//! Identifier types for transactions and senders.
use reth_primitives::Address;
use rustc_hash::FxHashMap;
use std::collections::HashMap;
/// An internal mapping of addresses.
///
/// This assigns a _unique_ [`SenderId`] for a new [`Address`].
/// It has capacity for 2^64 unique addresses.
#[derive(Debug, Default)]
pub struct SenderIdentifiers {
/// The identifier to use next.
id: u64,
/// Assigned [`SenderId`] for an [`Address`].
address_to_id: HashMap
,
/// Reverse mapping of [`SenderId`] to [`Address`].
sender_to_address: FxHashMap,
}
impl SenderIdentifiers {
/// Returns the address for the given identifier.
#[allow(dead_code)]
pub fn address(&self, id: &SenderId) -> Option<&Address> {
self.sender_to_address.get(id)
}
/// Returns the [`SenderId`] that belongs to the given address, if it exists
pub fn sender_id(&self, addr: &Address) -> Option {
self.address_to_id.get(addr).copied()
}
/// Returns the existing [`SenderId`] or assigns a new one if it's missing
pub fn sender_id_or_create(&mut self, addr: Address) -> SenderId {
self.sender_id(&addr).unwrap_or_else(|| {
let id = self.next_id();
self.address_to_id.insert(addr, id);
self.sender_to_address.insert(id, addr);
id
})
}
/// Returns the current identifier and increments the counter.
fn next_id(&mut self) -> SenderId {
let id = self.id;
self.id = self.id.wrapping_add(1);
id.into()
}
}
/// A _unique_ identifier for a sender of an address.
///
/// This is the identifier of an internal `address` mapping that is valid in the context of this
/// program.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct SenderId(u64);
impl SenderId {
/// Returns a `Bound` for [`TransactionId`] starting with nonce `0`
pub const fn start_bound(self) -> std::ops::Bound {
std::ops::Bound::Included(TransactionId::new(self, 0))
}
}
impl From for SenderId {
fn from(value: u64) -> Self {
Self(value)
}
}
/// A unique identifier of a transaction of a Sender.
///
/// This serves as an identifier for dependencies of a transaction:
/// A transaction with a nonce higher than the current state nonce depends on `tx.nonce - 1`.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct TransactionId {
/// Sender of this transaction
pub sender: SenderId,
/// Nonce of this transaction
pub nonce: u64,
}
impl TransactionId {
/// Create a new identifier pair
pub const fn new(sender: SenderId, nonce: u64) -> Self {
Self { sender, nonce }
}
/// Returns the [`TransactionId`] this transaction depends on.
///
/// This returns `transaction_nonce - 1` if `transaction_nonce` is higher than the
/// `on_chain_nonce`
pub fn ancestor(transaction_nonce: u64, on_chain_nonce: u64, sender: SenderId) -> Option {
(transaction_nonce > on_chain_nonce)
.then(|| Self::new(sender, transaction_nonce.saturating_sub(1)))
}
/// Returns the [`TransactionId`] that would come before this transaction.
pub fn unchecked_ancestor(&self) -> Option {
(self.nonce != 0).then(|| Self::new(self.sender, self.nonce - 1))
}
/// Returns the [`TransactionId`] that directly follows this transaction: `self.nonce + 1`
pub const fn descendant(&self) -> Self {
Self::new(self.sender, self.next_nonce())
}
/// Returns the nonce that follows immediately after this one.
#[inline]
pub const fn next_nonce(&self) -> u64 {
self.nonce + 1
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::collections::BTreeSet;
#[test]
fn test_transaction_id_new() {
let sender = SenderId(1);
let tx_id = TransactionId::new(sender, 5);
assert_eq!(tx_id.sender, sender);
assert_eq!(tx_id.nonce, 5);
}
#[test]
fn test_transaction_id_ancestor() {
let sender = SenderId(1);
// Special case with nonce 0 and higher on-chain nonce
let tx_id = TransactionId::ancestor(0, 1, sender);
assert_eq!(tx_id, None);
// Special case with nonce 0 and same on-chain nonce
let tx_id = TransactionId::ancestor(0, 0, sender);
assert_eq!(tx_id, None);
// Ancestor is the previous nonce if the transaction nonce is higher than the on-chain nonce
let tx_id = TransactionId::ancestor(5, 0, sender);
assert_eq!(tx_id, Some(TransactionId::new(sender, 4)));
// No ancestor if the transaction nonce is the same as the on-chain nonce
let tx_id = TransactionId::ancestor(5, 5, sender);
assert_eq!(tx_id, None);
// No ancestor if the transaction nonce is lower than the on-chain nonce
let tx_id = TransactionId::ancestor(5, 15, sender);
assert_eq!(tx_id, None);
}
#[test]
fn test_transaction_id_unchecked_ancestor() {
let sender = SenderId(1);
// Ancestor is the previous nonce if transaction nonce is higher than 0
let tx_id = TransactionId::new(sender, 5);
assert_eq!(tx_id.unchecked_ancestor(), Some(TransactionId::new(sender, 4)));
// No ancestor if transaction nonce is 0
let tx_id = TransactionId::new(sender, 0);
assert_eq!(tx_id.unchecked_ancestor(), None);
}
#[test]
fn test_transaction_id_descendant() {
let sender = SenderId(1);
let tx_id = TransactionId::new(sender, 5);
let descendant = tx_id.descendant();
assert_eq!(descendant, TransactionId::new(sender, 6));
}
#[test]
fn test_transaction_id_next_nonce() {
let sender = SenderId(1);
let tx_id = TransactionId::new(sender, 5);
assert_eq!(tx_id.next_nonce(), 6);
}
#[test]
fn test_transaction_id_ord_eq_sender() {
let tx1 = TransactionId::new(100u64.into(), 0u64);
let tx2 = TransactionId::new(100u64.into(), 1u64);
assert!(tx2 > tx1);
let set = BTreeSet::from([tx1, tx2]);
assert_eq!(set.into_iter().collect::>(), vec![tx1, tx2]);
}
#[test]
fn test_transaction_id_ord() {
let tx1 = TransactionId::new(99u64.into(), 0u64);
let tx2 = TransactionId::new(100u64.into(), 1u64);
assert!(tx2 > tx1);
let set = BTreeSet::from([tx1, tx2]);
assert_eq!(set.into_iter().collect::>(), vec![tx1, tx2]);
}
#[test]
fn test_address_retrieval() {
let mut identifiers = SenderIdentifiers::default();
let address = Address::new([1; 20]);
let id = identifiers.sender_id_or_create(address);
assert_eq!(identifiers.address(&id), Some(&address));
}
#[test]
fn test_sender_id_retrieval() {
let mut identifiers = SenderIdentifiers::default();
let address = Address::new([1; 20]);
let id = identifiers.sender_id_or_create(address);
assert_eq!(identifiers.sender_id(&address), Some(id));
}
#[test]
fn test_sender_id_or_create_existing() {
let mut identifiers = SenderIdentifiers::default();
let address = Address::new([1; 20]);
let id1 = identifiers.sender_id_or_create(address);
let id2 = identifiers.sender_id_or_create(address);
assert_eq!(id1, id2);
}
#[test]
fn test_sender_id_or_create_new() {
let mut identifiers = SenderIdentifiers::default();
let address1 = Address::new([1; 20]);
let address2 = Address::new([2; 20]);
let id1 = identifiers.sender_id_or_create(address1);
let id2 = identifiers.sender_id_or_create(address2);
assert_ne!(id1, id2);
}
#[test]
fn test_next_id_wrapping() {
let mut identifiers = SenderIdentifiers { id: u64::MAX, ..Default::default() };
// The current ID is `u64::MAX`, the next ID should wrap around to 0.
let id1 = identifiers.next_id();
assert_eq!(id1, SenderId(u64::MAX));
// The next ID should now be 0 because of wrapping.
let id2 = identifiers.next_id();
assert_eq!(id2, SenderId(0));
// And then 1, continuing incrementing.
let id3 = identifiers.next_id();
assert_eq!(id3, SenderId(1));
}
#[test]
fn test_sender_id_start_bound() {
let sender = SenderId(1);
let start_bound = sender.start_bound();
if let std::ops::Bound::Included(tx_id) = start_bound {
assert_eq!(tx_id, TransactionId::new(sender, 0));
} else {
panic!("Expected included bound");
}
}
}