---
title: "R Notebook"
output: html_notebook
---
```{r}
setwd("/Users/isabelserrano/Documents/Science/Analyses/Conplastic_Strains/files_and_analyses/")
outdir_figures = "/Users/isabelserrano/Documents/Science/Analyses/Conplastic_Strains/files_and_analyses/mutation_frequency_per_region/figures/"
outdir_files = "/Users/isabelserrano/Documents/Science/Analyses/Conplastic_Strains/files_and_analyses/mutation_frequency_per_region/files/"
supertable_file ="/Users/isabelserrano/Documents/Science/Analyses/Conplastic_Strains/files_and_analyses/input_files/supertable.txt"
supertable = read.table(supertable_file, header=TRUE, stringsAsFactors = FALSE)
coordinates_file = "/Users/isabelserrano/Documents/Science/Analyses/Conplastic_Strains/files_and_analyses/input_files/Mouse_Mt_Genome_Coordinates"
coordinates = read.table(coordinates_file, stringsAsFactors = FALSE, sep = "\t")
```
```{r}
#adding the D-Loop coordinates to our file
coordinates[nrow(coordinates) + 1, ] <- c("D-Loop", 15422, 16299)
#adding column names to dataframe
colnames(coordinates) <- c("GENE", "START", "END")
coordinates$START <- as.numeric(coordinates$START)
coordinates$END <- as.numeric(coordinates$END)
#so things don't get wonky if the coordinates are read as strings -- also we convert our coordinates to be 0-indexed
coordinates$START <- as.numeric(coordinates$START) - 1
coordinates$END <- as.numeric(coordinates$END) - 1
coordinates = coordinates
```
We need to figure out the length of each gene in order to normalize by length.
```{r}
length_of_gene = coordinates %>%
#filter our genes out
filter(grepl("mt-[N|A|C]",GENE)) %>%
mutate(LENGTH_OF_GENE = (END - START) + 1)
```
Now, we need to figure out the average read depth of each region for every condition
```{r}
avg_read_depth_per_gene = supertable %>%
select(SAMPLE, STRAIN, TISSUE, AGE_BIN, GENE, START, READ_DEPTH_AT_POS) %>%
#unique here so that we eliminate redundancy from multiple mutation types
unique() %>%
select(STRAIN, TISSUE, AGE_BIN, GENE, START, READ_DEPTH_AT_POS) %>%
group_by(STRAIN, TISSUE, AGE_BIN, GENE, START) %>%
summarise(COND_READ_DEPTH_AT_POS = sum(READ_DEPTH_AT_POS)) %>%
ungroup() %>%
select(STRAIN, TISSUE, AGE_BIN, GENE, START, COND_READ_DEPTH_AT_POS) %>%
filter(grepl("mt-[N|A|C]",GENE)) %>%
select(STRAIN, TISSUE, AGE_BIN, GENE, COND_READ_DEPTH_AT_POS) %>%
group_by(STRAIN, TISSUE, AGE_BIN, GENE) %>%
summarise(AVG_READ_DEPTH_GENE = mean(COND_READ_DEPTH_AT_POS))
```
We want to normalize for sequencing depth across our conditions (i.e. we wouldn't capture mutations if we didn't sequence to the level that we did in some samples):
```{r}
norm_seq_depth = supertable %>%
select(SAMPLE, STRAIN, TISSUE, AGE_BIN, GENE, START, ALT_ALLELE_DEPTH, READ_DEPTH_AT_POS, CONDITION_MUT_FREQ_AT_POS) %>%
group_by(SAMPLE, STRAIN, TISSUE, AGE_BIN, GENE, START, READ_DEPTH_AT_POS, CONDITION_MUT_FREQ_AT_POS) %>%
summarise(SAMPLE_MUT_COUNT_AT_POS = sum(ALT_ALLELE_DEPTH)) %>%
ungroup() %>%
select(STRAIN, TISSUE, AGE_BIN, GENE, START, SAMPLE_MUT_COUNT_AT_POS, READ_DEPTH_AT_POS, CONDITION_MUT_FREQ_AT_POS) %>%
group_by(STRAIN, TISSUE, AGE_BIN, GENE, START, CONDITION_MUT_FREQ_AT_POS) %>%
summarise(CONDITION_MUT_COUNT_AT_POS = sum(SAMPLE_MUT_COUNT_AT_POS), CONDITION_READ_DEPTH_AT_POS = sum(READ_DEPTH_AT_POS)) %>%
ungroup() %>%
group_by(GENE, START) %>%
mutate(MIN_READ_DEPTH_AT_POS = min(CONDITION_READ_DEPTH_AT_POS)) %>%
#this is the lowest mutation frequency we would be able to get given the smallest read depth at a position across our conditions
mutate(FLOOR_MIN_MUT_FREQ_AT_POS = 1/MIN_READ_DEPTH_AT_POS) %>%
#if our mutation frequency is lower than the floor we set, we reset our condition mutation count to 0 --> in essence we wouldn't have been able to capture these mutations without the sequencing depth we had
mutate(CONDITION_MUT_COUNT_AT_POS = ifelse(CONDITION_MUT_FREQ_AT_POS < FLOOR_MIN_MUT_FREQ_AT_POS, 0, CONDITION_MUT_COUNT_AT_POS))
```
Process our condition mutation count now that we've normalized for sequencing depth:
```{r}
gene_mut_count_df = norm_seq_depth %>%
#filter out HFPs
filter(CONDITION_MUT_FREQ_AT_POS < 0.001) %>%
#filter for just our genes
filter(grepl("mt-[N|A|C]",GENE)) %>%
ungroup() %>%
select(STRAIN, TISSUE, AGE_BIN, GENE, CONDITION_MUT_COUNT_AT_POS) %>%
group_by(STRAIN, TISSUE, AGE_BIN, GENE) %>%
summarise(CONDITION_MUT_COUNT_GENE = sum(CONDITION_MUT_COUNT_AT_POS))
```
Now combining all of our dataframes to make one large df with our info -- our summary df for the info without HFPs
```{r}
summary_df = gene_mut_count_df %>%
left_join(length_of_gene, by = "GENE") %>%
left_join(avg_read_depth_per_gene, by = c("STRAIN", "TISSUE", "AGE_BIN", "GENE")) %>%
mutate(PERC_GENE_MUTATED = CONDITION_MUT_COUNT_GENE/(LENGTH_OF_GENE*AVG_READ_DEPTH_GENE)) %>%
filter(!(STRAIN == "B6" & TISSUE == "Liver"))
summary_df$STRAIN = factor(summary_df$STRAIN, level = c("B6", "AKR", "ALR", "FVB", "NZB"))
summary_df$AGE_BIN = factor(summary_df$AGE_BIN, level = c("YOUNG", "OLD"))
```
Comparison of gene avg mut freq
```{r}
gene_mut_freq_plot = ggplot(summary_df, aes(x = GENE, y = PERC_GENE_MUTATED, fill = GENE, alpha = AGE_BIN))
gene_mut_freq_plot = gene_mut_freq_plot +
geom_bar(stat="identity", position=position_dodge()) +
facet_grid(STRAIN~TISSUE) +
scale_alpha_manual(values = c(0.6, 1)) +
theme_bw() +
theme(strip.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1))
pdf(paste(outdir_figures,"/avg_mut_freq_genes.pdf",sep=""),width=6.5,height=6)
print(gene_mut_freq_plot)
dev.off()
```
Plotting time:
Color palette
```{r}
library(PNWColors)
bay_pal <- pnw_palette(name="Bay", type="discrete")
```
Pinpointing the high frequency region to the Nd2 region; we plot the neighboring regions to the Nd2 in order to contrast the mutation frequency across regions
```{r}
nd2_reg = norm_seq_depth %>%
#this was the arbitrary frequency we define as being a high frequency position
filter(CONDITION_MUT_FREQ_AT_POS < 0.001) %>%
mutate(NORM_CONDITION_MUT_FREQ_AT_POS = CONDITION_MUT_COUNT_AT_POS/CONDITION_READ_DEPTH_AT_POS) %>%
ungroup() %>%
select(STRAIN, TISSUE, AGE_BIN, START, NORM_CONDITION_MUT_FREQ_AT_POS) %>%
#spans mt-Ti to mt-Tn
filter(START > 3700, START < 5088) %>%
filter(NORM_CONDITION_MUT_FREQ_AT_POS > 0)
nd2_reg$STRAIN = factor(nd2_reg$STRAIN, level = c("B6", "AKR", "ALR", "FVB", "NZB"))
nd2_reg$AGE_BIN = factor(nd2_reg$AGE_BIN, level = c("YOUNG", "OLD"))
```
```{r}
nd2_reg_plot = ggplot(nd2_reg %>%
mutate(AGE_LABEL = recode(AGE_BIN, "YOUNG" = "Young", "OLD" = "Old")), aes(x = START, y = NORM_CONDITION_MUT_FREQ_AT_POS, color = TISSUE))
nd2_reg_plot = nd2_reg_plot +
geom_point(size = 0.5, alpha = 0.7) +
#this highlights where the Nd2 is in the region
geom_segment(x = 3913, xend = 4950, y = 0, yend = 0, color = "black") +
theme_bw() +
facet_grid(STRAIN~AGE_LABEL) +
ylab("Mutation frequency at position") +
xlab("Position on the mt-genome (bp)") +
scale_color_manual(name = "Tissue", values= bay_pal[c(1,5,4)]) +
guides(color = guide_legend(override.aes = list(size = 3))) +
theme(strip.background=element_blank(),
panel.grid=element_blank(),
text = element_text(family = "sans"),
axis.title = element_text(size = 10),
strip.text.x = element_text(size = 10, vjust = 1),
strip.text.y = element_text(size = 10, vjust = 1),
axis.text.y=element_text(size = 8),
axis.text.x=element_text(size = 8, angle = 45, vjust = 1, hjust = 1),
legend.position = "bottom")
pdf(paste(outdir_figures,"/mut_freq_nd2_reg.pdf",sep=""),width=6,height=4)
print(nd2_reg_plot)
dev.off()
```
Zooming into Nd2 to find where in the Nd2 we have this high frequency cluster
```{r}
nd2_zoomies = norm_seq_depth %>%
#this was the arbitrary frequency we define as being a high frequency position
filter(CONDITION_MUT_FREQ_AT_POS < 0.001) %>%
mutate(NORM_CONDITION_MUT_FREQ_AT_POS = CONDITION_MUT_COUNT_AT_POS/CONDITION_READ_DEPTH_AT_POS) %>%
ungroup() %>%
select(STRAIN, TISSUE, AGE_BIN, START, NORM_CONDITION_MUT_FREQ_AT_POS) %>%
filter(START>3912, START<4951) %>%
filter(NORM_CONDITION_MUT_FREQ_AT_POS > 0)
nd2_zoomies$STRAIN = factor(nd2_zoomies$STRAIN, level = c("B6", "AKR", "ALR", "FVB", "NZB"))
nd2_zoomies$AGE_BIN = factor(nd2_zoomies$AGE_BIN, level = c("YOUNG", "OLD"))
```
```{r}
nd2_zoomies_plot = ggplot(nd2_zoomies %>%
mutate(AGE_LABEL = recode(AGE_BIN, "YOUNG" = "Young", "OLD" = "Old")), aes(x = START, y = NORM_CONDITION_MUT_FREQ_AT_POS, color = TISSUE))
nd2_zoomies_plot = nd2_zoomies_plot +
geom_point(size = 0.5, alpha = 0.7) +
#geom_point(x = 9818, y = 0.00075, shape = 8, size = 0.7, color = "magenta") +
theme_bw() +
facet_grid(STRAIN~AGE_LABEL) +
ylab("Mutation frequency at position") +
xlab("Position on the mt-genome (bp)") +
scale_color_manual(name = "Tissue", values= bay_pal[c(1,5,4)]) +
scale_x_continuous(breaks = seq(3913, 4950,1)) +
guides(color = guide_legend(override.aes = list(size = 3))) +
theme(strip.background=element_blank(),
panel.grid=element_blank(),
text = element_text(family = "sans"),
axis.title = element_text(size = 8),
strip.text.x = element_text(size = 8, vjust = 1),
strip.text.y = element_text(size = 8, vjust = 1),
axis.text.y=element_text(size = 6),
axis.text.x=element_text(size = 4, angle = 45, vjust = 1, hjust = 1),
legend.position = "bottom")
print(nd2_zoomies_plot)
pdf(paste(outdir_figures,"/mut_freq_nd2.pdf",sep=""),width=4,height=3)
print(nd2_zoomies_plot)
dev.off()
```
```{r}
strain_avg_freq = norm_seq_depth %>%
#this was the arbitrary frequency we define as being a high frequency position
filter(CONDITION_MUT_FREQ_AT_POS < 0.001) %>%
mutate(NORM_CONDITION_MUT_FREQ_AT_POS = CONDITION_MUT_COUNT_AT_POS/CONDITION_READ_DEPTH_AT_POS) %>%
ungroup() %>%
select(STRAIN, TISSUE, AGE_BIN, START, NORM_CONDITION_MUT_FREQ_AT_POS) %>%
filter(START>3912, START<4951) %>%
group_by(STRAIN, AGE_BIN, START) %>%
summarise(AVG_STRAIN = mean(NORM_CONDITION_MUT_FREQ_AT_POS)) %>%
filter(AVG_STRAIN > 0) %>%
mutate(X_POS = ifelse(AGE_BIN == "YOUNG", START - 0.15, START + 0.15))
strain_avg_freq$STRAIN = factor(strain_avg_freq$STRAIN, level = c("B6", "AKR", "ALR", "FVB", "NZB"))
strain_avg_freq$AGE_BIN = factor(strain_avg_freq$AGE_BIN, level = c("YOUNG", "OLD"))
```
```{r}
strain_avg_freq_plot = ggplot(strain_avg_freq, aes(x = X_POS, y = AVG_STRAIN, color = STRAIN, shape = AGE_BIN))
strain_avg_freq_plot = strain_avg_freq_plot +
geom_point(size = 0.15) +
theme_bw(base_size = 6) +
facet_wrap(STRAIN~., nrow = 5) +
ylab("Mutation frequency") +
xlab("Position (bp)") +
scale_color_manual(values = c("B6"= "#1d457f","AKR" = "#cc5c76", "ALR" = "#2f9e23", "FVB" = "#f57946", "NZB" = "#f7c22d")) +
scale_shape_manual(labels = c("Young", "Old") , values = c(1,19)) +
#scale_x_continuous(breaks = seq(5168,5190,1), labels = X_LABEL) +
scale_y_continuous(labels = function(x) format(x, scientific = TRUE)) +
theme(strip.background=element_blank(),
panel.grid=element_blank(),
text = element_text(family = "sans"),
axis.title = element_text(size = 5),
strip.text.x = element_text(size = 6, vjust = 1),
strip.text.y = element_text(size = 6, vjust = 1),
axis.text.y=element_text(size = 3.5),
axis.text.x=element_text(size = 3.5, angle = 45, vjust = 1, hjust = 1),
legend.position = "none")
pdf(paste(outdir_figures,"/strain_avg_freq_nd2.pdf",sep=""),width=4,height=3)
print(strain_avg_freq_plot)
dev.off()
```
FURTHER ZOOMED IN
```{r}
high_freq_peak = strain_avg_freq %>%
filter(START > 4044, START < 4056) %>%
mutate(STRAIN_LABEL = ifelse(STRAIN == "B6", "B6", "Conplastic"))
```
```{r}
X_LABEL = (supertable %>%
filter(START > 4044, START < 4056) %>%
select(START, REF) %>%
unique() %>%
filter(nchar(REF) == 1) %>%
mutate(X_LABEL = paste(REF, START, sep = "")))$X_LABEL
```
```{r}
peak_nd2_plot = ggplot(high_freq_peak, aes(x = X_POS, y = AVG_STRAIN, color = STRAIN, shape = AGE_BIN))
peak_nd2_plot = peak_nd2_plot +
geom_point(size = 0.3) +
theme_bw(base_size = 6) +
facet_wrap(STRAIN_LABEL~., nrow = 2) +
ylab("Mutation frequency") +
xlab("Position (bp)") +
scale_color_manual(values = c("B6"= "#1d457f","AKR" = "#cc5c76", "ALR" = "#2f9e23", "FVB" = "#f57946", "NZB" = "#f7c22d")) +
scale_shape_manual(labels = c("Young", "Old") , values = c(1,19)) +
scale_x_continuous(breaks = seq(4045,4055,1), labels = X_LABEL) +
scale_y_continuous(labels = function(x) format(x, scientific = TRUE)) +
theme(strip.background=element_blank(),
panel.grid=element_blank(),
text = element_text(family = "sans"),
axis.title = element_text(size = 5),
strip.text.x = element_text(size = 6, vjust = 1),
strip.text.y = element_text(size = 6, vjust = 1),
axis.text.y=element_text(size = 3.5),
axis.text.x=element_text(size = 3.5, angle = 45, vjust = 1, hjust = 1),
legend.position = "none")
pdf(paste(outdir_figures,"/peak_nd2.pdf",sep=""),width=1,height=1.25)
print(peak_nd2_plot)
dev.off()
```
```{r}
nd2_peak_mut_type = supertable %>%
select(SAMPLE, STRAIN, TISSUE, AGE_BIN, START, REF, ALT, ALT_ALLELE_DEPTH, READ_DEPTH_AT_POS, CONDITION_MUT_FREQ_AT_POS) %>%
unique() %>%
filter(CONDITION_MUT_FREQ_AT_POS < 1e-3) %>%
filter(START == 4050) %>%
mutate(MUTATION = paste(REF,ALT, sep = ">")) %>%
select(STRAIN, TISSUE, AGE_BIN, START, MUTATION, ALT_ALLELE_DEPTH, READ_DEPTH_AT_POS) %>%
group_by(STRAIN, TISSUE, AGE_BIN, START, MUTATION) %>%
summarise(COND_ALLELE_COUNT = sum(ALT_ALLELE_DEPTH), COND_READ_DEPTH = sum(READ_DEPTH_AT_POS)) %>%
filter(COND_ALLELE_COUNT > 0) %>%
group_by(STRAIN, TISSUE, AGE_BIN) %>%
mutate(TOTAL_MUTS = sum(COND_ALLELE_COUNT)) %>%
select(STRAIN, TISSUE, AGE_BIN, MUTATION, COND_ALLELE_COUNT, TOTAL_MUTS) %>%
ungroup() %>%
group_by(STRAIN, TISSUE, AGE_BIN, MUTATION, TOTAL_MUTS) %>%
#here we count how many of each allele is present across the entire region
summarise(MUT_TYPE_TOTAL_COUNT = sum(COND_ALLELE_COUNT)) %>%
mutate(MUT_PROP = MUT_TYPE_TOTAL_COUNT/TOTAL_MUTS)
nd2_peak_mut_type$STRAIN = factor(nd2_peak_mut_type$STRAIN, level = c("B6", "AKR", "ALR", "FVB", "NZB"))
nd2_peak_mut_type$AGE_BIN = factor(nd2_peak_mut_type$AGE_BIN, level = c("YOUNG", "OLD"))
```
```{r}
nd2_peak_mut_type_plot = ggplot(nd2_peak_mut_type, aes(x = STRAIN, y = MUT_PROP, fill = MUTATION)) +
geom_bar(position = "stack", stat = "identity") +
facet_grid(AGE_BIN~TISSUE) +
xlab("Strain") +
ylab("Allele mutation frequency") +
theme_bw(base_size = 10) +
theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1),
strip.background = element_blank())
pdf(paste(outdir_figures,"/mut_type_nd2_plot.pdf",sep=""),width=5,height=5)
print(nd2_peak_mut_type_plot)
dev.off()
```