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Aging across most species, including mice and humans, is characterized by an exponential ac-
celeration of mortality rates. In search for the molecular basis of this phenomenon, we analyzed
DNA methylation (DNAm) changes in aging mice. Utilizing principal component analysis (PCA)
on DNAm profiles, we identified a primary aging signature with an exponential age dependency,
closely reflecting the Gompertz law’s description of mortality acceleration. This signature is the
manifestation of the dynamic instability in the organism’s state that drives the aging process in
mice. It aligns closely with regression-based aging clocks and responds to interventions such as
caloric restriction and parabiosis. Additionally, we identified a linear DNAm signature, indicative
of a global demethylation level. Through single-cell DNAm (scDNAm) data from aging animals,
we demonstrate that this signature captures the exponential expansion of the state space volume
spanned by individual cells within an aging organism, and thus quantifying linearly increasing con-
figuration entropy, likely an irreversible process. Consistent with this interpretation, we found that
neither caloric restriction (CR) nor parabiosis significantly impacts the entropic feature, reinforcing

its link to irreversible damage.

I. INTRODUCTION

Aging in most species manifests itself as an exponential
acceleration of mortality. Practical biotechnology relies
on manipulation of biological systems at the molecular
and cellular levels and necessitates an understanding of
how such exponential dynamics are mirrored by molec-
ular changes, including target molecules concentrations
and DNA methylation (DNAm) levels. Concurrently,
significant efforts are directed towards developing “aging
clocks” or “biomarkers of aging” [1, 2], typically derived
using supervised learning techniques. These methods in-
volve fitting multidimensional signals, such as DNAm
profiles or blood markers, to chronological age [3, 4] or
mortality risk [5, 6]. However, overcoming the curse of
dimensionality in these analyses necessitates aggressive
regularization. For instance, the best-known Horvath
DNAm clock [3] was derived from ultra-high dimensional
data using Elastic Net, a combination of L1 and L2 reg-
ularization [7].

The heavy reliance on regularization presents multi-
ple challenges. Primarily, achieving a unique solution
is challenging, as heavy regularization tends to select a
number of features approximately equal to the sample
size, based on their correlation to the target phenotype.
Consequently, the feature sets identified through regres-
sion may lack direct biological relevance, especially once
the number of features substantially exceeds the sample
size. As a result, our “biological clocks” may more accu-
rately reflect preconceived notions about the aging pro-
cess, such as the linear dependence of key aging features
on chronological age. These predictors then require addi-
tional statistical models, such as log-linear proportional
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hazards models [6], to associate the identified linear fea-
tures with the observed exponential increase in mortality.

An effective alternative is the use of unsupervised ap-
proaches, such as principal component analysis (PCA,
see, e.g. [8]), non-negative matrix factorization (see ex-
ample of NMF applied to DNAm data [4]), or mod-
ern AI/ML systems designed for longitudinal biomedical
data analysis [9, 10]. These methods aim to represent
the data using a limited number of variables while main-
taining controlled accuracy, either at a single time point
or across aging trajectories. The key advantage of these
models is their minimal underlying assumptions, allow-
ing for a more authentic revelation of the dynamics of
age-related features.

In this Letter, we followed [11] and utilized PCA to
obtain a semi-quantitative understanding of the dynam-
ics of methylation profiles associated with aging, as well
as their response to lifelong and transient interventions
in mice. This was done using bulk DNA methylation
(DNAm) data from [4] and newly available single cell
DNAm (scDNAm) data from [12]. We produced evidence
suggesting that the leading aging signature in the bulk
DNAm data from mice characterizes the dynamics of a
large cluster of tightly-synchronized age-dependent fea-
tures exhibiting an exponential dependence on age with
the exponent matching the exponent of the Gompertz
mortality law. The variance of the the feature increased
exponentially within the population, albeit at twice the
rate. Such a pattern of exponential growth in both mean
and variance is indicative of stochastic instability of the
organism state, and hence we identify DNAm-PC1 with
the order parameter characterizing the development of
the instability, the dynamic frailty index (dFI, see [9]).
Our DNAm estimate of dFI correlates with and is en-
riched with DNAm sites selected by aging clocks (trained
to predict the chronological age of animals [4, 13]) com-
monly used in the experiment in mice and responded
to short-term (parabiosis) and long-term (caloric restric-
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tion, CR) treatments.

The next leading DNAm signature identified in our
study is linear over time, reflecting a global trend of
demethylation of mouse DNA in the course of aging pro-
cess. Through the analysis of sScDNAm data, we demon-
strate that most of these DNAm features alter their
methylation states independently. This behavior sup-
ports our ealier hypothesis [11] suggesting that linear
features in DNAm measurements track an exponential
expansion of the volume of configuration state space vol-
ume occupied by single cells in the aging organism, a
likely irreversible process. Thus, the linear aging signa-
ture may represent irreversible damage measured by in-
creasing the configuration entropy. Consistent with these
expectations, analysis of publicly available data revealed
that neither caloric restriction (CR) nor parabiosis can
significantly reduce or affect the rate of change of this
linear feature, reinforcing its association with irreversible
entropy accumulation.

Finally, we draw comparisons between the leading ag-
ing signatures in mice and humans. Despite the observed
qualitative differences in aging dynamics between the two
species, our analysis suggests that aging in both can be
quantitatively described by the same overarching model
using a physics-informed aging model from [9, 11, 14, 15].
This alignment, along with validation of the entropic na-
ture of the leading aging signature, opens opportunities
for the discovery and testing of experimental interven-
tions that could significantly affect human lifespan using
short-lived species like rodents as models.

II. RESULTS
A. Aging and DNAm in mice

The GSE80672 data set comprises the bulk DNAm
levels from two tissues of from C57BL/6 mice. In this
study,we focused exclusively on blood samples (the same
data was used in the development of Petkovich’s DNAm
clock, which is often used in mouse experiments [4]).
To discern clusters of correlated features in the DNAm
signal and understand the character of their variation
with age, we conducted a Principal Component Analysis
(PCA) after filtering out sites with the weakest correla-
tion to chronological age (details in Materials and Meth-
ods S.TA).

Our findings are presented in Figs. 1. For each sample,
PCA yields scores, henceforth referred to as DNAm-PC1
and DNAm-PC2, representing the common factors be-
hind the fluctuations of two largest clusters of DNAm
sites. We applied an exponential fit to individual PCA
scores across all samples, revealing that DNAm-PC1 in-
creases exponentially with age, with an estimated expo-
nent of & = 0.17 per month (see Fig. 1(a)). The exponent
is not small, at;s = 5 > 1, where t;; ~ 28 months is the
average life expectancy of the C57BL/6 mice [16].

In addition to the exponential growth observed in the

mean of DNAm-PC1, we found a similar exponential in-
crease in its variance with age. This increase was approx-
imately twice the rate of the mean DNAm-PC1 score, as
shown in Fig. 1(b). Such a pattern of exponential growth
in both mean and variance is indicative of stochastic in-
stability of the organism state, and hence we identify
DNAm-PC1 with the order parameter characterizing the
development of the instability, the dynamic frailty index
(dFT) in mice [9].

On the contrary, DNAm-PC2 exhibited a distinctly
different pattern. Its relationship with age is best de-
scribed as a linear function (Pearson correlation coeffi-
cient of r = 0.42 (p = 1.04 - 107°), see Fig. 1(a)) with no
evidence for increasing variance over time.

The DNAm-PC2 score has a straightforward interpre-
tation: it correlates with the overall average methylation
level in our samples (Pearson’s correlation coefficient of
r = —0.91 (p < 1073), see the green dots in Fig. 1(c)).
Conversely, DNAm-PC1 does not show a notable correla-
tion with average methylation levels, as indicated by the
magenta dots in the same figure (Pearson’s correlation
coefficient of r = 0.17 (p = 0.056), see the green dots in
Fig. 1(c)).

Finally, we investigated the relationship between
DNAm-PC1 and DNAm-PC2 scores, on the one hand,
and the DNAm clock developed using this dataset [4], on
the other (see Fig. 7?7). Our analysis revealed significant
correlations for both DNA-PC scores. This is not surpris-
ing, since both PC scores correlate to the common factor
— the chronological age. However, the exponential feature
(DNAm-PC1) more closely mirrored the aging dynamics
captured by the methylation clock from [4] than the lin-
ear feature (DNAm-PC2).

PCA transformation produced the PC scores and the
corresponding loading vectors. The loading vector com-
ponents have the meaning of the degree of participation
of each DNAm site in the dynamics of the corresponding
cluster of DNAm features. The probability distributions
of the components of the loading vector (also known as
participation indices) for DNAm-PC1 and DNAm-PC2
are represented in magenta and green colors, respectively,
in Fig. 2(a).

We note, that due to the limited availability of DNAm
samples, coupled with the ultra-high dimensionality of
the signal, makes it challenging to precisely delineate
the features contributing to the DNAm-PC1 and -PC2
signatures. Furthermore, with an increase in the num-
ber of samples, matrix-factorization-based methods like
PCA are likely to reveal additional processes beyond ag-
ing reflected in the data. These higher-order contribu-
tions would correspond to specific biological processes.

The distribution of the loading vector components
for the exponential feature, DNAm-PC1, displays heavy
tails, indicating the presence of sites significantly associ-
ated with this process. We performed a gene set enrich-
ment analysis (GSEA) for these relevant sites to identify
genes likely modulated by DNAm-PCI1 activation and en-
riching developmental and signaling pathways (30 path-
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FIG. 1. Analysis of Aging Dynamics of DNA Methylation (DNAm) States Using PCA. Panel (1(a)): Illustrates the leading aging
signatures in bulk DNAm, revealing two clusters of DNAm features with exponential and linear dependencies on chronological
age. Panel (1(b)): Demonstrates that the variance of the exponential DNAm-PC1 signature exhibits an exponential increase
with age. Panel (1(c)): Shows the correlation between the linear DNAm feature and the mean DNAm level. Panel (1(d)):
Highlights the correlations betweem the DNAm signatures with the aging clock developed in the same dataset and described

in [4].
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FIG. 2. Properties of the loading vectors corresponding to the leading exponential (DNAm-PC1) and linear (DNAm-PC2)
features. (2(a)) Loading vectors (participation coefficients) of the exponential and the linear aging signatures show qualitatively
different distributions; (2(b)) Leading (max-absolute value) components of the DNAm-PC1 loading vector are enriched with
DNAm sites selected for biological age determination in Petkovich [4] and WLMT [13] clocks.
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FIG. 3. The distribution of the leading DNAm-PC1 loading
vector components (bars) corresponding to DNAm sites or-
dered by the average mutual information (MI, the color bar
in the bottom panel). High-average MI sites change their
states in a correlated manner and more likely to belong to
DNAm-PC1 signature (mHG p = 8.215 - 107°)

ways passing FDR criterion at ¢ < 1-10~% are presented
in Supplementary Table 1). These observations match
earlier findings in the same dataset [17].

In contrast, the components of the DNAm-PC2 loading
vector corresponding to the linear feature show a distri-
bution shifted away from zero, implying a non-localized
activation and hence representing the change in the av-
erage methylation level (in line with Fig. 1(c)). Due to
the global nature of this feature, there was no sense in
conducting GSEA.

B. DNAm-PC scores and aging clocks

The exponential signature DNAm-PC1 is significantly
enriched with DNAm sites commonly selected by super-
vised aging clocks. We organized DNAm sites accord-
ing to the absolute values of PC1 loading vector com-
ponents in ascending order, as illustrated in the bottom
panel of Fig. 2(b). The sites employed in the regular-
ized regression for the construction of the Petkovich[4]
and WLMT [13] aging clocks are marked, respectively,
in blue and red.

Enrichment analysis showed that sites chosen by both
aging clock regression models likely correspond to the
leading components of the DNAm-PC1 loading vector,
both for Petkovich (Minimal Hypergeometric (mHG) p =
4.74-107%) and for WLMT (p = 7.55 - 10~14) clocks.

C. Aging and configuration entropy - evidence
from single cell methylation

The most plausible interpretation of the observed lin-
ear aging trajectories shared by a wide array of DNAm
features is that the dynamics of DNAm-PC2 is governed
by numerous independent alterations in methylation

4

states. This theory, originally proposed in [11] concern-
ing human DNAm data, finds indirect support through
the observed correlation between DNAm-PC2 and aver-
age methylation in mice, as illustrated in Fig. 1(c).

To validate this interpretation on the level of indi-
vidual cells, we analyzed single-cell DNAm (scDNAm)
data from [12], calculating mutual information (MI) be-
tween methylation sites to assess codependence (detailed
in Materials and Methods). This nonnegative measure
is exactly zero if the sites change their states indepen-
dently(see, e.g., [18]).

Given the sparsity of scDNAm data, we relied on one
more level of averaging and computed the average MI
for each DNAm site, arranged them by increasing mean
MI (see the bottom panel in Fig. 3), and marked sites
integral to the DNAm-PC1 loading vector.

The distribution of average MI for DNAm-PC1’s lead-
ing components is left-shifted (mHG p = 8.215 - 1077),
implying concurrent methylation changes of DNAm sites
associated with dynamics of DNAm-PC1. This finding,
together with the exponential dependence of mean and
variance on age, reinforces the link between the DNAm-
PC1 score and the order parameter characterizing the
dynamic instability of the organism state - the dynamic
frailty index, dFI [9]. Therefore, we propose using the
DNAm-PC1/dFI to encapsulate the dynamic aspects of
aging.

Conversely, DNAm-PC2-associated sites show a lower
average MI, suggesting that most of DNAm states change
independently. Therefore, the volume in the configura-
tion space occupied by individual cellular states within an
aging organism grows exponentially with age, and hence
configuration entropy scales linearly with time. Follow-
ing [11], we identify this process as DNAm-PC2 with
thermodynamic biological age (tBA, introduced in [11]),
henceforth referred to as DNAm-PC2 / tBA, capturing
the entropic component of aging.

D. Effects of interventions on aging signatures

We investigated the response of linear(entropic) and
exponential(dynamic) DNAm signatures to both lifelong
and short-term interventions (see Figs. 4). Caloric re-
striction (CR), recognized for its lifespan extension ef-
fects in mice, was examined using DNAm data from [4].
Our analysis also showed that CR markedly decreased
the growth rate of the dynamic signature, DNAm-
PC1/dFI (Fig. 4(a), p = 0.0, two-sided t-test). How-
ever, CR did not significantly alter the rate of entropy
production, as measured by the change in the slope of
age dependence of the DNAm-PC2/tBA score (Fig. 4(b),
p = 0.34, two-sided t-test).

We observed that DNAm-PC2 levels are higher in sam-
ples from CR animals compared to controls (blue rel-
ative to green dots in Fig. 4(b), p = 0.025, two-sided
t-test). However, we caution against drawing extensive
conclusions from this observation, as life-long CR might


https://doi.org/10.1101/2024.02.25.581928

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.25.581928; this version posted February 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

— C'R
1500 1 - Control
3
<1000
~ ,
<3
=
= 500
QO
a9
0 . e
i~
10 20 30
age, t, months
(a)
p = 7.05e — 02 p =429 — 02
p = 8.40e — 03 p=1.02e — 02
| — | | — |
400 .
3
~ -—
& 2001 .
= —e o ]
)
2, 1 = =,
== = —|
x5 ==
—200 T :
o O U '
& &S
& & & Q Q 9
'\5‘90 '.\‘"90 60 \\Q W W
&) N & & & &
NHE O & N
KO NS & © &
Q S N2 \’@(
K\g \'% N
RGN
4 o
Group

5
500 A
L ] ]
$ ? 42— o 4
s "7. y $ve $°% 3 W
- 04 ¢ $ l g ¢ 1 $— 1
< tA LA T T
B ® b
s |IN -
-~ { Y
~ '
™ |
%3 —500 . :
= C'R
~1000 - Control
10 20 30
age, t, months
(b)
p = 1.45e — 01 p=1.62e —01
p=22le—02 p=3.19¢ — 03
L — | | — |
[ ]
200
3
3
-
= 100 {
* I
$
g = = M| | P—
0 g g —O——
& =
¥ -0 e 3
& & & x&‘e\\ \&\ @é\
N \ & QQ Q@ QQ;
& & & U X o
O 0 ¢ & N N
O \B‘ Q’,“ &0 N &0
&0 &
4 N & & )\éo
N@% 0\ b\\@
4° N
Group

(d)

FIG. 4. Effects of life-extending interventions, caloric restriction (CR, top), and parabiosis (bottom), on dynamic (DNAm-
PC1/dFI, left) and entropic (DNAm-PC2/tBA, right) aging components, respectively.

influence higher-order adaptive processes not directly re-
lated to aging, which could result in systematic shifts
in DNAm. Accurate estimation of DNAm-PC scores
characterizing DNAm profiles with lesser variance would
require significantly larger sample sizes. Nevertheless,
this uncertainty does not impact our slope estimates and
hence alter our findings on the effects of CR on aging
rates as measured by tBA.

In the case of heterochronic parabiosis, known
to extend lifespan in mice, the application of our
PCA-based model to DNAm data from [19] revealed
that the dynamic/exponential (DNAm-PC1/dFI) and
the linear/entropic (DNAm-PC2/tBA) signatures were
markedly elevated in older mice relative to younger coun-
terparts. This observation, leveraging a dataset not in-

volved in our PCA model training, externally validates
our PCA-identified aging signatures.

In parabiosis experiments, the dynamic DNAm-
PC1/dFT signature was significantly reduced (p = 7.05 -
1072, one-sided t-test) during the procedure and the
effect persisted for 2 months after detachment (p =
4.29 - 1072, one-sided t-test, see Fig. 4(c)). In contrast,
the entropic signature, DNAm-PC2/tBA, remained un-
changed immediately after parabiosis and two months
later (Fig. 4(d)). Isochronic parabiosis did not show an
impact on either of the aging signatures.
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III. DISCUSSION

In this study, we built on our previous work [11] and
employed unsupervised learning techniques, specifically
principal component analysis (PCA), to uncover the lead-
ing DNAm aging signatures in mice. The leading signa-
ture, the first principal component DNAm-PC1, demon-
strated an exponential correlation with chronological age,
with an exponent o = 0.15 per month. This exponent
closely mirrors the Gompertz mortality law exponent
ag = 0.16-0.24 per month, as detailed in our param-
eter estimates in [9], using mortality data from healthy
controls in [20]. The variance of this exponential feature
doubles this rate.

The results could be made sense with the help of the
theoretical framework [9, 14], suggesting that the expo-
nential increase in DNAm-PC1, along with its stochastic
broadening over time, implies that aging in mice stems
from the dynamic instability of the organism’s state. Fur-
thermore, the direct link between DNAm-PC1 scores and
the macroscopic trait of accelerating mortality frames ag-
ing as an emergent property, measurable by the order
parameter—the dynamic frailty index (dFI).

The dFT acts as a common factor for fluctuations in
a large cluster of correlated features throughout the or-
ganism, rather than any specific subsystem. Hence in no
way we assume that DNAm is somehow the most impor-
tant factor driving the aging process. Rather, DNAm
drift—alongside other microscopic features are manifes-
tations of aging sharing universal (system’s independent)
properties.

For species with a sufficiently long lifespan, at;s 2 1,
the effects of stochastic forces on the aging trajectory are
small [14], and the order parameter, dFI, closely matches
the leading first PC score. Therefore, DNAm-PC1 can
effectively represent an estimate of dFI from a specific
dataset (hence the notation DNAm-PC1/dFI).

On a more practical level, the association of aging with
the dynamic instability of the organism’s state suggests
that aging in mice is largely reversible [9]. Therefore, in-
terventions targeting dFI should have lasting effects, even
after short-term treatments, with the effects of repeated
treatments possibly accumulating over time.

Consistent with the theoretical understanding, we ob-
served that dynamic aging signatures are responsive to
short-term interventions like parabiosis (as shown here,
see Fig.4(c)) and rapamycin (as reported in [9]), as well
as long-term interventions such as caloric restriction (CR,
discussed here, see Fig.4(a)) and the contrasting impacts
of a high-fat diet [9].

PCA analysis of DNAm indicates that the exponen-
tial instability of an organism’s state constitutes the
main driver of the aging process in aging mice. The
next leading DNAm signature of aging in bulk DNAm
data captures progressive demethylation with age, a well-
documented phenomenon, highlighted in relation to the
bulk DNAm dataset utilized in this study through non-
negative matrix factorization (NMF), an approach simi-

lar in spirit to PCA [4].

The emergence of features linearly correlated with
chronological age appears to be universal: the predom-
inant DNAm-PC signature of bulk DNAm from human
whole blood samples is also linear with age, exhibiting
linearly increasing variance [11]. Based on these statisti-
cal properties, we proposed that the linear trend in aver-
age methylation suggests DNAm alterations result from
a vast array of independent events - configuration tran-
sitions occurring at nearly age-independent rates. This
process is very distinct from the single-factor model un-
derlying the exponential feature, which implies highly
correlated changes among the involved sites.

To corroborate this interpretation, we obtained single-
cell DNAm (scDNAm) data and investigated pairwise
mutual information (MI) between DNAm sites contribut-
ing to the DNAm-PC1 and PC2 signatures. This non-
negative metric is zero when two sites alter states inde-
pendently [18]. In line with our theoretical predictions,
sites involved in the linear DNAm-PC2 signature display
the lowest mean pairwise MI values, whereas those linked
to the exponential DNAm-PC1 signature exhibit higher
mean MIs (Fig. 3).

Thus, the linear DNAm signature likely reflects the
exponential expansion of the configuration space volume
occupied by single-cell states, accompanied by a linear
increase in entropy, suggesting an irreversible process. A
linear increase in configuration entropy suggests a steady
growth in the disorder of the system or the information
needed to specify and, if needed, to control the micro-
scopic (that is methylation in our example) state of the
organism. Following [11], we advocate for the application
of the linear DNAm signature as a measure of thermo-
dynamic biological age (DNAm-PC2/tBA in this study,
or simply tBA).

The link between the linear feature, DNAmM-PC2 in
mice, and configuration entropy might be empirically
strengthened by examining the impact (or lack thereof)
of life-extending interventions on tBA. We observed that
caloric restriction did not significantly the linear slope of
age-dependent DNAm-PC2/tBA increase — the entropy
production estimate. Furthermore, the linear DNAm ag-
ing signature remained unaltered immediately following
parabiosis and two months later after the detachment.

The apparent irreversibility of the linear aging signa-
ture stems from its nature as a cumulative effect of in-
dividually infrequent events tied to transitions between
metastable states. Each transition, a form of damage, is
safeguarded by substantial activation barriers, ensuring
low frequencies for both direct and reverse transitions.
This condition renders reversing these changes challeng-
ing through weak perturbations. Stronger interventions
might unpredictably influence other high-barrier states,
indicating that the linear aging signature may resist re-
versal through feasible interventions. Essentially, this
linear signature encapsulates ’entropic’ and ’irreducible’
damage, marked by transitions in configuration and reg-
ulatory errors with extremely long lifetimes.
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The effects of noise on aging and noise-based biomark-
ers of aging were discussed in [11, 21, 22]. Our study
delineates aging signatures as reversible (dynamic) and
irreversible (entropic) with markedly different fluctuation
properties. If our interpretation is correct, the biological
data must exhibit two distinct types of stochastic vari-
ance. First, fluctuations in degrees of freedom linked
to the order parameter, such as those found in dynamic
frailty index (dFI)-like features, should vary more signif-
icantly across different organisms while remaining highly
synchronized within the same individual (high-dFI states
are characterized by low entropy since variance in dFI
involves changes in states with high mutual information
(MI); this synchronicity among aging hallmarks is empir-
ically observed in experiments where drugs acting against
a hallmark of aging (an age-dependent factor) act on oth-
ers as well). We demonstrated, that fluctuations of dFI
can grow exponentially and hyperbolically with age in
dynamically unstable and ustable situations, respectively
exepmlified by mice (here and in [9]) and humans [11, 15].

Second, features related to the thermodynamic bio-
logical age (tBA) are influenced by processes that re-
main largely independent within a single organism, indi-
cated by low pairwise MI among the involved states. The
variability in these features is expected to be consistent
across organisms of the same age or even cells within the
same organism. We anticipate that future high-quality
scDNAm data will validate this expectation.

The coregulated and stochastic clusters of methyla-
tion sites, the analogues of the the exponential /dynamic
and linear/entropic features from this work, were also
described in [23]. The conclusion was that epigenetic ag-
ing involves coregulated changes, but it is dominated by
the stochastic component. Here, we argue that in suffi-
ciently long-lived species, such as mice with ay 2 #5, the
exponential instability dominates the dynamics of the or-
ganism state and contributes most to all-cause mortality
and hence regulates longevity [9, 14].

The dominant aging signature is exponential (dy-
namic) in mice and linear (entropic) in humans. The
next leading aging signature in human bulk DNAm is
hyperbolic, not exponential [11]. The reversed sequence
of these signatures in PCA analysis and their distinct
functional forms are likely due to the varying stability
properties of the states of the organism in mice and hu-
mans. In [15], we demonstrate that the dynamic aging
signature in humans, characterized by a dynamic frailty
index (dFI), exhibits overdamped stochastic fluctuations,
typical of dynamically stable system until very late in life
(hence the dFI is an adaptive feature in humans). The
autocorrelation time of such fluctuations has the meaning
of recovery rate (a measure of resilience) and decreases
linearly with age.

In [11], we proposed that this linear reduction in re-
silience results from the interaction (a second-order effect
of nonlinear coupling) between dynamic features and the
total damage burden (tBA), suggesting that the accu-
mulation of damage registered by (entropic tBA) is the

driver of human aging.

We argue that dynamic and entropic aging signatures
may be quantified, and hence allow for direct and inde-
pendent experimental assessment in animal models. Ag-
ing is a multidimensional phenomenon, making it dif-
ficult to quantify the effects of life-extending interven-
tions using a singular aging clock. Our findings indicate
that regression-based clocks uncontrollably mix the dy-
namic and entropic features with a bias toward capturing
the dynamic (reversible) aspects of aging, particularly in
mice.

Mice, with their inherent dynamic instability, can ex-
hibit pronounced reactions to life-extension interventions
aimed to reduce the dynamic aging signature, which may
only yield small (incremental) effects in humans. In [11]
and in this letter, we argue that the entropic components
of aging may be difficult to reverse. Nonetheless, we ex-
pect that future pharmacological advancements that aim
to decrease the rate of irreversible damage accumulation
could significantly decelerate the aging process. Our un-
derstanding is that this is probably the only realistic way
to achieve strong life-extension therapies in humans. The
identification of both exponential and linear entropic ag-
ing patterns in mice not only advances our theoretical
grasp of aging in both species but also paves the way for
testing of prospective drugs acting on the dynamic and
entropic features of aging in short-lived organisms.
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S.I. METHODS
A. PCA of DNAm data

The data from GSE80672 is a set of site-specific bulk
DNAm densities. Due to the limited number of sam-
ples representing a very large number of simultaneously
measured methylation states, we filter out methylation
sites according to their correlation with chronological age
(Spearman correlation p-value less than 0.6). In such a
way, we selected 1420248 methylation sites (of 1976975
sites in total).

Careful examination of the provided data suggests,
that mice there is an independent process, most prob-
ably development, that is affecting methylation states at
most earlier age. To simplify the analysis below, we fil-
tered samples corresponding to animals younger than 5
months (20 weeks, cf. [9] where a similar consideration
was obtained using blood measurements).
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To reduce dimensionality of the DNAm measurements
by extracting clusters of correlated features in the data,
we performed standard scaling and then principal com-
ponents analysis (PCA).

Let I1; denote the PC1 loading value of site i. Then
|PC1¢e™| = |11, — 11;].

In the experiment involving Caloric restriction (CR),
we fitted the age dependence of DNAm-PCs with the
Scipy curve fit function. PC1 age dependency was mod-
elled as PC1 = (A_ACR*CRstate)+(B+ACR*CRstate)*
e(C+Cor*CRstare)*t - Age was restricted between 6 and 30
months. All the values of the initial parameters were set
to 1 except C' = 0.15. PC2 age dependency was modeled
as PC2 = A+ Acpr * CRstate + (B + Bopg * CRstate) * 1.
Age was not restricted, initial parameters values were all
set to 1. Statistical significance of differences in curve pa-
rameters were estimated with two-sided t-test. CRgiqte
is a binary variable that equals to 1 if the data point
represents a CR mouse and 0 otherwise.

B. Annotation of DNAm sites and gene set
enrichment analysis

Methylation critically influences transcription by mod-
ulating transcription factor (TF) binding. Our study
aimed to decipher the biological significance of PC1/dFI
sites, characterized by |PC1°°"™| greater than 0.0015,
covering 134,770 sites or the top 10% with the highest
PC1 values. We utilized the Gencode vM10 gene anno-
tations (GRCm38/mm10 assembly) for site-to-gene as-
signments. For each gene, excluding pseudogenes, the
promoter region was delineated as 2000 bp upstream and
500 bp downstream of the transcription start site (T'SS).
Each site was linked to up to two genes based on pro-
moter overlap, discarding sites linked to more than two
genes. Genes connected to at least one PC1 site were clas-
sified as PC1 genes (4,265 genes), while those linked to
at least one PC2 site (|PC1°"| less than 0.001, totaling
1,125,398 sites) were categorized as PC2 (background)
genes (18,768 genes). The enrichment analysis was con-
ducted using the EnrichGO function from clusterProfiler
version 4.10.0.

C. Mutual Information (MI) and single-cell
methylation analysis

Single-cell
preprocessing,

DNAm (scDNAm) data, post-
consists of binary values indicating

the methylation status of specific sites, in addition to
a large number of sites without a detected methylation
state. Mutual information (MI) serves as a suitable mea-
sure to assess the independence between the methylation
states of two sites ¢ and j:

_ p(as,bj) >
MI; %p(az,b]) In (p(ai)p(bj) :
where p(a;, b;) denotes the joint probability and p(a;) and
p(b;j) the marginal probabilities of methylation states a;
and b; at sites ¢ and j, respectively [18].

This study utilized single-cell methylation data, as pro-
vided by the authors of [12]. Samples from individuals
younger than 5 months and cells that did not meet the
methylation quality control (QC) criteria were excluded
from the analysis. Detailed information on the retained
samples and the number of cells is documented in Sup-
plementary Table 2. In total, 698 scDNAm profiles, aged
8 to 24 months, were retained for analysis. Sites with a
methylation level < 30% were categorized as ”unmethy-
lated”, and those with a level > 70% as "methylated”.
Sites exhibiting intermediate levels of methylation were
considered as having no detected methylation state.

For our analysis, we focused on sites identified by the
bulk SVD model. Sites with |[PC1°™| greater than
0.0015 (top 10%) were classified as PC1 sites, while
most of the remaining sites (|PC1°"| less than 0.001)
were classified as PC2 sites. The intermediate values
|PC1¢¢"| were excluded. Furthermore, we eliminated
sites measured in fewer than 50 cells or with a less than
10% representation of the minor state, resulting in 4,810
"PC1” sites and 9,774 "PC2” sites. Pairs of sites with
fewer than 10 paired measurements were considered to
have non-robust MI estimates and were excluded. We
ranked sites by the number of valid MI estimates and
selected the top 3,000 sites. From these, we chose 2,000
sites, each with at most 1.7% missing MI values.

To calculate a measure of codependence per DNAm
site, we computed the mean MI for each site, considering
only sites within the same PC group for the mean MI
calculation of each site.

PC1 - MI and PC1 - clock sites association studies were
performed via gseapy-1.1.1 prerank function with 100,000
and 1000 permutations, respectively. mHG 1.1 R package
was used for the minimal hypergeometric tests.
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