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ABSTRACT

In this thesis we address the problem of identifying individual animals using images in

the context of assisting an ecologist in performing a population census. We are motivated

by events like the “Great Zebra Count” where thousands of images of zebras and giraffes

were collected in Nairobi National Park over two days. By grouping all images that con-

tain the same individual we can census these populations. This problem is challenging

because images are collected outdoors and contain occlusion, lighting, and quality varia-

tions and because the animals exhibit viewpoint and pose variations.

Our first contribution is an algorithm that ranks a database of images by their sim-

ilarity to a query. A manual reviewer inspects only the top few results for each query —

significantly reducing the search space — and determines if the animals match. Using

this algorithm alone, we analyzed the images from the Great Zebra Count and performed

a population census. Our second contribution is a verification algorithm that determines

the probability that two images are from the same animal, that they are not, or that there is

not enough to decide. This algorithm is used with the ranking algorithm to re-rank results

and automatically verify high confidence image pairs.

Our third contribution is a semi-automatic graph identification algorithm. The ap-

proach represents each image as a node in the graph and incrementally forms edges be-

tween nodes determined to the same animal. The ranking and verification algorithms are

used to search for candidate edges and estimate their probability of matching. Based on

these probabilities, edges are prioritized for review and placed in the graph when they

are automatically verified or manually reviewed. Redundant connections are added to

detect and recover from errors. A termination criterion determines when identification is

finished. Using the graph algorithm we perform a population census on the scale of the

Great Zebra Count using less than 25% of the manual reviews required by the original

method.
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1. INTRODUCTION

1.1 IMAGE-BASED IDENTIFICATION APPLIED TO POPULA-

TION ECOLOGY

Population ecology relies on estimating the number of individual animals that in-

habit an area [1]. Estimating a population size is done in two phases: data collection

and analysis. Data are collected as sets of sighting and resighting observations. A sight-

ing is the first observation of an individual, and a resighting is a subsequent observation

of a previously sighted individual. The observed data are then analyzed using software

such as “program MARK” [2], [3] or Wildbook that applies statistical models such as the

Lincoln-Petersen index [4], Jolly-Seber model [5], [6], or other related models [7]–[9].

For an ecologist recording that an individual has been observed is simple, but determin-

ing if that observation is a sighting or a resighting can be challenging. This requires the

ecologist to identify the individual by comparing against all other observations in the data

set.

Current methods to estimate a population size are limited by the data collection

phase [10],[11]. The statistical population models require an observation sample size that

grows with the size of the population being studied [4]. As the number of observations

increases so does the difficulty of determining identity. Thus, the scope of a population

study is limited by the number of raw observations that can be made, and by the rate of

determining the individual identity within a set of observations. Overcoming these lim-

itations is of particular importance to wildlife preservation because population statistics

are necessary to guide conservation decisions [12].

Consider images as a source of sight-resight observations. There are numerous

advantages. Many observations can be made rapidly and simultaneously, due to the sim-

plicity and availability of cameras. Recording an observation is as cheap and simple as

taking a picture. Camera traps can be employed for autonomous data collection. In a

wildlife conservancy or national park, observations can be crowd-sourced by gathering

images from safari tourists and citizen scientists. Images can be accumulated and stored

in a large dynamic dataset of observations that could grow by thousands of images each

1
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day. However, the challenge of identifying the individuals in the images remains. Manual

methods are infeasible due to the rapid rate at which images can be collected. Therefore,

we must turn towards computer vision based methods.

This thesis develops the foundation of the image analysis component of the “Image

Based Ecological Information System” (IBEIS). The purpose of this system is to gain

ecological insight from images using computer vision. We focus on estimating the size

of a population of animals as just one example of ecological insight that might be gained

from images. Thus, we come to the core problem addressed in this thesis: image-based

identification of individual animals.

1.2 CHALLENGES OF ANIMAL IDENTIFICATION

In animal identification we are given a database of images. This database may

initially be empty. Each image is cropped to a bounding box around an animal of interest

and labeled with that animal’s identity. For a new query image, the goal is to determine if

any other images of the individual are in the database. If the query is matched, it is added

to the database as a resighting of that individual. If the query is not matched, then it is

added as a new individual.

In this work we focus on identifying individuals of species with distinguishing tex-

tures. Examples include zebras, giraffes, humpback whales, lionfish, nautiluses, hyenas,

whale sharks, wildebeest, wild dogs, jaguars, cheetahs, leopards, frogs, toads, snails, and

seals. The primary species that we will consider in this thesis are plains and Grévy’s

zebras, but we will maintain a secondary focus on Masai giraffes and humpback whales.

The difficulty of animal identification depends on the distinctiveness of the visual pat-

terns that distinguish an individual from others of its species. In addition, the images we

identify are collected “in the wild” and therefore contain occlusion, distracting features,

variations in viewpoint and image quality.

This section will present several examples to illustrate the challenges faced in an-

imal identification. The discussion will begin with the challenges posed by the three

primary species. Then problems common to all species will be described. These will be

illustrated using plains zebras because they are the most challenging species considered

in this thesis.
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1.2.1 Distinguishing textures of each species

The plains zebra — shown in Figure 1.2 — is challenging to visually identify be-

cause individuals have relatively few distinguishing texture features. For most plains

zebras, the majority of distinctive information lies in a small area on the front shoulder.

Figure 1.4 illustrates that the patterns that distinguish two individuals can be subtle, even

when the features are clearly visible. The matching difficulty greatly increases when

features are partially occluded, the viewpoint changes, or the image quality is poor.

In contrast, Masai giraffes and Grévy’s zebras, shown in Figure 1.6 and Figure 1.8

respectively, have an abundance of distinctive features. Distinctive textures that are unique

to each individual are spread across the entire body of a Masai giraffe. For a Grévy’s ze-

bra there is a high density of distinguishing information above both front and back legs,

as well as a moderate density of distinctive textures along the side of the body. The high

density of distinctive textures in Masai giraffes and Grévy’s zebras increases the likeli-

hood that the same distinctive features can be seen from different viewpoints. Even so,

the problem is still difficult due to “in the wild” conditions such animal pose, occlusion,

and image quality.

There are some species, like Humpback whales, where some individuals may con-

tain distinguishing textures while others may lack them entirely. This means that only

a subset of humpback whales will be able to be identified with the texture based tech-

niques that we will consider in this thesis. However, other cues — like the shape of the

notches along the trailing edge of the fluke — can be used to distinguish between differ-

ent individuals. The work of Weideman and Jablons [13] addresses identifying humpback

whales using trailing edge shape features. The example in Figure 1.10 illustrates individ-

ual humpback whales with and without distinctive textures.
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(a) (b)

(c) (d)

Figure 1.2: Distinguishing features for plains zebras For a plains zebra, the most dis-

tinguishing features tend to be located on the upper shoulder. Other distin-

guishing features are typically be found on the face and side. Image pairs (1.1a

and 1.1b) and (1.1c and 1.1d) depict the same individual. These photos were

taken during the GZC [14].
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(a) (b)

(c) (d)

Figure 1.4: Visually similar plains zebras Different plains zebras sometimes have vi-

sual similarities that can be difficult to distinguish. There are three individuals

in these four images. The images in (1.3a and 1.3d) depict the same individ-

ual. Dissimilarities can be seen on the lower thigh of images (1.3c and 1.3d),

as well as on the front shoulder of images (1.3a and 1.3b).
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(a) (b)

(c) (d)

Figure 1.6: Distinguishing features for Masai giraffes Masai giraffes have an abun-

dance of features distinctive to each individual. There are two individuals

seen in images pairs (1.5a and 1.5b) and (1.5c and 1.5d). Note that the nu-

merous features make it initially difficult for a human to match giraffes. In

contrast, this is easier for algorithms. These photos were taken during the

GZC [14].
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(a) (b)

(c) (d)

Figure 1.8: Distinguishing features for Grévy’s zebras A Grévy’s zebra’s most dis-

tinctive features are above the front and rear legs. Useful, but less distinctive

information can be seen on the side of the body. Image pairs (1.7a and 1.7b)

and (1.7c and 1.7d) depict the same individual.

(a) (b) (c)

Figure 1.10: Distinguishing features for humpback whales A humpback whale can

be identified by the texture patterns on the fluke or using the shape of the

notches along the edge of the fluke. Note that some humpbacks (like the

on seen in 1.9b) do not have any texture patterns on their fluke. The pair

of images (1.9a and 1.9c) depict the same individual. These images were

collected from FlukeBook[15].
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1.2.2 Viewpoint and pose

One of the most difficult challenges faced in the animal identification problem is

viewpoint. Animals are seen in a variety of poses and viewpoints, which can cause dis-

tinctive features to appear distorted. The patterns on the left and right sides of animals are

almost always asymmetric. Therefore, matches can only be established using overlapping

viewpoints and only if the viewpoints are distinctive. Some viewpoints, such as the backs

of plains zebras, lack distinguishing information as shown in Figure 1.12. The effect of

pose and viewpoint variation can be seen in Figure 1.14 and Figure 1.16.

(a) (b) (c) (d)

Figure 1.12: Back viewpoints of plains zebras The backs of plains zebras have very

little distinguishing information. All the above images are different individ-

uals. These photos were taken during the GZC [14].
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(a) (b) (c)

(d) (e)

Figure 1.14: Examples of viewpoint variations This shows the viewpoint variations of

an individual Grévy’s zebra. It would not be possible to match image (1.13a

and 1.13e) without information from images showing intermediate views.

These photos were taken directly by our team.
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(a) (b) (c)

(d) (e) (f)

Figure 1.16: Examples of challenging pose variations Animals can appear in a wide

variety of poses. To clearly see the different poses, the images are shown

with surrounding context. During identification the image is cropped to the

bounding box shown around each animal. These photos were taken during

the GZC [14].
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1.2.3 Occluders and distractors

Because images of animals are often taken “in the wild”, other objects in the image

can act as occluders or distractors. Objects such as grass, bushes, trees or other animals,

can act as occluders by partially obscuring the features that distinguish one individual

from another. The appearance of the other animals nearby can be distracting because

features from these animals will match different animals in the database. These distrac-

tors may also be from non-animal features when multiple pictures are taken against the

same background as animals move through the same field of view. Several examples of

occlusions and distractors are illustrated in Figure 1.18.

(a) (b) (c)

(d) (e) (f)

Figure 1.18: Examples of occlusion and distractors Occlusions can obfuscate or re-

move distinctive feature entirely. Secondary animals can introduce new dis-

tinctive features that do not belong to the primary animal. Images like this

can cause other images of the secondary animal to the primary animal. These

photos were taken during the GZC [14].

1.2.4 Image quality

Image quality is influenced by lighting, shadows, the camera used, image resolu-

tion, and the size of the animal in the image. Outdoor images will naturally have large

variations in illumination. Different cameras can produce visual differences between im-

ages of an object. Images taken out of focus, from far away, or with a non-steady camera
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can cause animals to appear blurred. The effects of outdoor shadow and illumination are

illustrated in Figure 1.20. Figure 1.22 illustrates five categories of image quality that will

be described later in Section 1.3.2.3.

(a) (b)

(c) (d)

Figure 1.20: Examples of different lighting conditions Shadow and illumination can

cause variations in the underlying image intensity and gradients. This can

make it more difficult to localize repeatable keypoints and describe the un-

derlying texture patterns. These photos were taken during the GZC [14].
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(a) (b) (c) (d) (e)

Figure 1.22: Examples of different image qualities The bottom row shows the

cropped images that correspond to the bounding boxes in the top row. Each

column shows different qualities: (1.21a) an excellent quality image taken

from a short distance, (1.21b) a good quality image with minor shadow and

taken from a medium distance, (1.21c) an ok quality image due to minor oc-

clusion, (1.21d) a poor quality image due to major occlusion, (1.21e) a junk

quality image due to considerable blur. These photos were taken during the

GZC [14].

1.2.5 Aging and injuries

The appearance of an individual changes over time due to aging and other factors

including injuries. An example of the difference between a juvenile and adult zebra is

shown in Figure 1.24. An example of how injuries can both remove distinctive features

and add new ones is shown in Figure 1.26.
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(a) (b)

Figure 1.24: Examples of visual differences caused by age The left and right images

show the adult and juvenile appearance of the same individual. As an an-

imal ages its appearance changes mainly in color and texture with some

minor shape and scale differences. These photos were taken in Ol’ Pejeta

conservancy.

(a) (b)

Figure 1.26: Examples of visual differences caused by injuries Injuries can obscure

features on an animal as well as creating new ones. The left image shows a

wounded animal, and the right image shows an animal with a distinguishing

scar. The left photo was taken during the GZC [14]. The right photo was

taken in Ol’ Pejeta conservancy.

1.3 THE GREAT ZEBRA COUNT

To further illustrate the problems addressed in this thesis, we consider the “Great

Zebra Count” (GZC), held at Nairobi National Park on March 1st and 2nd, 2015 [14]. This

event was designed with two purposes in mind: (1) to involve citizens in the scientific data

collection effort, thereby increasing their interest in conservation, and (2) to determine the

number of plains zebras and Masai giraffes in the park.

1.3.1 Data collection

Volunteer participants — each with his or her own camera — arrived by car at the

park. Some cars had more than one photographer. Each car was assigned a route to drive



15

through the park. We attached a GPS dongle to each car to record time and location

throughout the drive. Correlating this with the time stamp on each image (after adding a

correction offset for each camera) allowed us to determine the geolocation of each image.

Each photographer was given instructions guiding them toward taking quality images of

the left sides of the animals they saw. When the cars returned — some after just an hour

or two, others after the whole day — the images were copied from the cameras, a small

sample of each photographer’s images was immediately processed to illustrate what we

would do with the data, and the entire set of images was stored for further processing.

The result of this crowd-sourced collection event was a 48GB dataset consisting of 9406

images.

1.3.2 Data processing

After the event, the entire collection of images was processed using a preliminary

version of the system in order to generate the final count. The preliminary system fol-

lowed the workflow of: (1) occurrence grouping, (2) animal detection, (3) viewpoint

and quality labeling, (4) intra-occurrence matching, (5) master database identification,

(6) consistency checks, and (7) population estimation. Here, we provide a brief overview

of each step involved in the processing of the GZC image data, and then we will describe

the challenges that arose.

1.3.2.1 Occurrence grouping

The images were first divided into occurrences — a standard term defined by the

Darwin Core [16] to denote a collection of evidence (e.g. images) that an organism exists

within defined location and time-frame. In the scope of this application, an occurrence is

a cluster of images taken within a small window of time and space. Images are grouped

into occurrences using the GPS and time data. Details are provided in Appendix A.

These computed occurrences are valuable measurements for multiple components

of the IBEIS software. At its core an occurrence describes when a group of animals was

seen and where that group was seen. From this starting point other algorithms can address

questions like: how many animals there were, who an animal is, who else is an animal

with, and where else have these animals been seen?
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Furthermore, there are computational and algorithmic benefits to first grouping im-

ages into an occurrence. One benefit is that an occurrence can be used as a semantic

processing unit to distribute manageable chunks of work to users of the system. Another

is that occurrences can be used to improve the results of identification. Typically, there

will be only a few individuals within an occurrence, and it is not uncommon for each in-

dividual to photographed multiple times and from multiple viewpoints. This redundancy

in images will be exploited in Chapter 5.

1.3.2.2 Animal detection

Before matching begins each image is cropped to focus on a particular animal and

remove background distractors. A detection algorithm localizes animals within the im-

ages. Each verified detection generates an annotation — a bounding box around a single

animal in an image. An example illustrating detection of plains zebras is shown in Fig-

ure 1.28. In the GZC each detection was manually verified before becoming an anno-

tation, but recent work introduces an automatic verification mechanism and reduces the

need for complete manual review. The details of the detection algorithm are beyond the

scope of this thesis, and are described in the work of Parham [17], [18].

(a) (b) (c)

(d) (e) (f)

Figure 1.28: Detection of plains zebras These photos were taken during the GZC [14].

Detections were automatically suggested and manually verified before being

accepted.
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1.3.2.3 Viewpoint and quality labeling

When determining the number of animals in a population it is important to account

for factors that can lead to over-counting. If two annotations of the same individual are

not matched, then that individual will be counted twice. This could happen due to factors

such as viewpoint and quality. For example, one annotation showing only the left side of

an animal and another annotation showing only the right side the same animal cannot be

matched because they are incomparable. The two annotations are comparable when they

share regions with distinguishing patterns that can be put in correspondence. Viewpoint

is the primary reason that two annotations are not comparable. However, other factors

like image quality and heavy occlusion can corrupt distinguishing patterns rendering the

annotation unidentifiable — not comparable with any other annotation. We must define

what it means for two annotations to be comparable before we can estimate a population

size.

Determining if an individual can be identified is analogous to the notion of a marked-

individual [4]. For an annotation to be identifiable the patterns that can distinguish it from

the rest of the population must be clear and visible, otherwise the annotation may not be

able to find or be compared to potential matches. This means an annotation is only identi-

fiable if (1) the image quality is high enough, and (2) it has a viewpoint that is comparable

to all potential matches.

To address this challenge we label each annotation with 5 discrete quality labels

and 8 discrete viewpoint labels. The quality labels we define are: junk, poor, ok, good,

and excellent. The junk label is given to annotations that almost certainly will not be able

to be identified, and poor labels are given to annotations that will likely be unidentifiable

for a computer vision algorithm. The good and excellent labels are given to clear, well

illuminated annotations with little to no occlusion with excellent being reserved for the

best of the best. All other annotations are labeled as ok. The viewpoint labels we define

are: front, front-left, left, back-left, back, back-right, back, and front-right. Note, that ad-

ditional viewpoint labels like up and down may be necessary for animals such as lionfish

or turtles. However, the 8 labels we use are sufficient for animals like zebras and giraffes

because they are most commonly seen in upright positions.

In an effort to ensure that all annotations used in the GZC were comparable, we
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did not include any annotation that had junk or poor qualities. We also did not include

annotations not labeled with a left or frontleft viewpoint to account for limitations in the

initial ranking algorithm. All labelings of viewpoint and quality were generated manu-

ally. Since then, we have trained viewpoint and quality classifiers using this manual data.

Automatic detection of quality and viewpoint is discussed in the work of Parham [17].

1.3.2.4 Matching within each occurrence

Animals often have multiple redundant views within an occurrence, each of which

can be the same, better, or complementary to other views. The images in Figure 1.30

illustrate redundant and complementary views of an individual in an occurrence. Merg-

ing all of an individual’s views is a challenge, but also potentially an advantage as we

can exploit redundancy to better handle missing features, subtle viewpoint changes, and

occlusions.

We exploit this redundancy to gain the benefit of complementary views by matching

all annotations within an occurrence in a process called intra-occurrence matching. In

the GZC, each annotation was queried against all other annotations in its occurrence,

returning a ranked list of candidate matches. The person running the software made the

final decisions about which annotations match. Details about the ranking algorithm are

given in Chapter 3.

The result of intra-occurrence matching is a set of encounters. An encounter is a

group of annotations that were matched within an occurrence. Each encounter is either

(1) the first sighting an individual or a (2) resighting. The task now becomes to determine

which of these is the case by identifying each encounter against a master database.

1.3.2.5 Matching against the master database

To determine if an encounter is a new sighting or a resighting of an individual, it

is matched against the master database in a process called master database matching.

Before matching begins the master database is prepared for search. For each name in the

master database a subset of exemplar annotations is chosen to represent the appearance

of that individual. The exemplars are indexed using a search data structure.

After the master database has been prepared, the ranking algorithm is able to issue

a subset of the encounter’s annotations as a query. The result is a ranked list of exemplars
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(a) (b) (c)

Figure 1.30: Multiple images in an occurrence These images were taken within an

occurrence and demonstrate redundant and complementary features. Fea-

tures on the shoulders are somewhat redundant in images (1.29a) to (1.29c)

because they are all under approximately constant illumination and are seen

from the same angle. Images (1.29a and 1.29c) have complementary fea-

tures because the viewpoint of the animal has shifted slightly. These photos

were taken during the GZC [14].

that are visually similar to the encounter. The top exemplars in the ranked list are used

as candidate matches. Then, the candidate matches are reviewed, and the encounter is

either merged into an existing master-name or added to the master database as a new

master-name.

1.3.2.6 Consistency checks

When merging encounters into the master database it is possible that mistakes were

made. Two error cases commonly occur.

(1) A split case occurs when a set of annotations from two or more different animals

is incorrectly labeled with the same name. The main cause of this error is when

distracting features are matched causing the annotations to appear visually similar.

(2) A merge case occurs when two sets of annotations from the same animal are incor-

rectly labeled with different names. This is caused by an algorithm or human error

where a query encounter was not correctly matched to the database exemplars.

These errors usually occur because the query and database annotations have a low degree

of comparability (e.g. differences in viewpoint or low quality). Of course, if no visual

overlap exists between the two sets — such as one set exclusively from the left side and

another exclusively from the right — nothing can be done. This is why the animal must

be seen from a predetermined view in order to be counted. In the GZC this is the left side.

In the GZC suspect individuals were flagged for split checks using various heuristics
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such as the number of annotations in the name or the apparent speed of the animal’s

movement as GPS and time data. To check a flagged individual we used the ranking

algorithm to search for pairs of annotations with low matching scores that belong to the

flagged name. Low similarity between two annotations within a name suggested that

an error had occurred. These low scoring results were then manually reviewed. When

breaking apart split cases, care was taken to account for the fact that right and left images

should not match. Likewise, care was taken to ensure that an intermediate annotation

linking two disjoint annotations has enough information to establish the link.

Merge checks issue all exemplars as queries against all other exemplars. High simi-

larity between two different names suggested that a match was missed. These high scoring

results were manually reviewed. More sophisticated error detection and recovery will be

discussed in Section 5.5.

1.3.2.7 Population estimation

The final step for the GZC workflow was to estimate the number of animals in the

park. Using the identification algorithm we defined which annotations were sightings

and which were resightings. Because we were using a preliminary version of the system

we were conservative in defining when an animal was sighted by only using the left and

frontleft annotations with quality labels of ok, good, or excellent. Each individual that

met these criteria was counted as a sighting. If a sighted individual had an annotation

from both days, then we counted that individual as resighted.

1.3.3 Processing challenges

Our experience with the Great Zebra Count has highlighted a number of challenges

that must be addressed if this system is to be applied in future events. These challenges in-

clude the number of manual reviews required, the detection of and recovery from manual

errors, and the overall lack of a systematic identification framework.

Perhaps the greatest challenge faced during the GZC was the considerable amount

of time that was required to manually verify identification results. It can take several sec-

onds to manually verify if a pair of annotations is a correct match even if the results are

presented in a ranked list. This task is illustrated in Figure 1.32. Requiring the manual
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verification of each result is untenable for a system that accepts thousands of new images

a day. The lack of a systematic approach for identification meant that whenever two an-

notations were matched, the name labels of all annotations of those names were changed.

This made it difficult to tease apart errors when they occurred. Furthermore, manual errors

(likely caused by fatigue from the large number of manual reviews) resulted in numerous

identification errors cases that were not able to be detected and resolved until the end of

the process. Reviews of results were also done in order of matching scores regardless of

previous decisions, causing the manual reviewer to inefficiently review redundant results

between the same individual. Additionally, no stopping criterion for reviews was defined

resulting in an ad hoc approach to determining when all matches were found.

Motivated by these observations we seek to develop a semi-automatic approach to

animal identification. This approach will should be governed by a system that reduces the

number of manual reviews and is able to detect and recover from errors, and determine

when to stop searching for new matches.
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(a) Rank 1

(b) Rank 2

(c) Rank 3

Figure 1.32: Examples of top ranked matches Each pair is a one-vs-one comparison.

All the left images are the same query image. Each image on the right is a

candidate match. The match in (1.31a) is correct and the other matches are

incorrect. However, a ranked list may contain more than one correct match.

These photos were taken during the GZC [14].
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1.4 APPROACH

The problem addressed in this thesis is to identify individual animals “in the wild”

and to count the individuals in a population. We are given a set of images containing an-

notations of the same species. The images are collected in an uncontrolled environment

and likely contain imaging challenges such as occlusion, distracting features, viewpoint

variations, pose variations, and quality variations. Furthermore, the images may be col-

lected either over many years or over just a few days as in the GZC. Each annotation is

labeled with time, GPS, quality, and viewpoint. We may also be given an initial partial

name labeling of the annotations — e.g. in the case where we identify a new set of an-

notations against a previously identified set — but this need not be the case. We want to

label each annotation with a name that uniquely identifies the individual. In other words,

our task is to label all annotations from the same individual with the same name and give

annotations from different individuals different names. After this is complete, the result-

ing database will contain the information needed to estimate the size of the population

using techniques from sight-resight statistics.

The first step of the identification process is a ranking algorithm. The inputs to the

algorithm are a single query annotation and a set of database annotations. Sparse patch-

based features are localized in all annotations, and a descriptor vector is extracted for each

feature. The descriptors of the database annotations are indexed for fast nearest neighbor

search. We then find a set of matches in the database for each descriptor in the query

annotation. The matches are scored based on visual similarity, distinctiveness within the

database, and likelihood of belonging to the foreground. Matches are combined across

multiple exemplar annotations to produce a matching score for each name in the database,

resulting in a ranked list of results for each query.

We then extend the ranking algorithm by developing a classifier able to automati-

cally review its results. First, we construct a pairwise feature that captures relationships

between two annotations using local feature correspondence and global properties such

as time and GPS. Then, we learn a classifier to predict if a pair of annotations — i.e. a

result in the ranked list — is correct or incorrect.

In the final part of our approach, we place the problem of animal identification in

a graph framework able to systematically guide the identification process. This is done
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by placing each annotation in a graph as a vertex and placing labeled edges between

annotations to represent how they are related. Using the graph framework we will be able

to detect and recover from errors by taking advantage of multiple images seen of each

individual.

We evaluate the ranking, verification, and graph identification algorithm by per-

forming experiments on two main databases of plains zebras and Grévy’s zebras. Some

additional experiments are also performed on databases of Masai giraffes and humpback

whales. First, the ranking experiments test the algorithm’s ability to find potential matches

of an individual animal over large periods of time, different viewpoints, different sized

databases, and different numbers of exemplars. Then, the verification experiments will

test the extent to which the correct results from the ranking algorithm can be separated

from the incorrect results using our learned classifier. Finally, the graph identification

experiments will demonstrate the algorithm’s ability to reduce the number of required

manual reviews and recover from errors. We determine the configuration of each algo-

rithm that works best for identifying each species.

1.5 ORGANIZATION

This thesis is organized as follows: Chapter 2 describes related work. The focus is

on the details of techniques used in the system, while an overview is given for those which

are indirectly related. Chapter 3 describes the ranking algorithm for identifying individual

animals, one annotation at a time, against a database of exemplars. This chapter includes

an experimental evaluation of the ranking algorithm. This is the algorithm that was used in

the GZC. Chapter 4 addresses the problem of semi-automatic verification of results from

the ranking algorithm. Chapter 5 combines the ranking and verification algorithm into a

semi-automatic framework that detects and corrects errors while reducing the number of

manual reviews. Chapter 6 concludes this thesis and summarizes its contributions.



2. RELATED WORK

To address the individual animal identification problem we draw upon related research

in feature detection [19]–[21], feature description [22]–[27], approximate nearest neigh-

bor search [28], [29], instance recognition [30]–[36], face verification [37]–[41] fine-

grained recognition [42]–[44], category recognition [45]–[49], and convolutional neural

networks [26], [27], [50]–[52].

At a high level, the main questions addressed by the aforementioned research can

be summarized as: How should image features be detected? How should detected image

features be represented? How much invariance should features have? Should image

features be quantized? How should image features be matched? How should feature

matches be aggregated? How should feature matches be scored? How should all of

this be done accurately? How should all of this be done efficiently? Answers to these

questions address many of the challenges to animal identification previously introduced

in Section 1.2.

This chapter summarizes literature relevant to addressing these questions in the

context of animal identification. The outline of this chapter is as follows: Section 2.1

will discuss feature detection. Section 2.2 will discuss feature description. Section 2.3

will discuss approximate nearest neighbor algorithms. Sections 2.4 to 2.6, will discuss

approaches to recognition. Section 2.7 will discuss convolutional neural networks.

2.1 IMAGE FEATURE DETECTION

Before an image can be analyzed, it must be broken down into smaller components.

An image’s visual appearance can be captured using a combination of local image patterns

— patch-based features. The most informative patch-based features are typically centered

on simple image structures such as junctions, corners, edges, and blobs [20]. If these

features can be reliably detected, localized, and described then image matching can be

posed as a problem in matching sets of features. This section describes work related to

detecting features in an image, and Section 2.2 will discuss how detected features are then

described.

25
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The region where a feature is detected is called a keypoint. The simplest definition

of a keypoint is just an xy-location in an image. However, images contain information at

multiple scales; therefore a keypoint is typically associated with a scale. The scale of a

keypoint is a non-negative real number that defines the level of detail at which to interpret

the underlying image information. A keypoint with a scale can be thought of as a circular

region with a radius that is the scale multiplied by some constant (e.g. 3
√
3 is the constant

used to determine a keypoint’s radius in [21]). To account for changes in viewpoint and

pose, it is also common to augment features with an orientation and shape. Adding these

properties is said to add invariance to the feature. Invariant features can provide similar

descriptions of the same semantic image region under different viewing conditions. How-

ever, adding invariance can cause features to lose distinguishing information [19]–[22].

Many detectors have been developed to detect patch-based feature keypoints [19],

[20]. Algorithms such as Harris, SUSAN, and FAST detect corners [53]–[56]. Blobs

and corners can be detected with Hessian [57], [58] or difference of Gaussians [22], [59]

detectors. There are also region-based detectors: maximally stable extremal regions [60],

saliency based methods [61] and superpixel-based methods [62], [63]. Some applications

choose to skip keypoint detection and use a uniform grid of dense features [64]–[66].

Other applications, such as face recognition, use specialized keypoint detectors [39],[67].

There currently exists no principled method for selecting the appropriate feature detector.

Different feature detectors perform differently given the application [20].

This section describes the representation of an image over multiple scales, the de-

tection of features to sub-pixel and sub-scale accuracy, and the adaption of features to

specify orientation and shape. We focus on the Hessian-based keypoint because it has

been experimentally shown to be a reliable choice for instance recognition [20].

2.1.1 Scale-space

Scale-space theory describes image features as existing at multiple scales [68]. The

same point on an object seen close up appears quite different compared to when it is

at a distance. For example, a zebra in the distance may appear to have two stripes that

are connected, but when the animal appears closer it becomes clear that the stripes are

actually disconnected. Multi-scale detection is formalized by the theory of scale-space,
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which parameterizes a continuous signal, f , with a scale, σ. The original signal is said to

exist at scale 0. Convolving the original signal with a Gaussian kernel produces coarser

scales.

Let f be a continuous 2-dimensional signal that defines an image. Let vector x =
[

x
y

]

be a location in the image. The function g(σ) is the isotropic 2D Gaussian kernel. The

scale-space representation of a continuous image (for any non-zero scale) takes the form:

I(x, σ) = g(σ)∗ f(x), where ∗ is the convolution operator. However, we do not have

access to a continuous representation of an image. Therefore, in practice, the continuous

Gaussian kernel is replaced with the discrete Gaussian kernel. This can be efficiently

implemented as a discrete convolution with the 1-dimensional discrete Gaussian kernel

in the x-direction and then in the y-direction, because the discrete Gaussian kernel is

separable in orthogonal directions [68]. Using the definition of an image at a single scale

the next step is to represent an image at multiple scales.

2.1.1.1 Gaussian pyramid

The discrete scale-space representation of an image is efficiently implemented us-

ing a Gaussian pyramid. A scale-space pyramid consists of L levels. Each level covers

an octave. Starting from the base of each level with scale parameter σ the next octave

is reached when σ doubles. There are s intervals represented within each octave. A

Gaussian pyramid is illustrated in Figure 2.1.

The pyramid’s base, I(x, 1) = g(1)∗ Iraw(x) is the ℓ = 0th level of the pyramid,

and is computed by blurring the original image (sometimes with small initial blurring)

with σ = 1. Subsequent levels of the pyramid are produced by doubling sigma, thus the

ℓth level of the pyramid is I(x, 2ℓ).

A property of discrete scale-space is that after appropriate smoothing downsam-

pling the image by half is equivalent to doubling sigma. Let Iℓ(x) denote the raw image

downsampled by a factor of 2ℓ using Lanczos resampling. Now, each level of the pyra-

mid can be written as I(x, 2ℓ) = g(1)∗ Iℓ(x). Given the raw image at level ℓ, the scale

corresponding to σ can be written as a relative scale σℓ = σ/2ℓ. Thus, a discrete image at

any scale can be efficiently computed as:

I(x, σ) = g(σℓ)∗ Iℓ(x) (2.1)
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Figure 2.1: A scale space pyramid A Gaussian pyramid is used as a scale space repre-

sentation of an image. A property of scale space is that doubling the scale is

equivalent to downsampling the image by half. The set of images of a specific

size correspond to an octave. The images within each octave are the intervals.

Discrete convolution is applied using a window of size ⌊6σℓ + 1⌋+(1−(⌊6σℓ + 1⌋ mod 2)).

Interpolation between discrete values of x is used to sample intensity at sub-pixel accu-

racy.

A scale between two levels of the pyramid is called an interval. Typically, s intervals

— with relative scales 20/s, 21/s, . . . 2s/s — are computed to represent the octave between

level ℓ and ℓ+1. If differences between scales are needed, then the scales 2−1/s and 21+1/s

are also computed [22].

2.1.2 Hessian keypoint detection

Hessian-based keypoint detection searches for extrema of the Hessian operator in

both space and scale [57],[58]. The Hessian detector can qualitatively be viewed as a blob

detector, but it also detects corners which may appear as blobs in scale-space [20]. The

Hessian keypoint detector will compute a response value for each point in scale space

indicating how blob-like each pixel is. The extrema of this response defines a set of

Hessian keypoints. Post processing removes non-robust keypoints and localizes all other

keypoints to sub-pixel and sub-scale accuracy.
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2.1.2.1 Hessian response

Let subscripts denote the partial derivatives of the image intensity (e.g. Ix is the first

x derivative, Ixx is the second x derivative, and Ixy is the first derivative in both x and y).

The Hessian is a matrix of second order partial derivatives and is defined at each point in

scale space.

H(x, σ) =





Ixx(x, σ) Ixy(x, σ)

Ixy(x, σ) Iyy(x, σ)



 (2.2)

The initial response of the detector at each point is the determinant of the Hessian

matrix. This response is computed for level and every pixel in the scale-space pyramid. At

coarser scales the Hessian response weakens, so to ensure that responses between scales

are comparable, the initial response is scale normalized by multiplying with σ2. (See [69]

for more details about the choice of this normalization factor.) The extrema of this space

defines a set of candidate keypoints, P ′.

P ′ = argextrema
x,σ

(

σ2 Det (H(x, σ))
)

(2.3)

A point in this 3D space is a maxima/minima if its scale normalized value is greater/less

than the scale normalized values of all its neighbors in the pyramid — i.e. the 8 neigh-

bors in its current interval, its 9 neighbors in the next interval, and its 9 neighbors in the

previous interval.

2.1.2.2 Edge filtering

Edge responses are not robust — i.e. the same point can not be localized reliably

in two views of the same scene — due to their elongated nature. Because of this, the

extrema that appear too edge-like are filtered using a threshold tedge which is compared

to the ratio of the Hessian’s squared trace and the determinant.

P =

{

(x, σ) ∈ P ′
∣

∣

∣

∣

Tr (H(x, σ))2

Det (H(x, σ))
> tedge

}

(2.4)
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2.1.2.3 Sub-pixel and sub-scale localization

To compensate for the discrete nature of pixel images, each keypoint detection is

localized to sub-pixel and sub-scale accuracy. The importance of feature localization

is demonstrated in [70], where descriptors were computed on the normalized vectors of

patch gradients using only principal component analysis (PCA) [71]. Despite the sim-

plicity of the descriptors the authors were still able to effectively match two images due

to the robust localization of the features.

Sub-pixel and sub-scale localization transforms a keypoint p0 into p∗ using an iter-

ative process. At each iteration i, a 2nd order Taylor expansion, centered at pi = (xi, σi),

approximates the scale normalized Hessian response: Ti(x, σ) ≈ σ2 Det (H(x, σ)). The

keypoint is updated to the position of the maximum response of the Taylor expansion:

pi+1 = argmax
p

Ti(p). This process iterates until convergence. If the process does not

converge before a threshold number of iterations, the keypoint is deemed not robust and

thrown out.

2.1.3 Affine adaptation

So far, the keypoints we have described correspond to circular regions where the

pixel radius is some multiple of the scale. To account for small affine changes seen in

non-planar objects (like zebras), the shape of each circular keypoint is adapted into an

ellipse.

An affine shape A =
[

a 0
c d

]

is estimated (as a lower triangular matrix) for each

keypoint using an iterative technique involving the second moment matrix [19],[72],[73].

The affine shape matrix transforms an ellipse into a unit circle. Note that because the

matrix is lower triangular one of its eigenvectors points in the downward direction. Thus,

the shape has no influence on the orientation of the keypoint. For each point in scale space

the second moment matrix is evaluated as:

M(x, σ)=
[

I2x(x,σ) Ix(x,σ)Iy(x,σ)

Ix(x,σ)Iy(x,σ) I2y (x,σ)

]

(2.5)

The goal is to “stabilize” each keypoint shape by searching for the transformation,

A∗, that causes the second moment matrix to have equal eigenvalues. For each keypoint,
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its elliptical shape is initialized as a circle A0 =
[

1 0
0 1

]

. For each iteration i:

(1) Compute the second moment matrix, M(Aix, σ), at the warped image patch.

(2) Check if the keypoint shape is stable. A keypoint shape is stable if the eigenvalue

ratio of the second moment matrix is close to 1. If the keypoint has been stable for

two consecutive iterations, then accept A∗ ← Ai and stop iteration. Otherwise, if

the number of iterations, i, is greater than some threshold, then stop and discard the

keypoint.

(3) Update the affine shape using the rule Ai+1 = M(Aix, σ)
1

2Ai.

The matrix A only defines the transformation from an ellipse to a circle. The stan-

dard representation of an ellipse is a conic of the form E = ATA. This means that A

is only defined up to an arbitrary rotation [19], [21]. Thus, we can freely rotate A into a

lower triangular matrix. This ensures that one of its eigenvectors is pointing downwards

— i.e. in the direction of the “gravity vector” [21]. Making use of the gravity vector re-

moves a dimension of invariance. To allow for the specification of keypoint orientation,

the keypoint representation can be extended with a parameter θ that defaults to 0.

2.1.4 Orientation adaptation

The keypoint orientation is defined using the parameter θ. By default, the ori-

entation of a keypoint can be assumed to be aligned with the “gravity vector” — i.e.

θ = 0 [21]. Otherwise, an orientation must be computed. A common method for de-

termining a keypoint’s orientation is to use the dominant gradient orientation. In theory

adapting the orientation to match the dominant gradient will cause a computed keypoint

description to be invariant to rotations.

To compute a keypoint’s dominant orientation the pixels around a keypoint vote

into a fine-binned orientation histogram [22]. A pixel’s vote is weighted by its gradient

magnitude multiplied by its Gaussian weighted distance to the keypoint center. The dom-

inant orientation θ ∈ [0, 2π) is chosen as the peak of this histogram. If there is more

than a single peak it is common to create a copy of the keypoint for each maxima in this

histogram. This process is illustrated in Figure 2.3.
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(a)

(b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 2.3: Computing the dominant gradient orientation The top row shows: (2.2a)

the input image with a single elliptical keypoint, (2.2b) the normalized key-

point, (2.2c and 2.2d) the squared x and y image derivatives. The middle row

shows: (2.2e) the gradient magnitudes, (2.2f) the Gaussian weighted gradient

magnitude, (2.2g and 2.2h) the orientation at each pixel. The final row (2.2i)

shows the histogram of weighted orientations. The starred positions show the

dominant gradient orientations localized to sub-orientation accuracy.

2.1.5 Discussion — detector and invariance choices

To identify individual animals, features must be detected in distinguishing areas of

an animal. For a feature to be useful, it must be detected in the multiple images of the

same individual despite variations in viewpoint, pose, lighting, and quality. In our base-

line algorithm we choose to use a Hessian based detector [21], [69] because it generally

produces a large number of features and has been experimentally shown to be repeatable,

accurate, and adaptable to multiple degrees of invariance [20].

Once a keypoint is detected, it is described using a keypoint description algorithm.
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It is desirable for a keypoint description to be invariant to small changes in viewpoint,

pose, and lighting. Accurate localization of a keypoint in scale and space helps to ensure

that similar images contain similar features. Sometimes, it is beneficial to further localize

a keypoint in shape and orientation, thus adding invariance to the feature. However, if

too much invariance is used, it may not be possible to distinguish between semantically

different features.

It is a challenge to choose the correct level of invariance when computing features.

Often an application chooses one of two extremes. Consider the computation of keypoint

orientation. Standard methods for orientation invariance assume patches can freely rotate,

when in fact they may be constrained to be consistent with the orientation of surrounding

patches [22]. On the other side extreme is the “gravity vector” [21], which globally

enforces all keypoint to have a downward orientation. This may be a safe assumption

when working with features from images of rigid objects taken in an upright position. It

may not be correct when dealing with non-rigid objects like zebras. In our experiments

in Section 3.5.5 we test different degrees on invariance. This test includes a novel method

that achieves a middle ground between full orientation invariance and the gravity vector.

2.2 IMAGE FEATURE DESCRIPTION

Once each feature has been localized its visual appearance must be described before

it can be matched. The goal of feature description is to encode raw image data into a

vector — i.e. a descriptor. To represent the visual appearance of a keypoint a descriptor

vector should have the following properties: (1) two visually similar patches produce

vectors with a small metric distance and (2) visually dissimilar patches have vectors with

large distances between them.

Constructing such a descriptor vector has been a core problem throughout the his-

tory of computer vision. The first texture descriptor robust to small image transfor-

mations was the scale invariant feature transform (SIFT) descriptor first published in

1999 [22], [74]. Since then, other hand-crafted algorithms have been proposed. How-

ever, results have always been at least comparable to the SIFT descriptor, and SIFT is

still an effective and widely used hand-designed descriptors [23], [75]–[79]. A promis-

ing direction for outperforming the SIFT descriptor is descriptor learning [24], [25], [80];
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specifically descriptor learning using deep neural networks [51], [81], [82]. This section

first describes the basic SIFT algorithm and then provides an overview of alternatives that

have been proposed to SIFT. Work related to learning descriptor vectors using deep neural

networks is discussed later in Section 2.7.

2.2.1 SIFT

The SIFT descriptor is a 128 dimensional vector that summarizes the spatial distri-

bution of the gradient orientations in an image patch [22]. To describe a keypoint with

a SIFT descriptor, the keypoint’s image data is warped using the affine transform of the

scale space gradient image into a normalized reference frame (typically 41 × 41 pixels).

For a descriptor to be useful in matching it is important that the keypoint is properly local-

ized before a descriptor is computed [70]. Because it is not always possible to perfectly

localize a keypoint, the SIFT descriptor aggregates information into a soft-histogram. Al-

lowing data to contribute to multiple bins helps the SIFT descriptor to be robust to small

localization errors and viewpoint variations. Distance between two SIFT descriptors is

typically computed using the Euclidean distance. The SIFT descriptor of a patch is visu-

alized in Figure 2.5.

The structure of a SIFT descriptor is as follows: A 4 × 4 regular grid is superim-

posing over the normalized patch. Each of the 16 spatial grid cells contains an orientation

histogram discretized into 8 bins. The SIFT descriptor is the concatenation of all orienta-

tion histograms, resulting in a single 16× 8 = 128 dimensional vector.

The patch information populates the SIFT descriptor as follows: For every pixel,

the patch gradient (the derivative in the x and y direction) is computed. Next, each pixel

computes its gradient magnitude and orientation. Each pixel then casts a weighted vote.

The bin that a pixel votes into is computed from its xy-location and gradient orientation.

The weight of a pixel’s vote is based on its gradient magnitude and Gaussian weighted

distance to the patch center. To be robust to small localization errors, a pixel’s vote is

split via trilinear interpolation (x-location, y-location, and orientation) into the orientation

histograms of the pixel’s nearest grid cells as well as neighboring orientation bins in each

grid cell’s orientation histogram.

Once voting is completed a SIFT descriptor is normalized to account for lighting
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differences between images. First, the vector is L2-normalized to unit length, which

makes the descriptor invariant to linear changes in intensity. Then, a heuristic — that

truncates each dimension to a maximum value of 0.2 — is applied to increase robustness

to non-linear changes in illumination. Finally, the vector is renormalized.

For storage considerations the resulting 512-byte floating-point (float32) descriptor

is typically cast as an array of unsigned 8-bit integers (uint8), resulting in a 128-byte

descriptor. To reduce the impact of this quantization a trick is to multiply by 512 instead of

255 and then truncate values to 255 before converting from a float to a uint8. Even though

each component is 8-bits and therefore can only store a maximum value of 255, value

overflow is not likely to occur because of truncation, L2-normalization, and properties of

natural images.

(a)
(b)

Figure 2.5: Example of a SIFT descriptor (2.4a) shows a SIFT feature superimposed

over pixels it describes. (2.4b) shows the same SIFT descriptor as a flat his-

togram. Notice the correspondence between the colors of the histogram bars.

2.2.2 Other descriptors and SIFT extensions

Even more than a decade after its original publication, SIFT remains a popular de-

scriptor for patch-based matching because it is versatile, unsupervised, widely available,

and easy to use. The principles used to guide the construction of the SIFT descriptor —

particularly the use of aggregated gradients — have inspired many variants, extensions,
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and new techniques [23], [76], [83]. Hand crafted alternatives to SIFT have been devel-

oped that are faster to compute and more efficient to store, but these alternatives do not

significantly outperform SIFT’s matching accuracy on general data [22], [23], [78]. This

subsection provides a brief overview of these alternatives.

The use of aggregated gradient information in SIFT has been adapted for use in

other computer vision problems such as detection and scene classification. The GIST

descriptor is a low dimension descriptor used for scene classification that coarsely sum-

marizes rough appearance of an entire image [84], [85]. The histogram of oriented gra-

dients (HoG) descriptor is a high dimensional descriptor used in detection. The HoG

descriptors describes the shapes of objects in an image [83]. Like the SIFT descriptor, the

HoG descriptor illustrates the value of gradient-based image descriptions and has inspired

extensions such as the discriminatively trained parts model [86].

As a general single-scale patch-based descriptor, the matching accuracy of SIFT

has not been significantly outperformed on general datasets. One attempt at an improved

general descriptor is the gradient location-orientation histogram (GLOH) descriptor [23].

GLOH uses a similar structure to SIFT but replaces the rectangular-bins with log-polar

bins. GLOH did achieve higher matching accuracy on some datasets, but it was not by a

significant margin. Despite the lack of generic success, hand-crafted SIFT variants have

been successful when applied to specific tasks. Colored SIFT variants such as opponent-

SIFT are valuable in category recognition tasks, where a color difference could be the

distinguishing factor between categories [87] Combining multiple SIFT descriptors over

different scales has also shown moderate improvements. The scale-less SIFT descriptor

combines SIFT descriptors computed at multiple scales into a single descriptor. It has

been shown to produce more accurate dense correspondences than representing each scale

with an individual descriptor [88].

Efficiency is one area where SIFT has been significantly outperformed. An approx-

imation to SIFT called speeded up robust features (SURF) is a fast approximation to SIFT

based on integral images that achieves similar accuracy using a smaller 64 dimensional

descriptor [76]. The DAISY descriptor uses a similar binning structure to GLOH, but uses

convolutions with Gaussian kernels to quickly aggregate gradient histograms [89]. Binary

descriptors such as local binary patterns (LBP) [90], [91], local derivative patterns [92],
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and their variants such as BRIEF [75], BRISK [77], and FREAK [78] also quickly com-

pute compact distinctive descriptors. Binary descriptors are built using multiple pairwise

comparisons of average image intensity at predetermined locations. This results in a small

descriptor that effectively represents aggregated gradient information.

Machine learning is able to outperform the matching accuracy of SIFT, however

these techniques require training data to adapt to each new problem domain. Learned

descriptors make use of the same aggregated gradient information used in the construc-

tion of SIFT descriptors. The Liberty, Yosemite, and Notre-Dame buildings datasets are

standard datasets for descriptor learning [93]. Error on these datasets is measured us-

ing false positive rate at 95% recall (FPR95). The baseline SIFT error on this dataset

is 27.02%. The configuration of a DAISY descriptor is learned in [25] and achieves an

error of 15.16% on the buildings datasets. In [24], large scale non-convex optimization is

used to learn a spatial pooling configuration of log-polar bins, a dimensionality reduction

matrix, and a distance metric to further reduce the FPR95 error to 10.98%. The current

state-of-the-art error of 4.56% on the buildings dataset is achieved using a convolutional

neural network [26].

2.2.3 Discussion — descriptor choices

In our application we use the SIFT [22] as our baseline descriptor because it is one

of the most widely used and well-known descriptors. SIFT describes images patches in

such a way that small localization errors do not significantly impact the resulting repre-

sentation. Exploration of alternative convolutional descriptors is discussed later in Sec-

tion 2.7.

2.3 APPROXIMATE NEAREST NEIGHBOR SEARCH

In computer vision applications it is often necessary to search a database of high

dimensional vectors [29], [94]–[97]. Patch descriptor vectors like SIFT are constructed

such that the distance (under some metric) between vectors is small for matching patches

and large for non-matching patches. Thus, finding matching descriptor vectors is often

framed as a nearest neighbor search problem [22]. It becomes prohibitively expensive to

perform exact nearest neighbor search as the size of the database increases. Therefore,
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approximate algorithms — which can trade off a small amount of accuracy for substantial

speed-ups — can be used instead.

2.3.1 Kd-tree

A kd-tree is a data structure used to index high dimensional vectors for fast approx-

imate nearest neighbor search [98]. A kd-tree is an extension of a binary tree to multiple

dimensions. Each non-leaf node of the tree is assigned a dimension and threshold value.

The node splits data vectors between the left and right children by comparing the value

of the data vector at the assigned dimension to the assigned threshold.

2.3.1.1 Building a kd-tree index

Indexing a set of vectors involves first choosing a dimension and threshold to split

the data into two partitions. Then this procedure is recursively applied to each of the

partitions. A common measure for choosing the dimension is to choose the dimension

with the greatest variance in the data. The threshold is then selected as the median value

of the chosen dimension.

2.3.1.2 Augmenting a kd-tree index

It is possible to augment an existing kd-tree by adding and removing vectors. Ad-

dition of a vector to a kd-tree is performed by appending the point to its assigned leaf.

Removal of points from a kd-tree is done using lazy deletion — i.e. by masking the re-

moved data. To avoid tree imbalance, a kd-tree is re-indexed after the number of points

added or removed passes a threshold. Any masked point is deleted whenever the tree is

re-indexed.

2.3.1.3 Searching a kd-tree index

Searching for a query point’s exact nearest neighbor in a kd-tree has been shown

to take expected logarithmic time for low (k < 16) dimensional data [99]. However, for

higher dimensional data this same method takes nearly linear time [100]. This is because

a query point and its nearest neighbor might be on opposite sides of a partition. Therefore,

searching for nearest neighbors is typically done by approximate search using a priority

queue [101]. A priority queue orders nodes to further search based on their distance to the
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query vector. The search returns the best result after a threshold number of checks have

been made.

Search accuracy is improved by using multiple randomized kd-trees [28]. If a single

kd-tree has a probability of failure p, then m independently constructed trees have a pm

probability of failure. For each kd-tree a random Householder matrix is used to efficiently

rotate the data. Using a random rotation preserves distances between rotated vectors but

does not preserve the dimension of maximum variance. This means that each of the m

kd-trees yields a different partitioning of the data, although it is not guaranteed to be

independent. When searching multiple random kd-trees, a single priority queue keeps

track of the next nearest bin boundaries to search over all the trees.

2.3.2 Hierarchical k-means

Another tree-based method for approximate nearest neighbor search is the hier-

archical k-means. Each level in the hierarchical k-means tree partitions the data using

the k-means algorithm [102] with a small value of k (e.g. 3). To query a new point it

moves down the tree into the bin of the closest centroid at each level until it reaches a leaf

node. Hierarchical k-means was one of the first techniques used to define a visual vocab-

ulary [31] — a structure used for indexing and quantizing large amounts of descriptors.

2.3.3 Locality sensitive hashing

A hashing-based method for approximate nearest neighbor search is locality-sensitive

hashing (LSH). This method is able to search a dataset of vectors for approximate nearest

neighbors in sub-linear time [95], [96], [103]–[105]. LSH trades off a small amount of

accuracy for a large query speed-up. A database is indexed using M hash tables. Each

hash table uses its own randomly selected hash function. For each hash table, a query

vector computes its hash and adds the database vectors it collided with to a shortlist. The

shortlist is sorted by distance and returned as the approximate nearest neighbors.

2.3.4 FLANN

The fast library for approximate nearest neighbors (FLANN) is a software package

built to quickly index and search high dimensional vectors [29]. The FLANN package
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implements efficient algorithms for hierarchical k-means, kd-trees, and LSH. It also im-

plements a hybrid between the k-means and kd-tree, as well as configuration optimization,

to select the combination of algorithms that best reaches the desired speed/accuracy trade-

off for a given dataset. Configuration optimization is performed using the Nelder-Mead

downhill simplex method [106] with cross-validation.

2.3.5 Product quantization

Product quantization is a method for speeding up approximate nearest neighbor

search of a set of high dimensional vectors [107], [108]. Each vector is split up into a set

of sub-vector components. For each component, the sub-vectors are separately quantized

using a codebook/dictionary/vocabulary. The pairwise squared distances between cen-

troids in the vocabulary are stored in a lookup table. To comparing the distance between

two vectors first each vector is split into sub-vectors, next the sub-vectors are quantized,

and then the squared distances between quantized sub-vectors are read from the lookup

table. The approximated squared distance between these two vectors is the sum of the

squared distances between the quantized sub-vectors.

2.3.6 Discussion — choice of approximate nearest neighbor algorithm

In our single annotation identification algorithm a query descriptor searches for its

nearest neighbor in a database containing all descriptors from all exemplars. Each annota-

tion contains ∼104 features, which are described with 128-component SIFT descriptors.

Searching exact nearest neighbors becomes prohibitive when hundreds or thousands of

images are searched. Thus, we turn towards approximate nearest neighbor algorithms. In

this thesis all of our approximate nearest neighbors are found using the multiple kd-tree

implementation in the FLANN package [29]. Using the configuration optimization built

into the FLANN package, we have found that multiple kd-trees provide more accurate

feature matches for our datasets than those computed by hierarchical k-means trees or

LSH. In addition to being fast and accurate, multiple kd-trees support efficient addition

and removal of points, which is needed in a dynamic setting [28].
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2.4 INSTANCE RECOGNITION

There are many variations on the problem of visual recognition such as: specific

object recognition (e.g. CD-covers) [22], [30], [31], location recognition [33], [35], [36],

person re-identification [109]–[111], face verification/recognition [37]–[41], [112], cate-

gory recognition [45]–[48], and fine-grained recognition [42]–[44]. The different types

of recognition problems lie on a spectrum of specificity with respect to the objects they

attempt to recognize. On one end of the spectrum, instance recognition techniques —

like scene recognition or face verification — search for matches of the same exact ob-

ject. On the other end of the spectrum category recognition algorithms — like car, bird,

dog, and plane detectors — look for the same type of objects. Other problems sit — like

fine-grained recognition where the goal might be to recognize specific subspecies of dog

(e.g. German shepherd, golden retriever, boxer, beagle, . . . ) — somewhere in the middle.

Animal identification is closest to the instance recognition side of the spectrum, but the

proposed solution draws upon techniques from other forms of recognition.

The discussion in this section focuses on instance recognition. The next two sec-

tions will discuss category recognition and fine-grained recognition.

2.4.1 Spatial verification

Before discussing specific techniques in instance recognition, we describe work re-

lated to spatial verification. Most instance recognition techniques initially match local

image features without using any spatial information [22],[30],[32],[113]. This results in

pairs of images with spatially inconsistent feature correspondences. Spatially inconsistent

matches are illustrated in Figure 2.6. Inconsistent features are removed using spatial ver-

ification, a process based on the random sample consensus (RANSAC) algorithm [114].

RANSAC has come to refer to a family of iterative techniques to sample inliers

from a noisy dataset that are consistent with some model [114]–[117]. In the context

of spatial verification the model is an affine transformation matrix, and the dataset is a

set of feature correspondences [22], [32], [118]–[120]. At each iteration of RANSAC a

small subset of points is sampled from the original dataset and used to fit a hypothesis

model. All other data points are tested for consistency with the hypothesis model. A

score is assigned to the hypothesis model based on how well the out of sample data fit the
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model (e.g. the number of transformed points that are within a threshold distance of their

corresponding feature). After a certain number of iterations the process stops and returns

the hypothesized model with the highest score as well as the inliers to that model.

When RANSAC returns a large enough set of inliers (with respect to some thresh-

old), the hypothesis model it is generally considered to be a “good fit”. In this case a

more complex model — that may be more sensitive to outliers — can be fit. In spatial

verification, it is common to use the RANSAC-inliers to estimate a homography trans-

formation [121], 311–320. The homography is then used to estimate a new set of refined

inliers, and these are returned as the spatially verified feature correspondences.

Figure 2.6: Before and after spatial verification This shows the matches before and

after spatial verification. Inconsistent matches are shown in red. Consistent

matches are shown in blue. Notice that not all spatially consistent matches

are correct.
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2.4.2 Lowe’s object recognition

Lowe’s introduction of SIFT descriptors includes an algorithm for recognizing ob-

jects in a training database and serves as an instance recognition baseline [22]. A single

kd-tree indexes all database image descriptors. Approximate nearest neighbor search of

the kd-tree is performed using the best-bin-first algorithm [101]. For a query image, each

keypoint is assigned to its nearest neighbor as a match. The next nearest neighbor (be-

longing to a different object) is used as a normalizer — a feature used to measure the

distinctiveness of a match. Any match with a ratio of distances to the match and the nor-

malizer greater than threshold tratio=0.8 is filtered as not distinctive. Features likely to

belong to the same object are clustered using a Hough Transform, and then clusters of

features are spatially verified with a RANSAC approach [114].

2.4.3 Bag-of-words instance recognition

One of the most well-known techniques in instance recognition is the bag-of-words

model introduced to computer vision by Sivic and Zisserman [30], [118]. The bag-of-

words model addresses instance recognition using techniques from text retrieval. An

image is cast as a text document where the image patches (detected at keypoints and de-

scribed with SIFT) are the words. The concept of a visual word is formalized using a

visual vocabulary. A visual vocabulary is defined by clustering feature descriptors tra-

ditionally constructed using k-means [102] (however more recent methods have learned

vocabularies using neural networks [52]). The centroids of the clusters represent the vi-

sual words in the vocabulary. These centroids are used to quantize descriptor space. A

feature in an image is assigned (quantized) to the visual word that is the feature’s ap-

proximate nearest neighbor in the vocabulary. This means that each descriptor vector can

be represented using just a single number — i.e. its index in the vocabulary. Vocabulary

indices are used to construct an inverted index, which allows multiple feature correspon-

dences to be made using a single lookup.

Given a visual vocabulary, the bag-of-words algorithm consists of two high level

steps: (1) an offline indexing step and (2) an online search step. The offline step indexes

a database of images for fast search. First each descriptor in each database image is as-

signed to its nearest visual word. An inverted index is constructed to map each visual
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word to the set of database features assigned to that word. Each database feature is as-

signed a weight based on its term frequency (tf). Finally, each word in the vocabulary is

assigned a weight based on its inverse document frequency (idf). The online step searches

for the images in the database that are visually similar to the query image. First, each de-

scriptor in the query image is assigned to its visual word, and the term frequency of each

visual word in the query image is computed. Then, the inverted index is used to build a

list of all images that share a visual word with the query. For each matching image, the

sum of the tf-idf scores of the corresponding features is used as the image score. Finally,

the ranked list of images is returned. These steps are now described in further detail.

2.4.3.1 The inverted index

The visual vocabulary allows for a constant length image representation. An image

is represented as a histogram of visual words called a bag-of-words. A bag-of-words his-

togram is sparse because each image contains only a handful of words from a vocabulary.

The sparsity of these vectors allows for efficient indexing using an inverted index. An

inverted index maps each word to the database images that contain the word. Therefore,

when a feature in a new query image is quantized the inverted index looks up all the

database features that it matches to. A new feature correspondence is created for each

database feature the inverted index maps to. For each correspondence a feature matching

score is computed. Because all the word assignments and feature correspondences are

known, the scores of all matching images can be efficiently computed by summing the

scores of their respective feature correspondences.

2.4.3.2 Vocabulary tf-idf weighting

Each word in the database is weighted by its inverse document frequency (idf), and

each individual descriptor is weighted by its term-frequency (tf) [30]. The idea behind

the idf weight is that words appearing infrequently in the database are discriminative and

should receive higher weight. The idea behind the tf weight is that words occurring more

than once in the same image are more important.
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2.4.3.3 Formal bag-of-words scoring

Let X be the set of descriptor vectors in an image. We also use X to refer to the

image in general. Descriptor space is quantized using a visual vocabulary where C is the

set of word centroids and wc is the weight of a specific word. Let Xc ⊂ X be the set of

descriptors in an image assigned to visual word c. Let q(x) be the function that maps a

vector to a visual word. We overload notation to also let q(X ) map a set of descriptors

into a set of visual words.

The tf-idf weighting of a single word c in the vocabulary is computed as follows:

Let N be the number of images in the database. Let Nc be the number of images in the

database that contain word c. |X | is the number of descriptors in an image, and |Xc| is

the number of descriptors quantized to word c in that image. The idf weighting of word

c is:

wc = idf(c) = log (N/Nc) (2.6)

The tf weighting of a word c in an image X is:

tf(X , c) = |Xc|
|X | (2.7)

Similarity between bag-of-words vectors is computed using the weighted cosine

similarity. It is only necessary to sum the scores of matching features because the weight

of a word that is not in both a query and database image is 0. The tf-idf similarity between

two images can be written as

sim(X ,Y) =
∑

c∈q(X )∩q(Y)

tf(X , c) tf(Y , c) idf(c) (2.8)

or equivalently

sim(X ,Y) = 1

|X ||Y|
∑

c∈C
wc

∑

x∈Xc

∑

y∈Yc

1 (2.9)

The second formulation unifies the bag-of-words model with other vocabulary-based

methods in the SMK framework, which will be discussed later in Section 2.4.8.



46

2.4.3.4 Extensions to bag-of-words

The main strength and the main weakness of vocabulary-based matching is its use

of quantization. Quantization allows for large databases of images to be searched very

rapidly [31]. However, quantization causes raw descriptors to lose much of their discrim-

inative information [48], [122]. When a high-dimensional feature vector is quantized, it

only encodes the presence of a word in a single number. This number is as descriptive as

the partitioning of descriptor space, which is quite coarse in 128 dimensions, even with a

large vocabulary. Several methods have been developed to help reduce errors caused by

quantization.

Soft-assignment helps avoid quantization errors by mapping each raw descriptor to

multiple words [122]. Another way to reduce quantization error is to use a finer parti-

tioning of descriptors space [32]. Approximate hierarchical clustering and approximate

k-means have been used to build vocabularies with up to 1.6×107 words [31],[32],[123].

Alternative similarity measures for descriptor quantization are also explored in [123]. A

projection matrix for SIFT descriptors is learned in [124] to preserve information that

would be lost in quantization.

Because the tf-idf weighting was originally designed for text recognition, it does not

take into account challenges that occur in image recognition such as bursty features — a

single feature that appears in an image with a higher than term expected frequency (e.g.

bricks on a wall or vertical stripes on a zebra). Strategies for accounting for burstiness in-

volve penalizing frequently occurring features by removing multiple matches to the same

feature, using inter-image normalization, and using intra-image normalization. [125].

Query Expansion is a way to increase the recall of retrieval techniques and recover

from tf-idf failure [119], [120], [126], [127]. After an initial query, all spatially verified

feature correspondences are back-projected onto the query image. Then the query is

re-issued. A model of “confusing features” — features more likely to belong to the back-

ground — can be used to filter out matches that should not be back projected onto the

query image. Query expansion enriches the query with intermediate information that

may help retrieve other viewpoints of the query image. However, because this technique

requires at least one correct result in the ranked list, it only improves recall for queries

that already have high accuracy.
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One method to improve the performance of bag-of-words search is to remove non-

useful features. It is found that as few as 4% of the features can be used in location

recognition without loss in accuracy [128]. This related work defines a useful feature as

one that is robust enough to be matched with a corresponding feature and stable enough

to exist in multiple viewpoints. Thus, these useful features are computed as those that

produced a spatially verified match to a correct image. Any feature that does not produce

at least one spatially verified match is removed. Removing non-robust features both saves

space and improves matching accuracy.

2.4.4 Min hash

Min-hashing is the analog of locality-sensitive hashing for sets. Min-hashing has

been applied as an instance recognition technique for near-duplicate image detection [129],

logo recognition [130], large scale image search [131], scene recognition [132], and un-

supervised object discovery [133], [134].

The basic idea is to represent an image as a set of hashes based on permutations of

a visual vocabulary. Recognition is accomplished by performing a lookup for each hash.

Collisions are returned as the recognition results. Like LSH, the primary advantage of

using min hash for instance recognition is its speed.

2.4.5 Hamming embedding

Hamming embedding is an extension of the bag-of-words framework that reduces

the information lost in quantization by assigning each descriptor a small binary vec-

tor [33], [125], [135]. Each visual word c, is assigned a db× d random orthogonal projec-

tion matrix Pc, where d is the number of descriptor dimensions and db is the length of the

binary code. A set of db thresholds, tc ∈ R
db , is pre-computed for each word using the

descriptors used to form the visual word cluster. These descriptors are projected using the

word’s random orthogonal matrix, and the median value of each dimension is chosen as

that dimension’s threshold.

When any descriptor, d, is assigned to a word c it is also assigned a binary Hamming

code, b. To compute the binary Hamming code the descriptor is projected using the

word’s orthogonal matrix, b′ = Pcd, and then each dimension is binarized based on a
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threshold, bi = (b′i > tci).

When a query descriptor, d, is assigned to a word, c, it is matched to all database

descriptors belonging to that word. Each match is then assigned a score. First, the Ham-

ming distance, hd, is computed between the binary signature of the query and database

descriptors. If the Hamming distance of the match is not within threshold, ht, the score

of the match is 0 and does not contribute to bag-of-words scoring. Otherwise, the score

is the word’s squared idf weight multiplied by a Gaussian falloff based on the Hamming

distance. Using the inverted index, each image is scored by summing the scores of the

descriptors that matched that image. The image scores are used to define a ranked list of

results.

2.4.6 Fisher vector

A Fisher vector is an alternative to a bag-of-words [136], [137]. Like bag-of-

words, Fisher vector representations have been used in both instance and category recog-

nition [138]–[146]. Instead of training discrete visual vocabulary using the cluster centers

of k-means, a Fisher vector encoding uses a continuous Gaussian mixture model (GMM).

The number of Gaussian components in the GMM is similar to the number of words in

a vocabulary. An image is encoded using the GMM by computing the likelihood of each

feature with respect to the GMM. Likelihoods for different components of the GMM are

aggregated using a soft-max function. Often, each component of this vector v is then

power law normalized with fixed constant 0 ≤ β < 1. Power law normalization is a

simple post processing method written as vi = sign (vi) |vi|β [35]. Fisher vectors produce

a much richer representation than normal bag-of-words vector because each descriptor is

assigned to a continuous mixture of words rather than a single word.

It is noted in [136] that using Fisher vectors for instance recognition is similar to

tf-idf. Normalized Fisher vectors down-weight frequently occurring GMM components

— i.e. words with low idf weights. Furthermore, Fisher vector representations are well

suited for compression, which allows scaling to large image collections.
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2.4.7 VLAD — vector of locally aggregated descriptors

A vector of locally aggregated descriptors (VLAD) is similar to a Fisher vector

descriptor — in fact it is a discrete analog of a Fisher vector [35], [137]. Like Fisher

vectors, VLAD has been used in the context of both instance and category recogni-

tion [147]–[149]. VLAD still computes a visual vocabulary and assigns each feature to

its nearest word, but instead of only recording presence or absence of a word, each feature

computes the residual vector from the centroid of its assigned word. The residual vectors

are summed to produce one constant length vector per word. All summed residuals are

concatenated to produce a constant length image representation. Aggregation of the resid-

ual vectors allows for an accuracy similar to bag-of-words methods to be obtained, but

using a smaller vocabulary (∼101− ∼102 words). Like Fisher vectors, VLAD descriptors

are also power-law normalized [35].

There have been many extensions of the VLAD descriptor. The value of PCA,

whitening, and negative evidence was shown in [147]. The MultiVLAD scheme is in-

spired by [150], and allows for retrieval of smaller objects that appear in larger im-

ages [149]. The basic idea is that VLAD descriptors are tiled in 3 × 3 grids. An integral

image [151] of unnormalized VLAD descriptors is used to represent many possible tiles.

A vocabulary adaptation scheme is also introduced in [149]. The vocabulary is

updated when a new image is added to the VLAD inverted index. This is performed

by updating any word centroid c to c′, where c′ is the average of all the descriptors

currently assigned to that word. The residuals of the affected words are recomputed and

re-aggregated into updated VLAD descriptors.

Recently, NetVLAD — a convolutional variant of the VLAD descriptor — has been

introduced [52], [152]. NetVLAD uses deep learning with a triplet loss function to simul-

taneously learn both the patch-based descriptors and the vocabulary. This convolutional

approach shows large improvements (a 19% improvement on Oxford 5k) over previous

state-of-the-art image retrieval techniques.

2.4.8 SMK — the selective match kernel

The selective match kernel (SMK) encapsulates the vocabulary-based techniques

such as bag-of-words, Hamming embedding, VLAD, and Fisher vectors into a unified
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framework [34], [36], [79], [113]. SMK provides a framework that “bridges the gap” be-

tween matching-based (here a match refers to a feature correspondence) approaches and

aggregation-based approaches. The scores of matching-based approaches such as Ham-

ming embedding and bag-of-words are based on establishing individual features corre-

spondences. In contrast, the scores of aggregation approaches such as VLAD and Fisher

vectors are computed from compressed image representations, where the individual fea-

tures are not considered.

An advantage of a matching-based approach like Hamming embedding is that it

can define a selectivity function. A selectivity function down weights individual feature

correspondence with low descriptor similarity. Aggregation schemes have been shown

to have their own advantages. Aggregated approaches like VLAD allow for matching

applications to scale to a large number of images because each image is indexed with a

compressed representation. Furthermore, aggregation-based approaches have been shown

to provide better matching results on many datasets because they implicitly down weight

bursty features [36], [113].

In the SMK framework a matching function and selectivity function are chosen.

Different selections of these functions can implement and blend desirable attributes of the

aforementioned frameworks. The matching function assigns correspondences between

query and database descriptors. The choice of the matching function determines whether

the resulting kernel is aggregated or non-aggregated. The selectivity function weights a

correspondence’s contribution to image similarity. It also can apply either power-law like

normalization or hard thresholding in order to down weights correspondences with low

visual similarity. One advantage of the SMK framework is that the selectivity function

can be used in aggregated matching. In this case the selectivity function is applied to all

correspondences assigned to a particular word.

2.4.9 Face recognition and verification

Face recognition is a specific form of instance recognition with the goal of recogniz-

ing individual human faces [38], [153]. Related to face recognition is the problem of face

verification. In contrast to face recognition, face verification takes two unlabeled images

and decides if they show the same face or different faces [41]. Clearly these techniques



51

are complementary because highly ranked results from a face recognition algorithm can

be verified as true or false by a face verification algorithm.

Due to the specific nature of this problem specialized features detectors are of-

ten used. Facial feature detectors localize facial-landmarks such as the eye, mouth, and

nose center and corner locations [39], [67]. Local texture-based descriptors such as Ga-

bor filters [154]–[156] and local binary patterns (LBP) [40], [157] are extracted at de-

tected facial regions [158]. Facial recognition researchers have also developed global

descriptors — such as eigenfaces [159], Fisherfaces [160], and neural network based de-

scriptions [41], [161]. — that represent the entire face. Recently, algorithms using both

local and global representations computed using deep convolutional neural networks have

shown state-of-the-art performance on both machine and human verification and recogni-

tion benchmarks [41].

In face recognition, each face image is encoded into a single vector. A function is

trained to classify an unseen test image as an individual from the database of known faces.

Many techniques are used in the literature to retrieve or classify a face. Examples of these

techniques are: neural networks [41], [159], sparse coding [162], [163], principal com-

ponent analysis (PCA) [164], Fisher linear discriminant (FLD) [165], linear discriminant

analysis (LDA) [166], and support vector machines (SVMs) [167], [168].

Before the neural network revolution [50], sparse coding was one of the most popu-

lar techniques to retrieve faces [162],[163],[169],[170]. Sparse coding attempts to recon-

struct unlabeled test vectors by searching for a linear combination of basis vectors from

an over-complete labeled training database. Coding-based techniques are very similar to

vocabulary-based methods. A codebook, dictionary, and vocabulary all are used to build

image-level vector representations by quantizing raw features.

Another interesting technique is the Tom-vs-Pete classifier [39]. Given a set of N

individuals (classes), a set of Tom-vs-Pete classifiers are used for both verification and

indexing. At each facial landmark, k Tom-vs-Pete classifiers are computed. A single

Tom-vs-Pete classifier is a linear SVM trained on a single corresponding feature for a

single pair of classes. E.g. all the nose descriptors from class T and class P make up

the SVM training data, and the learned SVM classifies a new nose feature as T -ish or

P -ish. A descriptor vector for a single face is made by selecting 5000 out of the total
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k
(

N
2

)

classifiers and concatenating the signed distances from all the classifiers’ separat-

ing hyperplanes. This descriptor facilitates both search and verification. A pair of face

descriptor vectors can be verified as either a correct or incorrect match by constructing

a new vector. The new vector is constructed by concatenating the element-wise product

and difference of the two descriptor vectors. Then this new vector is classified using a

radial basis function SVM.

One of the most recent advances in face verification and recognition is the Deep-

Face system [41]. The DeepFace system implements face verification using the following

pipeline: (1) detect, (2) align, (3) represent, and (4) classify. Specialized facial point de-

tectors and a 3D face model are used to register a 3D affine camera to an RGB-image.

The image is then warped into a “frontalized” view using a piecewise affine transform. A

face is represented as the 4096 dimensional output of a deep 7 layer convolutional neural

network that exploits the aligned nature input images. An 8thlayer is used in supervised

training where each output unit corresponds to a specific individual. At test time the L2-

normalized output of the network is used as the feature representation. In a supervised

setting, a χ2-SVM is trained to recognize the individuals in a training dataset using the

descriptor vectors produced by the network. In an unsupervised setting an ensemble of

classifiers is used. The ensemble is composed of the output of a Siamese network [37] and

several non-linear SVM classifiers with different inputs. The inputs are deep representa-

tions — the activations of a deep neural network’s output layer — of the 3D aligned RGB-

image, the 2D aligned RGB-image (generated using a simpler model based on similarity

transforms), and an image comprised of intensity, magnitude, and orientation channels.

Each input was fed through four deep networks each with different initialization seeds.

DeepFace achieves an accuracy of 0.9735 on the Labeled Faces in the Wild dataset [38],

which is comparable to the human performance measured at 0.975. When using unaligned

faces the ROC score drops to 0.879, which demonstrates that alignment is very important

for handling the problem of viewpoint in face verification.

2.4.10 Person re-identification

The person re-identification problem is typically posed in the context of locat-

ing the same person within a few minutes or hours from low-resolution surveillance
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video [109]–[111],[171]. Common approaches to person re-identification typically trans-

form images into a fixed length mid-level vector representation and a learned distance

metric is used to compare representations. Mid-level representations can be built from

color and texture histograms or extracted using a convolutional neural network. The dis-

tance metric is commonly learned as a Mahalanobis distance using linear discriminant

analysis [171]. However, alternative approaches using dictionary learning [110] have

also been shown to work well. Improvements to baseline can be achieved by condition-

ing person descriptors on viewpoint and pose [111]. Recently both features and distance

metric have been learned using neural networks [109].

2.4.11 Discussion — instance recognition

Most instance recognition techniques use an indexing scheme based on a visual vo-

cabulary [32], [33], [113], [147], [149], [172]–[174]. However, our baseline approach for

animal identification does not use a visual vocabulary. This is because a visual vocab-

ulary quantizes the raw features in the image and thus removes some of their discrimi-

native ability [48], [122]. We have found this quantization to cause a noticeable drop in

performance. Many aspects of our baseline algorithm are similar to Lowe’s recognition

algorithm [22], which does not quantize descriptors. The guiding principles of match-

ing, filtering based on distinctiveness, filtering based on spatial consistency, and scoring

are shared with our approach. However, our approach features several improvements to

this algorithm. Furthermore, animal identification is a dynamic problem with specific

domain-based concerns — such as quality and viewpoint in natural images — and re-

quires innovation beyond Lowe’s recognition algorithm.

Even though we would prefer to retain the discriminative information contained

in raw descriptors, quantized image search has the ability to scale beyond our current

suites [113], [136], [173]. In the future it may be necessary to investigate a VLAD-based

SMK framework as a quantized alternative to our matching algorithm. Techniques such

as soft-assignment [122] and learned vocabularies [123] could be used to reduce quan-

tization errors. It is necessary to update the vocabulary as new images are added to the

system. This issue could be addressed using the vocabulary adaptation technique in [149].

However, in this research we are more focused on the problem of verifying identifications
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to reduce manual effort. As such we leave the scalable search issue for future work.

Facial recognition is similar to the problem of animal identification. Both prob-

lems seek to identify individuals. Some techniques used for face verification such as the

Siamese network [37], [41] can be extended to the scope of animal identification. How-

ever, there is a much more mature literature on face recognition that has resulted in easily

accessible and specialized algorithms for face feature detection and — most importantly

— for face alignment. Individual animal identification does not have such a corpus of

knowledge. We do not have access to highly specialized animal part detectors and align-

ment algorithms. Furthermore, we would like our algorithms to generalize to multiple

species, so we would like to avoid over-specialized approaches. These are some reasons

why convolutional neural networks will not make a prominent appearance in this thesis.

Other reasons involve the size of our datasets. The recent NetVLAD network was trained

using training datasets with 10, 000 to 90, 000 images [52]. We simply do not have this

much labeled data. However, one goal of this thesis is to develop techniques that will

help bootstrap labeled datasets of this size. Future research should investigate these deep

learning techniques so they can be used after enough data has been collected for a specific

species.

While the problem of animal identification and person re-identification are concep-

tually similar — sharing challenges such as lighting, pose, and viewpoint variation —

differences in data collection creates the need for different solutions in practice. In con-

trast to the low-resolution image captured by surveillance cameras, the images used in

animal identification are often manually captured by scientists in the field using high res-

olution DSLR cameras, and the goal is to match individuals over longer periods of time

(years). Furthermore, re-identification techniques commonly focus on aggregate features

that emphasize clothing, color, texture, and the presence of objects such as coats and back-

packs, while in the animal id problem, it is often subtle localized variations in patterns on

the skin and fur that distinguish individuals.

2.5 CATEGORY RECOGNITION

Different types of image recognition lie at different points on a spectrum of speci-

ficity. If instance recognition is at one end of the spectrum, then category recognition is at



55

the other. The goal of a category recognition algorithm is to assign a categorical class la-

bel to a query image [82],[175]–[179]. The categories often have visual appearances with

a high degree of intra-class variance. E.g., a recliner and a bench both belong to the chair

category. Image representations and similarity measures are constructed to account for

this. Despite this, techniques in category recognition have many similarities to instance

recognition techniques. Until the neural network revolution [50], most category recog-

nition techniques have been based on vocabulary methods [49], [50], [82], [180], [181]

similar to those discussed in Section 2.4.3. This section first provides a brief overview of

this literature. Then, we discuss naive Bayes classification techniques [47], [48] that play

a large role in our baseline animal identification algorithms.

2.5.1 Vocabulary-based methods for category recognition

After vocabulary-based techniques demonstrated success in instance recognition,

these techniques were quickly adapted and applied to category recognition [180]. Thus,

there are many similarities — and some differences — in the techniques used to address

these two problems. One difference is the size of the visual vocabulary. Instance recogni-

tion tends to require huge vocabularies (∼105 — ∼107 words) to achieve a fine sampling

of descriptor space [31], [32]. In contrast, category recognition uses smaller vocabulary

sizes (∼104 words) to more coarsely sample descriptor space [46]. However, the vocab-

ularies used in instance recognition have decreased in size with the advent of aggregated

representations like VLAD and the Fisher vector [49], [149].

A second difference is how similarity between images is computed. In instance

recognition the similarity between bag-of-word vectors is computed using a weighted co-

sine similarity. However, in category-recognition intra-class variation requires more so-

phisticated similarity measurements. Here, image similarity is computed using SVMs

with different either linear or non-linear kernels such as χ2, earth mover’s distance,

Hellinger, and Jensen-Shannon [46], [182], [183].

A third difference is the way that spatial information is used. Instead of filtering cor-

respondences using spatial verification, spatial information is incorporated into category

recognition algorithms using spatial pyramids [45], [184]. A spatial pyramid sub-divides

an image into a hierarchy of grids. Max pooling is often used to select only the strongest
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features in each spatial region [185], [186]. Each section of the image is encoded using

the vocabulary and images are scored based on matches in each region.

2.5.1.1 Enhancements to category recognition

There are a wide variety of extensions and enhancements for image classification

techniques based on bag-of-words, such as soft assignment of visual-words [187] and

vocabulary optimization [188]. Numerous matching kernels — both linear and non-linear

— have been developed such as kernel PCA, histogram intersection, and SVM square

root bag-of-words vectors [189]–[191].

Generalized coding schemes improve performance over a bag-of-words image en-

coding. Vocabularies can be seen as codebooks or dictionaries in coding-based im-

age classification techniques such as sparse coding and locally constrained linear cod-

ing [181], [188], [192]–[194]. Many coding schemes learn both the centroids and the

function that quantizes a raw descriptor into a word [181], [188], [189], [192]–[194].

Techniques other than k-means are used to create vocabularies such as mean shift [192],

coordinate descent with the locally constrained linear code criterion [188], and random

forests [138]. Fisher vectors with linear classifiers have been found to outperform non-

linear bag-of-words based SVM classifiers by using an L1-based distance measure and

careful L2 and power-law normalization of descriptors [191], [195].

2.5.2 Naïve Bayes classification

The naïve Bayes nearest neighbor (NBNN) classifier is a simple non-parametric

algorithm for category recognition that does not quantize descriptor vectors [48]. Boiman

responds to the dominance of complex non-linear category recognition algorithms in the

field [182], [196] by showing that simple techniques can compete with complex methods

for category recognition. Boiman’s paper also provides insight into the magnitude of

information loss resulting from quantization.

Previous to [48], nearest neighbor classifiers had shown underwhelming accuracy

in category recognition [45],[196],[197]. This was shown to be a result of using image-to-

image distance. To remedy this, NBNN aggregates the information from multiple images

by swapping the image-to-image distance for an image-to-class distance.
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In NBNN, features of each class are indexed for fast nearest neighbor search, typ-

ically with a kd-tree [98]. For each feature, di, in a query image, the algorithm searches

for the feature’s nearest neighbors in each class, NNC(di). The result of the algorithm

is the class, C, that minimizes the image-to-class distance. In other words, the class of a

query image is chosen by searching for the class that minimizes the total distance between

each query descriptor and the nearest database descriptor in that class. This is expressed

in the following equation:

C = argmin
C

n
∑

i=1

||di − NNC(di)||2 (2.10)

This formulation where each descriptor is assigned to only the single nearest neigh-

bor has been shown to be a good approximation to the minimum image-to-class Kullback-

Leibler divergence [48] — a measure of how much information is lost when the query

image is used to model the entire class.

2.5.3 Local naïve Bayes nearest neighbor

Local naïve Bayes nearest neighbor (LNBNN) is an improved version of the NBNN

algorithm in both accuracy and speed [47]. In the original NBNN formulation a search

is executed find each query descriptor’s nearest neighbor in the database for each class

separately. In contrast, the LNBNN modification searches all database descriptors simul-

taneously and ignores classes that do not return descriptor matches.

Each descriptor di in the query image searches for its nearest K + 1 neighbors,

{d1, . . . ,dK ,dK+1} over all classes. The first K neighbors are used as matches. The last

neighbor is used as a normalizing term to weight the query descriptor’s distinctiveness.

Let (di,dj) be a matching descriptor pair, and let C be the class of dj . The score of

each match is computed as the distance to the match subtracted from the distance to the

normalizer.

si,C = ||dj − dK || − ||di − dj|| (2.11)

The score of a class C is the sum of all the descriptor scores that match to it.
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2.5.4 Discussion — class recognition

Progress in category recognition is generally made using techniques that allow

classes with high intra-class variance to have lower matching scores. This is of little

value to an instance recognition application, therefore we do not investigate most of the

techniques in this section. However, the LNBNN [47] approach is interesting to us be-

cause it is a simple algorithm that does not suffer from quantization artifacts. NBNN and

LNBNN [47], [48] never achieved state-of-the-art performance in image classification,

however they have produced competitive results using simple techniques.

The simplicity of the techniques allowed for the authors to gain insight into visual

recognition. Due to its simplicity and the insight that quantization significantly reduces

the descriptive power of SIFT features, we adopt LNBNN as the baseline algorithm for

animal identification.

2.6 FINE-GRAINED RECOGNITION

Fine-grained recognition is a problem more general than instance recognition, but

more specific than category recognition [42]–[44]. Given an object of a known category,

such as a bird, the goal of fine-grained recognition is to sub-classify the object into a

fine-grained category such as a blackbird or a raven [198].

Algorithms for fine-grained recognition typically start by localizing the object and

its parts with a detection algorithm [83] and parts-based models. Parts are segmented

to remove background noise using algorithms like GrabCut [199]. Classification is per-

formed locally on aligned parts as well as globally on the entire body and aggregated to

yield a final classification.

Because fine-grained recognition lies on the same spectrum as instance recognition

and category recognition it is not surprising that many of the same techniques — like

Fisher vectors — are used [146]. Recently convolutional models have been successfully

applied to fine-grained recognition [200]–[203].

2.6.1 Discussion — fine-grained recognition

The goal of fine-grained recognition is somewhat similar to animal identification.

Fine-grained recognition localizes subtle information to distinguish between two similar
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species, whereas animal identification localizes subtle information to distinguish between

two similar individuals. However, the domains of species and individuals are dissimilar

enough that off the shelf techniques for fine-grained recognition would need to be adapted

before identification could be performed. One interesting avenue of research would be to

use a parts model [86] as in [44], to align individuals before they are compared.

2.7 DEEP CONVOLUTIONAL NEURAL NETWORKS

Convolutional networks have been around for over more than two decades [204],

[205]. However, they did not receive major attention from computer vision researchers

until 2012 when a deep convolutional neural network (DCNN) [50] outperformed the best

support vector machines (SVMs) [206] by over 10% in the ImageNet category recogni-

tion challenge [82]. Since then, many successful category recognition techniques based

on DCNNs have been published [207]–[214]. DCNNs have also been shown to pro-

duce excellent results when applied to other computer vision problems such as: instance

recognition [51], [52], [152], [215]–[217], fine-grained recognition [200], [201], [218], de-

tection [219]–[221], face verification [41], [222], [223], and learning similarity between

feature patches [26], [27], [27], [224], [225]. The sudden success of deep nets has been

attributed (1) a larger volume of available of training data, and (2) implementations using

faster GPUs [50].

Several techniques are employed to increase accuracy, reduce over-fitting, and re-

duce training time. Data augmentation is used to artificially increase the amount of

training data [226]–[228]. The dropout technique has been shown to reducing over-

fitting [229], [230]. At training time outputs of hidden units are randomly suppressed

which forces the network to learn a more robust representation. It has been shown

that dropout can be viewed as a form of model averaging [231]. Rectified linear units

(ReLU) have been shown to be a faster alternative to the standard sigmoid activation

functions [229], [232]. A ReLU is similar to a hinge function and simply outputs the

signal of a unit if it is positive and outputs a zero otherwise. Leaky rectified linear units

(LReLU) further improve network accuracy by including a “leakiness” term while main-

taining the speed of ReLUs [233]. While a ReLU strictly suppresses a feature activation

if it is negative a LReLU returns a small negative signal (by multiplying by a constant)
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instead of zero.

A deep neural network is constructed by stacking several layers of units (neurons)

together. Data is used to initialize the activations of an input layer, and the information

is forward propagated through the network. Weights are chosen to optimize a loss func-

tion — e.g. categorical cross-entropy error or triplet loss [112] — which is chosen to

depend on the application. Optimization of the loss function is performed using back-

propagation [234] — typically using mini-batches and stochastic gradient descent with

momentum [235]. Traditionally each layer in a neural network is fully connected — each

pair of units between the previous layer and the current layer has its own edge weight

— to the previous layer. However, in computer vision networks are constructed using

convolutional layers.

A DCNN connects the input layer to a stack of convolutional layers [50]. A convo-

lutional layer differs from a fully connected layer in that it is sparsely connected and that

most of the edge weights between layers are shared [204], [205], [236]. Each convolu-

tional layer is broken into several channels. Each channel is given its own weight matrix

with a fixed width and height. This matrix of weights is convolved with the input layer

to produce a feature activation map, one for each channel. Convolutional layers often use

several pooling layers that aggregate information over a small area, reduce the size of the

feature map, and increase robustness to transformations. Common pooling operations are

max-pooling [50], [236] and maxout [237]. The convolutional layers may also be con-

nected to a stack of fully connected layers. In this case, hierarchies of feature maps are

built in the low level convolutional layers, and then fully connected layers learn decision

boundaries between these features [238].

Because of weight sharing, convolutional networks must learn significantly fewer

parameters than fully connected networks. This allows convolutional networks to be

trained much faster. Fewer weights also acts as a form of regularization for the net-

work. Intuitively learned convolutional filters are similar to Gabor filters [239], which

are a naturally suited for extracting features from images. Even without learning weights,

convolutions can be used to extract powerful features for matching [65]. The popular

SIFT and HoG features [240] can even be implemented as convolutional networks. De-

spite the lack of hard theoretical insight into the inner workings of these networks, their
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empirical performance cannot be denied.

2.7.1 Discussion — deep convolutional neural networks

Because of the astounding success of convolutional networks in almost every area

in computer vision, we have investigated their use in animal identification. Specifically,

we have investigated two approaches.

The first approach used deep convolutional feature descriptors as a replacement for

the SIFT [22] descriptor following the patch-based scheme in [26]. The basic idea is to

have two patches fed through the same (Siamese) [37] architecture and then compare their

resulting encodings. This comparison can be as simple as Euclidean distance, or as com-

plex as a learned distance measure. Training can be performed on pairs of patches, labeled

as correct or incorrect, using the discriminative loss function [241]. Unfortunately, due to

issues with the quality and quantity of our training data our convolutional replacements

for the SIFT descriptor have not been successful.

The second approach aimed to use Siamese networks to directly compare two im-

ages of an animal to determine if they were the same or different, similar to the method

used in DeepFace [41] for face verification. However, without the large training datasets

and specialized alignment procedures used in DeepFace, we were unable to produce

promising results.

Due to these issues, this thesis does not further pursue techniques based on DCNNs.

We include this discussion to note the potential of deep learning applied to animal iden-

tification and to strongly suggest further investigation of these techniques in the future

research. Of particular interest for future research is the matching technique presented

in [242]. This method is particularly interesting because it learns to match and align im-

ages by mimicking a classic computer vision pipeline while using only synthetic training

data. This may be able to overcome the issues mentioned above, however further investi-

gation is needed.



3. IDENTIFICATION USING A RANKING ALGORITHM

This chapter addresses the problem of computer-assisted animal identification, where an

algorithm suggests likely possibilities, but a human reviewer always makes the final de-

cision. Given, a single annotation depicting an unknown animal and a database of pre-

viously identified annotations, the task is to determine a ranking of database individuals

most likely to match the unknown animal. A human reviewer manually determines which

— if any — of the top ranked results are correct.

An annotation is a rectangular region of interest around a specific animal within

an image. Each annotation given a name label denoting its individual identity. A name

refers to a group of annotations known to be the same individual. The identification

process assigns a name label to an unknown annotation either as (1) the name label of a

matched database annotation or (2) a new name label if no matches are found.

The ranking algorithm is based on the feature correspondences between a query

annotation and a set of database annotations. In each annotation a set of patch-based

features is detected at keypoint locations. Then the visual appearance of each patch is

described using SIFT [22]. A nearest neighbor algorithm establishes a set of feature cor-

respondences between a query and the annotations in the database. A scoring mechanism

based on local naïve Bayes nearest neighbor (LNBNN) [47] produces a score for each

feature correspondence. These scores are then aggregated into a single score for each

name in the database, producing a ranked list of names. If the top ranked name has a

“high” score, then it is likely to be the same individual depicted in the query annotation.

If the top ranked name has a “low” score, then it is likely that the query individual is not

depicted in any database annotation. An example ranked list returned by the algorithm

is illustrated in Figure 3.2. For each result in the ranked list we decide if it is a correct

or incorrect match. In the baseline algorithm this identification decision is left to a user.

However, in the next chapter we will consider using an algorithm to automatically verify

results returned in this ranked list.

The outline of this chapter is as follows: Section 3.1 discusses the initial process-

ing of an annotation which involves image normalization, feature extraction, and feature

62
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weighting. Sections 3.2 and 3.3 describe the baseline ranking and scoring algorithm. The

first of these sections focuses on establishing feature correspondences, and the second

focuses on filtering the correspondences. Section 3.4 describes the process for selecting

exemplars. Section 3.5 provides an experimental evaluation of the ranking algorithm.

Section 3.6 summarizes this chapter.

(a)

(b)

(c)

Figure 3.2: Ranked matches These are the top three results from the ranking algo-

rithm. In each row, the query annotation is on the left and the exemplars

of the matched name are on the right. Notice that the number of exemplars

for each database name varies. The top-ranked match in (3.1a) is correct. The

other ranks in (3.1b and 3.1c) are incorrect. The overall matching score is

shown on the top of each result. The feature correspondences are overlaid on

each result and colored by score.
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3.1 ANNOTATION REPRESENTATION

For each annotation in the database we (1) normalize the image geometry and in-

tensity, (2) compute features, (3) and weight the features. Image normalization rotates,

crops, and resizes an annotation from its image. This helps to remove background clutter

and roughly align the annotations in pose and scale. The extracted and normalized region

is referred to as a chip. Then, a set of features — a keypoint and descriptor pair — is

computed. Keypoints are detected at multiple locations and scales within the chip, and

a texture-based descriptor vector is extracted at each keypoint. Finally, each feature is

assigned a probabilistic weight using a foregroundness classifier. This helps remove the

influence of background features.

3.1.1 Chip extraction

Each annotation has a bounding box and an orientation specified in a previous de-

tection step. For zebras and giraffes, the orientation of the chip is chosen such that the top

of the bounding box is roughly parallel to the back of the animal.

A chip is extracted by jointly rotating, scaling, and cropping an annotation’s par-

ent image using Lanczos resampling [243]. The scaling resizes the image such that the

cropped chip has approximately 4502 pixels and it maintains the aspect ratio of the bound-

ing box. If specified in the pipeline configuration, adaptive histogram equalization [244]

is applied to the chip, however this is not used in the experimental evaluation presented

later in this chapter.

3.1.2 Keypoint detection and description

Keypoints are detected within each annotation’s chip using a modified implementa-

tion of the Hessian detector described in [21] and reviewed in Section 2.1. This produces

a set of elliptical features localized in space, scale, shape, and orientation. Each keypoint

is described using the SIFT [22] descriptor that was reviewed in Section 2.2. The result-

ing unordered set of keypoint-descriptor pairs are an annotation’s features. Further details

about the keypoint structure are given in Section 3.1.4.

We choose a baseline feature detection algorithm that produces affine invariant key-

points with the gravity vector. Affine invariant (i.e. shape adapted) keypoints detect ellip-
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tical patches instead of circular ones. We choose affine invariant keypoints because the

animals we identify will be seen from many viewpoints. Because all chips have been ro-

tated into an upright position, we assign all keypoints a constant orientation — this is the

gravity vector assumption [21]. However, these baseline settings may not be appropriate

for all species.

It is important to select the appropriate level of invariance for each species we iden-

tify. In our experiments in Section 3.5.5, we will vary several parameters related to in-

variance in keypoint detection. To determine if affine invariance is appropriate for animal

identification we experiment with both circular and elliptical keypoints. We also experi-

ment with different levels of orientation invariance. The gravity vector assumption holds

in the case of rigid non-poseable objects (e.g. buildings), if the image is upright. Clearly,

for highly poseable animals, this assumption is more questionable. However, full rotation

invariance (using dominant gradient orientations) has intuitive problems. Patterns (like

“V” and “Λ”) that might contribute distinguishing evidence that two annotations match,

would always appear identical under full rotation invariance. Ideally orientation selection

would be made based on the pose of the animal.

We introduce a simple orientation heuristic to help match keypoints from the same

animal in the presence of small pose variations. Instead of extracting a single keypoint in

the direction of gravity or multiple keypoints in the directions of the dominant gradient

orientation we extract 3 descriptors at every keypoint: one in the direction of gravity, and

the other two offset at ±15◦ from the gravity direction. This provides a middle ground

between rotation invariance and strict use of the gravity vector. Using this heuristic, it

will be more likely to extract similar descriptors from two annotations of the same animal

seen from slightly different poses.

3.1.3 Feature weighting

In animal identification, there will often be many annotations containing the same

background. Photographers may take many photos in a single place and camera traps

will contribute many images with the same background. Without accurate background

masking, regions of an annotation from different images containing the same background

may strongly match and outscore matches to correct individuals. An example illustrat-
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ing two different individuals seen in front of the same distinctive background is shown

in Figure 3.3. To account for this, each feature is given a weight based on its probability

of belonging to the foreground — its “foregroundness”. This weight is used indicate the

importance of a feature in scoring and spatial verification.

Foregroundness is derived from a species detection algorithm developed by Parham [17].

The input to the species detection algorithm is the annotation’s chip, and the output is an

intensity image. Each pixel in the intensity image represents the likelihood that it is part

of a foreground object.

A single feature’s foregroundness weight is computed for each keypoint in an an-

notation as follows: The region around the keypoint in the intensity image is warped into

a normalized reference frame. Each pixel in the normalized intensity patch is weighted

using a Gaussian falloff based on the pixel’s distance from the center of the patch. The

sum of these weighted intensities is the feature’s foregroundness weight. The steps of

feature weight computation are illustrated in Figure 3.5.

Figure 3.3: A scenery match This is an example of two different animals appearing

in front of the same distinctive background, illustrating the importance of

background downweighting. The matching regions are highlighted.

3.1.4 Keypoint structure overview

The keypoint of a feature is represented as: p=(x,A, θ), The vector x=
[

x
y

]

is

the feature’s xy-location. The scalar θ is the keypoint orientation. The lower triangular

matrix A=
[

a 0
c d

]

encodes the keypoint’s shape and scale. This matrix skews and scales a

keypoint’s elliptical shape into a unit circle. A keypoint is circular when a=d and c=0.

The keypoint scale is related to the determinant of this matrix and can be extracted as:
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(a) (b) (c)

Figure 3.5: Foregroundness weights (3.4a) shows the annotation’s cropped chip. This

chip is passed to the species detector. (3.4b) shows the species detector out-

puts an intensity image indicating the likelihood that each pixel belongs to the

foreground. (3.4c) shows the weighted sum of the intensity under each feature

is used as that feature’s foregroundness score.

σ = 1
√

Det(A)
= 1√

ad
. All of this information can be encoded in a single affine matrix.

3.1.4.1 Encoding keypoint parameters in an affine matrix

It will be useful to construct two transformations that encode all keypoint informa-

tion in a single matrix. The first, B, maps a keypoint in an annotation into a normalized

reference frame — the unit circle. The second transformation, B−1 is the inverse, which

warps the normalized reference frame back onto the keypoint. To construct B, the key-

point is centered at the origin (0, 0) using translation matrix, T. Then A is used to skew

and scale the keypoint into a unit circle. Finally, the keypoint’s orientation is normalized

by rotating −θ radians using a rotation matrix R.

B = RAT =









cos (−θ) − sin (−θ) 0

sin (−θ) cos (−θ) 0

0 0 1

















a 0 0

c d 0

0 0 1

















1 0 −x
0 1 −y
0 0 1









(3.1)

The construction of B−1 is performed similarly.

B−1 = T−1A−1R−1 =









1 0 x

0 1 y

0 0 1

















1
a

0 0

− c
ad

1
d

0

0 0 1

















cos (θ) − sin (θ) 0

sin (θ) cos (θ) 0

0 0 1









(3.2)
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3.1.4.2 Extracting keypoint parameters from an affine matrix

During the spatial verification step, described in Section 3.3, keypoints are warped

from one image into the space of another. It will be useful to extract the keypoint param-

eters from an arbitrary keypoint matrix. This will allow us to directly compare properties

of corresponding features. Given an arbitrary affine matrix B−1 representing keypoint

p, we show how the individual parameters (x, σ, θ) can be extracted. First consider the

components of B−1 by simplifying the right side of Equation (3.2).

B−1 =









e f x

g h y

0 0 1









=









1
a
cos (θ) − 1

a
sin (θ) x

1
d
sin (θ)− c

ad
cos (θ) 1

d
cos (θ) + c

ad
sin (θ) y

0 0 1









(3.3)

The position, scale, and orientation can be extracted from an arbitrary affine keypoint

shape matrix B−1 as follows:

x =
[

x
y

]

σ =
√

Det (B−1)

θ = (− arctan2 (f, e)) mod 2π

(3.4)

3.2 MATCHING AGAINST A DATABASE OF INDIVIDUAL ANI-

MALS

To identify a query annotation, it is matched against a database of known names.

A name is a set of annotations known to depict the same animal. The basic matching

pipeline can be summarized in three steps: (1) establish feature correspondences, (2)

score feature correspondences, and (3) aggregate feature correspondence scores across

the names. Correspondences between a query annotation’s features and all database an-

notation features are established using an approximate nearest neighbor algorithm. This

step also establishes a normalizing feature which is used to measure the distinctiveness

of a query feature. Each feature correspondence is scored based on the feature weights

established in the previous section and a measure of the distinctiveness of the query fea-

ture. The feature correspondence scores are then aggregated into a name score for each

name in the database. The name scores induce a ranking on names in the database where



69

database names with higher ranks are more likely to be correct matches.

3.2.1 Establishing initial feature correspondence

3.2.1.1 Offline indexing

Before feature correspondences can be established, an offline algorithm indexes

descriptors from all database annotations for fast approximate nearest neighbor search.

All database descriptor vectors are stacked into a single array of vectors, D, and these

descriptors are indexed by an inverted index. The inverted index maps each descriptor

in the stacked array back to its original annotation and feature. This database array is

indexed for nearest neighbor search using a forest of kd-trees [28] using the FLANN

library [29], both of which were reviewed in Section 2.3. This allows for the efficient

implementation of a neighbor index function NN(D,d, K) that returns the indices in D
of the K approximate nearest neighbors of a query feature’s descriptor d.

3.2.1.2 Approximate nearest neighbor search

Matching begins by establishing multiple feature correspondences between each

query feature and several visually similar database features. For each query descriptor

vector di ∈ X the K +K∗ approximate nearest neighbors are found using the neighbor

index function. These neighbors sorted by ascending distance are:

NN(D,di, K +K∗) ≡ [j1, . . . , jK , . . . , jK+K∗ ] (3.5)

The K nearest neighbors, [dj1 , . . . ,djK ], are the initial feature correspondences to the ith

query feature. The remaining K∗ neighbors,
[

djK+1
, . . . ,djK∗

]

, are candidate normalizers

for use in LNBNN scoring.

3.2.1.3 Normalizer selection

A single descriptor d∗
i is selected from the K∗ candidate normalizers and used in

computing the LNBNN score for all (up to K) of the ith query descriptor’s correspon-

dences in the database. The purpose of a normalizing descriptor is to estimate the local

density of descriptor space, which can be interpreted as a measure of the query descrip-

tor’s distinctiveness with respect to the database. The normalizing descriptor is chosen
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as the most visually similar descriptor to the query that is not a correct match. In other

words, the query descriptor’s normalizer should be from an individual different from the

query. The intuition is there will not be any features in the database that are close to

distinctive features in the query except for the features that belong to the correct match.

The selection process described in the original formulation of LNBNN is to simply

choose the K + 1th nearest neighbor, which amounts to setting K∗ = 1. The authors of

LNBNN find that there is no benefit to using a higher value of K∗ [47]. However, this

does not account for the case when some or all the K+1th nearest neighbor belongs to the

same class as one of the nearest K neighbors. Therefore, we employ a slightly different

selection process. To motivate our selection process, consider the case when there are

more than K images of the same individual from the same viewpoint in the database and

a distinctive feature from a new annotation of that individual is being scored. In this case

K correspondences will be correctly established a distinctive the query feature and K

database features. However, if the normalizer is chosen as the K +1 neighbor, then these

correspondences will be inappropriately downweighted.

To gain an intuition of the LNBNN scoring mechanism, consider the example

in Figure 3.7. The figure shows the case where K = 3 and K∗ = 1. In this case there

are two examples (3.6b and 3.6c) of the query individual in the database. Even though

there is an incorrect match, the LNBNN scores of the correct matches are an order of

magnitude higher than the score for the incorrect match. Now, consider the case where

the number of correct matches in the database is greater than K by setting K = 1. In this

case the normalizing descriptor is the “same” feature as the query feature and the nearest

match drops from 0.066 to 0.007.

To avoid this case, a normalizing feature is carefully chosen to reduce the possibility

that it belongs to a potentially correct match. More formally, the normalizing descriptor

is chosen to be the descriptor with the smallest distance to the query descriptor that is not

from the same name as any of the chosen correspondences. LetNj be the name associated

with the annotation containing descriptor dj . Let Ni ≡ {Nj | j ∈ NN(D,di, K)} be the

set of names matched by the ith query feature. The descriptor that normalizes all matches
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(a)
(b)

(c) (d)

(e)

(f) (g) (h) (i) (j)

Figure 3.7: LNBNN feature correspondence scoring This shows the nearest four

neighbors of a distinctive query feature (3.6f). The bottom row shows the

warped and normalized features with their SIFT descriptors overlaid. The top

row shows the annotation from which each feature was extracted. The first

two neighbors (3.6g and 3.6h) are correct matches, the third neighbor (3.6i)

is an incorrect match, and the fourth neighbor (3.6j) is used as an LNBNN

normalizer to score the first three matches.

of query descriptor di is:

d∗
i ≡ argmin

dj∈
[

djK+1
,...,djK∗

]

||dj − di||2 | Nj /∈ Ni (3.6)

3.2.2 Feature correspondence scoring

Each feature correspondence is given a score representing how likely it is to be a

correct match. While the L2-distance between query and database descriptors is useful

for ranking feature correspondences based on visual similarity, the distinctiveness of the

match is more useful for ranking the query annotation’s similarity to a database anno-

tation [22], [47], [245]. However, highly distinctive matches from other objects — like

background matches — do not provide relevant information about a query annotation’s

identity and should not contribute to the final score. Therefore, each feature correspon-

dence is scored using a mechanism that combines both distinctiveness and likelihood that
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the object belongs to the foreground. For each feature correspondence m = (i, j) with

query descriptor di and matching database descriptor dj , several scores are computed

which are then combined into a single feature correspondence score si,j .

3.2.2.1 LNBNN score

The LNBNN scoring mechanism measures the difference in similarity between the

query descriptor and (1) its match and (2) its normalizer d∗
i . This serves as an estimate of

local feature density and measures the distinctiveness of the feature correspondence. A

match is distinctive when the query-to-match distance is much smaller than the query-to-

normalizer distance, i.e. the local density of descriptor space around the query is sparse.

The LNBNN score of a feature match is computed as follows:

sLNBNN ≡
||di − d∗

i || − ||di − dj||
Z

(3.7)

All descriptors used in this calculation are L2-normalized to unit length — i.e. to sit on

the surface of a unit hypersphere. The Z term normalizes the score to ensure that it is in

the range [0, 1]. If descriptor vectors have only non-negative components (as in the case

of SIFT [22]), then the maximum distance between any two L2-normalized descriptors is

Z=
√
2. If descriptors vectors have negative components (like those that might extracted

from a deep convolutional neural network [26]), then the maximum distance between

them is Z=2.

3.2.2.2 Foregroundness score

To reduce the influence of background matches, each feature correspondence is

assigned a score based on the foregroundness of both the query and database features.

The geometric mean of the foregroundness of query feature, wi, and database feature, wj ,

drives the score to 0 if either is certain to be background.

sfg ≡
√
wiwj (3.8)
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3.2.2.3 Final feature correspondence score

The final score of the correspondence (i, j) captures both the distinctiveness of the

match and the likelihood that the match is part of the foreground.

si,j ≡ sfgsLNBNN (3.9)

3.2.3 Feature score aggregation

So far, each feature in a query annotation has been matched to several features

in the database and a score has been assigned to each of these correspondences based

on its distinctiveness and foregroundness. The next step in the identification process

is to aggregate the scores from these patch-based correspondences into a single name

score for each name in the database. Note that this name-based definition of scoring

is a key difference between animal identification and image retrieval, where a score is

assigned to each image in the database. In animal identification the analogous concept

is an annotation score — a score assigned to each annotation in the database [32]. This

distinction between a score from a query annotation to a database annotation is important

because the goal of the application is to classify a new query annotation as either a known

name or as a new name, not to determine which annotations are most similar.

This subsection presents two mechanisms to compute name scores. The first mech-

anism is annotation-based and computes a name score in two steps. This mechanism

aggregates feature correspondence scores into an annotation score for each annotation in

the database. Then the annotation scores are aggregated into a score for each name in

the database. The second mechanism is feature-based. This mechanism aggregates fea-

ture correspondence scores matching multiple database annotations directly into a name

score. These mechanisms are respectively similar to the image-to-image distance and the

image-to-class distance described in [48].

3.2.3.1 The set of all feature correspondences

All scoring mechanisms presented in this subsection are based on aggregating scores

from features correspondences. The set of all feature correspondences for a query anno-
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tation X is expressed as:

M≡ {(i, j) | di ∈ X and j ∈ NN(D,di, K)} (3.10)

3.2.3.2 Annotation scoring

An annotation score is a measure of similarity between two annotations. An anno-

tation score between a query annotation and a database annotation is defined as the sum of

the feature correspondence scores matching to the features from that database annotation.

LetYj be the database annotation containing feature j. LetMY ≡ {(i, j) ∈M | Yj = Y}
denote all the correspondences to a particular database annotation. The annotation score

between the query annotation X and database annotation Y is:

Kannot(X ,Y) ≡
∑

(i,j)∈MY

si,j (3.11)

3.2.3.3 Name scoring (1) — annotation-based

The annotation-based name scoring mechanism aggregates annotation scores into

name scores by simply taking the maximum annotation score over all annotations belong-

ing to a name. In our experiments we refer to this version of name scoring as amech. Let

N be the set of database annotations with the same name. The annotation-based name

score between a query annotation and a database name is:

Kamech(X ,N ) ≡ max
Y∈N

(Kannot (X ,Y)) (3.12)

3.2.3.4 Name scoring (2) — feature-based

The annotation-based name scoring mechanism accounts for the fact that animals

will be seen multiple times, but it does not take advantage of complementary information

available when a name has multiple annotations. The following aggregation mechanism

combines scores on a feature level to correct for this. It allows each query feature at

a specific location to vote for a given name at most once. Thus, when a query feature

(or multiple query features at the same location) correspond(s) to database features from

multiple views of the same animal, only the best correspondence for that feature will
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contribute to the score. In our experiments we refer to this version of name scoring as

fmech.

The first step of computing a name score for a specific name is grouping the feature

correspondences. Two feature correspondences are in the same group if the query features

have the same location and the database features belong to the same name. The next step

is to choose the highest scoring correspondence within each group. The sum of the chosen

scores is the score for a name. This procedure is illustrated in Figure 3.8.

Formally, consider two feature correspondences m=(i, j) and m′=(i′, j′). Let xi

and xi′ be the xy-location of the query feature in each correspondence. Let Nj and Nj′

be the name of the database annotations containing the matched features. The group that

contains feature correspondence m is defined as:

MG
m ≡ {m′ ∈M | ((xi = xi′) and (Nj = Nj′))} (3.13)

The correspondence with the highest score in each connected component is flagged as

chosen. Ties are broken arbitrarily.

chosen(m) ≡











1 if
(

sm > sm′ ∀m′ ∈MG
m

)

or |MG
m| = 1

0 otherwise

(3.14)

LetMN ≡ {(i, j) ∈ M | Nj = N} denote all the correspondences to a particular

name. The feature-based name score of a name is:

Kfmech(X ,N ) ≡
∑

m∈MN

chosen(m) sm (3.15)
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Figure 3.8: Feature-based name scoring The query annotation is at the top left. Each

query feature matches at most one feature in the exemplars for a name. Each

line denotes a feature correspondence colored by its matching score. In the

top right of each database annotation is its annotation score. Feature scores

from multiple views are combined into a name score shown on top.

3.3 SPATIAL VERIFICATION

The basic ranking algorithm treats each annotation as an orderless set of feature

descriptors (with a small exception in name scoring, which has used a small amount of

spatial information). This means that many of the initial feature correspondences will

be spatially inconsistent. Spatial verification removes these spatially inconsistent feature

correspondences. Determining which features are inconsistent is done by first estimating

an affine transform between the two annotations. Then a projective transform is esti-

mated using the inliers to the affine transform. Finally, any correspondences that do not

agree with the projective transform transformation are removed [32], [114]. This pro-

cess is illustrated in Figure 3.10. We have reviewed related work in spatial verification

in Section 2.4.1.



77

3.3.1 Shortlist selection

Standard methods for spatial verification are defined on the feature correspondences

between two annotations (images). Normally, a shortlist of the top ranked annotations is

passed onto spatial verification. However, in our application we rank names, which may

have multiple annotations. In our baseline approach we simply apply spatial verification

to the top NnameSL = 40 names and the top NannotSL = 3 annotations within those names.

3.3.2 Affine hypothesis estimation

Here, we will compute an affine transformation that will remove a majority of the

spatially inconsistent feature correspondences. Instead of using random sampling of the

feature correspondences as in the original RANSAC algorithm [115], we estimate affine

hypotheses using a deterministic method similar to [32], [246]. Given a set of matching

features between annotations X1 and X2, the shape, scale, orientation, and position of

each pair of matching keypoints are used to estimate a hypothesis affine transformation.

Each hypothesis transformation warps keypoints from annotation X1 into the space of X2.

Inliers are estimated by using the error in position, scale, and orientation between each

warped keypoint and its correspondence. Each inlier is weighted by its feature correspon-

dence score. The final affine transform is chosen to be the one that produces the maximum

weight set of inliers.

3.3.2.1 Enumeration of affine hypotheses

Let MX2
be the set of all correspondences between features from query annota-

tion X1 to database annotation X2. For each feature correspondence (i, j) ∈ MX2
, we

construct a hypothesis transformation, Ai,j using the matrices Bi and B−1
j , which where

defined in Equations (3.1) and (3.2). The first transformation Bi, warps points from X1-

space into a normalized reference frame. Then the second transformation, B−1
j , warps

points in the normalized reference frame into X2-space. Formally, the hypothesis trans-

formation is defined as Ai,j ≡ B−1
j Bi, and the set of hypothesis transformations is:

A ≡ {Ai,j | (i, j) ∈MX2
} (3.16)
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3.3.2.2 Measuring the affine transformation error

The transformation Ai,j perfectly aligns the corresponding ith query feature with the

j th database feature in the space of the database annotation (X2). If the correspondence is

indeed correct, then we can expect that other corresponding features will be well aligned

by the transformation. The next step is to determine how close the other transformed

features from the query annotation (X1) are to their corresponding features in database

annotation (X2). This can be measured using the error in distance, scale, and orienta-

tion for every correspondence. The following procedure is repeated for each hypothesis

transform Ai,j ∈ A. Note that the following description is in the context of the corre-

spondence between the ith query feature and the j th database feature, and the i, j suffix is

omitted for clarity. In this context, the suffixes k and ℓ will be used to index into features

correspondences.

Let Bk =
{

B−1
k | (k, ℓ) ∈MX2

}

be the set of keypoint matrices in the query anno-

tation with correspondences to database annotation X2. Given a hypothesis transform A,

each query keypoint in the set of matches B−1
k ∈ Bk, is warped into X2-space:

B−1
k

′
= AB−1

k (3.17)

The warped position xk
′, scale σk

′, and orientation θk
′, can be extracted from B−1

k

′
us-

ing Equation (3.4). The warped query keypoint properties in X2-space and can now be

directly compared to the keypoint properties of their database correspondences. The ab-

solute distance in position, scale, and orientation between the kth query feature and the ℓth

database feature with respect to hypothesis transformation A is measured as follows:

∆xk,ℓ ≡ ||xk
′ − xℓ||

∆σk,ℓ ≡ max(
σk

′

σℓ

,
σℓ

σk
′ )

∆θk,ℓ ≡ min(|θk ′ − θℓ| mod 2π, 2π − |θk ′ − θℓ| mod 2π)

(3.18)

3.3.2.3 Selecting affine inliers

Any keypoint correspondence (k, ℓ) ∈ MX2
is considered an inlier with respect

to A if its absolute differences in position, scale, and orientation are all within a spatial
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distance threshold tx, scale threshold tσ, and orientation threshold tθ. This is expressed

using the function isinlier, which determines if match is an inlier:

isinlier((k, ℓ),A) ≡ ∆xk,ℓ < tx and ∆σk,ℓ < tσ and ∆θk,ℓ < tθ (3.19)

The set of inlier matches for a hypothesis transformation A can then be written as:

MA ≡ {m ∈MX2
| isinlier(m,A)} (3.20)

The best affine hypothesis transformation, Â, maximizes the weighted sum of inlier

scores.

Â ≡ argmax
A∈A

∑

(k,ℓ)∈MA

sk,ℓ (3.21)

3.3.3 Homography refinement

Feature correspondences that are inliers to the best hypothesis affine transformation,

Â, are used in the least squares refinement step. This step is only executed if there are at

least 4 inliers to Â, otherwise all correspondences between features in query annotation

X1 to features in database annotation X2 are removed. The refinement step estimates a

projective transform from X1 to X2. To avoid numerical errors the xy-locations of the

correspondence are normalized to have a mean of 0 and a standard deviation of 1 prior to

estimation. A more comprehensive explanation of estimating projective transformations

using point correspondences can be found in [121], 311–320.

Unlike in the affine hypothesis estimation where many transformations are gener-

ated, only one homography transformation is computed. Given a set of inliers to the

affine hypothesis transformMÂ, the least square estimation of a projective homography

transform is:

Ĥ ≡ argmin
H

∑

(i,j)∈M
Â

||Hxi − xj||2 (3.22)

Similar to affine error estimation, we will identify the subset of inlier features cor-

respondencesMĤ ⊆ MX2
. A correspondence is an inlier if the query feature is trans-

formed to within a certain spatial distance threshold tx, orientation threshold tθ, and scale

threshold tσ of its corresponding database feature. For convenience, let µ (·) and µ−1 (·)
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transform points into and out of homogeneous form (recall homogeneous form augments

an xy-point with a z coordinate). For each feature correspondence (k, ℓ) ∈ MX2
, the

query feature position, xk, is warped from X1-space into X2-space.

xk
′ = µ−1

(

Ĥ µ (xk)
)

(3.23)

However, because projective transformations are not guaranteed to preserve the structure

of the affine keypoints, warped scales and orientations cannot be estimated using Equa-

tion (3.4). Therefore, we estimate values that will serve a similar purpose relative to a

reference point.

3.3.3.1 Estimation of warped shape parameters

Because we cannot warp the shape of an affine keypoint using a projective trans-

formation, we instead estimate the warped scale and orientation for the kth query feature

using a reference point. Given a single feature correspondence (k, ℓ) ∈ MX2
, we asso-

ciate a reference point rk with the query location xk, scale σk and orientation θk. The

reference point is defined to be σk distance away from the feature center at an angle of θk

radians in X1-space.

rk = xk + σ1





sin θk

− cos θℓ



 (3.24)

To estimate the warped scale and orientation, first the reference point is warped

from X1-space into X2-space.

rk
′ = µ−1

(

Ĥ µ (rk)
)

(3.25)

Then we compute the residual vector r̃ between the warped point and the warped reference

point:

r̃ =





r̃x

r̃y



 = xk
′ − rk

′. (3.26)

The warped scale and orientation are estimated using the length and angle of the residual

vector. Recall, the warped location can be computed exactly. In summary, the warped
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location, scale, and orientation of the kth query feature is:

xk
′ ≡ µ−1

(

Ĥ µ (rk)
)

σk
′ ≡ ||r̃||

θk
′ ≡ arctan2 (r̃y, r̃x)

(3.27)

3.3.3.2 Homography inliers

The rest of homography inlier estimation is no different from affine inlier esti-

mation. Equation (3.18) is used to compute the errors (∆xk,ℓ,∆σk,ℓ,∆θk,ℓ) between

the warped query location, scale, and orientation, (xk
′, σk

′, θk
′), and the corresponding

database location, scale, and orientation, (xℓ, σℓ, θℓ). The final set of homograph inliers is

given as:

MĤ ≡
{

m ∈MX2
| isinlier(m, Ĥ)

}

(3.28)

Spatial verification results in a reduced set of inlier feature correspondences from

the query annotation to the database annotations. The name scoring mechanism from Sec-

tion 3.2.3 is then applied to these inlier feature correspondences. This final per-name score

is the output of the identification algorithm and used to form a ranked list that is presented

to a user for review.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 3.10: Spatial verification This shows an example of spatial verification process.

The three images on the top show (3.9a) the original matches, (3.9b) the best

set of inliers from affine hypothesis generation, and (3.9c) the final set of

homography inliers. The images on the bottom show (3.9d and 3.9f) the

matching images warped and superimposed by both the best affine (3.9e)

and estimated homography transformation (3.9g).
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3.4 EXEMPLAR SELECTION

To scale one-vs-many matching to larger databases and to allow the LNBNN mech-

anism to find appropriate normalizers we restrict the number of examples of each individ-

ual in the database to a set of exemplars.

Exemplars that represent a wide range of viewpoints and poses are automatically

chosen by using a modified version of the technique presented in [247]. The idea is to

treat exemplar selection as a maximum weight set cover problem. For each individual,

the input is a set of annotations. A similarity score is computed between pairs of annota-

tions. To compute covering sets we first choose a threshold, each annotation is assigned

a covering set as itself and the other annotations it matches with a similarity score above

that threshold. The maximum number of exemplars is restricted by setting a maximum

weight. Searching for the optimal set cover is NP-hard, therefore we use the greedy

(1− 1
e
)-approximation algorithm [248]. The algorithm is run for several iterations in or-

der to find a good threshold that minimizes the difference between the weight of the set

cover and the maximum weight limit. The similarity score between annotations can be

computed using the LNBNN scores, but a better choice is the of the algorithm we will

later describe in Chapter 4 to produce the probability that a pair of annotation correctly

matches.

3.5 EXPERIMENTS

This section presents an experimental evaluation of the identification algorithm us-

ing annotated images of plains zebras, Grévy’s zebras, Masai giraffes, and humpback

whales. The input to each experiment is (1) a dataset, (2) a subset of query and database

annotations from the database, (3) a pipeline configuration. The datasets are described

in Section 3.5.1. The subsets of query and database annotations are carefully chosen to

measure the accuracy of the algorithm under different conditions and to control for time,

quality, and viewpoint. The pipeline configuration is a set of parameters — e.g. the level

of feature invariance, the number of the nearest neighbors, and the name scoring mecha-

nism — given to the identification algorithm. We will vary these pipeline parameters in

order to measure their effect on the accuracy of the ranking algorithm.

For each query annotation, the identification algorithm returns a ranked list of
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names with a score for each name. The accuracy of identification is measured using

the cumulative match characteristic [249] which can be understood as the probability that

a query correctly finds a match at a specified rank under the assumption that a correct

match exists in the database. We are primarily concerned with only the first point in this

curve — the fraction of queries with a correct result at rank 1 — because often a user of

the system will only review the first result of a query.

The outline of this section is as follows. First, Section 3.5.1 introduces and de-

scribes each dataset. Our first experiment in Section 3.5.2 establishes the accuracy of

our ranking algorithm on several datasets using a default pipeline configuration. We then

compare our approach to an alternative SMK approach in Section 3.5.3. The next sub-

sections perform in depth experiments on the parameter settings of our algorithm. Sec-

tion 3.5.4 tests the effect of the foregroundness weight on identification accuracy. Sec-

tion 3.5.5 investigates the effect of the level of feature invariance and viewpoint. Sec-

tion 3.5.6 compares the annotation-based and the feature-based name scoring mecha-

nism. Section 3.5.7 varies the K parameter (the number of the nearest neighbors used

in establishing feature correspondences) and investigates the relationship between K and

database size in terms of both the number of annotations and the number of exemplars

per name. Section 3.5.8 discusses the failure cases of our ranking algorithm. Finally, Sec-

tion 3.5.9 summarizes this section.

3.5.1 Datasets

All the images in the datasets used in these experiments were taken by photogra-

phers in the field. Each dataset is labeled with ground truth in the form of annotations

with name labels. Annotations (bounding boxes) have been drawn to localize animals

within the image. A unique name label has been assigned to all annotations with the same

identity. Some of this ground truth labeling was generated independently. However, large

portions of the datasets were labeled with assistance from the ranking algorithm. While

this may introduce some bias in the results, there was no alternative because the amount

of time needed to independently and completely label a large dataset is prohibitive and

error prone.

There are two important things to note before we describe each dataset. First, in
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order to control for challenging factors in the images such as quality and viewpoint some

experiments sample subsets of the datasets we describe here. Second, labeling errors exist

in some datasets.

Table 3.1: Database statistics These statistics indicate the number of individuals and

annotations in each dataset. An encounter is a group of annotations from the

same individual taken at the same place and time. Resighted names contain

multiple encounters.

Names

(singleton)

Names

(resighted)

Encounters per

name (resighted)

Annots per

encounter
Annots

Plains zebras 633 653 2.9± 1.3 2.6± 2.7 6474
Grévy’s zebras 378 348 4.7± 2.3 1.1± 0.4 2285
Masai giraffes 102 46 2.8± 1.2 2.7± 3.1 625
Humpbacks 440 403 2.2± 0.6 1.0± 0.1 1345

Table 3.2: Annotations per quality The “None” column indicates the number of anno-

tations without a quality label.

Excellent Good Ok Poor None

Plains zebras 407 1490 2936 1056 585
Grévy’s zebras 3 552 385 136 1209
Masai giraffes 32 207 324 62 0
Humpbacks 0 0 0 0 1345

Table 3.3: Annotations per viewpoint Columns names are abbreviated using the first

letters of front, left, back, and right. The “None” column indicates the number

of annotations without a viewpoint label.

BL L FL F FR R BR B None

Plains zebras 458 5603 413 0 0 0 0 0 0
Grévy’s zebras 0 0 0 1 112 1138 235 1 798
Masai giraffes 59 388 72 7 4 70 12 13 0
Humpbacks 0 0 0 0 0 0 0 0 1345

The number of names, annotations, and their distribution within each database are

summarized in the following tables. In these tables we distinguish between singleton and

resighted names. Singleton names are individuals sighted only once, i.e. contain only
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(a) Plains zebras

(b) Grévy’s zebras

(c) Masai giraffes

(d) Humpbacks

Figure 3.12: Distribution of image timestamps The y-axis is plotted on a square-root

scale to emphasize times when only a few images were taken. For plains ze-

bras and Grévy’s zebras images were collected over many years. For Masai

giraffes all data was collected immediately before and during the GZC.

a single encounter. Resighted names contain more than one encounter. We make this

distinction because resighted names have correct matches across a significant time delta.

Note, that singleton names may still have more than one annotation, but those annotations

are all from the same encounter. We have pre-filtered each database to remove annotations

that are unidentified, are missing timestamps, or are labeled as “junk” quality.

Table 3.1 summarizes the number of annotations and individuals in each database as
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well as the number of times (distinct encounters) each individual was sighted. Table 3.2

summarizes the quality labels of the annotations. Table 3.3 summarizes the viewpoint

labels of the annotations. Distributions of when images in each dataset were taken are

illustrated in Figure 3.12. The name and a short description of each dataset is given in the

following list.

• Plains zebras. Our plains zebras dataset is an aggregate of several smaller datasets.

There is variation in how the data was collected and preprocessed. Some images

are cropped to the flank of the animal, while others are cropped to encompass the

entire body. The constituent datasets were collected in Kenya at several locations

including Nairobi National Park, Sweetwaters, and Ol Pejeta. More than 90% of

the ground truth generated for this dataset was assisted using the matching algo-

rithm. This dataset contains many imaging challenges including occlusion, view-

point, pose, quality, and time variation. There are some annotations in this dataset

without quality or viewpoint labelings and some images contain undetected ani-

mals. This data was collected between 2006 and 2015, but the majority of the data

was collected in 2012–2015.

• Grévy’s zebras. This is another aggregated dataset. The original ground truth

for this dataset was generated independently of the ranking algorithm, however the

ranking algorithm revealed several ground truth errors that have since been cor-

rected. The Grévy’s dataset was collected in Mpala, Kenya. Most of the annota-

tions in this database have been cropped to the animal’s flank. This dataset contains

a moderate degree of pose and viewpoint variation and occlusion. This data was

collected between 2003 and 2012, but the majority was collected in 2011 and 2012.

• Masai giraffes. These images of Masai giraffes were all taken in Nairobi National

Park during the GZC between February 20, 2015 and March 2, 2015. All ground

truth was established using the ranking algorithm followed by manual verification.

This dataset contains a high degree of pose and viewpoint variation, and occlusion.

Because of their long necks, it is difficult to ensure that only a single giraffe appears

in each annotation. This results in many photobombs — pairs of annotations where

a background animal in one annotation matches the foreground animal in the other

— when matching.
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• Humpbacks. The humpback dataset was collected by FlukeBook [15] over nearly

15 years. Images were contributed by both marine and citizen scientists. The origi-

nal ground truth was established using both manual and automated methods that are

disjoint from these techniques considered here; however our software was used to

correct mistakes. The annotations in this dataset have not been manually reviewed.

Some are cropped to the fluke while others encompass the entire image. Quality

and viewpoint labels do not exist for this dataset.

3.5.2 Baseline experiment

This first experiment determines the accuracy of the identification algorithm us-

ing the baseline pipeline configuration. The baseline pipeline configuration uses affine

invariant features oriented using the gravity vector, K=4 as the number of feature cor-

respondences assigned to each query feature, and feature-based name scoring (fmech).

In this test we control for several biases that may be introduced by carefully selecting a

subset of our datasets. We only use annotations that (1) are known (i.e. have been as-

signed a name), (2) are comparable to the species primary viewpoint (e.g. left, front-left,

and back-left for plains zebras), (3) have not been assigned a quality of “junk”. Further-

more, to account for the fact that some names contain more annotations than others, we

constrain our data selection such that there is only one correct exemplar in the database

for each query annotation.

Of these annotations, we group them into encounters. For each encounter we sam-

ple one annotation with the highest quality. Names with only one encounter are added

to the database as distractors. For the other names, we randomly sample two encounters

— regardless of quality — one for the database and one to use as a query. This defines

a set of query and database annotations that are separated by time, testing the ability of

our system to match animals across gaps of time using only a single image per individual.

The CMC curves for this baseline test are illustrated in Figure 3.14.

The results of this baseline experiment demonstrates that our algorithm is able to

reliably find matching annotations in a database with many other images. The accuracy

is over 60% for all species considered. Subsequent experiments will restrict our focus to

Grévy’s and plains zebras in order to investigate detailed parameter choices of the ranking
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algorithm and alternative ranking algorithms.

Figure 3.14: Baseline experiment The baseline experiment is a high-level indicator of

the ranking accuracy of each species. We measure ranking accuracy using a

single query and database annotation — selected from different encounters

— per individual. The number of query annotations (qsize) and database

annotations (dsize) are given for each species in the legend.

3.5.3 SMK as an alternative

Before we investigate the parameter choices of the LNBNN ranking algorithm,

we briefly evaluate the performance of an alternative ranking algorithm, namely VLAD-

flavored SMK. The SMK algorithm is a vocabulary-based algorithm that is representative

of more traditional approaches to instance recognition problems. In contrast to the raw

descriptors used in LNBNN, SMK assigns each descriptor to a visual word and builds a

weighted histogram of visual words (accumulated residual vectors in the case of VLAD)

to represent each annotation as a sparse fixed length vector. We have experimented with

several configurations of VLAD and report our best results here.

In our SMK implementation, we pre-trained an 8000 word vocabulary using mini-

batch k-means on the stacked descriptors from all database annotations. Note that typi-

cally the vocabulary is trained using a disjoint external dataset in order to prevent over-

fitting. However, we naïvely train using the database annotations to be indexed, under-

standing that this will inflate the accuracy measurements. Each word in the vocabulary
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is weighted with its inverse document frequency. We use the vocabulary to compute an

inverted index that maps each visual word to annotations containing that word in the

database. Initial feature correspondences for a descriptor are computed using single as-

signment to a visual word and then creating a correspondence to every feature in that

word’s inverted index. We use spatial verification to filter spatially invalid correspon-

dences, and re-score the remaining matches.

The results of the SMK experiment are illustrated in Figure 3.16. The query and

database annotations are the same in each experiment. Despite the bias in the SMK vo-

cabulary, our measurements show that LNBNN provides more accurate rankings. For

plains zebra’s there is a difference of 8% in the number of correct matches at rank 1, and

for Grévy’s zebras the difference is 6%.

(a) Plains zebras

(b) Grévy’s zebras

Figure 3.16: SMK experiment In this experiment we compare the (VLAD based) SMK

algorithm to our LNBNN ranking algorithm. The results demonstrate that

LNBNN outperforms the ranking accuracy of SMK. The number of query/-

database annotations (qsize / dsize) are shown in the lower left.
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3.5.4 Foregroundness experiment

In this experiment we test the effect of our foregroundness weights — weighting

the score of each features correspondence with a foregroundness weight — on identifi-

cation accuracy. When foregroundness is enabled (fg=T), each feature correspondence

is weighted using a foregroundness measure learned using a deep convolutional neural

network [17]. When disabled (fg=F), the weight of every correspondence effectively

becomes 1.

Running this experiment with using the query / database sample as outlined in the

baseline experiment does not result in a noticeable difference in scores because the pur-

pose of the foregroundness measure is to down weight matches between scenery objects

(e.g. trees, grass, bushes) that appear in multiple annotations. The baseline database sam-

ple contains only a single image from each encounter and only two encounters per indi-

vidual. This means that it will be unlikely for an annotation in the query set and another

annotation in the database set to have a similar background.

To more clearly illustrate the effect of the foregroundness measure we use a dif-

ferent sampling strategy. We group all encounters by which occurrence they belong to.

Annotations within the same occurrence are more likely to share background. We sample

query and database annotations from within occurrences to simulate matching annota-

tions within an encounter. We do not limit the number of exemplars in this test to ensure

that annotation pairs that share common scenery exist. We perform this test over multiple

occurrences and aggregate the results. Therefore, the reported database size will be an

average, and the query size is the sum of all unique query annotations.

The accuracy of the foregroundness is illustrated in Figure 3.18. The results show

that using foregroundness weights improves the number of correct results at rank 1 by

a significant margin for both species. In the higher ranks using the fg=T line occa-

sionally dips below the fg=F line because sometimes the foregroundness mask covers

distinguishing keypoints, but this is neither significant nor common. Therefore, we find it

beneficial to always include foregroundness when a trained estimator is available.



92

(a) Plains zebras

(b) Grévy’s zebras

Figure 3.18: Foregroundness experiment Applying foregroundness weights to feature

correspondences improves the identification accuracy at the top rank by fil-

tering matches in scenery. This experiment was performed by matching an-

notations within several occurrences. Thus, in this experiment qsize is a

sum and dsize is an average.

3.5.5 Invariance experiment

In this experiment we vary the feature invariance configuration. This influences

the location, shape, and orientation of keypoints detected in each annotation, which in

turn influences which regions in each annotation are matchable using SIFT descriptors

extracted at each keypoint. The best invariance settings will be depend on properties of

the data.

In our experiments we test different settings by enabling (denoted as T) or disabling

(denoted as F) the parameters affine invariance (AI), and our query-side rotation heuristic

(QRH). Initially we also tested rotation invariance, but found that it provided the poorest

results for all datasets by a significant margin, likely because the gravity vector assump-

tion is mostly satisfied in all images. Therefore, we exclude rotation invariance from our

experiments.

In configurations where AI=F, keypoints are circular with a radius defined by the
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scale at which it was detected. When AI=F, the keypoint shape is adapted into an ellipse

to normalize for small viewpoint changes. When QRH=F, each keypoint is assigned its

orientation as normal, but when QRH=T, each keypoint in a query annotation is replaced

by three keypoints, one rotated slightly to the left, another slightly to the right, and the

last is the original keypoint. The four specific configuration that we test are outlined in

the following list:

• No Invariance (AI=F,QRH=F): This configuration uses circular keypoints and as-

sumes the gravity vector.

• Affine (AI=T,QRH=F): This is the baseline setting that assumes the gravity vector

and where each feature’s shape is skewed from a circle into an ellipse.

• QRH (AI=F,QRH=T): This is a novel invariance heuristic where each database

feature assumes the gravity vector, but query feature is 3 orientations: the gravity

vector and two other orientations at ±15◦ from the gravity vector. Ideally, this will

allow feature correspondences to be established between features seen from slightly

different orientations.

• QRH+Affine (AI=T,QRH=T): This is the combination of QRH and Affine.

The example in Figure 3.22 illustrates the difference between Affine and QRH fea-

tures for plains and Grévy’s zebras. The accuracy of the invariance experiment is shown

in Figure 3.20. For plains zebras, the QRH scores are significantly better than all other

invariance settings. Interestingly, affine invariance results in worse performance when

QRH is on, but if the QRH is off then affine invariance improves accuracy. This suggests

that the QRH better handles matching the coarse patterns seen on the plains zebras across

pose and viewpoint variations than using affine invariance, which can tend to adapt it-

self around non-distinctive diagonal stripes. Even though affine keypoints provide more

precise localization, the area they describe is often smaller than a circular keypoint. It

makes sense that affine keypoints would not describe coarse features as well as circu-

lar keypoints do, because circular keypoints typically cover a larger area. The results for

Grévy’s zebras demonstrate similar levels of accuracy for Affine and QRH+Affine. Affine

invariance seems to be the most important setting for matching Grévy’s zebras. The dis-

tinctive details on Grévy’s zebras are finer than plains zebras and are well captured by

affine keypoints. While the QRH does improve accuracy for Grévy’s zebras the density
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of the distinctive keypoints means that it is less important because it is more likely two

annotations will have at least one distinctive region aligned and in common.

(a) Plains zebras

(b) Grévy’s zebras

Figure 3.20: Feature invariance experiment This experiment tests the effect of affine

invariance (AI) and the query-side rotation heuristic (QRH) on identification

accuracy. For plains zebras circular keypoints with the QRH are the most

accurate. For Grévy’s zebras enabling affine invariance works the best. The

number of query/database annotations (qsize / dsize) are shown in the

lower left.



95

(a) (b)

(c) (d)

Figure 3.22: Examples of keypoint invariance Many affine keypoints detected on

plains zebras tend to encompass only one or two stripes. The distinctive

stripe patterns on Grévy’s zebras are well captured by affine keypoints,

whereas circular keypoints are more spread out. For visibility this figure

shows a random sample of all keypoints on a darkened image. Elliptical

keypoints in (3.21a and 3.21c) are colored by eccentricity and circular key-

points in (3.21b and 3.21d) are colored by scale.

3.5.6 Scoring mechanism experiment

The purpose of the scoring mechanism is to aggregate scores of individual feature

correspondences across multiple annotations into a single score for each name — i.e.

an annotation-to-name similarity, which is analogous to the image-to-class distance used

in [48]. We test the identification accuracy of the two name scoring mechanisms that

were described earlier in Section 3.2.3: (1) annotation-based name scoring (denoted as

amech) and (2) feature-based name scoring (denoted as fmech).

Because the scoring mechanism is meant to take advantage of multiple database

annotations, we vary the number of exemplars per database name (dpername) between

1, 2, and 3. Varying the number of exemplars will cause each database to contain a

different number of annotations. To normalize difference in database size we include

additional confuser annotations (annotations that do not match any query) in the smaller

databases to maintain a constant database size across experiments. Each exemplar is

chosen from a separate encounter.
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The accuracy of the scoring mechanism experiment is shown in Figure 3.24. The

results of this test does suggest that fmech results in slightly more accurate ranking,

but the overall difference in accuracy is relatively small (about 1 − 3%). Intuitively, the

fmech scoring should produce better ranks because it can combine scores from multiple

correspondences to different correct annotations. Note that when dpername = 1, the

amech and fmech scores might still be different because multiple correspondences to a

name which may be generated when K > 1 or when QRH=T.

Perhaps the more interesting result of this experiment is the effect of increasing

the number of exemplars in the database from 1 to 2. There is a drastic improvement

in ranking accuracies in both species. The accuracy of plains zebras increases by 10%

and for Grévy’s zebras the gain is almost 20%. It makes sense that this should be the

case. If there are more examples of an individual in the database, then the probability that

the query is similar to at least one of them should increase as long as there is sufficient

variation. This suggests that even if a new query new annotation initially fails to rank

the correct result, subsequent annotations added to the system of the same individual will

be more likely to correctly match a previous annotation. As more annotations of that

individual are added, the likelihood that the ranking algorithm will make a connection

between all instances of that individual will increase.
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(a) Plains zebras

(b) Grévy’s zebras

Figure 3.24: Name scoring experiment There is a clear separation between identifi-

cation accuracy when the number of exemplars per name is 1 compared to

when it is 3. Feature based name scoring (fmech) is slightly more accurate

than scoring using the annotation based name scoring (amech). The num-

ber of query /database annotations (qsize / dsize) are shown in the lower

left. Database size was normalized using confusors.

3.5.7 K experiment

In this experiment we investigate the effect of K (the number of the nearest neigh-

bors used in establishing feature correspondences, which was discussed in Section 3.2.1)

on identification accuracy. We vary K between the values 1, 2, 4, and 6. In all these

experiments we set the number of normalizing neighbors to be K∗ = 1.

Two database factors that may influence the best choice of K are the number of

annotations in the database and the number of annotations per name in the database. If

there are more correct matches for a query annotation it would be beneficial to allow it to
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match more annotations. Likewise, if there are more overall annotations in the database,

then it might be beneficial to search deeper into all the database descriptors to find the

correct matches. Therefore, in addition to varying K we also vary the number exemplars

per name (dpername) and the overall number of annotations in the database (dsize)

We use a protocol similar to the one used in the scoring mechanism experiment

to sample databases. The difference is that we use the extra confuser annotations to

vary the total number of annotations in the database. However, controlling for these

factors constrains the number of annotations we can use. For Grévy’s, we can vary the

total database size between 476 and 774. For plains, we have more confuser annotations

allowing us to test database sizes of 578 and 1650. We vary the number of exemplars per

name between 1 and 2.

The results of this experiment are illustrated in Figures 3.25 and 3.26. Similar to the

previous experiment, the number of exemplars per name is the most significant variable

impacting accuracy. Furthermore, when there are more exemplars in the database the

choice of K starts become less significant. The results also show that accuracy does

slightly decrease when the database becomes larger, but magnitude of the decrease is

between 1% and 3%. Interestingly, the optimal choice of K is not consistent between

species when there is only one exemplar per name. For Grévy’s zebras using a lower K

results in better results, but for plains zebras there is a significant loss when K = 1 and

the database size is large. This is likely due to the nature of the distinguishing patterns

on the different zebras. When matching the detailed patterns of the Grévy’s zebras, it

is better to use a low K to reduce noise, but for coarser plains zebras patterns a low K

might not find a correct match immediately. Thus, the choice of K is a trade-off between

precision and recall that depends on the type of texture patterns that are being matched.

Overall the experiments on the setting of K does not yield definitive choice for

this parameter. However, it appears that K only has a small influence on identification

accuracy. This section does shows that the number of exemplars per annotation has a

significant impact on identification accuracy.
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Figure 3.25: The K experiment for plains zebras This shows the identification accu-

racy for plains zebras using different values of K (the number of nearest

neighbors assigned to each query feature), different numbers of exemplars

(dpername), and different database sizes (dsize).
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Figure 3.26: The K experiment for Grévy’s zebras This shows the identification ac-

curacy for Grévy’s zebras using different values of K (the number of nearest

neighbors assigned to each query feature), different numbers of exemplars

(dpername), and different database sizes (dsize).
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3.5.8 Failure cases

We now investigate the causes of identification failure and consider example failure

cases. When investigating the cause of a failure case we consider both (1) the matches be-

tween the query annotation and the incorrect name at rank 1 and (2) the matches between

the query annotation and the correct name that appears further down the ranked list. We

identify the main 3 failure cases as: (1) unaligned annotations, (2) quality factors, and (3)

non-primary correspondences. The remainder of this subsection defines, discusses, and

provides examples of these failure cases.

3.5.8.1 Alignment

When two annotations are not aligned (ignoring translation and small scale differ-

ences), there can be significant differences in appearance that can cause inconsistency in

feature localization and description. There are two major causes of alignment error: (1)

viewpoint variations which cause out-of-plane rotations and (2) pose variations which can

cause local non-rigid non-linear transformations of distinguishing features. These issues

cause variations in feature description which renders the approximate nearest neighbor

algorithm unable to establish the correct correspondence. Furthermore, non-projective

transformations between annotations can cause homography-based spatial verification to

discard correctly established correspondences. Failing to establish correspondences and

incorrectly discarding them ultimately results in identification failure.

The example in Figure 3.28 illustrates a failure case due to a difference in viewpoint

and pose. To address matching across different viewpoints and poses it helps to choose an

appropriate level of feature invariance (like affine invariance and the query-side rotation

heuristic), but these only work up to a point. However, in practice the animal identifica-

tion problem is not a one-shot identification challenge. Given multiple annotations of an

individual we expect that the matching algorithm will be able to overcome viewpoint and

pose differences by matching annotations with intermediate positions.
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(a) (b)

Figure 3.28: Unaligned failure case Due to pose and viewpoint variations, the cor-

rectly matching pair of annotations (3.27b) is returned at rank 22 while the

incorrect pair of annotations (3.27a) is returned at rank 1. In the correct pair,

the features on the front leg are not aligned and failed to match.

3.5.8.2 Quality factors

Factors such as low resolution, blurring, poor exposure, lighting (shadows / non-

uniform illumination), and occlusion can significantly reduce the density of distinctive

features on an annotation. Note that lighting and occlusion (scene quality factors) should

be distinguished from the other factors (capture quality factors) because they are related to

the scene itself rather than a poor capturing of that scene. Annotations with low capture

quality tend to generate fewer, larger, less distinct, and distorted features. Annotations

with low scene quality tend to have their distinguishing features distorted or masked by

grass, tree branches, shadows, and other animals. This is a significant problem for species

with relatively few distinctive features like plains zebras. The example in Figure 3.30

illustrates a failure case due to occlusion, and Figure 3.32 illustrates failure case due to

low resolution.

In some cases low quality annotations can be still be matched, but in the worst case

all distinctive features are missing and there is no way to visually identify the individual.
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Therefore, the best way to handle these annotations is either to ignore them entirely, or to

first attempt to match them, but then discard them if they cannot be matched.

(a) (b)

Figure 3.30: Occlusion failure case The plants in the query annotation inhibit the cre-

ation of feature correspondences, causing the correct pair of annotations

(3.29b) to be returned at rank 2. The incorrect pair of annotations (3.29a)

at rank 1 are not the same individual even though they share similar features.
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(a) (b)

Figure 3.32: Quality failure case The low resolution of the database annotation causes

the correct pair of annotations (3.31b) to be returned at rank 43. The incor-

rect pair of annotation (3.31a) did not receive a particularly high score, but it

was returned at rank 1 because no feature correspondences were established

to the correct match.

3.5.8.3 Non-primary correspondences

Sometimes an annotation bounding box cannot be placed tightly around an animal

(this happens often for some species like giraffes), which means that other objects will

appear in the background. Similarly, objects that occlude the animal will be in the fore-

ground. Ideally, the primary animal in each annotation would be segmented, but when

simply matching raw annotations non-primary correspondences may be formed. This

results in the photobomb and scenery-match failure cases.

Photobombs are caused by correct correspondences to a non-primary animal (seen

either in the foreground or background) in an annotation. Likewise, scenery matches are

caused by matches in the background landscape. Both cases are most commonly caused

by pairs of annotations with the same occurrence, but photobombs can occur over larger

time deltas. The example in Figure 3.36 illustrates a failure case due to a photobombing
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background animal, and Figure 3.34 illustrates a scenery match. For plains and Grévy’s

zebras, most scenery matches are eliminated using the foregroundness measure, but the

problem remains in databases without a trained foregroundness estimator. Accounting for

photobombs is a more challenging problem because a simple patch-based classifier cannot

distinguish a primary feature from a secondary feature without having information about

the animal identity. However, there are some patterns that photobomb matches present

that we seek to take advantage of later in Section 4.3.

(a) (b)

Figure 3.34: Scenery failure case The incorrect pair of annotations (3.33a) was re-

turned at rank 1 because of strong matches in the background scenery. The

correct pair (3.33b) was returned at rank 2 and did not produce matches in

the front leg due to pose variations. The annotations in the scenery match

pair were taken seconds apart in the same location causing their backgrounds

to be near duplicates. The foregroundness measure was disabled to produce

this example, enabling it addresses nearly all scenery match cases.
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(a) (b)

Figure 3.36: Photobomb failure case A photobombing animal in the foreground of the

database annotation causes LNBNN to return the incorrect result (3.35a) at

rank 1. The correct match (3.35b), has a significant number of matches,

but there is a difference of 1 day between the pair. On the other hand, the

annotations in the photobomb pair were taken within seconds of each other

and therefore have much higher visual similarity.

3.5.9 Experimental conclusions

In this section we have evaluated our ranking algorithm on multiple species, com-

pared it to an alternative ranking algorithm, and evaluated detailed parameter choices.

Our experiments were performed under restrictive conditions to control for the effect of

time, database size, and number of exemplars. Based on the results of these experiments

we are able to make several observations and conclusions.

Our experiments with comparing the SMK and LNBNN ranking algorithm demon-

strated that LNBNN achieved better ranking accuracy. LNBNN does not quantize de-

scriptor and therefore it is able to distinguish more subtle descriptor details. Because

LNBNN does not require an expensive pre-training phase, it makes it ideal to rank the
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databases on the scales considered in this thesis. However, we note that SMK is more

efficient on larger scales, and it may be necessary to consider when databases become

very large.

In most experiments we evaluated our ranking algorithm as if it were addressing a

single-shot identification problem. This was to establish the performance of the algorithm

when an individual has only been seen once before. However, in practice this will not be

the norm. The name scoring and K experiments demonstrated that the ranking accuracy

significantly increases with the number of exemplars per database name. We will use this

observation to address the challenges of matching through viewpoint and occlusion by

taking advantage of multiple images of an individual in Chapter 5.

We also saw that the best choice for feature invariance is data dependent. The invari-

ance experiment demonstrated that affine invariance produces better results for Grévy’s

zebras, whereas circular keypoints lead to more accurate results for plains zebras. This ex-

periment also showed that the query-side rotation heuristic improves accuracy by adding

a small amount of orientation invariance to feature localization. Likewise, the K exper-

iment shows that identification accuracy is not significantly influenced by the choice of

K for plains zebras, but for Grévy’s zebras the most accurate results were obtained with

K=1. This is likely because the features from plains zebras are less distinguishing than

features from Grévy’s zebras, hence the correct match of a plains zebra feature is less

likely to be its closest neighbor. Both the choice of K and invariance settings should be

evaluated on a per-dataset basis and there is likely benefit to performing identification

using multiple parameter choices.

3.6 RANK-BASED IDENTIFICATION SUMMARY

In this chapter we have addressed the problem of animal identification using a

computer-assisted algorithm based on LNBNN that ranks a labeled database of names

by their similarity to a single query annotation. This algorithm begins by extracting local

patch-based features from cropped and normalized chips. Features from database anno-

tations are indexed for fast nearest neighbor search using a kd-tree. A mechanism based

on LNBNN is used to compute a matching score for each database annotation. A shortlist

of top scoring results have their feature correspondences spatially verified and then are
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re-scored. We have shown how this algorithm can be applied to individual animal identi-

fication and demonstrated that in a majority of cases the correct match is ranked first by

our algorithm for plains zebras, Grévy’s zebras, Masai giraffes, and humpback whales.

Because we have used the algorithm to curate the ground truth, we do not claim the

reported accuracies in our experiments to be quantitatively absolute. However, qualitative

evidence for the algorithm’s overall success is provided by the facts that (1) we were able

to use the algorithm to identify a significant number of individuals from different species

and (2) our approach provides more accurate rankings than standard instance recognition

techniques. We therefore make the conclusion that the algorithm is effective at identifying

medium to high quality images of animals with distinguishing patterns when taken from

similar viewpoints.

While we have demonstrated that the ranking algorithm accurately ranks correct

matches when they exist, there are several limitations to this approach.

(1) All results must be manually verified, which can be time-consuming.

(2) There is no mechanism for recovering from errors once they occur.

(3) There is no mechanism to determine when identification is complete.

In the following chapters we seek to address these issues. In Chapter 4 we introduce an

algorithm to make automatic decisions based on results from this algorithm, and in Chap-

ter 5 we introduce a graph-based framework that determines identification confidence and

introduces error recovery mechanisms.



4. PAIRWISE VERIFICATION

In this chapter we consider the problem of verifying if two annotations are from the same

animal or from different animals. By addressing this problem we improve upon the rank-

ing algorithm from Chapter 3 — which ranks the names in a database based on similarity

to a query — by making semi-automatic decisions about results returned in the ranked

lists. The algorithms introduced in this chapter will assign a confidence to results in the

ranked list, and any pair above a confidence threshold can be automatically reviewed.

We will demonstrate that our decision algorithms can significantly reduce the number of

manual interactions required to identify all individuals in an unlabeled set of annotations.

To make semi-automatic decisions up to a specified confidence we develop a pair-

wise probabilistic classifier that predicts a probability distribution over a set of events

given two annotations (typically a query annotation and one of its top results in a ranked

list). Given only the information in two annotations, there are three possible decisions

that can be made. A pair of annotations is either:

(1) incomparable — the annotations are not visually comparable,

(2) positive — the annotations are visually comparable and the same individual, or

(3) negative — the annotations are visually comparable and different individuals.

Two annotations can be incomparable if the annotations show different parts or sides of

an animal, or if the distinguishing information on an animal is obscured or occluded. The

positive and negative states each require distinguishing information to be present. These

mutually exclusive “match-states” are illustrated in Figure 4.2. The multi-label classifier

then predicts the probability of each of the three states, with the probabilities necessarily

summing to 1.

To construct a pairwise probabilistic classifier we turn towards supervised machine

learning. This requires that we: (1) determine a set of labeled annotation pairs for train-

ing, (2) construct a fixed-length feature vector to represent a pair of annotations, and

(3) choose a probabilistic learning algorithm. The first requirement can be satisfied by

carefully selecting representative annotations pairs, and the last requirement is satisfied

by many pre-existing algorithms (e.g. random forests and neural networks). The sec-
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(a) Positive (b) Negative (c) Incomparable

Figure 4.2: Match-state example Examples of positive (4.1a), negative (4.1b), and in-

comparable (4.1c) pairs of annotations. Local feature correspondences are

superimposed over the pairs.

ond requirement — constructing an appropriate fixed-length feature vector — is the most

challenging. Given enough training data and a technique to align the animals in two

annotations, using image data with a Siamese or triplicate network [41], [112] might be

appropriate, but without both of these pre-conditions we must turn towards more tradi-

tional methods. Recall from Section 3.1 that our annotation representation is an unordered

bag-of-features, which cannot be directly fed to most learning algorithms. Therefore, we

develop a method for constructing a fixed length pairwise feature vector for a pair of

annotations. This novel feature vector will take into account local matching information

as well as more global information such as GPS and viewpoint. A collection of these

features from multiple labeled annotation pairs is used to fit a random forest [250] which

implements our pairwise classifier. We choose to use random forest classifiers, in part

because they are fast to train, insensitive to feature scaling, robust to overfitting, and natu-

rally output probabilities in a multiclass setting, and in part because they can handle (and

potentially take advantage of) missing data — i.e. nan values in feature vectors — using

the “separate class” method [251].

A final concern investigated in this chapter is the issue of image challenges that

may confound the match-state pairwise classifier. Recall from Section 3.5.8, photobombs

— pairs of annotations where feature correspondences are caused by a secondary animal

— are the most notable cause of such a challenge. Photobombs appear very similar to
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positive matches, and this similarity could confuse the match-state classifier. However,

because photobombs are inherently a pairwise property between annotations, it should

be possible to learn a separate classifier explicitly tasked with the challenge. Therefore,

we also learn a photobomb classifier using the same sort of pairwise feature vector and

random forest classifier. This supporting classifier will allow us to increase the accuracy

of our identification by restricting automatic classification to pairs where the decision is

straightforward.

This outline of this chapter is as follows. Section 4.1 details the construction of

the feature vector that we use as input to the pairwise classifier. Section 4.2 describes

the process of collecting training data and learning the match-state pairwise classifier.

Section 4.3 extends this approach to predict secondary attributes (e.g. if a pair is a pho-

tobomb) beyond just the matching state. Section 4.4 presents a set of experiments that

evaluate the pairwise classifier. Section 4.5 summarizes and concludes this chapter.

4.1 CONSTRUCTING THE PAIRWISE FEATURE VECTOR

In order to use the random forest learning algorithm to address the problem of pair-

wise verification, we must construct a feature vector to representing a pair of annotations.

This feature vector must contain enough information to differentiate between the positive,

negative, and incomparable classes. In contrast to the unordered bag-of-features used to

represent an annotation, the dimensions in this feature vector must be ordered and each

dimension should correspond to a specific measurement. In practice this means that the

feature vector must be ordered and have a fixed length.

We construct this feature vector to contain both global and local information. Global

information is high level metadata about the annotation pair and includes non-visual in-

formation. The local information aggregates statistics about feature correspondences be-

tween the two annotations. The local and global vectors are constructed separately and

then concatenated to form the final pairwise feature vector. The remainder of this section

discusses the construction of these vectors.
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4.1.1 The global feature vector

The global feature vector contains information that will allow the classifier to take

advantage of semantic labels and non-visual attributes of our data to solve the verifica-

tion problem. Semantic labels such as quality and viewpoint are derived from visual

information and can provide abstract knowledge to help the classifier make a decision.

Non-visual attributes such as GPS and timestamp can be extracted from EXIF metadata

and may help determine facts not discernible from visual data alone. The global feature

vector is derived from the following “unary” attributes extracted from each annotation

individually:

(1) Timestamp, represented in POSIX format as a float.

(2) GPS latitude and longitude, represented in radians as two floats.

(3) Viewpoint classification label, given as a categorical integer ranging from 1 to 8.

(4) Quality classification label, given as a categorical integer ranging from 1 to 5.

We gather the GPS and timestamp attributes from image EXIF data, and the viewpoint

and quality labels are outputs of the deep classifiers previously discussed in Section 1.3.2.

The GPS and timestamp attribute inform the classifier of when it is not possible for two

annotations to match (e.g. when a pair of annotations is close in time but far in space) and

when two annotations were taken around the sample place and time. Pairs of annotations

taken around the same place and time tend to have a higher similarity and are more likely

to contain photobombs and scenery matches. The viewpoint and quality attributes should

help the classifier predict when pairs of annotations are not comparable — forcing there

to be stronger evidence to form a match, such as strong correspondences on a face turned

toward the camera in both a left and right side view. An example illustrating such a case

— where two annotations with different viewpoints are a positive match — is illustrated

in Figure 4.3.

These four “unary” attributes are gathered for each annotation. Thus, for each at-

tribute we have two measurements, one for each annotation. However, we do not use them

directly because the ordering of the annotations in each pair is arbitrary. For each unary

attribute, we either ignore it (as in the case of GPS and time) or record the minimum of

the two values in one feature dimension and the maximum in another (as is done with

viewpoint and quality). This results in 4 unary measurements, 2 for viewpoint and 2 for
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Figure 4.3: A comparable pair with different viewpoints Even though this pair has

different viewpoints, it is positive and comparable because we can establish a

distinctive correspondence in the face.

quality. These measurements are appended to the front of the global feature vector.

The remaining dimensions of the global feature vector are constructed by encoding

relationships between pairs of unary attributes using distance measurements. In the case

of GPS coordinates we use the haversine distance (as detailed in Appendix A). In the case

of viewpoint we use a cyclic absolute difference — i.e. the distance between viewpoints

v1 and v2 is min(|v1− v2|, 8−|v1− v2|). For quality and time we simply use the absolute

difference between their values. This results in 4 pairwise measurements, one for each

global attribute. Lastly, we include the “speed” of the pair, which is the GPS-distance

divided by the time-delta. Thus, the total number of global measurements is 4+4+1 = 9.

In the event that an attribute is not provided or not known (e.g. the EXIF data is

missing), then a measurement cannot be made, so a nan value is recorded instead. To

apply random forests learning, these nan values must be handled by either modifying

the learning algorithm or replacing them with a number. Ding and Simonoff investigate

several methods for handling missing data in [251], and they conclude that the best choice

is application dependent. For our application we choose the “separate class” method

because their experiments demonstrate that it performs the best when nan values are in

both the training and testing data, which is the case for our data.

In addition to being the best fit for our application, the separate class method is
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simple. The idea is to replace all nan measurements with either an extremely large or ex-

tremely small number. The choice of large or small is made independently at each node

in the decision tree, depending on which choice is best. In this way the nan values are es-

sentially treated as a separate category because a test can always be chosen that separates

the measured and unmeasured data. This has several effects. In the case that a nan mea-

surement in a feature dimension is informative (e.g. if images without timestamps are less

likely to match other annotations), the random forest can take advantage of that dimen-

sion. However, in the more likely case that the same nan measurement is uninformative,

the dimension can still be used, but it is penalized proportional to the fraction of samples

where it takes a nan value. This captures the idea that a feature dimension is less likely

to be informative if it cannot be measured reliably. However, if that feature dimension is

highly informative for samples where it has a numeric value, then a node in a decision

tree can still make use of it, and the samples with nan values can be split by nodes deeper

in the tree.

4.1.2 The local feature vector

The local feature vector distills two orderless bag-of-features representations into a

fixed length vector containing matching information about a pair of annotations. Three

basic steps are needed to construct the local feature vector. First we determine feature

correspondences between the two annotations. Then for each correspondence we make

several measurements (e.g. descriptor distance and spatial position). Finally, we aggregate

these measurements over all correspondences using summary statistics (e.g. mean, sum,

std). Later we augment this basic scheme by constructing multiple sets of feature corre-

spondences. Thus, the total length of the feature vector is the number of measurements

times the number of summary statistics times the number of ways feature correspondences

are established.

4.1.2.1 Establishing feature correspondences

To determine feature correspondences between two annotations, X and Y , we use

what we refer to as a one-vs-one matching algorithm. Each annotation’s descriptors are

indexed for fast nearest neighbor search [29]. Keypoint correspondences are formed by
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searching for the reciprocal nearest neighbors between annotation descriptors [252]. For

each feature in each correspondence, the next nearest neighbor is used as a normalizer

for Lowe’s ratio test [22]. Because matching is symmetric, each feature correspondence

is associated with two normalizing neighbors. The feature / normalizer pair with the

minimum descriptor distance is used as a normalizing pair. If the ratio of the descriptor

distance between a correspondence to the distance between the normalizing pair is above

a threshold, the correspondence is regarded as non-distinct and removed. For the sim-

plicity of the description we consider just one ratio threshold for now, but later we will

describe this process using multiple thresholds. Spatial verification [32] is applied to fur-

ther refine the correspondences. This one-vs-one matching algorithm results in a richer set

of correspondences between annotations than would be found using the LNBNN ranking

algorithm.

4.1.2.2 Local measurements

After the one-vs-one matching stage, several measurements are made for each fea-

ture correspondence. Before describing these measurements, it will be useful to set up

some notation. Given two annotations X and Y , consider a feature correspondence be-

tween two features i and j with descriptors di and dj . Let d∗
i be the normalizer for i, and

let d∗
j be the normalizer for j. Note that while i is from X , its normalizer, d∗

i , is a descrip-

tor from Y . The converse is true for j. Let c ∈ {i, j} indicate which feature / normalizer

pair is used in the ratio test. Thus, c = argmin
c∈i,j

||dc − d∗
c ||. Given these definitions, the

measurements we consider are:

• Foregroundness score: This is the geometric mean of the features’ foregroundness

measures,
√
wiwj . This adds 1 measurement, denoted as fgweight, for each cor-

respondence.

• Correspondence distance: This is the Euclidean distance between the corresponding

descriptors, ||di−dj||/Z. This serves as a measure of visual similarity between the

features. (Recall Z=
√
2 for SIFT descriptors). This adds 1 measurement, denoted

as match_dist, for each correspondence.

• Normalizer distance: This is the distance between a matching descriptor and the

normalizing descriptor, ||dc − d∗
c ||/Z. This serves as a measure of visual distinc-
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tiveness of the features. We also include a weighted version of this measurement by

multiplying it with the foregroundness score. This adds 2 measurements, denoted

as norm_dist and weighted_norm_dist, for each correspondence.

• Ratio score: This is the one minus the ratio of the correspondence distance to the

normalizer distance, 1− ||di−dj||/||dc−d∗
c ||. This combines both similarity and

distinctiveness. Note that this is one minus the measure used to filter correspon-

dences in the ratio test. We perform this subtraction in order to obtain a score that

varies directly with distinctiveness — i.e. the ratio score can increase by decreasing

the visual difference or increasing the distinctiveness. We also include a weighted

version of this measurement by multiplying it with the foregroundness score. This

adds 2 measurements, denoted as ratio_score and weighted_ratio_score, for

each correspondence.

• Spatial verification error:

This is the error in location, scale, and orientation, (∆xi,j,∆σi,j,∆θi,j), as mea-

sured using Equation (3.18). This adds 3 measurements, denoted as sver_err_xy,

sver_err_scale, and sver_err_ori, for each correspondence. These measure-

ments carry information about the alignment between the feature correspondences.

• Keypoint relative locations:

These are the xy-locations of the keypoints divided by the width and height of the

annotation xi/wX , yi/hX and xi/wY , yj/hY . These measurements carry informa-

tion about the spatial distribution of the feature correspondences. This will be useful

for determining if a pair of annotations is a photobomb because often the photo-

bombing animal is not in the center of the annotation. This adds 4 measurements,

denoted as norm_x1, norm_y1, norm_x2, and norm_y2, for each correspondence.

Note that unlike the global quality and viewpoint measures, we do not make an ef-

fort to account for the arbitrary ordering of annotations when recording these local

features. This is to preserve the association between the spatial dimensions of each

annotation. The same is true for the next feature.

• Keypoint scales:

These are the keypoint scale parameters σi and σj , as measured using Equation (3.4).

The scales indicate the size of each keypoint with respect to its annotation. This
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may be useful for disregarding matches between large coarsely described features

that do not carry a significant amount of individually distinctive information. This

adds 2 measurements, denoted as scale1 and scale2, for each correspondence.

4.1.2.3 Summary statistics

Once these 15 measurements have been made for each keypoint correspondence

we summarize them using summary statistics. We consider the sum, median, mean, and

standard deviation over all correspondences. We have also considered taking values from

individual correspondences based on rankings and percentiles with respect to a particular

attribute (e.g. ratio score), however we found that these did not improve the performance

of our classifiers. In practice the summary statistics work quite well. The resulting mea-

surements are stacked to form the local feature vector. This results in 15 × 4 = 60

measurements. A final step we have found useful is to append an extra dimension simply

indicating the total number of feature correspondences. So, in total there are 61 summary

statistics computed for a set of feature correspondences.

4.1.2.4 Multiple ratio thresholds

As previously noted we establish multiple groups of feature correspondences for

different threshold values of the ratio test. We do this because we have observed that

some positive annotation pairs had all of their correspondences filtered by the ratio test.

However, when we increase the ratio threshold, the overall classification performance

decreases. Therefore, we include both small and large thresholds to allow the classifier to

have access to both types of information. Including larger threshold values helps ensure

that most pairs generate at least a few correspondences, while smaller threshold values

capture the information in highly distinctive correspondences. Overall, this softens the

impact of the ratio test’s binary threshold and adds robustness to viewpoint and pose

variations that may cause correspondences to appear slightly less distinctive.

The details of this process are as follows: Once we have assigned feature corre-

spondences using symmetric nearest neighbors, we create a group of correspondences for

each ratio value. The members of each group are all correspondences with a ratio score

less than that value. Each group is then spatially verified, and the union of the groups is



118

the final set of correspondences. When measuring spatial verification errors, each key-

point may be associated with multiple values. Therefore, we use the minimum spatial

verification error over all values of the ratio threshold. The local feature vector is con-

structed by applying summary statistics to each of these groups independently and then

concatenating the results. Thus, the size of the local feature vector is multiplied by the

number of ratio thresholds used.

While using multiple values of the ratio test can further enrich the pairwise local

feature vector, there are two trade-offs that must be taken into account. First, spatial

verification must be run multiple times, which noticeably increases computation time.

Second, the resulting size of the feature vector is larger, which can make learning more

difficult due to the curse of dimensionality. Therefore, in our implementation we choose

to use only two ratio threshold values of 0.625 and 0.8. Thus, the total number of local

measurements is 2× 61 = 122.

4.1.2.5 Additional notes

We have found that, for some species like plains zebras, it is important to use

the keypoint orientation heuristic described in Section 3.1 when computing one-vs-one

matches. This heuristic causes each keypoint to extract 3 descriptors instead of 1. In this

case we should not use the second nearest neighbor as the normalizer for the ratio test,

because the augmented keypoints may have similar descriptors. We account for this by

using the 3rd nearest neighbor as the normalizer instead.

4.1.3 The final pairwise feature vector

The final pairwise feature vector is constructed by concatenating the local and the

global vector. This results in a 131 dimensional vector containing information that a

learning algorithm can use to predict if a pair of annotations is positive, negative, or

incomparable. Of these dimensions, 9 are from global measurements and 122 are from

local measurements. The example in Figure 4.4 illustrates part of a final feature vector.
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OrderedDict([(’global(qual_min)’, 3),

(’global(qual_max)’, nan),

(’global(qual_delta)’, nan),

(’global(gps_delta)’, 5.79),

(’len(matches[ratio < .8])’, 20),

(’sum(ratio_score[ratio < .8])’, 10.05),

(’mean(ratio_score[ratio < .8])’, 0.50),

(’std(ratio_score[ratio < .8])’, 0.09)])

Figure 4.4: A pairwise feature vector This is an example of a small pairwise feature

vector containing local and global information. The feature vector we use in

practice contains 131 dimensions. Note the summary statistics in this example

are all computed for correspondences with a ratio value that is less than 0.8.

4.2 LEARNING THE MATCH-STATE CLASSIFIER

Having defined the pairwise feature vector there are two remaining steps to con-

structing the pairwise classifier. We must: (1) choose a probabilistic learning algorithm,

and (2) select a sample of labeled training data. We have previously stated that we will use

the random forest [250] as our probabilistic classifier. Therefore, we briefly review the de-

tails of random forest learning and prediction. Then we describe the sampling procedure

used to generate a dataset of labeled annotation pairs.

4.2.1 The random forest learning algorithm

The random forest learning algorithm [250] is well understood, so we only provide

a brief overview. A random forest is constructed by learning a forest of decision trees.

Learning begins by initializing each decision tree as a single node. Each root node is

assigned a random sample of the training data with replacement, and then a recursive al-

gorithm is used to grow each root node into a decision tree. Each iteration of the recursive

algorithm is given a leaf node, and will choose a test to split the training data at the node

into two child nodes. The test is constructed by first choosing a random subset of feature

dimensions. We then find choose a dimension and threshold to maximize the decrease in

class-label entropy. Note that when using the “separate class” method, the algorithm tests

placing samples with missing data on both the left and right side of the split. The algo-

rithm is then recursively executed on the right and left node until a leaf is assigned fewer

than a minimum number of training examples. To select a test for a node, the number of
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candidate features dimensions we choose is the square root of the total number of feature

dimensions. Each decision tree predicts a probability distribution over all classes for a

testing example by descending the tree, choosing left or right based on the test chosen at

the node until it reaches a leaf node. The predicted probabilities are the proportions of

training class-labels at that leaf node. The probability prediction of the random forest is

the average of the probabilities predicted by all decision trees. We use the random forest

implementation provided by Scikit Learn [253]. To choose hyper-parameters, we pre-

form a grid search. We find that it works best to use 256 decision trees, and to stop branch

growth once a leaf node contains 5 or fewer training samples. For other parameters we

use the implementation defaults.

4.2.2 Sampling a labeled dataset of annotation pairs

Now that we have chosen a learning algorithm, the last remaining step is the selec-

tion of training data and generation of labels. Recall that the purpose of our classifier is

to output a probability distribution over three labels: positive, negative and incomparable.

Given a pair of annotations we need to assign one of these three labels using ground truth

data. In recent versions of our system, this ground truth label is stored along with each

unordered pair of annotations that has been manually reviewed, but because this is a new

feature, only a few pairs have been assigned an explicit three-state label. Therefore, we

must make use of the name and viewpoint labels assigned to each annotation by previous

versions of the system. This allows us to determine if an annotation pair shows the same

or different animals, but it does not allow us to determine if the pair is comparable. To

account for this we use heuristics to assign the incomparable label using the viewpoints,

and if either annotation is not assigned a viewpoint it is assumed that they are comparable

because most images in our datasets are taken from a consistent viewpoint (i.e. collection

events were designed to reduce incomparability).

Given a pair of annotations, a training label is assigned as follows. First, if an

explicit three-state label exists, return it. Otherwise, we must heuristically decide if the

pair is comparable based on viewpoint information. If the heuristics determine that a

pair is not comparable, then return incomparable. In all other cases return positive if the

annotations share a name label and negative if they do not.
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In order to select pairs from our ground truth dataset, we sample representative

pairs of annotations guided by the principle of selecting examples that exhibit a range

of difficulties [109] (e.g. hard-negatives and moderate positives). We use the LNBNN

ranking algorithm to estimate how easy or difficult it might be to predict the match-state

of a pair. Pairs with higher LNBNN scores will be easier to classify for positive examples

and will be more difficult for negative examples, and lower scores will have the reverse

effect.

Specifically, to sample a dataset for learning, we first rank the database for each

query image using the ranking algorithm. We partition the ranked lists into two parts: a

list of correct matches and a list of incorrect matches. We select annotations randomly

from the top, middle, and bottom of each list. For positive examples we select 4 from the

top, 2 from the middle, 2 from the bottom, and 2 randomly. For negative examples we

select 3 from the top, 2 from the middle, 1 from the bottom, and 2 randomly. If there are

not enough examples to do this, then all are taken. We include all pairs explicitly labeled

as incomparable because there are only a few such examples. If this was not the case,

then we would include an additional partition for incomparable cases.

4.3 SECONDARY CLASSIFIER TO ADDRESS PHOTOBOMBS

It is useful to augment the primary match-state pairwise classifier with a secondary

classifier able to determine if a pair of annotations contains information that might con-

fuse the main classifier. These confusing annotation pairs should not be considered for

automatic review. One of the most challenging of these secondary states is one that we

refer to as a photobomb. A pair of annotations is a photobomb if a secondary animal in

one annotation matches an animal in another annotation (e.g. see Figure 4.6). Only the

primary animal in each annotation should be used to determine identity, but photobombs

provide strong evidence of matching that can confuse a verification algorithm.
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(a) (b)

Figure 4.6: Photobomb example A secondary animal in an annotation can cause a

“photobomb”. Notice the primary animal in (4.5a) appears in the background

of (4.5b).

During events like the GZC we labeled several annotation pairs as photobombs.

Using these labels we will construct a classifier in the same way that we constructed the

primary match-state classifier. We start with the same set of training data used to learn

the primary classifier. Because we only have a small set of explicitly labeled photobomb

pairs, we include all such pairs in the training dataset. Any pair in this set that is explicitly

labeled as a photobomb is given that label, otherwise it is labeled as not a photobomb.

4.4 PAIRWISE CLASSIFICATION EXPERIMENTS

We evaluate the pairwise classifiers on two datasets, one of plains zebras and the an-

other of Grévy’s zebras with 5720 and 2283 annotations, respectively. The details of these

datasets were previously described in Section 3.5.1. To evaluate our pairwise classifier,

we choose a sample of annotation pairs from these datasets as detailed in Section 4.2. This

results in 47312 pairs for plains zebras and 18010 pairs for Grévy’s zebras. The number of

pairs per class is detailed in Table 4.1. Note that our datasets only contain a small number

of labeled incomparable and photobomb cases. For plains zebras only 53 incomparable

cases were explicitly labeled, while the other 300 were generated using heuristics. For

Grévy’s zebras, there are no incomparable cases because all annotations have a right-side

viewpoint. Therefore, the primary focus of our experiments will be separating positive

from negative matching states.

After sampling, we have a set of annotation pairs and each is associated with a

ground truth matching state label of either positive, negative, or incomparable. Addition-



123

ally, each pair is also labeled as either a photobomb or not a photobomb. For each pair we

construct a pairwise feature vector as described in Section 4.1.

We split this dataset of labeled annotation pairs into multiple disjoint training and

testing sets using grouped stratified k-fold cross validation (we use 3 folds). Note that

this grouping introduces a slight variation on standard stratified k-fold cross validation.

First, we enforce that each sample (a pair of annotations) within the same name or be-

tween the same two names must be placed in the same group. Then, the cross validation

is constrained such that all samples in a group are either in the training or testing set for

each split. In other words, this means that a specific individual cannot appear in both the

training and testing set. The same is true for specific pairs of individuals. By grouping

our cross-validation folds in this way, we ensure that the classifier cannot exploit indi-

vidual specific information to improve its predictions on the test set. This increases our

confidence that our results will generalize to new individuals.

For each cross validation split, we train the matching state and photobomb-state

classifier on the training set and then predict probabilities on each sample in the testing

set. Because the cross validation is k-fold and the splits are disjoint, each sample appears

in a testing set exactly once. This means that each sample in our dataset is assigned

match-state and photobomb-state probabilities exactly once. Because each prediction is

made using classifiers trained on disjoint data, the predictions will be unbiased. Thus,

each sample in the dataset has a match-state and photobomb-state probability. Therefore,

we can use all sample pairs to evaluate the performance of each classifier.

In our experiments we compare these predicted match-state probabilities to the

scores generated by LNBNN. In order to do this, we must generate an LNBNN score

for each pair in our sample. This is done by first taking the unique set of annotations in

the sample of pairs. Then, we use these annotations as a database. We issue each anno-

Table 4.1: Database statistics for the pairwise experiment Starting with a database of

annotations with name labels, we sample a set of annotation pairs to evaluate

our pairwise classifiers with.

Names Annots Positive Negative Incomparable Photobombs

Plains zebras 1202 5720 16583 30376 353 286
Grévy’s zebras 771 2283 5002 13008 0 76
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tation as a query, taking care to ignore self-matches. Any (undirected) pair in our dataset

that appears as a query / database pair in the ranked list is assigned that LNBNN score.

If the same pair is in two ranked lists, then the maximum of the two scores is used. Any

pair that does not appear in any ranked list (because LNBNN failed to return it) is implic-

itly given a score of zero. Note that the scores from the LNBNN ranking algorithm can

only be used to distinguish positive cases from non-positive pairs. Unlike the match-state

classifier, the LNBNN scores cannot be used to distinguish non-positive cases as either

negative or incomparable. Later in Chapter 5, it will be vitally important to distinguish

these cases, but for now, in order to fairly compare the two algorithms, we only consider

positive probabilities from the match-state classifier.

We have now predicted match-state probabilities, photobomb-state probabilities,

and one-vs-many LNBNN scores for each pair in our dataset. In the next subsections we

will analyze the predictions of each classifier. For both the match-state and photobomb-

state classifiers we will measure the raw number of classification errors and successes in

a confusion matrix. We will then use standard classification metrics like precision, recall,

and the Matthews correlation coefficient to summarize these confusion matrices. We

will also inspect the importance of each feature dimension of our pairwise feature vector

as measured during random forest learning. For each classifier we will present several

examples of failure cases to illustrate where improvements are can be made. Additionally,

we will compare the match-state classifier to LNBNN in two ways. First, we will compare

the original LNBNN ranking against a re-ranking using the positive probabilities. Second,

we will compare the ability of LNBNN and the match-state classifier to predict if a pair

is positive or not by looking at the distribution of positive and non-positive scores as well

as the ROC curves.

4.4.1 Evaluating the match-state classifier

The primary classifier predicts the matching state (positive, negative, incomparable)

of a pair of annotations. Each pair of annotations is assigned a probability for each of these

states, and those probabilities sum to one. In this context we classify a pair as the state

with the maximum predicted probability. However, in practice we will choose thresholds

for automatic classification where the false positive rate is sufficiently low.
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From these multiclass classifications we build a confusion matrix for plains and

Grévy’s zebras. These confusion matrices are shown in Table 4.2. In Table 4.4 we sum-

marize the information in each confusion matrix by computing the precision, recall, and

Matthews correlation coefficient (MCC) [254] for each class. The MCC provides a mea-

surement of overall multiclass classification performance not biased by the number of

samples contained in each class. An MCC ranges from +1, indicating perfect predictions,

to −1, indicating pathological inverse predictions, and 0 represents random predictions.

The measured MCC of 0.83 for plains zebras and 0.91 for Grévy’s zebras, indicates that

our match-state classifiers have strong predictive power.

Table 4.2: Match-state experiment confusion matrix This is the multiclass match-

state confusion for plains and Grévy’s zebras. The rows are the real (ground

truth) state, and the columns are the predicted states. Each pair is classified as

positive, negative, or incomparable depending on which state has the maximum

probability.

Negative Positive Incomparable
∑

real

Negative 29154 1217 5 30376
Positive 2622 13954 7 16583
Incomparable 65 14 274 353
∑

predicted 31841 15185 286

(a) Plains zebras match-state confusion matrix

Negative Positive Incomparable
∑

real

Negative 12777 231 0 13008
Positive 417 4585 0 5002
Incomparable 0 0 0 0
∑

predicted 13194 4816 0 18010

(b) Grévy’s zebras match-state confusion matrix
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Table 4.4: Match-state experiment evaluation metrics The multiclass match-state

evaluation metrics for plains and Grévy’s zebras are computed from the con-

fusion matrix. These metrics demonstrate that our match-state classifiers have

strong predictive power.

Precision Recall MCC Support

Negative 0.92 0.96 0.82 30376
Positive 0.92 0.84 0.82 16583
Incomparable 0.96 0.78 0.86 353

ave/sum 0.92 0.92 0.83 47312

(a) Plains zebras match-state metrics

Precision Recall MCC Support

Negative 0.97 0.98 0.91 13008
Positive 0.95 0.92 0.91 5002
Incomparable nan nan nan 0

ave/sum 0.96 0.96 0.91 18010

(b) Grévy’s zebras match-state metrics
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In addition to being strong predictors of match state, we show that the positive prob-

abilities from our classifiers can be used to re-rank the ranked list produced by LNBNN.

Using the procedure from our experiments in Section 3.5, we issue each annotation in

our testing set as a query and obtain a ranked list. Using the fraction of correct results

found at each rank, we construct a cumulative match characteristic (CMC) curve [249].

We denote this CMC curve as ranking. Then we take each ranked list and compute

match-state probabilities for each top ranked pair of query/database annotations. We use

the positive probabilities to re-rank the lists, and then we construct another CMC curve

corresponding to these new ranks. This re-ranked CMC curve is denoted as rank+clf.

The results of this experiment — illustrated in Figure 4.8 — clearly demonstrate that the

number of correct matches returned at rank 1 is improved by re-ranking with our pairwise

classifier.

(a) Plains zebras

(b) Grévy’s zebras

Figure 4.8: Re-ranking experiment Re-ranking the top LNBNN results using the pos-

itive probabilities from the match-state classifier improves the number of cor-

rect matches at rank 1 for both plains and Grévy’s zebras.
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4.4.1.1 Binary positive classification

Although the accuracy of multiclass predictions is important, the most important

task in animal identification is to determine when a pair of annotations is positive and

when it is not. Therefore, we design an experiment that tests how well our match-state

classifier can distinguish positive pairs from other cases. We will compare our learned

classifiers to a baseline method that simply uses the LNBNN scores. We begin this com-

parison by illustrating histograms of LNBNN scores and positive pairwise probabilities

for positive and non-positive cases in Figure 4.10. The advantages of the pairwise scores

are immediately noticeable. The pairwise scores provide a superior separation between

positive and non-positive cases. Furthermore, the pairwise scores range from zero to one,

which makes them easier to interpret than the unbounded LNBNN scores.

We can make a more direct and precise comparison by considering both LNBNN

scores and positive pairwise probabilities as binary classifiers. In this context, we can

measure the separability of each method using the area under an ROC curve. The ROC

curves comparing the LNBNN scores and the learned probabilities are illustrated in Fig-

ure 4.12. In all cases the learned AUC is significantly better than the AUC of LNBNN .

For plains zebras, the pairwise AUC is 0.97 and the LNBNN AUC is 0.82. For Grévy’s

zebras the pairwise AUC is 0.99, and the LNBNN AUC is 0.89. These experiments clearly

demonstrate that the pairwise classifier outperforms LNBNN in this classification task.

In addition to illustrating the effectiveness of our classifiers when classifications are

made for all samples, the ROC curves — which plot the true positive rate and the false

positive rate as a function of a threshold — demonstrate that an operating point can be

chosen to automatically classify a significant number of positive pairs while making very

few mistakes. For plains zebras, a true positive rate of 0.25 results in 4146 true positives

and only 38 false positives. For Grévy’s, an operating point with a true positive rate of 0.5,

results in 2501 true positives and only 28 false positives. Therefore, by carefully selecting

an operating point we can bypass a significant number of manual reviews without making

a significant number of mistakes when adding new annotations to our dataset.
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(a) Plains zebras LNBNN (b) Plains zebras learned

(c) Grévy’s zebras LNBNN (d) Grévy’s zebras learned

Figure 4.10: Positive score histogram experiment This shows positive scores of

LNBNN (left) and the pairwise algorithm (right) for pairs of plains (top)

and Grévy’s (bottom) zebras. The learned probabilities are more separable

and more interpretable than LNBNN scores. Note that in this plot, negative

refers to annotation pairs with a non-positive match-state label.

(a) Plains zebras (b) Grévy’s zebras

Figure 4.12: Positive match-state ROC experiment This shows the positive match-

state ROC for scores computed by the pairwise classifier and LNBNN. The

pairwise classifier significantly improves the separation of positive and non-

positive pairs.

4.4.1.2 Feature importance

To better understand which feature dimensions are the most useful for classification,

we measure the “mean decrease impurity” (MDI) [255] of each feature dimension. The

MDI is a measure of feature importance that is computed during the training phase. As

each decision tree is grown, for each node, we record the number of training samples

of each class that reach it. This is used to compute the impurity of each node, i.e. the

entropy of class labels. Each node is weighted using the fraction of total samples that

reach it. The weighted impurity decrease of a node is its weighted impurity minus the

weighted sum of its children’s impurity. The MDI for a single feature dimension in a
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single tree is computed as the weighted impurity decrease of all nodes using that feature.

The overall MDI for the forest is obtained by averaging over all trees.

Using the MDI we “prune” the dimensions of our sample feature vectors by remov-

ing the least important dimensions. We measure the effect of pruning on classification

accuracy using a greedy algorithm. First we learn a random forest on a training set and

compute the MCC on a test set. Then we find the feature dimension with the lowest MDI

and remove it from the dataset. We repeat these two steps until there is only a single

feature dimension remaining.

The impact of pruning on classification accuracy is illustrated in Figure 4.14, where

we plot the MCC as a function of the number of feature dimensions remaining. The results

of this experiment indicate that there is a small increase in classification accuracy from

pruning features dimensions. We find that reducing the number of feature dimensions to

25 increases the MCC by 0.0155 for plains zebras, and using 61 dimensions increases the

MCC by 0.0048 for Grévy’s. Note that once the number of feature dimensions falls below

∼20 the performance starts to degrade and suffers a harsh drop at ∼10 dimensions. This

suggests that these top features are the most important to making a match-state prediction.

The numeric importance of these top 10 pruned feature dimensions is reported in

Table 4.6. For both species we find that the most important features are statistics involv-

ing the ratio score. These statistics indicate the distinctiveness and similarity of a pair

of annotations. Statistics about the spatial verification error, which signifies when the

matches are not well aligned, are also important for both species. For plains zebras, the

global viewpoint is important because the dataset contains incomparable examples.

Even though we have shown that a small improvement can be made by pruning to

only the most important feature dimensions, we choose to use full 131 dimensions in the

remainder of our experiments because the overall performance gain is small.
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(a) Plains zebras (b) Grévy’s zebras

Figure 4.14: Pruning feature dimensions for match classification This shows the ef-

fect of pruning the least important feature dimensions on the MCC of the

match-state classifier. We find that a reduced subset of feature dimensions

results in a slight increase in classification accuracy over the original 131
features. However, there is a point at which reducing the number of feature

dimensions significantly degrades performance.
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Table 4.6: Important features for match-state prediction These are the top 10 most

important feature dimensions for predicting the match-state (positive, negative,

incomparable) for a pair of annotations, after removing the least important

dimensions.

Dimension Importance

mean(ratio_score[ratio<0.625]) 0.1246
mean(ratio_score[ratio<0.8]) 0.1041
std(ratio_score[ratio<0.8]) 0.0779
med(ratio_score[ratio<0.625]) 0.0712
std(ratio_score[ratio<0.625]) 0.0681
med(ratio_score[ratio<0.8]) 0.0625
global(delta_gps) 0.0446
global(delta_time) 0.0364
global(delta_view) 0.0344
med(sver_err_xy[ratio<0.625]) 0.0330

(a) Plains zebras

Dimension Importance

mean(ratio_score[ratio<0.8]) 0.1222
mean(ratio_score[ratio<0.625]) 0.1078
std(ratio_score[ratio<0.625]) 0.0947
std(ratio_score[ratio<0.8]) 0.0921
med(ratio_score[ratio<0.8]) 0.0653
med(ratio_score[ratio<0.625]) 0.0544
med(sver_err_xy[ratio<0.8]) 0.0369
med(sver_err_xy[ratio<0.625]) 0.0304
mean(match_dist[ratio<0.625]) 0.0285
mean(sver_err_ori[ratio<0.8]) 0.0238

(b) Grévy’s zebras
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4.4.1.3 Failure cases

Lastly we investigate several causes of failure. The primary reasons that cause the

match-state classifier to fail are similar to those that create difficulty for the ranking algo-

rithm. These were previously discussed in Section 3.5.8. Factors such as viewpoint, qual-

ity, and occlusion are inherently challenging because they reduce the similarity between

matching descriptors, and increase the disparity between the annotations. This makes it

difficult to correctly establish and spatially verify feature correspondences. Photobomb-

ing animals and scenery matches also pose a challenge to the match-state classifier, often

causing it to produce ambiguous probabilities.

We separate failure cases into three main categories: (1) failure to classify a pair

as positive, (2) failure to classify a pair as negative, and (3) failure to classify a pair as

incomparable. The examples in Figure 4.16 illustrate the first and most important failure

case category. Due to occlusion, quality, and viewpoint, the established correspondences

were not distinctive enough for the classifier to confidently predict positive. However,

in all but the last case the probabilities are ambiguous, which implies that improvements

could be made to fix these failures. In the last case, only a few distinctive matches were

made, which suggests that procedure that establishes feature correspondences could be

improved.

Examples of the second case are illustrated in Figure 4.18. These examples were

incorrectly classified as positive, even though they are negative. In two cases this is due

to scenery matches and photobombing animals. In the other cases the pairwise classifier

matches similar regions of the animal, but it is unable to key in on the strong negative

evidence provided by different distinctive patterns on corresponding body parts of the

animal. In the future, algorithms powered by convolutional neural networks may be able

to take advantage of this strong negative evidence. For the third case, it is not surpris-

ing that the examples in Figure 4.20 were not labeled as incomparable because only a

small amount of incomparable training data was available. Furthermore, photobombs and

scenery matches also seem to cause a problem for incomparable examples. Note that in

the majority of all three types of failure, the examples have non-extreme probabilities as-

signed to each state. This demonstrates that the classifier is not confident in these failed

predictions.
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Interestingly, inspection of the failure cases revealed several labeling errors in the

database. The examples illustrated in Figure 4.22 all show pairs of annotations with

non-positive labels that should have been labeled as positive. Note that the positive prob-

abilities from two of these examples are very close to 1.0, indicating that the classifier is

confident that these ground truth labels are incorrect. Furthermore, these success cases

were found in the context of noisy ground truth labels, showing that our classifier is robust

to errors in ground truth labels.
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Figure 4.16: Positive pairwise failure case These pairs are all positive, but the match-

state classifier predicts each as negative. These failures can be attributed

to poor image quality, occlusion, and viewpoint variations. Notice that the

positive probability is well above zero in all but one case.
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Figure 4.18: Negative pairwise failure case These pairs are negative, but the classifier

predicts positive. Notice that the negative probability in each case is not

close to zero. While the classifier can recognize that the matches may be

weak, it is not able to explicitly recognize that the same region on two ani-

mals contains different distinctive patterns. Photobomb and scenery matches

also contribute to negative failure cases.
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Figure 4.20: Incomparable pairwise failure case These pairs are incomparable, but

the classifier predicted either positive or negative. In part this is due to a

small amount of available incomparable training data. In the top two exam-

ples the confidence in the incorrect negative prediction is low. In the bottom

two examples, scenery matches and photobombing animals hinder the clas-

sifier’s ability to predict incomparable.
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Figure 4.22: Errors in the match-state ground truth Ground truth errors in the

database are the reason for several match-state failure cases. In these ex-

amples the classifier picks the correct answer even though the ground truth

is incorrect. Note that the probability assigned to the true state of each pair

is close to 1.0.
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4.4.2 Evaluating the photobomb-state classifier

In this subsection we perform a set experiments — similar to those used to evalu-

ate the match-state classifier — to demonstrate the effectiveness of our photobomb-state

classifier. Because there are only a few photobomb training examples, the random forest

is not able to learn strong probabilities. In the initial design of these experiments, a pair

was classified as a photobomb if its probability was greater than 0.5, but we found that

this caused the MCC of Grévy’s zebras to drop to 0.0. However, because this is a binary

classification problem we can choose any threshold as an operating point and classify a

pair as a photobomb if its probability is above that threshold and as not a photobomb oth-

erwise. Therefore, for each dataset, we choose a photobomb-state probability threshold

to maximize the MCC as illustrated in Figure 4.24. We classify a pair as a photobomb if

its probability is above 0.13 for plains zebras and 0.17 for Grévy’s zebras. Using these

adjusted thresholds, the overall performance measured using the classification confusion

matrices in Table 4.8 and evaluation metrics in Table 4.10.

(a) Plains zebras (b) Grévy’s zebras

Figure 4.24: Maximizing the photobomb MCC Because there are not many labeled

photobomb pairs, the probabilities returned by the photobomb-state classi-

fier are low. However, good classification results can be achieved by choos-

ing an operating point that maximizes the MCC. In each plot the legend

indicates the threshold corresponding to the maximum MCC.

Due to the small amount of available training data, the performance of the photobomb-

state classifier is weaker than the match-state classifier. By choosing the appropriate

thresholds we achieve an MCC of 0.34 for plains zebras and 0.40 for Grévy’s zebras.

These scores indicate that each photobomb-state classifier has weak but significant pre-

dictive power. While these MCCs are not overwhelmingly strong, they do demonstrate

that each classifier is able to learn from only a few labeled training examples, and it seems

likely that the MCCs would significantly improve with more labeled training data. From

these measurements we can conclude that the photobomb-state classifier is learning.
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Table 4.8: Photobomb-state adjusted confusion matrix This shows the confusion

matrix after adjusting the probability threshold to maximize the MCC. The

columns indicate predicted classes, and the rows indicate real (ground truth)

classes. The final column indicates the number of examples of each class.

Not Photobomb Photobomb
∑

real

Not Photobomb 46814 212 47026

Photobomb 187 99 286
∑

predicted 47001 311

(a) Plains zebras photobomb adjusted confusion matrix

Not Photobomb Photobomb
∑

real

Not Photobomb 17913 18 17931
Photobomb 55 24 79
∑

predicted 17968 42 18010

(b) Grévy’s zebras photobomb adjusted confusion matrix

Table 4.10: Photobomb-state adjusted evaluation metrics These evaluation metrics

are computed from the confusion matrix after adjusting the probability thresh-

old to maximize the MCC.

precision recall mcc support

Not Photobomb 1.00 1.00 0.33 47026

Photobomb 0.32 0.35 0.33 286

ave/sum 0.99 0.99 0.33 47312

(a) Plains zebras adjusted photobomb metrics

Precision Recall MCC Support

Not Photobomb 1.00 1.00 0.41 17931
Photobomb 0.57 0.30 0.41 79

ave/sum 1.00 1.00 0.41 18010

(b) Grévy’s zebras adjusted photobomb metrics
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Our conclusion that the photobomb-state classifier is learning is supported the top

10 most important features as measured using the MDI. It makes intuitive sense that the

important features — illustrated in Table 4.12 — would be the ones selected by the ran-

dom forest learning algorithm. Because pairs of annotations taken around the same place

and time are more likely to be photobombs, each random forest places the most weight on

global feature dimensions such as time delta, GPS delta, and speed. The classifiers also

makes use of the spatial position of the feature correspondences, which can be indicative

of a photobomb (e.g. when all the matches are in the top left corner of an annotation).

Because the random forest seems to be selecting reasonable features, the main source of

weakness is likely due to the amount of training data.

We gain further insight into the photobomb-state classifier by considering several

failure cases examples, which are illustrated in Figure 4.26. In each example we ob-

serve that the classifier is either confused or it does not have enough information to label

a pair as a photobomb. Furthermore, the classifier was able to find several new photo-

bomb pairs that were mislabeled in the database. We illustrate several of these mislabeled

cases in Figure 4.28. Notice that many of the probabilities predicted for these cases are

well above the thresholds. Predicting high probabilities for these undiscovered photo-

bomb cases indicates that the photobomb-state classifier is stronger than our measure-

ments suggest. These mislabeled ground truth cases also help explain why the predicted

probabilities are so low; the learning algorithm is encouraged to incorrectly classify them.

Reviewing and relabeling all of these cases would improve results by both removing noise

from the training set and increasing the number of labeled examples.
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Table 4.12: Important features for photobomb-state prediction These are the top 10
most important features for predicting if a pair of annotations has a photo-

bomb. Features like speed and GPS delta are important because photobombs

are more common in pairs of annotations taken at the same time and place.

Features related to the spatial distribution of the feature correspondences are

important because photobombing animals often appear off to one side of an

annotation.

Dimension Importance

global(delta_time) 0.0383
global(delta_gps) 0.0314
std(norm_x1[ratio<0.8]) 0.0262
std(norm_x2[ratio<0.625]) 0.0243
std(norm_x2[ratio<0.8]) 0.0209
std(norm_x1[ratio<0.625]) 0.0198
mean(norm_x2[ratio<0.8]) 0.0193
mean(norm_x2[ratio<0.625]) 0.0191
mean(norm_x1[ratio<0.625]) 0.0182
med(norm_x2[ratio<0.625]) 0.0176

(a) Plains zebras photobomb importance

Dimension Importance

global(delta_time) 0.0440
global(speed) 0.0339
global(delta_gps) 0.0331
std(norm_x2[ratio<0.625]) 0.0312
std(ratio_score[ratio<0.8]) 0.0279
std(norm_x2[ratio<0.8]) 0.0278
std(norm_x1[ratio<0.8]) 0.0273
std(ratio_score[ratio<0.625]) 0.0244
global(delta_qual) 0.0226
global(max_qual) 0.0200

(b) Grévy’s zebras photobomb importance
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Figure 4.26: Photobomb failure cases In the top example the classifier incorrectly pre-

dicts photobomb due to the alignment of the annotations. In the next case

down, the classifier incorrectly predicts photobomb, but no matches were

made between the photobombing animals. The last two cases the classifier

incorrectly predicts not photobomb, but the confidence of the prediction is

low.
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Figure 4.28: Errors in the photobomb-state ground truth Ground truth errors in the

database are the reason for several photobomb-state failure cases. It is en-

couraging that the photobomb-state classifier is able to detect errors in the

ground truth even given only a few training examples.
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4.4.3 Classifier experiment conclusions

In these experiments we have demonstrated that our pairwise match-state classifier

is able to reliably separate positive from negative and incomparable cases. When making

automatic decisions, these probabilities have several advantages over the LNBNN scores

from Chapter 3. Not only do they have more predictive power, they are interpretable, and

they always range between 0 and 1.

We will use these classifiers to make automatic decisions about pairs of annotations

where the match-state probability is above a threshold. Our experiments have shown

that it is possible to select a threshold where the false positive rate is sufficiently low.

Furthermore, the classifier is able to improve the ranking algorithm by re-ranking its

results. Lastly, because the classifier predicts probabilities independent of their position

in the ranked list, it can be used to determine when a query individual is new — i.e. does

not have a correct match in the database.

The performance of secondary photobomb classifier is weaker, but this is likely

due to a small amount of training data. Even in its weak state, it can be used to prevent

automatic review of some photobomb cases by adjusting the classification threshold to be

less than 0.5. Because the photobomb classifier can only prevent automatic decisions and

does not make them, the cost of including it in our algorithms is small, and by doing so

we will increase the amount of labeled training data from which a stronger photobomb

classifier can be bootstrapped.

4.5 SUMMARY OF PAIRWISE CLASSIFICATION

In this chapter we have constructed a verification mechanism that can predict the

probability that a pair of annotations is positive, negative, or incomparable. We have

also constructed a secondary classifier that can predict when — namely in the case of

photobombs — a pair of annotations might confuse the primary match-state classifier.

This was done by constructing a feature vector that contains matching information about

a pair of annotations. We have constructed a representative training set by selecting hard,

moderate, and easy training examples. We used the random forest learning algorithm to

train our classifiers. Our experiments demonstrate that the match-state classifier is able to

strongly separate positive and negative cases. The performance of the photobomb-state
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classifier was weaker, but could likely be improved with more training data.

Based on our experiments, it is clear that the ranking algorithm is improved by an

automatic verifier, but by themselves ranking and verification are not enough to robustly

address animal identification. There is no mechanism for error recovery, nor is there a

mechanism for determining when identification is complete. This means the operating

point for the automatic review threshold must be set conservatively to avoid any errors,

which results in more work for a human reviewer. These issues are addressed in Chapter 5

using a graph-based framework to manage the identification process. This framework will

use graph connectivity to further reduce the number of required manual reviews, detect

when errors have occurred, recover from the errors, and stop the identification process in

a timely manner.



5. IDENTIFICATION USING CONNECTIVITY IN A DECISION

GRAPH

In this chapter we frame the problem of animal identification in terms of constructing a

decision graph. In this graph, each node is an annotation, and each edge represents a de-

cision made between two annotations. Edges determine if two annotations are the same

(positive) or different (negative) individuals or if they cannot be compared (incompara-

ble). Using the connectivity of the decision graph, we naturally address the problem of

animal identification. Assuming no edges are incorrectly labeled, each connected compo-

nent of positive edges are all annotations from the same individual animal. We will refer

to these as positive connected components (PCCs). We call a graph id-complete if there is

at least one negative edge between all pairs of PCCs. In this case all labeled individuals

must be distinct, and we have therefore completed identification. Alternatively, if every

pair of PCCs either has a negative edge between them except for pairs of PCCs where

all possible edges between them are incomparable, then we know that the data cannot be

used to determine if those incomparable PCCs are the same or different. Removing the

assumption that all edges are correctly labeled, we call a decision graph inconsistent if

any PCC contains a negative edge because it implies that an edge has been mislabeled.

Therefore, stated abstractly, goal of graph identification is to determine a correct, consis-

tent, and id-complete set of edges in the decision graph.

In the most general case, the decision graph is initialized with an empty set of edges.

This captures the challenge posed by events like the GZC from Section 1.3, where we are

given a set of annotations without name labels. In essence, each annotation starts by

itself as an individual animal, but because there are no negative edges, we cannot be sure

that this is the correct name labeling. In order to refine the name labeling, we add edges

to the decision graph, gradually moving from a state of zero confidence that the name

labelings are correct to a state of high confidence. However, it is important to note that

the graph algorithm does not require that we start in an empty state. Given a known set

of annotations with name labels and one or more new annotations with unknown name

labels, we can add these new annotations to the existing database simply by labeling the

147
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graph with edges that captures our current knowledge. Simply put, this means each known

individual is a PCC, there is one negative edge between each pair of PCCs, and the new

annotations are added as nodes without any edges. Regardless of the initial state, graph

identification proceeds to complete the decision graph. For the remainder of this chapter,

without loss of generality, we can assume that the graph starts in an empty state.

To construct the decision graph, we develop a semi-automatic review procedure

that combines the ranking and verification algorithms presented in Chapters 3 and 4. The

ranking algorithm will be used to suggest candidate edges to be placed in the graph, and

the verification algorithm will be used to automatically review as many edges as possible.

The key reason for combining these algorithms with a decision graph is to take advan-

tage of its connectivity information. Connectivity not only identifies the individuals, but

it can also be used to develop graph measures of redundancy, completeness, consistency,

and convergence. By combining these graph measures with the ranking and verification

algorithms we can prioritize edges for review based on both their pairwise probabilities

and their ability to affect the consistency of the graph, which in turn allows us to: (1) in-

crease confidence that the identifications are correct, (2) reduce the number of manual

reviews, (3) detect and recover from review errors, and (4) determine when identification

is complete.

An important property of the graph identification framework is that it is agnostic to

the underlying computer vision procedures, which are abstracted into three components:

(1) a ranking algorithm used to search for candidate positive edges, (2) a verification al-

gorithm used to automatically review edges, and (3) a probability algorithm used assign

probabilities to edges (note this is typically a by-product of the ranking or verification

algorithm). In this thesis we use ranking algorithm from Chapter 3, and the verifica-

tion algorithm from Chapter 4 to define these components because these are suitable for

identifying textured species. However, while graph identification benefits from accurate

computer vision subroutines, it can stand alone without them. This means that existing

identification algorithms that only define a subset of these procedures (e.g. contour-based

rank-only identification of humpback whales and bottlenose dolphins) could be seam-

lessly incorporated into our framework and realize the benefits of graph identification

(e.g. a reduced number of manual reviews and error recovery mechanisms). Furthermore,
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because pairwise decisions are gathered and maintained by this framework, verification

algorithms can be retrained and improved, moving closer to a fully-automatic algorithm.

The first section (Section 5.1) of this chapter formalizes the decision graph and

summarizes the priority-based review procedure used to construct it. This provides an

overview of each component of the processes. Each of these components is then discussed

in further detail in Sections 5.2 to 5.6. Section 5.7 experimentally demonstrates the ability

of the graph identification algorithm to reduce the number of manual reviews and recover

from decision errors. Section 5.8 concludes and summarizes the chapter.

5.1 THE DECISION GRAPH

The graph identification algorithm is a review procedure formalized around the no-

tion of a decision graph G = (V,E) whose nodes are annotations and whose edges are

suggested by a ranking algorithm (LNBNN in our case) and decided upon by a combi-

nation of the probabilities output by a verification algorithm and by manual review. The

edge set E = Ep ∪ En ∪ Ei is composed of three disjoint sets. Throughout this chapter

we will refer to the set that an edge belongs to as the label of that edge. Each edge in

Ep is positive, meaning that it connects two annotations determined to be from the same

individual. Each edge in En is negative, meaning that it connects annotations determined

to be from different individuals. Finally, each edge in Ei is incomparable, meaning that it

connects two annotations where it has been determined that there is not enough informa-

tion to tell if they are from the same individual (e.g. when one annotation shows the left

side of an animal and another other shows the right side). An example of a decision graph

with all three edge types is illustrated in Figure 5.1. The goal of graph identification is to

construct these edges.

The most important task is to determine the positive edges Ep. This is because each

connected component in the subgraph Gp = (V,Ep) corresponds to a unique individual.

Producing an accurate set of these positive connected components (PCCs) addresses the

larger problem of animal identification. However, an algorithm that only determines posi-

tive edges is not enough. This is because the algorithm may have failed to find all positive

edges, resulting in two unconnected PCCs that should be merged into one. To ensure that

this is not the case we must turn towards negative edges.
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Figure 5.1: A synthetic decision graph This is a consistent synthetic decision graph

with positive, negative, and incomparable edges. The color of each node rep-

resents the positive connected component (PCC) it belongs to.

We can gain confidence that all positive edges have been found by using negative

edges En, which provide direct evidence that two annotations are different individuals. A

correctly labeled negative edge between two PCCs means that no other unreviewed edge

between those PCCs can be positive. Another important case is when a negative edge is

contained within a PCC. When this happens, the PCC is inconsistent, and it implies that

the PCC contains at least one mislabeled edge. Whenever an inconsistency is detected,

we resolve it using the algorithm that we will define in Section 5.5.

Lastly, incomparable edges, Ei, simply signify that a positive or negative decision

cannot be made. Whenever an edge is not labeled as positive, it is critically important

to the construction of the decision graph that this non-positive edge is distinguished as

either negative or incomparable. Negative edges restrict what new edges can be added

because they carry information about the completeness and consistency of the graph. In

contrast, incomparable edges do not. Incomparable edges can exist internally in a PCC

without causing inconsistencies or between two PCCS without precluding them from

being matched at a later point. In the case where all edges between two PCCs are in-

comparable and those PCCs are complete, then we know the current data is not enough
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to determine if those PCCs are the same or different. In our datasets most images were

taken to reduce the number of incomparable PCCs in order to simplify the sight-resight

analysis, where all PCCs must be comparable to each other, but incomparable cases do

exist. Thus, in our context incomparable edges play a minor but necessary role.

Using the connectivity of these edges, we can reduce the number of manual reviews

needed. We now make several observations assuming that each edge is reviewed correctly.

To reduce the number of potential reviews, notice, that once a group of nodes is connected

by (a tree of) positive edges, all those nodes in that PCC can be inferred to belong to

the same individual, and it is not necessary to consider any other edge internal to the

PCC for review. Likewise, once a negative edge has been placed between two PCCs, all

edges between those PCCs can be ignored. By ignoring these redundant edges we can

reduce the number of reviews. Furthermore, we can construct a deterministic termination

criterion; if a negative edge is placed between every pair of PCCs, then all individuals

must have been discovered and identification has converged. We call such a graph id-

complete because when all vertices in a PCC are collapsed into one, the resulting meta-

graph is complete.

Unfortunately, there are two issues with these observations. First, they depend on

the condition that each edge was correctly reviewed. In fact, we know that both the

verification algorithm and human reviewers are sometimes wrong. We therefore will

introduce redundancy into our graph that allows the algorithm to detect and correct errors,

trading off the level of redundancy with the sophistication of the errors that may be caught.

A small amount of redundancy is desirable because:

• PCCs with redundant edges are less likely to contain errors.

• Redundancy can potentially introduce inconsistency into a PCC, which signifies

that an error has occurred.

Therefore, we will define a redundancy criterion in Section 5.2 which ignores edges

within and between PCCs, but only after they meet a minimum level of redundancy.

Additionally, the deterministic termination criterion would require that each pair

of PCCs has a redundant set of negative edges between them before the algorithm stops.

However, the number of edges that need review grows quadratically. Therefore, unless

the automatic algorithm is perfect or the dataset is small, the number of negative reviews
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needed to converge will be too large for a human to handle. We address this concern

in Section 5.6 using a probabilistic termination criterion.

5.1.1 The review algorithm

The review algorithm that produces the edges of a decision graph is outlined in Al-

gorithm 1. Akin to a segmentation algorithm [256] that starts with an over-segmentation

of an image, the identification graph starts with an empty set of edges, G = (V, {}), so

in essence each annotation starts by itself as an individual animal, but because there are

no negative edges we cannot be confident that any pair of annotations should indeed be

given different labels. Therefore, the algorithm proceeds to prioritize and add positive

edges that merge multiple annotations into the same PCC, negative edges that indicate

that two annotations are different individuals, and incomparable edges that prevent two

annotations from being labeled as positive or negative. Throughout the main algorithm,

the graph is maintained in a consistent state, which means that each PCC has no internal

negative edges. Note, that while we describe the algorithm starting from an empty graph,

without loss of generality, the edges in the graph can be initialized to reflect a previously

known labeling. Thus, the algorithm can address the case where nothing is known, new

images are being added to an existing dataset, or multiple datasets are being combined.

Algorithm 1 Overview of the graph identification review procedure

While the graph has not converged:

(1) Generate and prioritize candidate edges

(2) Insert candidate edges into a priority queue

(3) While the priority queue is not empty:

(3.1) Pop an edge from the priority queue

(3.2) Make a decision and add the edge to the graph

(3.3) If the edge causes an inconsistency drop into inconsistency recovery mode

(3.4) Update the priority queue based on the new edge

(3.5) If candidate edges require refresh, break

The first step of the algorithm is to generate candidate edges and predict probability

measures (positive, negative, or incomparable) for each candidate edge. In the next step

each edge is entered into a priority queue with a priority based first on its ability to be

automatically reviewed and then on its positive probability. Next, the algorithm enters a

loop where the next candidate edge is selected, a decision is made about this edge — either
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automatically (as much as possible) or by the user — and it is added to the graph. The

algorithm proceeds toward convergence by removing candidate edges from the priority

queue, either directly from the top of the queue or indirectly by eliminating candidate

edges that are no longer needed. A candidate edge is no longer needed when there are

sufficient redundancies in the edge set within or between its PCCs. A pair of PCCs is

complete when there are enough negative edges between them.

Each new edge addition could trigger two important events: (1) a merge — addi-

tion of a positive edge between different PCCs combines them into one PCC, and (2) an

inconsistency — addition of either a negative edge within a PCC or a positive edge be-

tween PCCs that already have a negative edge between them creates an inconsistent PCC.

Handling a merge is largely a matter of bookkeeping and can be done efficiently using

a data structure that can dynamically maintain connected components [257]. Finding an

inconsistency, however, drops the user into inconsistency recovery mode which alternates

between hypothesizing one or more edges to fix and manually verifying these edges with

the user until consistency is restored.

Finally, the outer loop of the overall algorithm allows the ranking algorithm to

generate additional candidate edges — this allows the ranking algorithm to take advantage

of more subtle matches as the PCCs begin to form. The priority queue will gradually be

emptied as each PCC obtains a sufficiently redundant set of positive edges and enough

negative edges to be complete.

Details of each step in the review algorithm are described in the following sections.

First we describe the redundancy criterion in Section 5.2. Then we will define candidate

edge generation in Section 5.3 and decision-making in Section 5.4. Inconsistency recov-

ery is covered in Section 5.5. Finally, we describe the refresh and termination criteria

in Section 5.6.

5.2 POSITIVE AND NEGATIVE REDUNDANCY

In this section we define criteria that (1) increases our confidence that PCCs are

correct by enforcing a minimum level of redundancy and (2) prevents edges that exceed

this redundancy from being reviewed. At a minimum each PCC must be a tree of positive

edges, but when errors can occur, it’s difficult to be confident that all nodes in the PCC



154

are really annotations from the same individual. By adding a redundant edge we either

increase the confidence that other edges are correct or detect an inconsistency which can

be resolved with the algorithm in Section 5.5. However, the gains in confidence from

adding each additional edge are diminishing. Therefore, it is desirable to achieve a min-

imum level of redundancy, but once this has been achieved we should prevent additional

redundant edges from being reviewed. We formalize this minimum level of redundancy

in two forms. The first is for positive edges within PCCs and the second is for negative

edges between PCCs.

(1) positive-redundancy — A PCC is k-positive-redundant if its positive subgraph is k-

edge-connected (contains no cut-sets involving fewer than k positive edges [258]),

or if the PCC has k or fewer nodes and the union of positive and incomparable

edges is a complete graph.

(2) negative-redundancy — A pair of PCCs C and D is k-negative-redundant if there

are k negative edges between C and D, or if there are |C| · |D| negative or incom-

parable edges between them.

(a) (b) (c)

(d) (e) (f)

Figure 5.3: Examples of k-redundant PCCs This shows examples of positive (top)

and negative (bottom) redundancy. The positive edges are colored blue and

the negative edges are colored red. Choosing the level of redundancy is a

trade-off between the number of required reviews and the confidence that the

reviews are correct.

The example in Figure 5.3 illustrates different levels of redundancy. To understand
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these criteria better, consider what it means for a PCC that has been determined to be

k-positive-redundant to have an undiscovered error. The error means that the PCC re-

ally should be split into (at least) two separate PCCs. Suppose these PCCs correspond

to animals C and D. If the combined PCC is k-positive-redundant then are k separate

undiscovered mistakes connecting C and D, and there must also be no negative edges

connecting C and D. This may be plausible if C were identical twins, but these tend not

to occur for species where the distinguishing markings (e.g. hip and shoulder of zebras)

are mostly random. In other words, an error only becomes undiscoverable if a reviewer

makes the same mistake with different annotations from the same individual k times.

Note that k can be different for positive and negative redundancy, but in our current im-

plementation we use k = 2 for both positive and negative redundancy.

5.2.1 Checking redundancy

We now describe how to check if a consistent PCC with n nodes and m edges is

k-positive-redundant. An PCC that contains a negative edge is inconsistent and is never

considered as positive-redundant. In the case where n ≤ k, the PCC is positive redundant

if all possible edges are either positive or incomparable. This can be determined in O(m)

by checking if the sum of the number of positive and incomparable edges between the

nodes in the PCC is equal to
(

n
2

)

. Otherwise, in the more interesting case, when n > k, a

PCC is positive-redundant iff it is k-edge-connected — i.e. it is impossible to disconnect

the nodes in the PCC by removing any set of k − 1 edges. In practice, we are primarily

concerned with the case when k = 2. This special case of 2-edge-connectivity is also

called bridge-connectivity, and can be tested for in O(n+m) [258],[259]. The basic idea

is to trace cycles encountered during a depth-first-search of the graph and mark all edges

that are part of a cycle. Any unmarked edge is not part of any cycle, and is called a bridge.

Removing any bridge edge would disconnect the PCC. Thus, if no bridge exists then the

PCC is 2-edge-connected.

In the general case when k > 2, edge-connectivity can be determined in O(mn)

amortized time [260]. This involves first computing a small (not necessarily the smallest)

dominating set. A small dominating set can be computed using a greedy algorithm that

starts with an empty set and iteratively adds an arbitrary node that is not in or adjacent to
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the current set until all nodes are in or adjacent to that set. Then an arbitrary node in the

dominating set is chosen. The local-edge-connectivity is computed between the chosen

node and every other node in the dominating set. The local-edge-connectivity between

two nodes is simply the maximum flow between those nodes, if all edge capacities are

equal to 1. The edge-connectivity of the entire PCC is the minimum of (1) the minimum

degree of the PCC and (2) the minimum computed local-edge-connectivity.

We now describe how to check if two PCCs C and D with sizes n1 and n2 are

k-negative-redundant. This can be done in O(n1n2) time using adjacency lists and set

intersections to check if the number of negative edges between the nodes in C and D is

greater than k. For each node in C we simply check if any node in D is in the adjacency

list (stored as a set) of that node. The number of times this is true is the number of negative

edges between C and D.

Using this redundancy criterion we are able to find and remove edges from the

priority queue that are no longer needed. When a positive edge is added within a sin-

gle PCC, we check for positive-redundancy. If this passes, all remaining internal edges

for that PCC may be removed from the priority queue. When a negative edge is added

between a pair of PCCs, we run the negative-redundancy check on the pair, and if this

passes, all remaining edges between the PCCs may be removed from the priority queue.

When a positive edge is added between a pair of PCCs, the two PCCs are merged into a

single new PCC C ′, and the above negative-redundancy check must be run between C ′

and all other PCCs having a negative edge connecting to C ′. It can be shown that if the

graph is in a consistent state, that these are the only updates required.

As a final note, consider the case where a PCC is composed of two positive k-

edge-connected subgraphs joined by a single positive edge. While the entire PCC is not

positive redundant, much of it is. In this case, we do not need to review any edge within

any k-edge-connected component of the PCC. We can dynamically remove these from the

priority queue by checking when a new edge popped off of the priority queue is within

an existing PCC. We can check if the local-edge-connectivity [260] — i.e. the maximum

flow — between the edge’s endpoints is at least k. If the local-edge-connectivity between

those nodes is at least k, then that edge is part of a k-edge-connected component and can

be ignored.
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5.2.2 Redundancy augmentation

In addition to determining if existing edges are redundant, it would be useful de-

termine a small set of edges that would make an existing PCC positive-redundant or two

PCCs negative-redundant. Reviewing these edges would help expose any undiscovered

errors in the graph.

To find edges that would complete positive-redundancy for a PCC, we compute

a k-positive-augmentation. This is equivalent to the problem of finding a minimum k-

edge-augmentation. When k = 2 the problem is called bridge augmentation and can

be computed O(m) [258] as long as all edges in the complement of the PCC can be

used in the augmentation. However, if the PCC contains incomparable edges, then these

edges cannot be used. We can address this by using a weighted variant of the problem,

setting the weights of the incomparable edges to ∞, and searching for a minimum cost

augmentation. However, the weighted variant of this problem is NP-hard, even for k = 2,

but can be approximated within a factor of 2 [261]. We make use of this algorithm later

in Section 5.3

To find a set of edges that would complete negative-redundancy for a pair of PCCs,

we compute a k-negative-augmentation. Computing this set of augmenting edges is triv-

ial. Initialize an empty augmenting set. Iterate through all combinations of nodes between

the two PCCs. For each combination of nodes, if there is no existing edge between those

nodes in the graph, add it to the augmenting set. Once k edges have been added to the

augmenting set or there are no more node combinations, stop and return the augmenting

set. Note, that we do not use this algorithm in practice because we use a probabilistic

termination criteria instead of enforcing that all pairs of PCCs are negative-redundant.

5.3 CANDIDATE EDGE GENERATION AND PRIORITIES

In this section we describe the first step of the algorithm where candidate edges are

generated and then prioritized for review. There many ways that candidate edges can be

generated. Different sets and orderings of candidate edges will impact different properties

of the graph at different rates. Therefore, we choose candidate edges to depend on what

properties of the graph we want to manipulate. In the context of identifying individual

animals, the most obvious manipulation is to reduce the number of PCCs in the graph by
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adding positive edges between existing PCCs, thus merging them into one. A less obvious

property that we can manipulate is the fraction of PCCs that are positive redundant. By

increasing this fraction to 1, we discover mistakes that have been made, which can be fixed

using the algorithm in Section 5.5. This ultimately decreases the likelihood that any PCC

contains a mislabeled positive edge. In each iteration outer loop of our main algorithm,

we alternate between first generating candidate edges to merge PCCs, and then generating

candidate edges to ensure that all PCCs are positive redundant.

To generate candidate edges that may merge existing PCCs we use the LNBNN

ranking algorithm from Chapter 3. We issue each annotation as a query to the ranking

algorithm, and form edges from the top results of the ranked lists. We then assign a

priority to each new candidate edge. We use the pairwise algorithm from Chapter 4 to

estimate the positive, negative, and incomparable probabilities of each edge. Any edge

whose maximum positive, negative, or incomparable probability is above the threshold

for automatic decision-making is ranked according to this probability. All other edges

are ordered by their positive probability. This ensures automatic decision-making is first,

followed by an ordering of the edges needed for manual review that are most likely to be

positive and therefore add the most information to the graph. It is desirable to add positive

decisions to the graph first because (1) they are the most important edges with respect to

determining the animal identities, and (2) larger PCCs increase the number of edges that

can be skipped using the redundancy criterion.

The first iteration of the outer loop the algorithm generates edges using the ranking

algorithm. Review of these edges continues until the priority queue is empty, or we de-

termine that the candidate edges should be refreshed using the algorithm we will describe

in Section 5.6. This ends the current inner loop, and as long as the algorithm has not

converged, it proceeds to the next iteration of the outer loop. In this next iteration, we

generate candidate edges to ensure that all PCCs are positive redundant.

To generate candidate edges that will make PCCs positive redundant, we use the

positive-augmentation algorithm from Section 5.2.2 to generate edges. These edges are

assigned priorities in the same way, however in this iteration the refresh criterion is dis-

abled. This enforces that if each edges is reviewed as positive, then all PCCs will be

positive-redundant at the end of this inner loop. However, sometimes an edge will not
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be reviewed as positive. If it is reviewed as negative, then it will introduce an inconsis-

tency and be handled by the algorithm in Section 5.5. If it is reviewed as incomparable,

then the PCC will only be positive-redundant if all edges between the nodes in the PCC

have been reviewed. Because we want to ensure that all PCCs are positive-redundant, we

delay alternating back to the ranking algorithm. Instead, we simply regenerate candidate

edges using the positive-augmentation algorithm in the next iteration of the outer loop

until all PCCs are positive-redundant. Therefore, at the end of this process all PCCs are

positive-redundant by construction.

After we have ensured positive-redundancy, the outer loop alternates back to gen-

erating candidate edges using the ranking algorithm. In this way our algorithm alternates

between two modes, first searching for merges, and then ensuring redundancy. This con-

tinues until the termination criterion that we will describe in Section 5.6 is satisfied. At

the end of this process it is guaranteed that all PCCs are consistent and positive-redundant.

5.4 MAKING DECISIONS

Now that we have generated and prioritized a set of candidate edges we come to the

core of the inner loop — decision-making. Because of the surrounding structure of the

graph framework, this step is quite simple. Given a popped edge from the priority queue,

we check if any of the positive, negative, and incomparable state probabilities produced

by the pairwise algorithm are above their automatic decision threshold (set externally

as a hyperparameter). If the edge cannot be automatically reviewed we issue a request

for user feedback. Once we have obtained feedback for an edge — either automatically

or manually — the edge is added to the appropriate edge set. After the new edge is

added, we update candidate edge priorities discussed in Section 5.2. If the new edge

causes an inconsistency, then we drop into inconsistency mode, which we will discuss

in Section 5.5.

For each decision we record a user-id to identify the reviewer or algorithm making

the decision. We also follow the approach of [262] and store a user-specified categorical

confidence value of unspecified, guessing, not-sure, pretty-sure, and absolutely-sure (with

associated integer values 0, 1, 2, 3, and 4). The user-id allows us to differentiate between

edges that were automatically reviewed from those that were manually reviewed. While
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this is not directly used in this algorithm description, it enables a variety of possible post-

processing techniques, e.g. manually reviewing automatically reviewed edges between

PCCs containing only two annotations. However, the user confidence contributes to the

edges weights in the error detection and recovery algorithm from Section 5.5.

5.5 RECOVERING FROM INCONSISTENCIES

In Section 5.2 we described a redundancy criterion that exposes errors by introduc-

ing inconsistencies. In this section we describe an algorithm for fixing these errors and

recovering from these inconsistencies.

Whenever a decision is made that either adds a negative edge within a PCC or adds a

positive edge between two PCCs with at least one negative edge between them, the graph

becomes inconsistent. In both cases the result is a single PCC C with internal negative

edges. The goal of inconsistency recovery mode is to change the labels of edges in order

to make the subgraph formed by the nodes of C and all of their edges consistent. An

inconsistency implies that a mistake was made, but does not necessarily determine which

edge has the wrong label. Therefore, we develop an algorithm to hypothesize the edge(s)

most likely to contain the mistake(s) using a minimum cut. If the hypothesis is correct,

and all the labels on these edges were changed, then we show that the PCC would either

become consistent or be split into multiple consistent PCCs. Because the hypothesis

might not be correct, we present these edges to a user for manual review, and if the user

agrees with the hypothesis, the algorithm completes. Otherwise, the new information

received by the user it taken into account, and the hypothesis is recomputed. An example

of an inconsistent PCC with hypothesized edges is illustrated in Figure 5.5.

5.5.1 Hypothesis generation

The procedure alternates between steps of generating “mistake hypothesis” edges,

and presenting these to the user for review. The “hypothesis generation algorithm” returns

a set of negative edges or a set of positive edges, which if re-labeled as positive or negative

respectively would cause C to become consistent. For simplicity, we focus first the case

where C contains exactly one negative edge. It will not be hard to extend to the general

case.
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(a) (b)

Figure 5.5: An inconsistent PCC Any PCC containing at least one negative edge is

inconsistent. Subfigure (5.4a) shows an inconsistent PCC, and (5.4b) shows

the same PCC where the edges hypothesized to be errors are highlighted.

First consider a cut of C that disconnects the endpoints of the negative edge. If the

labels on these edges were changed from positive to negative or incomparable, then the

inconsistent PCC would be split into multiple consistent PCCs. Alternatively, if the label

on the negative edge was changed to positive or incomparable, the PCC would no longer

be inconsistent. Therefore, the algorithm starts by creating a minimum s-t-cut using the

subgraph of C containing only positive edges. The endpoints of the single negative edge

are the terminal nodes s and t. Unlike in our preceding discussion where the edges only

have positive/negative/incomparable labels the edges will now have weights that reflect

a measure of confidence in their current label. In the case where the negative edge is

correct, this will encourage the minimum cut to return the positive edges that are most

likely to be mislabeled.

The weight of an edge in this cut problem is the sum of three values:

(1) its positive probability previously computed using the pairwise classifier,

(2) the number of consecutive times that edge was manually reviewed with its current

label, and

(3) an integer ranging from 0 to 4 indicating the confidence of the most recent review

(see Section 5.4).

Because we are using a minimum cut, the algorithm will find the lowest confidence cut

set of these edges. The higher each of these values is, the more likely that the edge is

correctly labeled. The positive probability offers a baseline estimate of this confidence.

Using the number of manual reviews means that if a user disagrees with a hypothesis, the

weight on that edge will be increased and the algorithm will be encouraged to select a
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different edge. The confidence performs a similar role, speeding up the pace at which the

algorithm tries different edges.

Using this weighting scheme we find the minimum s-t-cut, which returns a cut

set of positive edges. We now need to decide if it is more likely that the positive cut-

edges should be relabeled, or the negative edge should be relabeled. We compare the

total weight of cut positive edges with the weight of the negative edge (weighted using

the same scheme). If the positive weight is smaller, the algorithm suggests that the cut

positive edges should be relabeled as negative. Otherwise, it suggests that the negative

edge should become positive.

5.5.2 Generalization

So far, we have only considered the case when only one negative edge exists in a

PCC. However, in practice it is possible for multiple negative edges to exist within a PCC.

In this case we can slightly modify the inconsistency recovery algorithm. The modifica-

tion is simple. Instead of using a minimum s-t-cut, we use a multicut to disconnect the

endpoints in all pairs of negative edges. Multicut is NP-hard, but a simple approximation

algorithm is to perform a minimum s-t-cut for each set of terminal nodes, and then take

the union of the resulting cut [263], 203–208. When considering which edges to return

we consider all negative edges together, comparing the sum of their weights to the sum of

the positive edge weights.

5.5.3 Hypothesis review

The user iterates through each hypothesis edge and chooses (1) to agree with the

hypothesis and change the label of the edge, or (2) to disagree with the hypothesis and

keep the edge label. In the case where the user agrees that a positive label should be

changed, it does not matter if the label is changed to negative or incomparable, it will

still remove the positive connection. A similar argument is true when the user agrees to

change a negative label to either positive or incomparable; either way, the negative edge

between the nodes in the PCC is removed. As long as the user agrees with the hypoth-

esis and the hypothesis set is non-empty, the iteration continues. If there are no more

hypothesis edges, then either all inconsistencies were removed or all PCCs were split into
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multiple consistent PCCs. In the case where the reviewer disagrees with the algorithm,

the new review is recorded and we generate a new set of hypothesis errors. Because re-

viewing the edge increases its weight, the algorithm will be forced to look elsewhere for

a cut. This alternation between hypothesis generation and user review repeats until the

reviewer agrees with all hypothesis edges, which means that all inconsistencies have been

eliminated

Fixing inconsistencies can result in splitting C into multiple PCCs. This may in-

validate implicit reviews inferred from redundancy either within or incident to this sub-

graph. Therefore, we recompute positive-redundancy within each new PCC, ignoring

edges where the criterion is satisfied and re-prioritizing unreviewed edges where it is no

longer valid. A similar process happens for negative-redundancy between each pair of

new PCCs as well as between each new PCC and all other PCCs previously negative-

redundant with C.

5.5.4 Implementation details

While it might be conceptually simpler to think of inconsistency recovery as a sep-

arate mode, in practice it is actually integrated as part of the algorithm’s inner loop. The

algorithm dynamically maintains a list of all PCCs that contains errors. We disable redun-

dancy checks for any PCCs that contain errors. Hypothesis edges are computed whenever

a new inconsistency is created, and these edges are entered into the queue with their nor-

mal priority plus 10 to ensure they are reviewed first. It can be shown that as long as

the user agrees with the current hypothesis edges computed so far, recomputing the new

hypothesis edges will always be the same as the remaining hypothesis edges. This imple-

mentation is an important first step for generalizing the graph algorithm into a distributed

setting with multiple reviewers.

5.6 REFRESH AND TERMINATION CRITERIA

In this section we discuss the criteria we use for both determining when to refresh

candidate edges and when to stop the algorithm altogether. We first consider the need

for a refresh criterion. As the review algorithm proceeds, we should only continue to

manually review edges as long as the algorithm is consistently generating edges that —
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once reviewed — change the PCCs. This happens whenever a review merges two PCCs

into one or splits one PCC into two. Because splits only happen during inconsistency

recovery, we are primarily concerned with searching for new positive edges. However, at

some point the candidate edges may no longer contain positive results, but undiscovered

positive matches may still exist. This is because LNBNN, working initially with each

annotation having a separate label, can miss more subtle but correct matches, especially

when there are several annotations for an individual with multiple viewpoints. As the

labeling improves, so does the reliability of LNBNN. Recall that the verification algorithm

is only run after candidate edges are generated. If the edges required to complete the

underlying real PCCs are missing from the candidate set, then nothing can be done. We

therefore must develop a “refresh criterion” to determine when to stop and replace the

current priority queue with new LNBNN matches. This will be done by predicting if

none of the remaining edges would change the PCCs, and then recomputing candidate

edges when this happens. However, before we describe this process, we consider the

problem of termination, which will turn out to have a similar solution.

Similar to the refresh criterion, we must be able to determine when the algorithm

should stop. To ensure that the identification is perfect, the algorithm would need to

use all
(|V |

2

)

edges as candidates and then terminate using the deterministic convergence

criterion explained in the introduction of this chapter. Recall that the deterministic con-

vergence criterion only stops the algorithm once each PCC is positive redundant and each

pair of PCCs is negative-redundant. This essentially results in a brute-force search, that

requires O(|V |2) reviews, and is only feasible if (1) the number of annotations is very

small, or (2) all edges can be automatically reviewed. However, even if all edges can be

automatically reviewed the quadratic computation required to run the verification algo-

rithm on all pairs of annotations might be too computationally expensive for very large

databases. Therefore, in practical circumstances, we turn towards probabilistic methods

to determine when to stop. Like, the refresh criterion, this can be determined — in part

— by predicting if new reviews will change the PCCs.
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5.6.1 Convergence as a Poisson process

Both the review and termination criteria can be addressed by considering the ques-

tion: “Will there be a label-changing review anytime soon?”. A label-changing review

is one that changes the name labeling of the annotations, i.e. it is either a positive edge

that merges two PCCs or a non-positive edge that splits one. Correct and label-changing

reviews improve the accuracy of the identification by increasing the similarity — in terms

of the name labeling — between the predicted PCCs and the real underlying PCCs.

However, producing a label-changing review has a cost: the number of manual reviews

since the last label-changing review. During the inner loop of the algorithm, when edges

popped from the priority queue no longer consistently result in label-changing reviews,

the marginal gains in identification accuracy that could be made from continuing are out-

weighed by the cost of manual review. In this circumstance it is best to break out of

the inner loop. Note that if any label-changing reviews were made during that loop, we

should refresh candidate edges and start a new loop because a refresh could result in new

high priority label-changing edges. On the other hand, if no label-changing reviews were

made in the loop, then refreshing will have no benefit, and the algorithm should terminate.

Thus, the task is to construct a criterion that determines when edges on the top

of the priority queue are no longer label-changing. In this way we directly address the

refresh criterion and indirectly address termination criterion. This is direct in the case

of the refresh criterion because when the name labeling is more accurate, the LNBNN

ranking will improve. When we directly measure that the next reviews in the current

priority queue are unlikely to be label-changing, and the name labeling of the decision

graph has changed, then it is more likely that we would review a label-changing edge on

the top of a new set of candidate edges sorted by priority.

This task indirectly addresses the termination criterion because instead of stopping

once the probability that identification is complete is high, the algorithm simply stops

when the cost in terms of manual labor is too high. However, if we were to directly address

the termination criterion, we would have to estimate the probability that undiscovered

merge and split cases exist. This probability depends on the effectiveness of the ranking

algorithm. Even if our estimate of this probability was perfect, once the ranking algorithm

starting producing label-changing reviews at a rate no better than random edge generation,
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it would take an enormous amount of manual effort to push this probability passed a

desired threshold. Thus, instead of providing guarantees about identification accuracy

our termination criterion achieves a trade-off between the number of manual reviews and

the cost of identification.

Based on these observations we estimate the probability that “there will be a label-

changing review soon”. We define “soon” using a patience parameter a, defined as the

maximum number of consecutive reviews that a manual reviewer is willing to do between

label-changing reviews. Let L=1 be the event that a review is label-changing and L=0

otherwise. Because reviews are ordered, denote if the ith review is label-changing as Li,

and denote the index of the next review as n. Let C =
∨n+a

i=n Li be a binary random

variable that takes the value C =1 in the event that any of the next a reviews will be

label-changing. Thus, the aforementioned question can be addressed by measuring the

probability of the event C = 1. We can periodically check if P(C = 1) is less than a

threshold, and if so, we stop the current loop and either refresh or terminate.

We model the event C=1 as a Poisson processes, but for this to be appropriate, Li

must follow a uniform distribution. This would be true if the edges were reviewed in a

random order. However, the priority queue orders edges more likely to be label-changing

first, causing Li to follow a right skewed long tail distribution and violate Poisson as-

sumptions. Even so, the use of a Poisson model can be justified by considering a sliding

window along the distribution of Li. Recall that we only need to make predictions about

the next a reviews in the future, thus we are only concerned with a small window to the

right on the distribution. Assuming the long-tailed distribution is monotonic decreasing,

we can use a small window in the past to estimate an upper bound on probability of C=1

in the future. As the window moves to the right, the interval on the distribution becomes

increasingly approximately uniform and the tightness of the bound improves and eventu-

ally becomes tight. This is because the order of the remaining reviews becomes random

once the prioritization algorithm cannot distinguish positive from negative cases. In this

case the Poisson model becomes appropriate. Thus, the use of a Poisson model with a

sliding window allows us to approximate an upper bound on P(C=1), and the smaller

P(C=1) is, the more accurate our estimate will be.
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5.6.2 Details of Poisson convergence

Having justified its use, we model C as a Poisson process, which is determined by

a rate parameter µ and an interval length parameter a. We can measure µ as the fraction

of recently observed manual reviews that were label-changing using an exponentially

weighted moving window. We initialize µ0 = 1 to denote that it is likely that the first

review will be label-changing and because it will ensure our estimated probability is an

upper bound. Then, after each new review we update the parameter as µi+1 ← ℓiα+(1−
α)µi, where ℓi=1 if the ith review was label-changing and 0 otherwise. The exponential

decay α = 2/(s + 1) is determined by a span parameter s, which roughly represents the

number of previous reviews that are significant. Using this model, the desired probability

that any of the next a reviews will be label-changing is P(C=1) = 1 − exp (−µa). The

example in Figure 5.6 illustrates the behavior of the criterion using a synthetic dataset. In

this example we use a window span of s = 20, a patience of a = 20, and a threshold of

τ = 0.135. 1

1 A better choice would be to set these parameters such that τ = 1 − exp
(

−a (s− 1)
a

(s+ 1)
−a

)

is

satisfied. This will guarantee convergence after a maximum of a consecutive non-label-changing reviews.

Unfortunately, this was discovered after the completion of this thesis, so the parameters in our experiments

do not satisfy this property. Suggested values for future work are s = 20, a = 72, and τ = 0.052.
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Figure 5.6: The convergence criteria on a synthetic dataset The convergence crite-

ria is applied to a synthetic dataset with 40 names and 2 annotations per

name. The red line indicates the fraction of label-changing reviews that re-

main undiscovered. The blue line is the probability that at least one of the

next 20 reviews will be label-changing. Notice that the blue line dips when

the red line flattens. The process terminates once this probability drops below

a threshold, which is denoted by the green dotted line.

5.7 EXPERIMENTS

In this section we design an end-to-end experiment where we start with a set of

annotations without any name labels, and then we proceed to construct all the names. This

simulates identification events like the GZC and provides insight into how the algorithms

behave in practice. Because our algorithms are semi-automatic, we simulate a noisy user

response using ground truth data. Given a pair of annotations, the simulated user returns

the ground truth classification 99% of the time, making errors 1% of the time uniformly

at random. These assumptions may be simple and too inaccurate to model an expert

reviewer, but it will serve to demonstrate our graph algorithm’s ability to recover from

errors. We will measure the simulation’s accuracy and error as a function of the number of

manual reviews. Using these measures we will compare our graph algorithm to alternative

techniques to demonstrate that it produces accurate identifications with fewer errors using

significantly fewer manual reviews.

For this experiment, we will use the plains and Grévy’s zebras datasets previously

described in Section 3.5.1. Because some of our algorithms will require training, we

split each dataset into a training set and a testing set each containing half of the names.
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The training set will be used to learn the pairwise classifiers and determine thresholds

for automatic classification. The details of training and testing sets are summarized in

Table 5.1.

Table 5.1: Database statistics for graph identification experiments Each database is

split into a training and a testing set. We report the number of names, the

number of annotations, and the average number (as the mean and standard

deviation) of annotations per name for each set. Additionally, we report how

many edges (pairs of annotations) were used to train the classifiers.

Names Annots Annots size Training edges

Training 564 2752 4.88± 3.74 24328
Testing 563 2968 5.27± 4.14 -

(a) Plains zebras

Names Annots Annots size Training edges

Training 363 1164 3.21± 3.03 9360
Testing 363 1119 3.08± 2.82 -

(b) Grévy’s zebras

The experiment will compare the three different methods of determining the iden-

tities of annotations based on the algorithms defined in this thesis. These algorithms are:

(1) ranking— the ranking algorithm from Chapter 3, (2) rank+clf— the same rank-

ing algorithm but augmented with the automatic classification algorithm from Chapter 4,

and finally (3) graph — the graph identification algorithm introduced in this chapter. In

the case of graph, the procedure from Section 5.1.1 can be directly applied. However, in

order to compare graph to ranking and rank+clf we must define baseline methods

to determine the ordering of the reviews and when to stop. Details of these identification

procedures are given in the next subsection.

5.7.1 Identification procedures

We design the procedure for ranking to be similar to the approach described in

Section 1.3 that was used in the GZC. This algorithm does not require a pre-training

phase and thus only the testing set is used. Given the unlabeled annotations, we index

the database, issue each annotation as a query, and collect the top 5 results from each

ranked list. The resulting pairs of query and database annotations are stacked and sorted
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by LNBNN score. The user reviews each pair in the list sequentially. As was done in

the GZC, all pairs are all manually considered and verified, and all inconsistencies are

ignored. In the GZC the choice to re-run the ranking algorithm was made manually,

making it difficult to reproduce. Therefore, we simplify the experiment by choosing to

run the ranking algorithm once. Consistency checks are not applied because developing

these is the point of the graph algorithm.

The procedure for rank+clf is similar to the one used for ranking. The main

difference is that we use the automatic classification algorithm to predict pairwise proba-

bilities for each pair of top ranked query and database annotations. If the probabilities of

a class are above a threshold, then the pair is automatically reviewed. This has the effect

of reducing the total number of manual reviews. The rest of the procedure is unchanged.

The pairwise classifier is trained on the training set, and the algorithm is evaluated on the

test set. We choose automatic thresholds by finding the thresholds that result in a specified

false positive rate on a validation dataset. Because rank+clf has no mechanisms for

error recovery, we choose conservative automatic thresholds by specifying an acceptable

false positive rate of 0.001. This results in positive, negative, and incomparable thresh-

olds of 0.976, 0.991, and 0.5 respectively for plains zebras, and 0.997, 0.998, and 1.0 for

Grévy’s.

Finally, we quickly recap the procedure for graph which was defined in Sec-

tion 5.1.1. The algorithm begins by using LNBNN to search for candidate edges, which

are then assigned probabilities and inserted into a priority queue based on these proba-

bilities. As candidate edges are removed from the queue they are either automatically or

manually classified based on probability thresholds. Connectivity information is used to

enforce a minimum level of redundancy, to prevent extraneous redundancy, and to ensure

consistency. The convergence criterion determines when candidate edges should be re-

freshed and when the algorithm should terminate. We use the same pairwise classifier

from rank+clf, but due to the graph algorithm’s error recovery mechanisms we can

choose more aggressive thresholds. However, we have found that the algorithm is sensi-

tive to this parameter, therefore we only slightly increase the acceptable false positive rate

from 0.001 to 0.0014. This results in positive, negative, and incomparable thresholds of

0.969, 0.986, and 0.5 respectively for plains zebras, and 0.989, 0.992, and 1.0 for Grévy’s.
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For the convergence criterion we use a patience of a = 20, a window span of s = 20, and

a termination threshold of τ = 0.135.

5.7.2 Results

We run the simulation for all combinations of datasets and algorithms. During the

simulation, after each review decision is made we record two measurements pertaining to

accuracy and error. The accuracy measurement is the number of merges remaining — i.e.

the number of PCCs that must be merged — before all individuals have been identified.

This is the number of edges in a spanning forest of the ground truth positive subgraph

minus the same measurement but applied to the subgraph of all correctly predicted pos-

itive edges. The error measurement is the total number of edges with a predicted label

that differs from the ground truth match-state. Additionally, for graph, after each review

decision we record the probability of convergence estimated by the convergence criterion.

These measurements are plotted against the number of manual reviews. Figure 5.8 shows

these accuracy and error plots, and Figure 5.10 shows the convergence criterion.

The results illustrated in Figure 5.8 demonstrate that graph achieves the fewest

manual reviews with the fewest errors while still correctly identifying almost all individ-

uals. We first focus on the left part of this figure. The number of remaining merges slowly

decreases for ranking, which is the only algorithm that requires manual review of each

pair. For graph and rank+clf the initial decrease appears instantaneous due to the au-

tomatic classification algorithm, which does not cost manual reviews. Notice, once man-

ual reviews begin the slope of graph is steeper than rank+clf due to the redundancy

mechanisms, which removes extraneous reviews. Furthermore, while rank+clf and

ranking continue until their candidate edges are exhausted, graph uses the conver-

gence criterion to terminate shortly after the curve flattens. It is noteworthy that graph

completes identification using less than 25% of the manual reviews needed by ranking,

which models the way that we counted individuals in the GZC.

We now turn our attention to the right of Figure 5.8. The ranking and rank+clf

algorithms do not have mechanisms for error recovery, and thus their error steadily in-

creases over time. However, graph is able to recover from many of these errors and

achieve a low error rate despite starting with more errors due to an aggressive auto-
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(a) Plains zebras

(b) Grévy’s zebras

Figure 5.8: Simulation experiment The user simulation experiment compares the three

identification algorithms defined in this thesis. The plot on the left indicates

the identification accuracy using the number of remaining merges and the plot

on the right counts the number of errors made (lower is better in both cases).

The best results are clearly achieved by graph.

classification threshold.

5.7.3 Error cases

To further analyze the predictions of the graph the simulation, we compare the

node groupings of the predicted PCCs to the real ground truth PCCs. For convenience,

we will still refer to a group of nodes as a PCC. In this analysis we categorize groups of

predicted PCCs and their corresponding real PCCs as one of three types: correct, split, or

merge. Consider an example where we are given a graph with 8 nodes and the real PCCs

are {{a, b, c} , {d} , {e, f} , {g}}, and we predict the PCCs {{a, b} , {c} , {d, e, f} , {g}}.
Using this example we define the three group types:
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(a) Plains zebras

(b) Grévy’s zebras

Figure 5.10: Measured refresh and termination probabilities The probability that the

next reviews will be label-changing (P(C=1)) is high while new merges are

discovered. Once the probability falls under the threshold, positive redun-

dancy is enforced (the flat areas) on existing PCCs, and then candidate edges

are recomputed. After an iteration with no label-changing reviews, the pro-

cess terminates.

(1) A “correct” group is a predicted PCCs that contains all nodes in a real PCC. In the

example the PCC {g} is a real group.

(2) A “split” error group consists of multiple real PCCs that are labeled as belonging

to the same predicted PCC. Each split group contains at least one edge incorrectly

labeled as positive. In the example, the real PCCs {{d} , {e, f}} are a split group

because in the predicted graph {d, e, f} is a PCC.

(3) A “merge” error group consists of multiple predicted PCCs that must be merged

into a single real PCC. Each pair of predicted PCCs in a merge group is missing

a positive edge. This can happen if an edge is incorrectly labeled, if the ranking

algorithm never generates this edge as a candidate, or the termination criterion stops

the algorithm before the edge can be reviewed. In the example, the predicted PCCs

{{a, b} , {c}} are a merge group because in the real graph {a, b, c} is a PCC.

As defined, the split and merge error groups do not cover all cases. We call the previously
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described cases “pure” split/merge error groups because there is a mapping between sets

of real/predicted PCCs to exactly one predicted/real PCC. However, consider the real

PCCs {{x, y} , {z}} and predicted PCCs {{x} , {y, z}}. This case cannot be cleanly

categorized as a pure split or a merge group, but it contains elements of both. Thus, we

call this a “hybrid” case. A slight modification to the above groups can incorporate hybrid

cases. First, we modify the definition of a split group. For a predicted PCC containing

annotations in more than one real PCC, the split group consists of the subsets of each

of these real PCCs that intersect with the predicted PCC. In essence this means we treat

{{y} , {z}} as a split group, even though {y} is only a subset of the real PCC {x, y}.
Second, for merges, we simply change predicted PCCs to be the predicted PCCs after

they have been split. This lets us treat {{x} , {y}} as a merge group.

To analyze statistics of these groups, we gather the set of real PCCs and the set of

predicted PCCs for each simulation. Then, we group them into correct, split, and merge

groups. For each group type we count the number of predicted PCCs and the number

of real PCCs they correspond to. We also measure the average number of annotations in

each PCC. These number are reported in Table 5.3.

From this table we observe that graph predicts the most correct PCCs and fewest

splits in all cases. This is not surprising due to its error recovery mechanism. However, we

also see that graph also has the most merge cases. The reason for this is that the other

algorithms do not have termination criteria. They continued to review pairs, even long

after the rankings were no longer consistently label-changing, and the simulated reviewer

essentially began to brute-force search the database. In the thousands of extra iterations,

the other algorithms managed to find ∼20 extra merge cases that were not discovered by

graph.

We continue our analysis focusing only on the results of graph. We measure the

average number of PCCs in each error group. Additionally, we consider the smallest and

largest PCC in each error group, and we measure the average number of annotations in

each. These numbers are given in Table 5.5.

Here, we notice that almost all merge cases for graph are the result of failing to

match a single annotation to a larger group of annotations. Similarly, most split cases

involve splitting just one singleton annotation off of a larger PCC. To gain further insight



175

into what is causing these errors we will visualize individual cases.

Table 5.3: Simulation error sizes This table analyzes the simulation errors. We com-

pare statistics of the predicted PCCs with statistics of the real ground truth

PCCs. In each category “Pred PCCs” is the number of predicted PCCs and

“Pred PCC size” is the average number of annotations in those PCCs (mea-

sured as mean and standard deviation). The “Real PCCs” and “Real PCC size”

columns are similarly defined.

Pred PCCs Pred PCC size Real PCCs Real PCC size

ranking correct - - 459 5.3± 4.3
split 22 12.4± 6.9 48 5.7± 3.8
merge 130 2.4± 2.7 60 5.2± 3.5

rank+clf correct - - 442 5.1± 4.1
split 35 12.5± 5.5 71 6.1± 4.7
merge 130 2.3± 2.5 60 5.0± 3.2

graph correct - - 491 5.3± 4.3
split 2 6.5± 1.5 4 3.2± 1.5
merge 150 2.5± 2.6 70 5.3± 3.3

(a) Plains zebras

Pred PCCs Pred PCC size Real PCCs Real PCC size

ranking correct - - 322 2.8± 2.6
split 17 9.6± 4.9 35 4.7± 3.5
merge 18 2.7± 2.4 9 5.4± 2.4

rank+clf correct - - 319 2.9± 2.7
split 17 9.5± 5.5 38 4.3± 3.1
merge 18 2.8± 2.4 9 5.7± 2.1

graph correct - - 334 3.0± 2.8
split 5 2.6± 1.2 10 1.3± 0.9
merge 40 3.0± 2.6 20 5.9± 2.5

(b) Grévy’s zebras
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Table 5.5: Simulation error group sizes This table analyzes the error groups in the

graph algorithm. A merge error group is a set of predicted PCCs that are in-

correctly disconnected, and a split error group is a set of real PCCs that are

incorrectly connected. For each case we report the number of error groups, the

average number of PCCs in each group, and the average size of the smallest

and largest PCC in each group.

Error groups Group size Small PCC size Large PCC size

split 2 2.0± 0.0 2.0± 1.0 4.5± 0.5
merge 70 2.1± 0.5 1.2± 0.5 3.8± 3.3

(a) Plains zebras

Error groups Group size Small PCC size Large PCC size

split 5 2.0± 0.0 1.0± 0.0 1.6± 1.2
merge 20 2.0± 0.0 1.0± 0.0 4.9± 2.5

(b) Grévy’s zebras

We illustrate several individual error cases from graph in Figures 5.11 to 5.16. On

the top of each figure we will show the subgraph corresponding to an error group. For a

split case this will be the single PCC that must be broken apart, and for a merge case this

will be multiple PCCs that should be connected. For merge cases, if no edge connecting

the PCCs was ever added to the priority queue as a candidate, then we will insert a dashed

edge between two arbitrary annotations. We will highlight the edges with labels that differ

from their ground truth. On the bottom we show the annotation pair corresponding to a

selected highlighted edge.

Upon inspection, we discover that the split cases in Figures 5.11 and 5.12 are caused

by ground truth errors. In each of these cases the automatic verification algorithm made

the PCCs positive redundant, thus the simulated reviewer — which is driven by the ground

truth — was unable to split the PCC. In fact, we discovered that all split cases measured

for graph are due to ground truth errors. This means that graph did not predict any

PCCs that were split cases.

When inspecting merge cases, we also found several caused by ground truth errors,

but most were due to challenging image conditions such as viewpoint, occlusion, and

pose. These factors either prevented an edge from being generated as a candidate or

caused the classifier to produce a low positive probability. Two merge cases for plains
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zebras are illustrated in Figures 5.13 and 5.14, and two for Grévy’s zebras are illustrated

in Figures 5.15 and 5.16.

Figure 5.11: Plains split case due to ground truth error This was incorrectly reported

as a split case. The automatic verification algorithm correctly predicted that

this pair is positive.
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Figure 5.12: Grévy’s split case due to ground truth error This was incorrectly re-

ported as a split case. The automatic verification algorithm correctly pre-

dicted that these annotations should be in the same PCC.
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Figure 5.13: Plains merge case due to low probability In this case the ranking algo-

rithm generated an edge that could have connected the PCCs. Because the of

the low positive probability due to viewpoint and occlusion, the termination

criteria stopped the algorithm before this edge was reviewed.
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Figure 5.14: Plains merge case due to ranking failure In this case there are three

PCCs that should have been merged into one. Occlusion and pose variation

prevented the ranking algorithm from generating candidate edges. However,

the positive probability of the selected pair is 0.77, which means that the pair

would have likely been reviewed if the ranking algorithm had found it.
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Figure 5.15: Grévy’s merge case due to ranking failure The ranking algorithm did

not generate any candidate edge that could have merged these PCCs due to

viewpoint variations. Even, if the ranking algorithm had selected this edge,

the positive probability on the edge would not have given it a high enough

priority to be reviewed.
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Figure 5.16: Grévy’s merge case due to low probability The ranking algorithm se-

lected this edge a candidate, but due to occlusion from scenery and other

animals the predicted positive probability is low. Therefore, the termination

criteria stopped the algorithm before this edge was reviewed.
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5.8 SUMMARY OF GRAPH IDENTIFICATION

In this chapter we have described the final component in our approach to animal

identification. The graph-based framework takes advantage of the algorithms previously

developed in Chapters 3 and 4 and uses them in a principled way to address the identifica-

tion problem. The ranking algorithm quickly identifies candidate edges that are likely to

be label-changing, and the pairwise classifier automatically verifies pairs of annotations,

reducing the amount of required manual interaction. While these algorithms can be ap-

plied to address identification directly, our experiments have demonstrated that there is a

considerable advantage to placing them in the context of the graph identification frame-

work. Specifically, we have simulated an identification event similar to the GZC using

our ranking and graph algorithms. We have shown that using the graph framework can

reduce the number of manual reviews needed to complete identification by a factor of 4.

Furthermore, the graph framework reduces the number of errors and can recover from

them when they occur. The only false positives (split cases) produced using the graph

framework were the result of errors in the ground truth.

Our graph framework uses the connectivity of positive, negative, and incomparable

edges in order to quickly converge on a final identification. Edge connectivity is used

to enforce that the graph contains a small exact amount of redundancy, which reduces

the number of manual decisions that must be made while providing the means to detect

inconsistencies. When inconsistencies are detected, edge-connectivity is again used to

quickly find and fix errors in edge labeling. Our framework also includes a probabilistic

convergence criterion based on a Poisson process. This criterion stops identification once

the ranking and verification algorithm are no longer able to find label-changing edges.

This means that the algorithm will stop the identification process before it devolves into

a brute force search. The point at which this happens will depend on the power of the

ranking and verification algorithms.

This brings us to our last point. The graph framework is general. It is not restricted

to animal identification. It could be applied to any instance recognition problem where

one annotation corresponds to one individual object. It does not depend on our specific

ranking and verification algorithms and could easily incorporate other algorithms. It is

even possible to use it without any algorithms. Even though this does result in a brute
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force search, the redundancy criterion still reduces the number of reviews, and error re-

covery still ensures that the graph is always consistent. This case is not just theoretical. To

extend to new species and domains it is important to be able to construct a small labeled

database from which learned ranking and verification algorithms can be bootstrapped.

As more pairwise training data is gathered and maintained using this framework, more

sophisticated pairwise classifiers trained using deep learning could be applied, perhaps

removing the need for manual interaction and resulting in a fully automatic identification

algorithm.



6. CONCLUSION

In this thesis we have addressed the problem of identifying individual animals from im-

ages. We have demonstrated that our approach is effective for identifying plains zebras,

Grévy’s zebras, Masai giraffes, and humpback whales. Our approach consists of three

main components: (1) the ranking algorithm from Chapter 3 that uses a bounding box an-

notation around an animal to search a labeled database of annotations for likely matches,

(2) the classification algorithm from Chapter 4 that probabilistically verifies if a pair of

annotations is positive, negative, or incomparable, and (3) the graph framework from

Chapter 5 that harnesses the previous algorithms in a principled way to dynamically de-

termine the identity of all animals in a dataset. Each of these algorithms was designed to

build on the previous one(s), improving the overall accuracy and efficiency of the counting

process. In Section 5.7 we demonstrated that this was indeed the case.

By combining these algorithms we have made several meaningful contributions to

the problem of animal identification. In Section 1.3 we discussed the Great Zebra Count

(GZC), where the ranking algorithm was used in combination with the effort of citizen

scientists to provide an estimate of the number of plains zebras and Masai giraffes in

Nairobi National Park. In Section 3.5 we investigated several parameters and factors that

can impact the performance of the ranking algorithm. We discovered that having multiple

photos of each individual significantly improves the accuracy of the ranking algorithm

and we designed a novel name scoring mechanism with this in mind. In Section 4.4

we demonstrated that a classification algorithm can be used to improve the separation of

positive results from negative and incomparable results in a ranked list. In Section 5.7

we simulated the GZC and demonstrated that our improvements to the ranking algorithm

— made by the classification and graph algorithm — enable us to perform identification

using less than 25% of the number of manual reviews required by the original event.

6.1 DISCUSSION

The research that resulted in this thesis began in 2010 and was completed in 2017.

During that time, many significant developments were made in the fields of computer

185
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vision and machine learning, most notably the explosion of deep learning [264]. While

some steps in our approach (e.g. the foregroundness weights) do make use of deep con-

volutional neural networks (DCNNs), most do not. In some sense this is an advantage be-

cause the algorithms can be applied to different species without any need for pre-training,

but this also means they do not obtain the level of accuracy shown to be achievable by

these networks. Yet, the contributions of this thesis are still relevant and complementary

to DCNNs. This is trivially true in the case of the ranking and classification algorithms, in

part due to the aforementioned reasons. However, the contribution of the graph algorithm

is relevant, even in the era of deep learning.

The graph identification algorithm models the abstract constraints of the identifica-

tion problem and provides a framework that can efficiently harness the power of any rank-

ing or verification algorithm, whether it be deep or shallow. The framework dynamically

manages the relationships between annotations. In most cases this means deciding if two

annotations are the same (positive) or different (negative), but this also means handling

cases like when the annotations are incomparable or when there is some other interest-

ing connection between two annotations like scenery matches and photobombs. As new

relationships are added, errors are discovered and corrected, and the identifications are

updated.

The framework also provides a means of prioritizing which edges need to be re-

viewed based on (1) the underlying computer vision algorithms, (2) the edge-augmentation

needed to ensure minimum redundancy, and (3) the minimum cut needed to correct an er-

ror and split an inconsistent individual. Edge prioritization works in conjunction with a

convergence criteria that determines when identification has been completed. A signal

is emitted whenever manual interaction is needed, and the algorithm continues after the

user returns with a response. The only time a user interacts with the algorithm after it

begins is to label an edge as positive, negative, or incomparable. All other decisions are

made internally. The algorithm stops once there is a high probability that the vast ma-

jority of identifications have been made correctly and consistently. This means that the

graph algorithm requires little expertise to use and can be thought of as an “identification

wizard” that simply guides the user through a set of simple questions. This design allows

the graph algorithm to be run on a web server, where requests for manual interactions can
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be sent to remote users and quickly done in a web browser.

6.2 CONTRIBUTIONS

A summary of the contributions made in this thesis are as follows:

(1) The ranking algorithm:

(1.1) We have adapted LNBNN [47] to the problem of individual animal identifi-

cation. We have performed experiments that demonstrate the effect of several

parameters at multiple database sizes. We have shown that tripling the number

of annotations in a database can reduce the ranking accuracy at rank 1 by 2%.

(1.2) We have evaluated the effect of various levels of feature invariance in our

experiments. We have introduced a heuristic that augments the orientation of

query keypoints to account for pose variations. For plains zebras, this can

improve the ranking accuracy at rank 1 by 7%.

(1.3) We have accounted for the influence of background features using a learned

a foregroundness measure to weight the LNBNN scores of feature correspon-

dences. We have empirically shown that this procedure can increase the rank-

ing accuracy at rank 1 by 5%.

(1.4) We have demonstrated the impact of image redundancy and the importance

of collecting more than one annotation in each encounter. Our experiments

show that multiple exemplars per name can significantly increase the ranking

accuracy at rank 1 by 20%.

(1.5) We have developed a name scoring mechanism to take advantage of infor-

mation in database names with multiple exemplars. We have shown that this

can increase the ranking accuracy at rank 1 by 1% when there are multiple

exemplars per name.

(2) The pairwise classification algorithm:

(2.1) We have developed a novel feature vector that represents local and global

matching information between two annotations. Our experiments have shown

that both the local and global feature dimensions are important for predicting

if two annotations match.

(2.2) We have used this feature vector to learn a random forest that can predict the
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probability that two annotations are either positive, negative, or incompara-

ble. We have shown that this learned pairwise classifier is a strong predictor

of match-state by measuring an MCC of 0.83 for plains zebras and 0.91 for

Grévy’s zebras.

(2.3) We have compared the learned probabilities to LNBNN scores and demon-

strated that re-ranking using the positive probabilities can improve the ranking

accuracy at rank 1 by 9% for plains zebras and 2% for Grévy’s zebras. Addi-

tionally, the probabilities significantly improve the separation of positive and

non-positive annotation pairs. For both species, an ROC AUC of less than 0.9

is improved to an AUC greater than 0.97.

(3) The graph identification algorithm:

(3.1) We have demonstrated that combining the graph algorithm with existing rank-

ing and verification algorithms improves the accuracy and efficiency of semi-

automatic animal identification. We have designed the framework to be agnos-

tic to the specific ranking and verification algorithms so future DCNN-based

algorithms can be swapped in.

(3.2) We have proposed a measure of redundancy based on edge-connectivity used

to increase accuracy and reduce the number of reviews needed.

(3.3) We have developed an algorithm for fixing errors whenever inconsistencies in

the graph are been discovered.

(3.4) We have developed a probabilistic termination criteria that determines when

to stop identification.

6.3 FUTURE WORK

We have shown that our ranking and match-state classification algorithms are both

accurate and work well for identifying animals. However, the clearest direction for future

research is to replace these algorithms with ones based on DCNNs. To replace the ranking

algorithm, we believe that the approach in [52] is a good starting point. We had briefly

investigated replacing the pairwise classifier using the techniques in [41], but the results

were poor because we did not have as much training data or an alignment procedure.

Research into the geometric matching technique described in [242] may help address
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both of these issues.

There are also improvements that can be made to the graph algorithm. First it would

be useful to parallelize the algorithm so reviews could be distributed across multiple users.

This can be obtained by popping multiple edges from the queue at a time, but this could

add extraneous redundancy if one edge in the popped set would have been filtered by

another. Second, the current prioritization of edges is based completely on the output

of the pairwise classifier. In the best case, the ordering would first construct each PCC

as a chain, and then only 1 redundant review would be needed. In the worst case, this

order would connect one annotation of an individual to all others causing a star shaped

PCC. Then to make the PCC 2-positive-redundant, it would take n− 2 reviews, where n

is the number of annotations in the PCC. Determining the best order in which to review

edges depending on the specified level of redundancy is an interesting question, which is

perhaps made more challenging if considered in a distributed setting.
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APPENDIX A

OCCURRENCES

In the identification workflow we separate groups of images into occurrences. The Dar-

win Core defines an occurrence as a collection of evidence that shows an organism exists

within specific location and span of time [16]. For our purposes this amounts to a cluster

of images localized in space and time. We outline an occurrence grouping algorithm per-

forms agglomerative clustering on the GPS coordinates and time specified in the image

metadata. We first describe the space-time measure of distance between images and then

describe the clustering algorithm.

A.1 SPACE-TIME IMAGE DISTANCE

To compute occurrences we define a space-time feature gi for each image i, and a

pairwise distance, ∆(gi,gj), between these features. This feature will a two-dimensional

feature tuple, gi = (ti,pi), where the first component is the POSIX timestamp ti, and the

second component is a GPS coordinate pi = [ϕi, λi]
T

, where the angles of latitude and

longitude are measured in radians. To compute this distance between two images gi and

gj we first compute the distance in each component of the feature tuple. The difference

in time is the absolute value of the timedelta, ∆t(gi,gj) = |ti − tj|, which is in seconds.

Next, the distance in space is computed by approximating the Earth as a sphere. In

general, the distance between two points on a sphere with radius r is a function of inverse

haversines, and is expressed as:

d(pi,pj, r) = 2r asin

(

√

hav (ϕi − ϕj) + hav (λi − λj) + cos (ϕi) cos (ϕj)

)

(A.1)

In the previous equation, hav (θ) = sin2
(

θ
2

)

is the half vertical sine function. Thus, we

arrive at the spatial distance between two images by estimating the radius of the earth to

be r = 6367 kilometers.

∆s(gi,gj) = d(pi,pj, 6367). (A.2)

This results in distance in seconds and a distance in kilometers, which are in incompatible
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units. To combine these distances we convert kilometers to seconds by heuristically esti-

mating the walking speed, S, of an animal (for zebras we use S = 2 × 10−3 kilometers

per second). This allows us to cancel kilometers from the expression and express GPS

distance as a unit of time:
∆s(gi,gj)

S
. This distance can be interpreted as the total amount

of time it would take an animal to move between two points. The total distance between

two images is the sum of these components.

∆(gi,gj) = ∆t(gi,gj) +
∆s(pi,pj)

S
(A.3)

Notice that if there is no difference in GPS location, then this measure becomes to a

distance in time.

A.2 CLUSTERING PROCEDURE

Having defined pairwise a distance between two images, we use the agglomerative

clustering procedures implemented in SciPy [265] to group the images. There are two

inputs to the agglomerative clustering algorithm: (1) The matrix of pairwise distance be-

tween images, and (2) the minimum distance threshold between two images. The matrix

of distances is computed using Equation (A.3), and we set the distance threshold to 30

minutes. Any pair of images that is within this threshold connected via a linkage matrix.

Connected components in this matrix form the final clusters that we use as occurrences.

To improve the efficiency of the algorithm, we separate it into disjoint parts by sorting the

images by timestamp and splitting the data wherever the difference in consecutive times-

tamps exceeds the threshold. Images that are missing either timestamp or GPS location

are grouped by what data they do have and clustered separately.
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