--- title: "R Notebook" output: html_notebook --- title: "R Notebook" output: html_notebook --- ```{r} library(tidyverse) library(ggplot2) ``` ```{r} #we need to download all of our simulated data setwd("/Users/isabelserrano/Documents/Science/Analyses/Conplastic_Strains/files_and_analyses/genomewide_selection_scan/") outdir_files = "files/" outdir_figures = "figures/" sig_analysis_file = "files/hNhS_per_gene_sig_hits.txt" sig_analysis = read.table(sig_analysis_file, header=TRUE, stringsAsFactors = FALSE) ``` We filter out B6 Young Liver from these analyses ```{r} cond_filtered_sig_analysis = sig_analysis %>% filter(!(STRAIN == "B6" & TISSUE == "Liver" & AGE_BIN == "YOUNG")) ``` ```{r} rm(sig_analysis) ``` Filtering for our significant hits There are 71 genes out of 390 that we identified a significant signal for selection ```{r} sig_hits = cond_filtered_sig_analysis %>% filter(P_ADJ < 0.01) %>% #filtering out the sig hit that does not make sense filter(!(STRAIN == "FVB" & TISSUE == "Brain" & AGE_BIN == "OLD" & GENE == "mt-Co1")) ``` ```{r} signals_per_gene = sig_hits %>% select(GENE, OBS_HNHS) %>% mutate(SELECTION = ifelse(OBS_HNHS < 1, "N", "P")) %>% group_by(GENE, SELECTION) %>% summarise(COUNT = n()) %>% arrange(desc(COUNT)) %>% mutate(COUNT = ifelse(SELECTION == "N", -1*COUNT, COUNT)) %>% mutate(COMPLEX = case_when(grepl("mt-Atp", GENE) ~ "V", grepl("mt-Nd", GENE) ~ "I", GENE == "mt-Cytb" ~ "III", TRUE ~ "IV" )) %>% mutate(PROP = COUNT/29) ordering_genes = sig_hits %>% select(GENE) %>% group_by(GENE) %>% summarise(COUNT = n()) %>% arrange(desc(COUNT)) signals_per_gene$GENE = factor(signals_per_gene$GENE, level = (ordering_genes$GENE)) ``` ```{r} signals_per_gene %>% filter(GENE == "mt-Co2") ``` ```{r} setwd("/Users/isabelserrano/Documents/Science/Analyses/Conplastic_Strains/files_and_analyses/genomewide_selection_scan/") signal_per_gene_plot = ggplot(signals_per_gene, aes(x = GENE, y = PROP, fill = COMPLEX)) signal_per_gene_plot = signal_per_gene_plot + geom_bar(stat = "identity", width = 0.7) + geom_hline(yintercept = 0, color = "black", linetype = "dashed") + theme_bw(base_size = 16) + ylab("Proportion of Experiments") + xlab("Gene") + #ylim(-0.3, 0.4) + scale_fill_manual(name = "Complex", values = c("I" = "#bf9bdd" , "III" = "#ffc3a3", "IV" = "#e69e9c", "V" = "#cb74ad")) + scale_y_continuous(limits = c(-0.3, 0.5), breaks = c(-0.2, 0, 0.2, 0.4), labels = c(0.2, 0, 0.2, 0.4)) + theme(text = element_text(family = "sans"), legend.position = "none", axis.title.x = element_text(size = 9.5), axis.title.y = element_text(size = 9.5), axis.text.x = element_text(size = 8, angle = 45, vjust = 1, hjust = 1), axis.text.y = element_text(size = 7.5)) pdf(paste(outdir_figures,"signals_of_selection_per_gene.pdf",sep=""), width=3,height=3) print(signal_per_gene_plot) dev.off() pdf(paste(outdir_figures,"leg_signals_of_selection_per_gene.pdf",sep=""), width=5,height=3) print(signal_per_gene_plot + theme(legend.position = "bottom")) dev.off() ```