#!/usr/bin/env python3 import torch import torch.nn as nn import torch.nn.functional as F import torch.cuda.profiler as profiler import torch.optim as optim from apex import pyprof pyprof.nvtx.init() class LeNet5(nn.Module): def __init__(self): super(LeNet5, self).__init__() # 1 input image channel, 6 output channels, 5x5 square convolution # kernel self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) # an affine operation: y = Wx + b self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): # Max pooling over a (2, 2) window x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # If the size is a square you can only specify a single number x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features with torch.autograd.profiler.emit_nvtx(): net = LeNet5().cuda() input = torch.randn(1, 1, 32, 32).cuda() out = net(input) target = torch.randn(10) # a dummy target, for example target = target.view(1, -1).cuda() # make it the same shape as output criterion = nn.MSELoss() # create your optimizer optimizer = optim.SGD(net.parameters(), lr=0.01) # in your training loop: optimizer.zero_grad() # zero the gradient buffers profiler.start() output = net(input) loss = criterion(output, target) loss.backward() optimizer.step() # Does the update profiler.stop()