicate that a frame has

been (normally) completed on the I3C bus, for example, when a stop is issued.

 When the I3C acts as target, this flag is asserted by hardware to indicate that a message

 addressed to/by this target has been (normally) completed on the I3C bus, for example, when a

next stop or repeated start is then issued by the controller.

 The flag is cleared when software writes 1 into the corresponding CFCF bit in the I3C_CEVR

register.

 Bit 8 Reserved, must be kept at reset value.

 Bit 7 RXLASTF: Last read data byte/word flag (when the I3C acts as controller)

 When the I3C acts as controller, this flag is asserted by hardware to indicate that the last data

byte/word (depending upon RXTHRES in the I3C_CFGR register) of a message must be read

from the RX-FIFO. The flag is de-asserted by hardware when the last data byte/word of a

80

message is read.

Bit 6 TXLASTF: Last written data byte/word flag (whatever the I3C acts as controller/target)

 This flag is asserted by hardware to indicate that the last data byte/word (depending upon

TXTHRES in the I3C_CFGR register) of a message must be written to the TX-FIFO. The flag is

de-asserted by hardware when the last data byte/word of a message is written.

 Bit 5 RXFNEF: RX-FIFO not empty flag (whatever the I3C acts as controller/target)

 This flag is asserted/de-asserted by hardware to indicate that a data byte must/must not be read

from the RX-FIFO.

 Note: The software must wait for RXFNEF = 1 (by polling or via the enabled interrupt) before

reading from RX-FIFO (reading from I3C_RDR or I3C_RDWR, depending upon

RXTHRES).

 Bit 4 TXFNFF: TX-FIFO not full flag (whatever the I3C acts as controller/target)

 This flag is asserted/de-asserted by hardware to indicate that a data byte/word must/must not be

written to the TX-FIFO.

 Note: The software must wait for TXFNFF = 1 (by polling or via the enabled interrupt) before

writing to TX-FIFO (writing to I3C_TDR or I3C_TDWR, depending upon TXTHRES).

 Note: When the I3C acts as target, if the software intends to use the TXFNFF flag for writing

into I3C_TDR/I3C_TDWR, it must have configured and set the TX-FIFO preload (write

PRELOAD in the I3C_TGTTDR register).

 Bit 3 SFNEF: S-FIFO not empty flag (when the I3C acts as controller)

 When the I3C acts as controller, if the S-FIFO is enabled (SMODE = 1 in the I3C_CFGR

register), this flag is asserted by hardware to indicate that a status word must be read from

the S-FIFO. The flag is de-asserted by hardware to indicate that a status word is not to be

read from the S-FIFO.

Bit 2 CFNFF: C-FIFO not full flag (when the I3C acts as controller)

 When the I3C acts as controller, this flag is asserted by hardware to indicate that a control word

must be written to the C-FIFO. The flag is de-asserted by hardware to indicate that a control

word is not to be written to the C-FIFO.

 Note: The software must wait for CFNFF = 1 (by polling or via the enabled interrupt) before

writing to C-FIFO (writing to I3C_CR).

Bit 1 TXFEF: TX-FIFO empty flag (whatever the I3C acts as controller/target)

 This flag is asserted by hardware to indicate that the TX-FIFO is empty.

 This flag is de-asserted by hardware to indicate that the TX-FIFO is not empty.

 Bit 0 CFEF: C-FIFO empty flag (whatever the I3C acts as controller)

 This flag is asserted by hardware to indicate that the C-FIFO is empty when controller, and that

the I3C_CR register contains no control word (none IBI/CR/HJ request) when target.

 This flag is de-asserted by hardware to indicate that the C-FIFO is not empty when controller,

and that the I3C_CR register contains one control word (a pending IBI/CR/HJ request) when

target.

 Note: When the I3C acts as controller, if the C-FIFO and TX-FIFO preload is configured

(TMODE = 1 in the I3C_CFGR register), the software must wait for TXFEF = 1 and

CFEF = 1 before starting a new frame transfer.

81

4.2.7 I3C own device characteristics register (I3C_DEVR0)

Address offset: 0x060

 Reset value: 0x00000000

 When the I3C peripheral acts as target, this register is used to write or read its own device

characteristics.

 When the I3C peripheral acts as controller, the field DA[6:0] is used to write and store its

own dynamic address

Bits 31:25Reserved, must be kept at reset value.

 Bit 24RSTVAL: Reset action is valid (when the I3C acts as target)

 This bit is asserted by hardware to indicate that the RSTACT[1:0] field has been updated on the

reception of a broadcast or direct write RSTACT CCC (target reset action) and is valid.

 This bit is cleared by hardware when the target receives a frame start.

 When the device is not in Stop mode:

– If RSTVAL = 1: when RSTF in the I3C_EVR register is asserted (and/or the corresponding

interrupt if enabled), RSTACT[1:0] in the I3C_DEVR0 register dictates the reset action to be

performed by the software, if any.

– If RSTVAL = 0: when RSTF is asserted (and/or the corresponding interrupt if

enabled), the software must issue an I3C reset after a first detected reset pattern,

and a system reset on the second one.

 When in Stop mode, the corresponding interrupt can be used to wake up the device.

Bits 23:22RSTACT[1:0]: Reset action/level on received reset pattern

(when the I3C acts as target)

 This read field is used by hardware on the reception of a direct read RSTACT CCC in order to

return the corresponding data byte on the I3C bus.

 This read field is updated by hardware on the reception of a broadcast or direct write

RSTACT CCC (target reset action).

 Only the defining bytes 0x00, 0x01 and 0x02 are mapped, and RSTACT[1:0] = Defining

Byte[1:0].

 00: no reset action

 01: first level of reset: the application software must either:

 a) partially reset the peripheral, by a write and clear of the enable bit of the I3C

configuration register (write EN = 0). This resets the I3C bus interface and the I3C kernel

sub-parts, without modifying the content of the I3C APB registers (except the EN bit).

 b) fully reset the peripheral, including all its registers, via a write and set of the I3C reset

82

control bit of the RCC (reset and clock controller) register.

 10: second level of reset: the application software must issue a warm reset, also known

 as a system reset.

This (see Section11: Reset and clock control (RCC)) has the same impact as a

pin reset (NRST = 0):

– the software writes and sets the SYSRESETREQ control bit of the AITR register, when

 the device is controlled by a Cortex®-M.

– the software writes and sets SYSRST = 1 in the RCC_GRSTCSETR register, when the

device is controlled by a Cortex®-A.

 11: no reset action

 Bits 21:20AS[1:0]: Activity state (when the I3C acts as target)

 This read field is updated by hardware on the reception of a ENTASx CCC (enter activity

state, with x = 0-3):

 00: activity state 0

 01: activity state 1

 10: activity state 2

 11: activity state 3

 Bit 19HJEN: Hot-join request enable (when the I3C acts as target)

 This bit is initially written by software when EN = 0, and is updated by hardware on the

 reception of DISEC CCC with DISHJ= 1 (cleared) and the reception of ENEC CCC with

 ENHJ= 1 (set). This bit can only be written by software when EN = 0 in the I3C_CFGR

register.

 0: hot-join request disabled

 1: hot-join request enabled

 Bit 18Reserved, must be kept at reset value.

 Bit 17CREN: Controller-role request enable (when the I3C acts as target)

 This bit is initially written by software when EN = 0, and is updated by hardware on the

reception of DISEC CCC with DISCR = 1 (cleared) and the reception of ENEC CCC with

ENCR=1 (set). This bit can only be written by software when EN = 0 in the I3C_CFGR

register.

 0: controller-role request disabled

 1: controller-role request enabled

Bit 16 IBIEN: IBI request enable (when the I3C acts as target)

 This bit is initially written by software when EN = 0, and is updated by hardware on the

reception of DISEC CCC with DISINT = 1 (cleared) and the reception of ENEC CCC with

ENINT = 1 (set). This bit can only be written by software when EN = 0 in the I3C_CFGR

register.

 0: IBI request disabled

 1: IBI request enabled

 Bits 15:8 Reserved, must be kept at reset value.

 Bits 7:1 DA[6:0]: 7-bit dynamic address

 When the I3C acts as controller, this field can be written by software, for defining its own

83

dynamic address.

 When the I3C acts as target, this field is updated by hardware on the reception of either the

broadcast ENTDAA CCC or the direct SETNEWDA CCC.

 Bit 0 DAVAL: Dynamic address is valid (when the I3C acts as target)

 When the I3C acts as controller, this bit can be written by software, for validating its own

dynamic address, for example before a controller-role hand-off.

 When the I3C acts as target, this bit is asserted by hardware on the acknowledge of the

broadcast ENTDAA CCC or the direct SETNEWDA CCC, and this field is cleared by

hardware on the acknowledge of the broadcast RSTDAA CCC.

• TX-FIFO (Transmit FIFO): A memory buffer used to store data that the host processor

intends to transmit over the I3C bus. Its primary function is to decouple the fast, bursty writes

from the processor over the APB bus from the slower, serial transmission by the I3C Kernel.

This prevents the processor from having to wait for each byte to be sent.

• RX-FIFO (Receive FIFO): A memory buffer that stores data received from the I3C bus by

the Kernel. This allows the Kernel to receive data at the I3C bus speed and store it, while the

host processor can read it out in bursts at its own pace. Crucially, both the TX and RX fifos

are asynchronous (or dual-clock) fifos that perform the vital function of Clock Domain

Crossing (CDC) between the i3c_pclk and i3c_ker_clk domains.

• C-FIFO (Command FIFO): This advanced feature allows the host to queue a sequence of

I3C commands (e.g., Write 3 bytes, then Read 8 bytes). The I3C Kernel can then execute this

sequence autonomously, reducing the processor's management overhead and interrupt

frequency.

• S-FIFO (Status FIFO): Paired with the C-FIFO, this buffer stores the completion status of

each command executed from the C-FIFO. After a sequence is complete, the processor can

read this FIFO to check the outcome of each individual operation.

4.3 I3C Kernel

The Kernel is the core intelligence of the I3C controller. It operates in the i3c_ker_clk domain

and is responsible for all aspects of protocol execution on the I3C bus itself.

• Controller & Target Finite State Machines (fsms): These are the heart of the Kernel.

• The Controller FSM implements the logic for when the device is acting as the bus master. It

sequences through the protocol states required to generate START conditions, transmit

addresses and commands, manage data transfers, and generate STOP conditions.

• The Target FSM implements the logic for when the device is acting as a slave. It monitors the

bus for its address, responds to commands from the controller, and manages In-Band Interrupt

(IBI)requests.

(You should include a simplified state diagram for at least the Controller FSM here).

• Data & Control Serialization/Deserialization: This logic block acts as the interface between

the parallel data world (inside the fifos and registers) and the serial world of the I3C bus.

When transmitting, it takes a byte from the TX-FIFO and shifts it out bit-by-bit. When

receiving, it shifts in bits from the bus, assembles them into a byte, and pushes the byte into

84

the RX-FIFO.

• Bus Protocol Management: This higher-level logic oversees the rules of the I3C protocol. It

includes functionality for bus arbitration (if multiple controllers are present), the handling of

Common Command Codes (cccs) for tasks like Dynamic Address Assignment, and the

management of Hot-Join events.

• Clock & Timings Management: This critical block is responsible for generating the I3C

clock (I3C_SCL) from the faster i3c_ker_clk. It uses programmable dividers (configured via

the APB registers) to produce various standard I3C clock speeds. It also ensures that all

protocol timing parameters, such as setup and hold times for the data line (I3C_SDA) relative

to the clock, are strictly met.

4.4 I3C Bus Interface

This block forms the physical connection between the digital logic of the kernel and the physical

pads of the integrated circuit.

• Bus Input & Output Control: This module manages the bi-directional nature of

the I3C_SDA line and the output-driving of the I3C_SCL line. For I3C, this requires logic to

control open-drain output drivers (to pull the lines low) and input buffers (to sense the state of

the lines).

• GPIO Logic: This block indicates that the physical I3C_SDA and I3C_SCL pins are

connected through General Purpose Input/Output pads. This logic is responsible for

configuring these pads to operate in the correct mode for I3C (e.g., open-drain output enable,

input buffer enable, slew rate control) as directed by the Bus Input & Output Control module.

85

Chapter 5: STM I3C Controller Design

This is the crucial Block Diagram for the I3C protocol

Figure 62 Communication Mechanism Between Blocks

5.1 SCL Generation

5.1.1 Functionality and Implementation

The SCL generation module is responsible for generating the serial clock (SCL) signal on the SCL

line at two different data rates: Push-Pull (12.5 MHz) and Open-Drain (400 KHz). The module takes a 50

MHz clock as input from the clock divider. The module consists of two main sub-blocks: a finite state

machine (FSM) and a counter. The FSM has two states, LOW and HIGH, which control whether the SCL

line is held low or high. The internal signal "switch" is used in conjunction with another counter to toggle

the state of the SCL signal. The counter value depends on the desired frequency, counting to 125 or 2

cycles for the Open-Drain or Push-Pull data rates, respectively.

The module also supports the ability to disable the clock using the " i_pvt_stop" input signal.

When this signal is active, the FSM remains in HIGH state, keeping the clock signal constant and the

SCL line continuously high.

86

5.1.2 SCL Block

5.1.3 Block I/Os

Signal Direction Description

i_sys_clk input 50 MHz clock input

i_engine_en input Enable signal to initiate the operation

i_if_pp_od input Used to select the type of SCL signal generation: 1 or

Push-Pull mode, and 0 for Open-Drain mode

i_tcas input Clock after start timing (used for START bit timing)

i_pvt_stop input Indication for stopping the operation and drive SCL

high

o_scl output Generated SCL signal

5.2 Frame Counter

5.2.1 Functionality and Implementation

The number of frames required for data transmission in either the SDR mode

or the I2C mode is determined by the host. The host specifies the maximum number of

frames to be sent or received by writing this value into the register file. In our system,

we use a signal called "i_fcnt_no_frms," which is an 8-bit wide signal directly output

from the register file. This signal serves the purpose of determining the number of

frames to be transmitted or received. The block has one output “o_fcnt_last_frame”

that goes high when the last frame is being transmitted informing the I3C Engine or

the other blocks to stop transmitting or receiving the data frames.

87

5.2.2 Block Diagram

Figure 64 Frame Counter Block Diagram

5.2.3 Block I/Os

Signal Direction Description

i_sys_clk input 50 MHz clock input

i_sys_rst_n input Asynchronous active-low reset signal

i_frame_cnt_no_frames input Number of data bytes chose by software

i_frame_cnt_en input Enable signal for frame counting

i_read_write_sel input Selection between read and write operations

i_tx_rx_i2c input Signal to count data bytes in I2C

i_regf_ccc_command input Count number of data for some commands

o_i2c_rxfifo_end output Indication for last frame in I2C

o_frame_cnt_last_frame output Indication for last frame

88

5.3 Timer

5.3.1 Functionality and Implementation

To ensure compliance with the I3C protocol's strict timing specifications, a dedicated

hardware timer module was implemented. This module is responsible for generating two

critical timing delays mandated by the standard: t_cas (Clock After START) and t_aval (Bus

Available Condition). The module is designed to be controlled directly by the I3C Kernel's

main Finite State Machine (FSM), offloading the complexity of stateful counting and

allowing the FSM to operate more efficiently.

The timer module is a synchronous digital circuit that contains two independent, parallel

timing units within a single module: one for the t_cas parameter and one for

the t_aval parameter. This parallel architecture allows both timing functions to be

conceptually separate and simplifies the control logic, at the minor expense of requiring

two separate counter registers.

This implementation provides a robust and simple-to-control timing utility. By delegating

the counting task to this module, the I3C Kernel's FSM design is significantly simplified, as

it only needs to manage the level-sensitive enable signals rather than initiating and

monitoring a pulse-based handshake.

5.3.2 Block Diagram

89

5.3.3 Block I/Os

Signal Direction Description

i_sys_clk input 50 MHz clock input

i_sys_rst_n input Asynchronous active-low reset signal

i_tx_rx_tcas_en input Enable signal from the I3C

Kernel,The t_cas timer is active for the entire

duration that this signal is held high.

i_tx_rx_taval_en input Enable signal for the t_aval timer

i_regf_tcas input A 7-bit value loaded from the I3C register

file, defining the target count for

the t_cas delay. This makes the delay

programmable by the host processor

i_regf_taval input An 8-bit value from the register file defining

the target count for the t_aval delay

o_pvt_tcas_dn output A signal that pulses high for a single clock

cycle to indicate that the t_cas timer has

completed its count

o_pvt_taval_dn output A single-cycle pulse indicating the completion

of the t_aval timer

90

5.4 SDA Interface

5.4.1 Functionality and Implementation

This block contains the TX and RX of the kernel. It has 9 operating modes that are defined

 using the” i_pvt_tx_rx_mode” signal from FSM block.

Table 28 Controller Tx Operating Modes

• START_BIT: Generates the start bit by waiting till the SCL is high and then pulling the sda low

for time “tcas” that is output from the timer block.

• SERIALIZING: It’s the core of the SDA interface and this mode serializes the 8-bit data packets

and addresses from the register file and sends them on the SDA line.

• DESERIALIZING: It’s the core of the SDA interface and this mode deserializes the 8-bit data packets

and addresses from SDA line and sends them to the register file.

• STOP: It sends stop bit by waiting for SCL line to be high and then pulls SDA line to high.

• ONE_NACK_TX: Used by the controller wants to terminate the request when the target sends

its address by leaving the bus on the high impedance state.

• ZERO_ACK_TX: Used when the controller wants to send the ACK bit after accepting the request.

• REPEATED_START: Like the start bit, but the repeated start usually comes between two frames

without a STOP bit.

• ACK_NACK_RX: The controller receives ACK or NACK from the target.

• DETECT_START: The controller detects a start from the target in IBI and hot-join.

i_pvt_tx_rx_mode Value Operating Mode

0000 START_BIT

0001 RE_START_BIT

0010 SERIALIZING

0011 DESERIALIZING

0100 ZERO_ACK_TX

0101 ONE_NACK_TX

0111 ACK_NACK_RX

1000 STOP

1001 DETECT_START

91

5.4.2 Block I/Os

Signal Direction Description

i_sys_clk input 50 MHz clock input

i_sys_rst_n input Asynchronous active-low reset signal

i_scl input Serial clock signal

i_tx_rx_en input Enable signal from the FSM block

i_t_bit input Ninth bit sent with data byte

i_regf_wr_rd input Used to select the Read / Write operation: 1 for

Read and 0 for Write

i_regf_cr_init input Used to select between: 1 for Controller and 0 for

Target

i_pvt_size_mode input Size selection for serializing / deserializing state:

00 for Address, 01 for Data and 10 for CCC

address/Data

i_pvt_tx_rx_mode input Mode for selection of functions

i_sda_data input SDA bus input

i_address_7e input Indication signal to send 7e address

i_ctrl_first_time input To differentiate between sending first address(7e)

or target address

i_ctrl_daa input Enable Signal for daa operation

i_ctrl_ccc input Enable Signal for CCC operation

i_ctrl_i2c input Enable Signal for I2C operation

i_ctrl_i2c_data_r input Signal to differentiate between I3C and i2C data

i_regf_ccc_cmd input 8-bit CCC command from register file

i_daa_7e_read input Signal for read operation in DAA to read ID,BCR

and DCR of the target

i_regf_data input Frame Data read from the register file

i_regf_address input Target Address

i_ser_en input Serializer enable signal

92

i_taval_done input Done signal from Timer block that indicates of

completing bus available condition

i_tcas_done input Done signal from Timer block that indicates of

completing clock after start time

i_devri_tgt_address input Target address stored in register file in DAA

o_scl_pp_od output Used to select the type of SCL signal generation: 1

for Push-Pull mode, and 0 for Open-Drain mode

o_sda_data output Serialized data output on the line

 output

o_pvt_mode_done output Indicator for Pvt_Msg block about mode done

o_pvt_ack_nack output Ack output for the Pvt_Msg block

sda_oen output Enable signal for SDA tri-state buffer

o_regf_address output Received Address to be stored in a register file

o_reg_ibidr output

o_reg_ibidcnt output Number of data bytes in IBI

o_is_ibi_req output

o_start_detect output Start detection signal in IBI and hot-join sent to

FSM block

o_taval_idle output Enable signal for timer block to start the bus

available condition

o_tcas output Enable signal for timer block to start the clock after

start time

o_last_frame_ibi output Indication signal for last data byte in IBI

o_address_match output Indication signal for matching address in IBI and

hot-join to be sent to FSM block

o_is_hj_req output

o_regf_data output Received Data to be stored in a register file

93

4.1.1 Register File

4.1.1.1 Functionality and Implementation

Simple register file with depth 1024. We communicate with the host via this register file,

so we write for the host in specific defined addresses, and we read from the host the data that it

writes in the register file and the host is modeled as a testbench. The addresses of the register

file are chosen based on the message we want to convey, and they are defined as follows:

94

5.5 FSM Block

5.5.1 Functionality and Implementation

- The FSM block is responsible for controlling the flow of all operations read or write messages

and makes the frame. It controls the SDA interface block of transmitting and receiving frames.

It sends and receives the data in both data rates, push-pull, and open-drain. It does so by

controlling all the universal blocks.

- This FSM contains 10 states that are being controlled using the ”current_state” and “next_state”
signals

• IDLE: Idle state for controller.

• TCAS: Clock after start state, the state after bus available condition is achieved.

• START_CONDITION: To send start bit on the SDA line by driving it low.

• ADDRESS: Serializing the target’s address stored in register file.

• ACK_WAITING: Wait for ACK/NACK from target state and to send ACK/NACK as a

response to target’s request.

• SERIALIZING_DATA: Serializing/Deserializing data state.

• COMMAND: To send an 8-bit command in CCC operations.

• REPEATED_START: Same as start condition but comes between two frames without stop bit.

• STOP: To send a stop bit by driving SDA line high when SCL is high.

current_state Value STATE

0000 IDLE

0001 TCAS

0010 START_CONDITION

0011 ADDRESS

0100 ACK_WAITING

0101 SERIALIZING_DATA

0110 COMMAND

0111 REPEATED_START

1000 RECIEVE_ADDRESS

1001 STOP

95

Figure 142 XILINX ARTIX-7 FPGA

Chapter 6

6 MIPI I3C Controller Implementation

6.5 FPGA Board Features
The chosen FPGA is XILINX ARTIX-7 xc7a35tcpg236-1 from Digilent and Xilinx:

It supports the following features:

Table 46 Artix-7 FPGA Specifications

System Clock Up to 450 MHZ

Logic cells 33,280 in 5200 slices

Block RAM 1800 Kbits

DSP Slices 90

Pmod I/Os
3 connectors

(each supports 8 I/Os)

Switches 16

Buttons 5

User LED 16

7-Seg 4-Digit

VGA 12-bit

USB HID Host

I/O Voltage 3.3 V

96

6.6 Timing Constraints

In general, there are a variety of constraints that need to be met for the design to be

validated, as:

- Timing Constraints

- Modeling the world external to the Block

- Optimization goals and Timing Exceptions

But for the design requirements and the fact that it will go through FPGA Prototyping

requirements only, meaning no ASIC based constraints would be needed, hence, only Timing

Constraints will be our interest.

Timing Constraints can generally cover:

- Primary clock Generation

- Generated Clock

- Transition Delay

- Clock Uncertainty

- CDC Constraints

- Input/Output Delay

- External Feedback Delay

- Logical Exclusive Clock Groups

- Physical Exclusive Clock Groups

For our FPGA Requirements, we will only have an interest in Primary Clock, Generated Clock,

Input/Output Delay and Clock Uncertainty.

There are no multi-clock domains in our I3C Design as the System Clock only feeds the clock

divider which in-turns feeds all the blocks, so there is no need to for CDC constraints, and the

other constraints like Transition Delay and External Feedback are mainly considered when

dealing with ASICs.

97

- Primary Clock and Generated Clock

Figure 143 clock and generated clock generation constraints

- Input/Output Delay Constraints

Figure 144 Input/Output Delay Constraints

- Clock Uncertainty

Figure 145 Clock Uncertainty Constraints

- FPGA Environment Setting

Figure 146 FPGA Environment Setting

98

- Pin Mapping

Figure 147 Pin Mapping

99

Figure 149 FPGA Kit Pins reset and controller enable

controller valid and done

scl and sda

Time Budget:

We agreed for a clock budget as follows:

3 ns 3 ns 3 ns Logic delay slack

20 ns
Figure 148 Design Time Budget

Normally, clock uncertainty especially setup delay would be 15 ~ 30 % from clock period,

same for input and output delays, so here we have:

- Setup delay = 3 ns

- Input delay = 3 ns (max value = 3 ns while min value = 1 ns)

- Output delay = 3 ns (max value = 3 ns while min value = 1 ns)

- Logic will have a free delay of 11 ns before we get negative slack

Also, for pin mapping, pins on the FPGA Kit will be as follows:

100

6.7 Vivado Xilinx – AMD FPGA Flow

6.7.1 Elaboration

Resulted schematic from Elaboration:

Figure 150 Elaboration output schematic

If we wanted to look in depth of a certain block after elaboration, we will find that our

design translated to gates, muxs and Flip-Flops, for example, controller-tx block after

elaboration:

Figure 151 controller_tx after elaboration

101

6.7.2 Synthesis

Resulted schematic from Synthesis:

Figure 152 synthesis output schematic

Also, If we wanted to look in depth of a certain block after synthesis, we will find that our

design translated to LUTs for example, controller-tx block after synthesis:

Figure 153 controller_tx after synthesis

102

For timing after synthesis, we get the following:

Figure 154 timing result after synthesis

We can notice a positive slack of 1.780 ns, that resulted after multiple iterations of solving

timing violations that resulted due to our restricted old Time budget, where we assumed

setup time to be 4 ns and input/output delay of 4 ns which resulted in the following:

Figure 155 negative slack violation

And the resulted utilization pf resources after synthesis:

Figure 156 utilization after synthesis

103

Resulted Clock Network and Interaction:

Figure 157 clock network

Figure 158 clock interaction

And for system power usage estimation after synthesis:

We can notice that dynamic power is 6% of the total power, which is valid.

104

Figure 159 implementation results

6.7.3 Implementation

Resulted Implementation of our design on the device:

Figure 160 zoom on LUTs of the design

105

For timing after implementation, we get the following:

Figure 161 timing after implementation

Utilization after implementation:

Figure 162 utilization after implementation

Notice that Artix-7 FPGA has optimized Area usage which appear when we compare

utilization after synthesis Figure 99 and utilization after implementation Figure 105

106

6.7.4 Bitstream Generation

After finalizing the flow above, the next station of the flow would be FPGA Program and

debugging section, b clicking Generate Bitstream we get a .bit file that is a hex file of the

designed system:

Figure 163 bitstream file

107

6.8 FPGA Debugging
After uploading the bitstream file on the FPGA, debugging the design on the FPGA

Hardware is required and here, Integrated Logic Analyzer is one of the best approaches

that assures a Function-Like simulation but with signals running on a real-time hardware.

− First, Designing the Integrated Logic Analyzer (ILA):

From IP Catalogue, we choose Debugging and Verification and then choose ILA:

Figure 164 ILA from IP Cata;ogue

Then we design our ILA as follows:

Figure 165 ILA Design

108

Figure 167 schematic after synthesis

This will result in a module of the ILA that we can instantiate in our top module and

connect the signals we would like to monitor to the probes inputs of the ILA:

Figure 166 ILA Instance

Here we would like to debug our design by monitoring these signals:

− sda and scl: as they are our main bus, and all the data will be on them

− reset and enable: to program the ILA to trigger when bot change to monitor bus starting

conditions

− rx and tx mode signals: to monitor the state of the bus driving blocks which are our

controller_tx and controller_rx

− Second, Re-running the FPGA Flow including the ILA:

The Logic Analyzer will be integrated in our system as follows:

Figure 168 Integrated Logic Analyzer

109

Resulted timing after implementation with ILA:

Figure 169 timing after implementation with ILA

Notice the huge increase in the total number of endpoints due to the integration of the ILA.

Hence, we can connect our FPGA and upload our new bitstream file including the ILA,

and a use case we can use the ILA is checking the bus initialization with the start condition

timing examination as follows:

Figure 170 start condition on FPGA using ILA

Our trigger setup here is when the controller_en signal equals 1 and the reset signal equals

1, which reflects the start of the I3C Flow.

The Red Trigger cursor rises when both the reset signal and the enable signal are 1,

announcing the start of the bus to be initialized, and the ILA shows a capture of the

waveform after this condition, where the start condition occur as the scl signal falls to 0

while sda is high and then the sda signal falls to 0 after tCAS from the scl falling time.

110

6.9 How to choose the perfect FPGA for your Design?
Before we stick to our ARTIX-7 FPGA, we took a little trip in FPGA world that different

vendors offer and also different models form the same vendor, we worked with the

following FPGAs in our design and got the same results functionally, but they are far

different in optimization and constraining aspects:

1. XILINX SPARTAN-7 XC7S15: from Xilinx AMD

Figure 171 XILINX SPARTAN-7 XC7S15 FPGA

2. ALTERA CYCLONE IV FPGA: from Intel Altera

Figure 172 ALTERA CYCLONE IV FPGA

3. XILINX ARTIX-7 xc7a35tcpg236-1: from Xilinx AMD and Digilent

Figure 173 XILINX ARTIX-7 xc7a35tcpg236-1

111

After using the three FPGAs with our design, we found the following results:

- For Timing Closure strictness: using the same timing constraints for the three.

Table 47 Timing Closure for the Three FPGAs

Spartan-7

FPGA

It was moderate for our assumed time budget:

we based our time budget to be mainly strict, just for our design to be

compatible with any timing environment whatever how strict it gets, and

Spartan-7 showed great timing results with a positive slack of 0.571 ns:

Altera

Cyclone IV

The loosest timing closure of them all:

With the same constraints that we used for the other FPGAs; timing closure

was met with a 6.7 ns positive slack:

Artix-7

FPGA

The strictest timing closure of them all:

As we used the same constraints that we used for Spartan-7 FPGA but resulted

in a negative slack of 0.220 ns:

112

- For Area Optimization: using no area constraints, leaving optimization up to each FPGA

Table 48 Area optimization of the three FPGAs

Spartan-7

FPGA

It was moderate, with a difference of only one LUT from Artix-7:

490 used LUTs, 689 Slice Registers and 92 total Muxs and 599 Slices are used

Altera

Cyclone IV

Nearly no area optimization occurred:

After Fitting and utilization, the results are far free of any optimization compared

to the two Xilinx’s FPGAs, as 1775 LUTs with a total of 1203 registers were used

Artix-7

FPGA

The strictest Area optimization (in numbers) with no difference from Spartan-

7 FPGA: The resulted utilization of FPGA resources has proved that there are

489 used LUTs, 689 Slice Registers and 92 total Muxs and 590 Slices

From these results, Artix-7 FPGA is the strictest in Timing and Area Closures, hence we used it

to assure the strictest test and prototyping were met to make sure that our IP is ready to be used

in strict timing or area environment.

113

References

[1] MIPI Alliance. (2021). MIPI I3C Basic Specifications v1.1.1.

[2] MIPI Alliance. (2022). I3C White Paper: Achieving Power Efficiency in IoT Devices.

[3] STM. (2022). STM32H523/33xx, STM32H562/63xx, and STM32H573xx Arm®-based 32-bit MCUs.

[4] Digilent. (2016). Basys 3™ FPGA Board Reference Manual.

