data: time_steps: 3 chip_dims: 128 channels: "(WV):blue|green|red" # channels: "S2:(blue|green|red)" # channels: "S2:(blue|green|red),L8:(blue|green|red)" # channels: "(S2,L8):blue|green|red" # channels: blue|green|red # exclude_sensors: # - S2 # - PD window_space_scale: 5GSD output_space_scale: 5GSD batch_size: 8 chip_overlap: 0 dist_weights: 0 min_spacetime_weight: 0.5 neg_to_pos_ratio: 0.25 normalize_inputs: true normalize_perframe: false resample_invalid_frames: true temporal_dropout: 0. time_sampling: hardish3 time_span: 5y upweight_centers: true use_centered_positives: false use_cloudmask: false use_grid_positives: true verbose: 1 optimizer: class_path: torch.optim.Adam init_args: lr: 1e-4 weight_decay: 0.01 betas: - 0.9 - 0.98 eps: 1e-12 profile: false seed_everything: 1234 trainer: accumulate_grad_batches: 32 callbacks: null check_val_every_n_epoch: 1 enable_checkpointing: true enable_model_summary: true enable_progress_bar: true # gradient_clip_algorithm: norm # gradient_clip_val: 0.5 log_every_n_steps: 5 logger: true max_steps: 200000 num_sanity_val_steps: 2 replace_sampler_ddp: true track_grad_norm: 2