
Nature of epigenetic aging from a single-cell
perspective

Andrei E. Tarkhov1,2,*, Thomas Lindstrom-Vautrin1, Sirui Zhang1, Kejun Ying1,
Mahdi Moqri1,3,4, Bohan Zhang1, Alexander Tyshkovskiy1, Orr Levy5,6, Vadim N.
Gladyshev1,#

1Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical
School, Boston, MA 02115, USA
2Current address: andrei@retro.bio, Retro Biosciences Inc., Redwood City, CA 94063, USA
3Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford,
CA, USA
4Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford,
CA, USA
5Howard Hughes Medical Institute, Chevy Chase, MD, USA
6Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA

Corresponding authors: *andrei_tarkhov@hms.harvard.edu, #vgladyshev@rics.bwh.harvard.edu

Abstract
Age-related changes in DNA methylation (DNAm) form the basis for the development of
most robust predictors of age, epigenetic clocks, but a clear mechanistic basis for exactly
what part of the aging process they quantify is lacking. Here, to clarify the nature of
epigenetic aging, we juxtapose the aging dynamics of tissue and single-cell DNAm
(scDNAm) with scDNAm changes during early development, and corroborate our analyses
with a single-cell RNAseq analysis within the same multi-omics dataset. We show that
epigenetic aging involves co-regulated changes, but it is dominated by the stochastic
component, and this agrees with transcriptional coordination patterns. We further support the
finding of stochastic epigenetic aging by direct tissue and single-cell DNAm analyses and
modeling of aging DNAm trajectories with a stochastic process akin to radiocarbon decay.
Finally, we describe a single-cell algorithm for the identification of co-regulated and
stochastic CpG clusters showing consistent transcriptomic coordination patterns, providing
new opportunities for targeting aging and evaluating longevity interventions.

Introduction
Epigenetic clocks have been used for almost a decade to accurately predict chronological
ages of cells, tissues and organisms1–6. More recently, new epigenetic clocks have been
introduced that are trained on mortality and/or phenotypic, pathological and physiological
readouts7,8, as well as on the pace of aging9. In all these cases, the basic feature for age
prediction or model construction is DNA methylation (DNAm) levels averaged over
macroscopic tissue samples, i.e. tissue DNAm levels. The inherent challenge with such an
approach is that the DNAm signal is averaged over a large number of different cells present
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in the tissue. Even though the role of various factors contributing to tissue DNAm changes
has been extensively discussed10–14, epigenetic aging clocks are still lacking an exhaustive
mechanistic explanation. The observed internal age-related changes across all cells could
be confounded by multiple factors, such as changes in cell-type composition15–17 and errors
in DNAm maintenance during cell division and clonal expansion18–22. An important advance
in this area is the development of a single-cell DNA methylation (scDNAm) clock known as
scAge23, relying on tissue DNAm data for calibration. Yet, purely clock-based approaches
remain phenomenological and do not provide a mechanistic explanation for epigenetic
aging.

To clarify the principles and biological mechanisms behind epigenetic aging, we turned our
attention to single-cell DNAm and embryonic development data. Using mice as a model, we
examined patterns of DNAm across different cells and animals with high inter-cell correlation
and used them as a marker of co-regulation. We were able to classify aging changes into
two distinct categories: stochastic and co-regulated. Stochastic changes did not form any
regular DNAm pattern recurrent across cells and organisms, thus most likely representing
the accumulation of epigenetic “rust”. On the other hand, co-regulated changes formed
coherent DNAm patterns across different cells and animals, thereby implying the presence
of a shared biological mechanism regulating those regions. By chance, random molecular
events could also leave similar epigenetic fingerprints in a few cells, but the probability of
such an event happening simultaneously in multiple cells of different organisms would be
negligible. Conceptually similar to an evolutionary conserved DNA region protected from
changes across species, the only possibility of a co-regulated CpG cluster to change its
DNAm levels is to do so concordantly within the cell following its DNAm pattern. The
co-regulated clusters are thus good candidates for programmatic, regulatory epigenetic
changes.

To stress the distinction between stochastic and co-regulated clusters, we run tissue and
single-cell DNAm analyses and modeling of aging DNAm trajectories with a stochastic
process, along with a supportive single-cell transcriptomic coordination analysis. We start by
showing that aging tissue DNAm changes are widespread, but are relatively slow and small
in amplitude, with DNAm levels trending towards intermediate values and showing increased
heterogeneity with age, in agreement with earlier works studying epigenetic drift20,24–27. By
considering dominant types of DNAm changes, we find that aging manifests in the
exponential decay-like loss or gain of methylation with typical rates, largely independent of
the initial level of DNAm28. We support our analysis by direct simulation of aging DNAm
trajectories within a stochastic model akin to radiocarbon decay. To contrast co-regulation
and stochastic patterns during aging, we analyze embryonic development scDNAm data as
a control for co-regulated changes because of a tightly controlled genetic program that
governs development. Finally, in scRNAseq data, we find supportive evidence of significant
global coordination levels (GCL)29,30 of gene expression for genes associated with
co-regulated CpG clusters compared to non-significant GCL for stochastic CpG clusters.

The current approaches for building epigenetic clocks are mostly based on penalized
regression (Lasso, Ridge or ElasticNet), which penalize correlation across CpG sites in order
to reduce the number of CpG sites used to build the clock. Therefore, the penalization would
suppress the contribution of co-regulated clusters because of their high inter-cell correlation.
The predictions of age or other traits would be insensitive to the composition of the clock in
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the correlative analysis. Thus, the currently built clocks may be biased towards stochastic
CpG sites. Though, since clocks typically comprise a few hundred CpGs, in addition to
stochastic CpGs, the same penalization may select (but is not guaranteed to do so) a few
CpG sites per each of multiple aging-related pathways13, thus effectively amplifying the aging
trend in methylation changes by averaging out noise proportionally to the square root of a
number of CpGs as defined by the standard deviation of a sample mean. Hence, a clock
with a hundred CpG sites is enough to suppress the noise in aging signal by a factor of 10,
which may explain why such epigenetic clocks exhibit high robustness and precision in age

prediction ( on an independent validation dataset31). However, different parts of𝑟2 > 0. 8
co-regulated clusters and stochastic sites may respond qualitatively differently in the case of
interventions applied to an organism. A more mechanistic understanding of epigenetic aging
based on co-regulation may improve performance of epigenetic clocks in evaluating
anti-aging interventions. The current approaches for building epigenetic clocks mix up two
qualitatively different components (co-regulated and stochastic) that therefore limit their
predictive power for testing interventions.

Summarizing the multifaceted evidence emerging from our analyses, aging scDNAm
changes are dominated by the stochastic component, in agreement with the concept of
aging as the entropic loss of complexity32,33. We corroborate our finding with supportive
transcriptional coordination patterns in scRNAseq data matching scDNAm patterns. The
stochastic component of aging34 may be a good indicator of cumulative damage arising from
internal processes together with the deleteriousness of the environment in which an
organism lives. Conversely, co-regulated CpG clusters, despite their sparsity, may show
promise as better candidates for capturing the effects of target-specific anti-aging
interventions.
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Results

Tissue epigenetic aging

Fig. 1. Key features of tissue DNAm changes during aging. a. Three major life stages of mice
represented by age-related changes in function — development, functional aging and
multimorbidity35,36. b. Predicted DNAm age of animals (16 age groups, from 3 till 35 months old) based
on the Petkovich et at. dataset4. c. The range of DNAm changes at CpGs sites in the dataset.
Histograms are shown for all CpG sites and for the CpGs significantly changing with age. d. Six
representative CpG histograms in aging mouse cohorts of 3-14 (green), 14-24 (yellow) and 24-35
(orange) months old for the following CpG sites: significantly hypermethylated with age (upper row),
not changing with age (middle row), and significantly hypomethylated with age (lower row)4. e.
Schematics of seven dominant aging DNAm dynamics observed in experimental data. Other types of
dynamics are rare but may also be present in the data. f. Genomic enrichment analysis for the CpG
sites comprising the seven aging dynamics from e. Enrichment profiles are similar for the CpG sites
sharing the direction of age-related changes (dynamics 2 and 3, and 5 and 6). Note that entropic
changes do not share a common genomic profile (2 and 5), and the same applies to those decreasing
entropy(3 and 6). g. Aging dynamics of mean DNAm levels (upper row) and the variance of DNAm
levels (lower row) for the seven types of aging dynamics from e. Color scheme is the same as in e. h.
Aging dynamics of logit of mean DNAm levels (upper row), and of the logit of mean DNAm levels
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relative to the logit of mean DNAm levels at 3 months of age. The logit was defined as , wherelog 𝑥
1−𝑥

is the DNAm level.𝑥

To assess the behavior of DNAm over the time course of mouse life, we divided it into three
intervals according to the typical aging dynamics of physiological readouts: development,
functional aging and multimorbidity35,36 (Fig. 1a). Similar life-course staging can be applied to
humans37–39. Development, especially early development, is known to be a tightly regulated,
programmed process, even if molecular aging already exists there40. Functional aging
corresponds to the period of life between the end of development, accompanied by a
gradual functional decline without major comorbidities. Multimorbidity is the final stage of life,
when the functional decline becomes incompatible with organ and tissue function and
organismal survival. We first focused our analyses on the period of functional aging and then
made use of developmental data for uncovering dissimilarities in DNAm dynamics between
these two life stages.

We first analyzed total blood (bulk) DNA methylation (DNAm) changes during aging of male
C57Bl/6 mice (16 age groups from 3 to 35 months, 8 animals per group) based on our
previous reduced representation bisulfite sequencing dataset4,41. There were 268,044 CpG
sites that significantly correlated with age (13.6% out of all 1,976,056 CpG sites measured in
at least one sample with sequencing depth 10X, and after the Bonferroni correction for
multiple testing, 16,889 CpGs (0.85% of all sites). Given that a substantial fraction of CpGs
change significantly with age, a straightforward prediction of chronological age based on the
DNAm levels and elastic net regression could be made (Fig. 1b), as was previously done in
the case of other aging clocks. Epigenetic clocks typically comprise a few hundred of CpG
sites out of hundreds of thousands that significantly change with age, hence the major
challenge is how to select CpGs that contain the most biologically relevant information about
aging and would produce valuable biomarkers of this process; for example, one may use
additional information, such as genetic data42, for this purpose. Interestingly, the overall
change of DNAm level for each of the numerous age-related CpG sites over the period of
functional aging was small. The largest change of methylation was ~30%, whereas for most
of the CpG sites it was below 10% throughout lifespan (Fig. 1c). In some cases, even a
small (e.g. 10%) change in DNAm level may result in significant consequences for cells
(e.g., activation of retrotransposons or pro-apoptotic genes) and cause health outcomes for
the organism in the long-term. Nevertheless, on average, we observed global DNAm
changes in the genome that only slightly change their normal DNAm level throughout
lifespan. For illustration, we present six representative CpG histograms of aging mouse
cohorts for pairs of CpGs significantly hypermethylated with age, not changing with age, and
significantly hypomethylated with age (Fig. 1d).

We further classified the aging trajectories of DNAm into seven categories depending on the
initial methylation value at the end of development (at 3 months), and the direction of
subsequent changes (Fig. 1e, g, h). Dynamics 1, 4 and 7 represent CpGs, whose
methylation levels remain constant with age and differ only by the initial DNAm level.
Dynamics 2 and 3 correspond to the growth of methylation with age, and dynamics 5 and 6
to the loss of methylation. Dynamics 2 and 5 trend towards the methylation level of 0.5
according to the growth of entropy. At the same time, dynamics 3 and 6 correspond to an
apparent loss of entropy. To characterize these dynamics, we carried out genomic
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enrichment analyses of epigenetic signatures corresponding to the seven types of dynamics
(Fig. 1f). Dynamics 2 and 3 (increasing methylation) and dynamics 5 and 6 (losing
methylation) clustered together, whereas entropic dynamics 2 and 5 or the ones decreasing
entropy, 3 and 6, ended up in different clusters, thus supporting the existence of two distinct
processes driving methylation levels up and down independent of the initial methylation.
Thus, aging dynamics cluster according to the direction of DNAm level change over
functional aging rather than according to the initial methylation level at the completion of
development. The dynamics corresponding to the loss of methylation and higher initial
methylation levels (4, 5, 6 and 7) compared to those gaining methylation or having low initial
methylation levels (1, 2 and 3) are enriched with inter-CpG island regions, or open sea,
introns, intergenic regions and 3’-UTRs, i.e. generally non-functional regions, in agreement
with prior studies20,25,26. Likewise, they are depleted for CpG islands, coding sequences,
exons, 5’-UTRs and promoters.

Interestingly, the aging change was accompanied by the growth of heterogeneity of DNAm
levels within cohorts of the same chronological age, which is indicated by the broadening of
methylation level distribution with age (Fig. 1d), and the growth of DNAm level variance (Fig.
1g). Not only the mean DNAm level for CpGs corresponding to dynamics 2 and 5 showed a
pronounced change with age, but also the heterogeneity of DNAm levels in age cohorts
grew with age (Fig. 1g). Additionally, they shared a similar rate of DNAm change
notwithstanding the initial methylation level. We applied the logit transformation of DNAm
levels, (x is the DNAm level) and found that after this transformation the changeslog 𝑥

1−𝑥

were essentially linear (Fig. 1h), thus resembling exponential-decay-like changes in the
average methylation levels within the defined dynamics of DNAm changes. This is consistent
with the aging-related increase in entropy metrics based on various molecular and functional
models and readouts12,41,43–46.

The above analysis of blood DNAm aging changes can be summarized by the following key
points. DNAm changes during functional aging are omnipresent in the genome, but are
relatively slow and small in the amplitude. DNAm levels, in general, trend towards the
methylation level 0.5 and display increased heterogeneity with age, but this involves different
mechanics. Aging DNAm dynamics can be clustered into seven dominant types. Aging
manifests in the exponential-decay-like loss (or gain) of methylation with typical rates, largely
independent of the initial level of DNAm. These key points suggest that the DNAm aging
changes demonstrate common features indicative of a stochastic process.
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Stochastic single-cell model for simulating tissue epigenetic
aging

Fig. 2. Stochastic single-cell model for modeling tissue DNAm dynamics. a. Sketch for a
three-parameter stochastic decay model: — initial methylation level, and — rates of𝑞 𝑝

𝑑
𝑝

𝑚

demethylation and methylation in a unit of time. The flips of methylation occur randomly with the
corresponding rates. The behavior of two CpG sites in single cells comprising a tissue sample is
illustrated. CpG 1 is initially hypomethylated and gets more methylated with age, whereas CpG 2 is
initially hypermethylated and loses its methylation. b. The stochastic decay model produces
exponential decay law for the dynamics of average methylation. The rate of decay equals the sum of

and . The limiting value is defined by the dynamic equilibrium of methylation and demethylation.𝑝
𝑚

𝑝
𝑑

c. Distributions of and for the sites significantly changing with age4, which were observed in the𝑝
𝑚

𝑝
𝑑

experiment. Random sampling was performed for a uniform distribution of , and on the𝑞 𝑝
𝑚

𝑝
𝑑

following intervals of parameters: , . d. Dynamics of CpG sites𝑞 ∈ [0, 1] 𝑝
𝑚

, 𝑝
𝑑

∈ [0, 0. 045]

included in the Petkovich et al.4 DNAm clock (left), results of fitting of those trajectories to the
exponential decay defined in c (middle), and random sampling of aging trajectories b sampled from
the distribution in c (right). Blue lines show trajectories gaining methylation, and orange lines — losing
methylation. Thick orange and blue lines are the mean trajectories of orange and blue lines.
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To explain a part of age-related DNAm changes caused by stochastic damage accumulation,
we tested the hypothesis that it is possible to reproduce experimental DNAm aging
trajectories with a stochastic single-cell model (see Methods in Supplementary Information).
For simplicity, the stochastic model considers only a single allele per CpG and assumes that
the DNAm dynamics for a CpG site in a cell are purely stochastic and controlled by three
parameters: — initial methylation level, and — rates of demethylation and𝑞 𝑝

𝑑
𝑝

𝑚

methylation in a unit of time. We illustrate the stochastic model with an example of two CpG
sites in a tissue sample of 40 cells — for CpG 1 the rate of methylation is higher than the
rate of demethylation, whereas the initial level of methylation is low, and for CpG 2 the
parameters are the opposite (Fig. 2a). As time passes, some of the cells would flip their
methylation state according to the predefined probabilities. However, the tissue DNAm would
average single-cell levels of methylation across all cells and produce a single number for the
mean DNAm level, which is predicted by the model. For a sample of cells, the CpG site is𝑛
methylated in cells. During functional aging, the CpG can randomly acquire or lose𝑛

𝑚

methylation according to the probability rates and defined above. The model predicts𝑝
𝑑

𝑝
𝑚

the equation for the aging trajectory of the average level of methylation across the whole
sample to be an exponential curve (Fig. 2b):𝑥(𝑡) = 𝑛

𝑚
(𝑡)/𝑛

(1)𝑥(𝑡) =
𝑝

𝑚

𝑝
𝑚

+𝑝
𝑑

+ (𝑞 −
𝑝

𝑚

𝑝
𝑚

+𝑝
𝑑

) exp(− (𝑝
𝑚

+ 𝑝
𝑑
)𝑡).

To compare real aging trajectories of CpG sites with the model predictions, we analyzed the
DNAm aging dynamics4 and calculated the rates for all sites changing significantly𝑝

𝑚
,  𝑝

𝑑

with age (Fig. 2c), and plotted the aging dynamics for 90 CpGs comprising the Petkovich et
al. epigenetic clock (Fig. 2d, left). Next, we fitted the experimental DNAm levels dynamics to

for each clock CpG site (Fig. 2d, middle). We also plotted a subset of trajectories𝑥(𝑡)
corresponding to the parameters randomly drawn from the uniform distributions on𝑞, 𝑝

𝑑
, 𝑝

𝑚

the following intervals: , (Fig. 2c) for each CpG site (Fig. 2d,𝑞 ∈ [0, 1] 𝑝
𝑚

, 𝑝
𝑑

∈ [0, 0. 045]

right).

The stochastic model predictions can fit the observed behavior of clock CpG aging
trajectories (Fig. 2d left and middle). At the same time, the semi-quantitative similarity of
experimental and randomly sampled trajectories (Fig. 2d left and right) suggests that the
stochastic model is able, in a very crude approximation, to qualitatively reproduce the
experimental behavior within a stochastic framework. The distributions of parameters

for simulated trajectories can be characterized by a single characteristic parameter𝑞, 𝑝
𝑑
, 𝑝

𝑚

— the maximal rate of exponential decay (Fig. 2c). This parameter may be(𝑝
𝑚

+ 𝑝
𝑑
)

𝑚𝑎𝑥

used for crude characterization of instability of the aging epigenome in order to estimate the
characteristic age, when epigenetic instability becomes evident. One can potentially refine
such an approximation to take into account more subtle features of the aging epigenome.
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Tissue epigenetic clocks are agnostic of the single cell patterns
of aging

Fig. 3. Three single-cell scenarios of DNAm aging changes. a. An example of three single-cell
scenarios used to produce the same 20% change of tissue DNAm levels with age: co-regulated,
stochastic and mixed. The example is shown for 5 aging animals (horizontal rectangles) with DNAm
levels measured for a set of cells (represented by rows in the rectangles). Each CpG is represented
by a column, the left half of the CpGs are assumed to be hypomethylated in the youthful state,
whereas the right half is initially hypermethylated. Co-regulated aging changes occur in a correlated
manner within one cell (changes of different CpG sites are correlated), and in a coherent way in
different cells and animals. Stochastic changes are uncorrelated among different cells and among
different CpG sites. Mixed changes are a combination of the two. Tissue DNAm clocks are unable to
distinguish these three scenarios since they all correspond to the same change in tissue DNAm
levels. b. Realistic coverage of NGS in single cells would produce a sparse subset of CpGs measured
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in only a handful of cells. The sparsity in the plot is 90%. c. A hypothetical clock with the left half of all
CpG sites hypomethylated in the youthful state, having weight +1, whereas the right half of CpG sites
hypermethylated in the youthful state, having weight -1. For age prediction, the clock weights are
normalized by the number of CpGs in the clock. d. Illustration of the dynamics of stochastic
accumulation of epigenetic changes with age. Age corresponds to the fraction of average DNAm
levels (from 0 to 0.5). The sparsity level is 50%. e. Prediction of the hypothetical clock from c
(normalized to have a unit length) on the simulated data for the three scenarios from a. The clock from
c is able to accurately predict chronological age for any used single-cell scenario, and for any NGS
coverage (see legend for sparsity levels).

Different single-cell DNAm distributions can produce the same tissue DNAm levels.
Specifically, single-cell aging changes can be caused by drastically different biological
processes without being detected by tissue DNAm signals. To illustrate this point, we sketch
three possible scenarios of single-cell DNAm changes that correspond to the same tissue
DNAm pattern (Fig. 3a). The left half of CpGs were initially unmethylated in all cells and
organisms, and the right half — methylated. Then, over the course of aging, each
unmethylated CpG site acquires 20% of methylation, and each methylated CpG site loses
20% of methylation. Three single-cell scenarios are shown: stochastic, co-regulated and
mixed. The stochastic scenario assumes that all changes are scattered across cells in an
uncorrelated manner — the DNAm changes occur independently at CpGs in cells and
organisms. The co-regulated scenario represents a model wherein there are two states for a
cluster of CpGs, young and old, and during aging 20% of cells switch from the young state to
the old state. This scenario corresponds, for instance, to the case of senescent cells, whose
population grows with age. The third scenario is a mixture of the two described above — all
cells accumulate stochastic changes of methylation, whereas some genomic regions are
co-regulated. Tissue DNAm data generated in these three scenarios would indicate the
same 20% change of DNAm levels, thus being unable to distinguish these scenarios. In real
scDNAm data, low sequence coverage produces a severely sparse signal (Fig. 3b), making
the analysis of scDNAm extremely challenging but not impossible in mitotic or clonally
expanding cells. Below, for our analysis, we use the data on single-cell muscle stem cells
and embryonic cells to partially overcome this challenge.

We use a hypothetical example of a clock built for the simulated single-cell scenarios (Fig.
3c). Since tissue DNAm changes are the same 20% for all CpGs, the clock has two constant
parts: it has weights +1 for the right half of CpGs, and -1 for the left half (normalized to the
total number of CpGs). We illustrate the dynamics of aging changes in the stochastic
scenario example (Fig. 3d). We show that the prediction of chronological age is possible no
matter what single-cell scenario or the level of sparsity of the scDNAm signal were used to
simulate the aging dynamics (Fig. 3e). At the same time, the clock is unable to distinguish
the single-cell scenarios used to generate scDNAm levels. The mechanism behind such a
clock might be a gradual accumulation of stochastic damage, or the growth of the population
of “old” cells, or the mixture of the two. In all cases the predictive power of the clock is based
on the inevitable change of average methylation levels with age. Further, we turn to real
scDNAm data to clarify what scenario is realized in an experiment.
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Single-cell epigenetic dynamics during functional aging and
embryonic development

Fig. 4. Single-cell DNAm dynamics during functional aging. a. All seven types of aging
trajectories are present in muscle stem cells (muSC) scDNAm data47 (Fig. 1e). Raw sparse scDNAm
data are shown for a subset of 275 cells from 4 young mice (2 months old) and 2 old mice (24 months
old), single cells from which represent horizontal lines (left panel). Black lines separate cells
corresponding to different mice. For each CpG (vertical column), compression omits non-measured
cells, and shows only the measured ones (right panel). All measured cells for the young mice are
collapsed to the top of the figure, and for the old mice to the bottom. One old mouse showed a
significantly lower coverage than other animals and was censored from the following analyses (see
Methods for more detail). b. Dynamics of a subset of CpG sites that change significantly with age in
scDNAm data (from 2-month-old to 24-month-old mice) (upper panel). All age-related CpGs were
classified into co-regulated and stochastic clusters by their inter-cell correlation (lower panel). The
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co-regulated cluster has characteristic stripes of CpGs whose DNAm levels change concordantly
(lower left panel). The stochastic cluster does not show strong correlation among different cells
(lower right panel). The largest co-regulated cluster (green box), and a stochastic cluster of the
same size (brown box) were chosen for an additional close-up view. c. Close-up view of the
co-regulated cluster (left) and a stochastic cluster (right) from b. The co-regulated cluster indicates
the stretches of CpGs that show high correlation among themselves, and change their DNAm levels
as a single unit. The stochastic cluster does not have similar clustering of CpG sites. Each CpG site in
the stochastic cluster changes independently from others.

We analyzed two scDNAm datasets that provide high NGS coverage for each cell: mouse
embryos prior and during gastrulation48 and aging muscle stem cells (muSC)49. In the case of
aging muSCs, we had 275 single cells derived from four 2-month-old mice and two
24-month-old mice (one old mouse was censored because of the low coverage of NGS in its
cells, see Methods for more detail). First, we filtered CpGs by coverage: each CpG must be
measured in at least 15 cells of young mice, and 15 cells of old mice. Out of 35,584,147
CpGs measured in at least one cell, only 155,359 had sufficient coverage and passed the
filter. Second, we identified CpGs changing significantly with age, thus leaving 502 CpG
sites. Within those CpGs, we managed to observe all seven types of tissue DNAm aging
dynamics present in Fig. 1d (Fig. 4a). For convenient comparison with the tissue DNAm
dynamics, we present both raw and compressed scDNAm data, where for each CpG we
omit non-measured cells and collapse all cells for the young mice to the top, and for the old
mice to the bottom of the panel (Fig. 4a left and right).

Out of 502 CpGs changing methylation with age, we identified 121 CpG sites increasing
methylation and 381 CpG sites losing methylation with age (Fig. 4b). To identify co-regulated
clusters of CpGs, for each pair of CpGs, we calculated the Pearson inter-cell correlation
coefficient separately for young mice, old mice, and for all mice together. The values of
correlation had to be higher than a given threshold in the range from to in all three0. 1 0. 9
cases to include the pair of CpGs into the co-regulated cluster (for illustration purposes, we
use threshold correlation value , see Methods and Ext. Data Figs. 2, 5 and 6 for more0. 5
details on the stability of our analyses to the choice of the threshold, and Ext. Data Fig. 8 for
extensive tests of the algorithm on simulated data). For inter-cell Pearson correlative
analysis, we used a custom Python code taking into account only those DNAm values for
CpGs that had a non-zero coverage. The CpGs with zero coverage were not used for
calculating the Pearson correlation. The method of identifying co-regulated clusters is
conceptually similar to the global coordination level (GCL) metric developed independently
for scRNAseq data analysis29,30. The majority of age-related CpG sites, 92%, changed
according to the stochastic scenario, whereas 8% of the CpG sites changed in a
co-regulated manner. Such a definition of co-regulation is relatively strict, and would rather
tend to mark a CpG site stochastic if it has a low coverage. For a larger number of
sequenced cells, the method would be able to identify more co-regulated clusters. Therefore,
the ability to identify real co-regulated clusters may be strongly influenced by experimental
limitations. With the advances in sequencing technologies, it may be possible to improve the
quality of prediction of co-regulation.

Commonly used for building epigenetic clocks, penalized regression methods have the
advantage of selecting CpG sites that add the most new information to the regression model
at the cost of reducing the number of collinear CpG sites. However, their major drawback in

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2023. ; https://doi.org/10.1101/2022.09.26.509592doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?vmysrr
https://www.zotero.org/google-docs/?7H4XLo
https://www.zotero.org/google-docs/?sRuBdf
https://doi.org/10.1101/2022.09.26.509592
http://creativecommons.org/licenses/by/4.0/


the context of scDNAm data is that they may be biased towards stochastically changing CpG
sites (Ext. Data Fig. 1, Lasso and ElasticNet clocks). The reason for the bias is that the
CpG sites comprising co-regulated clusters are strongly collinear to each other. For the
purpose of mathematical regression, they do not add any additional information to the
model, whereas the stochastic sites are poorly correlated with each other, and the inclusion
of each additional stochastic CpG site is advantageous for the algorithm performance. The
biological meaning of co-regulation implies that there is a well-defined biological process that
controls each co-regulated cluster and does not allow the components of this cluster to
independently accumulate epigenetic damage. However, stochasticity may affect a
co-regulated cluster as a whole if a damaging event affects an upstream mechanism
governing the co-regulation, for example, the DNA regions comprising a co-regulated cluster
may be located close to each other in the nucleus or may have similar
methyltransferase/demethylase recognition sites. Therefore, the mathematical collinearity is
coherent with the biological meaning behind the cluster, which is ignored by penalized
regression models.
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Fig. 5. Comparison of single-cell DNAm dynamics during functional aging and embryonic
development. a. Comparison of aging dynamics of CpGs (left) to their dynamics in mouse embryos
before and during gastrulation (right). Common CpG sites measured in both experiments were used
for plotting. Both hyper- and hypo-methylated with age CpGs (left) were initially hypomethylated at
embryonic day E4.5, and largely acquired global methylation by day E5.5 (right). Afterwards little
qualitative change of methylation was detected up to day E7.5. The qualitative character of changes
during functional aging comprises both co-regulated and stochastic clusters, whereas the
pre-gastrulation development is characterized by the program-like global hypermethylation. b.
Co-regulated and stochastic clusters identified for changes for days E4.5, E5.5, E6.5 and E7.5. The
dominant process is gaining methylation at all co-regulated CpG sites.

To test the co-regulation scenario in the context of developmental genetic programs, we
analyzed embryonic scDNAm data48. There, we had 758 single-cell samples for embryonic
days E4.5, E5.5, E6.5 and E7.5 collected from 28 embryos. First, we chose the CpGs
changing during functional aging (Fig. 5a left) that were also measured in the embryos (370
out of 502 CpGs). These CpGs changed in a coherent co-regulated and program-like
manner: at E4.5 the global methylation was low, whereas by E5.5 it was largely set to a
methylated state, and only slightly further increased during E6.5 and E7.5 (Fig. 5a right).
Overall, the dynamics of scDNAm changes during functional aging was different from that
during gastrulation. Some CpGs losing methylation in old animals gained it during
gastrulation, consistent with the previously observed DNAm age dynamics based on
clocks40. The global change of DNAm during gastrulation follows a trend opposite to the
aging changes of DNAm age. At the same time, co-regulated aging clusters also changed
during embryonic development, which may signify the developmental activation of the same
biological mechanisms becoming prominent later in life. Moreover, some CpGs that get
unmethylated during aging, gain methylation during embryonic development.

Two factors complicate our analysis of co-regulation in embryonic datasets. First, the cells
were extracted from 28 different embryos that may increase inter-embryo heterogeneity in
the scDNAm signal, which would disfavor co-regulation. Second, the global change of
methylation during gastrulation represents a complication for our algorithm — in the case of
global changes of methylation, the inter-cell correlation turns out to be less meaningful
because of minor variation of methylation levels among cells and organisms at each
developmental stage. In a hypothetical example of methylation switching from 0 to 1 in all
cells of all organisms, it is unclear how to identify individual clusters responsible for the
global change of methylation. Therefore, we examined co-regulation in those regions that do
not exactly follow the global wave of methylation. To identify such co-regulated clusters in
the DNAm changes pre- and during gastrulation, we filtered CpGs by coverage: each CpG
must be detected in at least 25 cells for samples corresponding to each embryonic day. Out
of 20,073,742 CpGs measured in at least one cell only 44,711 had sufficient coverage and
passed the filtering, whereas 6,000 CpGs changed significantly with age. Application of our
algorithm with the correlation threshold produced a co-regulated cluster of 191 CpGs,0. 3
and 5,809 stochastic CpGs (Fig. 5b). Due to inter-embryo heterogeneity, a relatively low
sequencing coverage and high sequencing noise, in the embryonic dataset, we could
identify less than 5% of co-regulated CpGs in the background of the global methylation (Ext.
Data Fig. 4).
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Overall, our analysis showed, with the caveats discussed above, that the major component
in the aging scDNAm signal is stochastic. However, some aging CpG sites are consistently
identified as co-regulated, with several detected clusters spanning extensive genomic
regions. In the following section, we present a biological annotation of the identified clusters.

Biological annotation of co-regulated and stochastic clusters

Fig. 6. Biological annotation of co-regulated and stochastic clusters. a. PhyloP evolutionary
conservation score distributions for CpGs comprising stochastic and co-regulated clusters compared
to random regions of the genome. b. PhyloP evolutionary conservation score distributions for CpGs
comprising hypermethylated and hypomethylated clusters compared to random regions of the
genome. c. Evolutionary conservation score (phyloP) for co-regulated, stochastic and random sites as
a function of the correlation threshold for 51,895 CpGs passing the coverage filter (5 cells of young
mice, and 5 cells of old mice measured simultaneously). d. Enrichment analysis of age-associated
alternative splicing events (Alt Spl) for the CpGs comprising co-regulated, stochastic, hypermethylated
and hypomethylated clusters (left), and for alternative splicing events within a 5 kb distance of the
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CpGs clusters in the genome (right). The difference was not statistically significant (Fisher’s exact
test) due to the scarcity of alternative splicing events. e. Enrichment with transcription-factor (TF)
binding sites and CpG islands for co-regulated clusters vs. stochastic clusters and hypermethylated
vs. hypomethylated regions. All shown TFs passed the level of statistical significance was chosen at

after the Bonferroni correction for multiple comparisons. f. Enrichment of co-regulated and0. 05
stochastic clusters against EWAS hits. Each horizontal bar represents an enriched term. The X-axis
shows the -log10(P-value), signed by log2 (Odds ratio). Only the EWAS trait with significant
enrichment (P < 0.05) are included and annotated. g. GO/KEGG enrichment analysis of genes
associated with co-regulated and stochastic clusters: top-10 categories with the lowest false discovery
rate (FDR < 0.05) across biological processes, cellular components, molecular function, KEGG
pathways and mammalian phenotype ontology. Mann-Whitney-Wilcoxon test p-values for legend in a
and b: ns: , *: , **: , ***: ,0. 05 <  𝑝 ≤  1 0. 01 <  𝑝 ≤  0. 05 10−3 <  𝑝 ≤  0. 01 10−4 <  𝑝 ≤  10−3

****: .0. 05 <  𝑝 ≤  10−4

The top two co-regulated CpG clusters with the strongest signal (Fig. 4c) correspond to the
genomic region chr7:7,299,638-7,299,695 and overlaps with the enhancer
(chr7:7,299,662-7,299,876) of gene Clcn4 (chloride voltage-gated channel 4), and the region
(chr18:61,035,975-61,035,992) in the enhancer of gene Cdx1 (caudal type homeobox 1).
Variants in gene CLCN4 in humans are associated with a rare X-linked CLCN4-related
neurodevelopmental disorder (CLCN4-NDD)44,45. Human CDX1 is a tumor suppressor gene,
loss of function variants in which are associated with intestinal tumors46. Both co-regulated
CpG clusters are in the genomic regions containing the marks of high H3K4me3 and
H3K27ac indicating active transcription and an open chromatin state47. The active
transcription of Clcn4 and Cdx1 and their clinical importance may be the reason why the
CpGs located in this region are strongly co-regulated during aging. At the same time,
stochastic CpGs with the lowest signal of co-regulation (for example, chr1:85270111 in
C130026l21Rik, chr2:128286757 in LncRNA Morrbid, chr4:43660058 in Fam221b,
chr8:115878285 distant from Maf, chr9:68760734 close to Rora, chr12:116705833 close to
Ptprn2, chr18:46761319 close to Ap3s1) do not form contingent groups and lie far from
active promoters/enhancers.

To obtain more CpGs belonging to co-regulated and stochastic clusters for subsequent
biological annotation, we modified our filters. First, we lowered the filter for CpGs based on
coverage: instead of requiring 15 young and 15 old cells, we required 5 cells in each case.
We identified 5,999,943 CpGs out of 35,584,147 CpGs measured in at least one cell,
including 51,895 CpGs that changed significantly with age. In this case, the co-regulated and
stochastic clusters comprised 2,764 and 49,131 CpGs, respectively. As expected from the
algorithm’s properties being biased towards a stricter criterion for co-regulated sites, the
fraction of stochastic sites increased from 92% to 94.7%. In addition to 51,895 CpGs
changing methylation with age, we selected 51,895 random CpGs from the genome for
subsequent enrichment analyses.

We calculated evolutionary conservation scores phyloP50,51 and phastCons52–56 for
co-regulated and stochastic clusters (Fig. 6a, Ext. Data Fig. 2d), as well as for genomic
regions corresponding to dynamics 2 and 3, hypermethylated with age, and dynamics 5 and
6, hypomethylated with age (Fig. 6b). Co-regulated clusters showed a significantly higher
evolutionary conservation than stochastic clusters and random regions, in agreement with
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the hypothesis of a tighter regulatory control and a higher biological importance of those
regions (Fig. 6a). At the same time, stochastic regions showed a significantly lower
evolutionary conservation than random genomic regions (Fig. 6a). There was no significant
difference among the evolutionary conservation for hypermethylated, hypomethylated and
random regions (Fig. 6b). The results for evolutionary conservation were stable and
consistent for any chosen correlation threshold from to (Fig. 6c).0. 1 0. 9

We further examined age-associated splicing events in the muscle tissue from the
Genotype-Tissue Expression (GTEx) database57. For each CpG site from the co-regulated,
stochastic clusters and random regions, we checked if it was located in the region from the
beginning of the first exon to the end site of the last exon in an alternative splicing event
(Fig. 6d left), or surrounding the splicing event within 5 kb (Fig. 6d right). Co-regulated
clusters showed fewer alternative splicing events in comparison with stochastic clusters for
correlation threshold 0.6 (Ext. Data Fig. 5 for correlation thresholds 0.4 and 0.5); however,
the difference was not statistically significant (Fisher’s exact test).

We also examined enrichment of co-regulated clusters vs stochastic clusters and
hypermethylated vs hypomethylated clusters with transcription factor (TF) binding sites (Fig.
6e), and compared the trends with random genomic regions (Ext. Data. Fig. 2e).
Co-regulated regions contained significantly more EZH2, SIN3A, POLR2A binding sites and
CpG islands than stochastic clusters. Distal location of co-regulated regions from main gene
sequences may explain the observation of a lower number of alternative splicing events in
the co-regulated regions in Fig. 6d.

We analyzed the enrichment of CpG sites from co-regulated and stochastic clusters for
correlation threshold 0.6 (Ext. Data Fig. 6 for correlation thresholds 0.4 and 0.5) with hits
from 6,993 epigenome-wide association studies (EWAS)58. Co-regulated clusters were
enriched with phenotypes related to gestational age and clear cell renal carcinoma, and
stochastic clusters with phenotypes related to age, fasting glucose, aging and smoking (Fig.
6f).

The lists of genes associated with co-regulated and stochastic clusters were further
subjected to GO/KEGG enrichment analysis59 (Fig. 6g). Co-regulated genes were enriched
for muscle-specific pathways, including abnormalities of development, such as abnormal
muscle, locomotion phenotypes, fetal and postnatal lethality and decreased body size.
Stochastic genes were enriched for cell morphogenesis and neuron differentiation
categories. The enrichment for muscle-specific pathways among co-regulated genes, given
that the original dataset was measured in muscle stem cells, may signify the programmatic
nature of those genes preserving cell identity, whereas the stochastic genes enriched for
neuron and differentiation pathways may be responsible for the adaptation to stochastic
changes in the cell microenvironment.

Decreased epigenetic co-regulation is associated with lower
transcriptomic coordination in multiomics data
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Fig. 7. Decreased global coordination levels (GCL) for gene expression of genes associated
with stochastic compared to co-regulated clusters. This analysis was conducted on the
scRNAseq part of the multiomic dataset from Fig. 4. a. Mapping of CpG sites comprising co-regulated
and stochastic clusters to gene lists. b. Global coordination level of gene expression for genes
associated with co-regulated and stochastic clusters of CpGs in young mice ( months old: Y4, Y5, Y72
and Y8) and old mice ( months old: O1 and O5). Blue distributions (“Real” in legend) represent true24
distributions of the GCL for the given gene sets, whereas “Surrogate” distributions are for surrogate
gene sets that were randomly selected from a subset of genes with similar expression levels as the
gene-set genes. Each surrogate gene set preserved the size of the original gene set and mimicked its
expression profile. c. For normalization of results presented in b, we use Z-scores of the GCL relative
to the corresponding surrogate gene sets (see Methods for details). Co-regulated genes show a
significantly higher Z-score than the stochastic ones for all mice. The results in b and c are shown for
the sense DNA strand, see Ext. Data. Fig 3 for the antisense DNA strand results. d. Principal
component analysis for co-regulated, stochastic and random genes. The Pearson correlation
coefficients of PC1 and PC2 with age are shown in the titles. The co-regulated genes have the
smallest correlation with age implying a tighter control during aging and supporting their epigenetic
co-regulation.
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To test the hypothesis that epigenetic co-regulation affects transcriptomic coordination, we
examined the single-cell RNAseq data corresponding to the scDNAm data analyzed above
from the multi-omic aging muscle stem cells (muSC)49. The transcriptional coordination of a
set of genes was measured with the help of the global coordination level (GCL)29,30. First, we
mapped the list of CpGs comprising co-regulated or stochastic clusters to genes (Fig. 7a).
We considered a CpG associated with a given gene if it was mapped within the gene’s
promoter, 5’UTR, exon, intron, exon/intron and intron/exon boundaries and 3’UTR region
according to the genome annotation (mm10)60 on one of two DNA strands.

For the sense DNA strand, we calculated the GCL for co-regulated and stochastic gene lists
for each mouse. We compared the GCL value of each geneset (co-regulated and stochastic)
to the GCL values of their corresponding “surrogate” gene sets. These surrogate gene sets
were randomly selected from a subset of genes with similar expression levels preserving the
size of the original gene set and mimicking its expression profile (see Methods for more
detail). By analyzing the distribution of GCL values of the gene set compared with the
distribution of the surrogate gene sets, we can test whether the former tend to have
elevated/lower coordination (Fig. 7b). In doing so, we calculated the Z-scores of GCL

against the corresponding surrogate gene set: .𝑍‒𝑠𝑐𝑜𝑟𝑒(𝐺𝐶𝐿
𝑔𝑟𝑜𝑢𝑝

) =
𝐺𝐶𝐿

𝑔𝑟𝑜𝑢𝑝
−𝑚𝑒𝑎𝑛(𝐺𝐶𝐿

𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒
)

𝑠𝑡𝑑(𝐺𝐶𝐿
𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒

)

Comparison of GCL Z-scores showed that genes associated with co-regulated CpG clusters
exhibit significantly higher Z-scores of GCL than those associated with stochastic CpG
clusters: in both 2-month-old and 24-month-old (Fig. 7c) mice. The same dependence was
observed for the other DNA strand (Ext. Data Fig. 3).

We also tested if co-regulation affected aging changes in scRNAseq signal (see Methods) by
plotting the principal first and second components for co-regulated, stochastic and random
subsets of genes against age (Fig. 7d). The co-regulated genes show the smallest
correlation with age compared to the stochastic and random genes. This suggests that their
tight control did not change during aging, and the gene expression profile remained similar,
which supports their epigenetic co-regulation.

Overall, the GCL analysis of scRNAseq data is in a good agreement with the scDNAm
clustering: in most cases, co-regulated CpG clusters are associated with the group of genes
showing transcriptomic coordination similar to their surrogate gene sets, whereas the
stochastic ones showed significantly lower GCL than their surrogate. Moreover, after
normalization to the z-scores against their surrogate lists, the Z-scores of GCL for the
co-regulated gene set were significantly higher than the Z-scores of the stochastic gene set
for all mice. This analysis demonstrates that the loss of epigenetic co-regulation is
associated with the loss of transcriptomic coordination. Our analysis, though limited by the
currently available data, implies that the loss of regulation during aging universally spans at
least two levels of regulation: epigenetic and transcriptional. However, investigation of causal
relations between epigenetic co-regulation and transcriptomic coordination would require
further research in different cell types and organisms.

Discussion

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2023. ; https://doi.org/10.1101/2022.09.26.509592doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?GFntKA
https://www.zotero.org/google-docs/?3773aR
https://www.zotero.org/google-docs/?BfX9xW
https://doi.org/10.1101/2022.09.26.509592
http://creativecommons.org/licenses/by/4.0/


We analyzed the dynamics of single-cell and tissue DNAm during functional aging and
embryonic development, with the goal of uncovering and separating stochastic accumulation
of DNAm changes from co-regulated DNAm changes driven by a common biological
process. We also analyzed global coordination level (GCL)29,30 of genes based on single-cell
RNAseq data matching the scDNAm aging dataset49. By examining tissue DNAm changes
with age and the respective DNAm aging clocks, we found that epigenetic aging is an
omnipresent (for example, 13.6% of measured CpGs changed significantly with age) yet a
relatively slow process. It is also very small in amplitude (most sites change ), is≤ 10%
characterized by common temporal dynamics and shows increased heterogeneity with age.
By simulating a null-hypothesis that DNAm aging changes occur randomly in single cells, we
managed to reproduce the experimental aging clock dynamics by simulation of a stochastic
decay model. All these observations are consistent with the concept of epigenetic aging
being a stochastic process characterized by increasing entropy.

In order to test whether other aging dynamics are also present in DNAm data, we turned to
aging scDNAm and found that 92% of the measured CpGs behaved in a stochastic manner
during aging, whereas 8% changed in a co-regulated way. An scRNAseq GCL analysis of
genes associated with CpGs in co-regulated and stochastic clusters indicated that lower
epigenetic co-regulation is associated with lower transcriptomic coordination, thus extending
the concept of co-regulation beyond the scope of epigenetics to transcriptomics and
supporting the hypothesis of the existence of a shared biological mechanism responsible for
epigenetic co-regulation and transcriptomic coordination during aging (see Fang et al.61 for a
study of the role of DNAm entropy during embryonic development). During gastrulation
scDNAm changes were dominated by a global co-regulated methylation event, in the
background of which, due to low sequencing quality and high sequencing noise, we
managed to identify fewer than 5% of additional co-regulated CpGs. Even though the
available scDNAm data are currently scant to provide more detailed insights into epigenetic
aging, the methods developed in the present paper would be applicable to future single-cell
data generated with advanced sequencing techniques. In particular, the algorithm we
developed for the identification of co-regulated CpG clusters may allow improving the
accuracy and interpretability of DNAm aging clocks. However, additional research would be
required to clarify the mechanisms responsible for epigenetic co-regulation and
transcriptomic coordination and how they might affect each other during aging. Moreover,
the loss of regulation during aging should also have an effect on multiple organismal levels
(DNA mutations, epigenetic drift, transcriptional noise, etc.), and it would be interesting to
extensively examine this in future research.

We applied typical epigenetic clock-building routines (Lasso and ElasticNet penalized
regressions) in order to build epigenetic aging clocks and showed that they may be biased
towards stochastic CpG clusters. Without lowering accuracy of chronological age
predictions, they may ignore most of the co-regulated CpG sites due to their high collinearity.
In response to an intervention, co-regulation of a cluster may be disrupted, which may be
missed by such clocks. It is likely that stochastic CpG sites bear less information regarding
the biology involved because of their high tolerance to stochastic epigenetic changes. In
other words, the clocks built to measure stochastic accumulation of epigenetic changes,
might not perform well where one expects reversal of biological pathways and processes, for
example, in the case of rejuvenation therapies. On the other hand, clocks built on the
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co-regulated cluster of CpG sites may perform worse in the context of chronological age
prediction but may be able to better capture the effects of longevity interventions.

Both tissue and single-cell DNAm analyses suggest that the high accuracy of epigenetic
aging clocks may be predetermined in part by the stochastic decay of the epigenetic state
set during early development. We describe a mechanism for epigenetic clocks which is
strikingly similar to radiocarbon decay often used for dating in archeology: there is no need
to have a biologically relevant mechanism as soon as the mean concentration of radioactive
carbon or of the fraction of methylated DNA change monotonically with age. Radiocarbon
dating works surprisingly well even though it is based on a purely stochastic process of
radioactive decay according to the exponential decay law. In contrast to the radioactive
decay of carbon-14, in the case of epigenetic clocks, we deal with two dynamic processes of
gaining methylation in some genomic regions and losing methylation in others62. Thus, the
analogy with radiocarbon decay is rather mathematical and conceptual rather than
biological. The two processes of loss and gain of methylation are controlled by two different
kinds of biological machinery, but the measured mean methylation level changes are
affected by both processes. Stochasticity implies that over time those machineries
unavoidably make mistakes, which accumulate gradually with age and can be used as
robust predictors of age. Additionally, organisms adapt to age-related changes through cell,
tissue and organismal-level responses, again distinguishing them from inanimate objects.
Adaptive changes may also be expected in response to stochastic damage.

It is important to note that our analyses are limited to the process of functional aging, and do
not consider the effects of rejuvenation therapies on the epigenome63–65. Stochasticity of
age-related epigenetic changes does not imply the impossibility of reversal, as is the case
for epigenetic reprogramming protocols resetting the DNAm patterns. At the same time,
stochasticity behind the process of accumulation of epigenetic changes with age does not
preclude programmatic behavior, a quasi-program of aging, defined by the developmental
biology predisposing species to follow a particular aging trajectory. Thus, components of the
stochastic part of epigenetic clocks would be predetermined by development and biological
organization of the organism. The sites that were initialized in the hypo- or hyper-methylated
states during early development would tend to stochastically gain or lose methylation with
age, hence they would make good candidates for epigenetic clock CpG sites. Thus, the
developmental program initializes the epigenome into a state that later stochastically decays,
under the direction of underlying biology, during aging. Therefore, the multispecies
epigenetic clocks66 may work well because closely related species, such as mammals, share
the associated developmental biology setting them into similar initial states of the
epigenome. Overall, the effects of early embryonic development on aging need to be further
investigated40,67.

The question of the biological meaning of existing epigenetic clocks deserves separate
discussion. The causal relationship between molecular changes during aging and functional
decline resulting in mortality is also the subject of an ongoing debate. A highly desirable
feature of aging clocks is the ability to predict mortality events and lifespan; however, the
state-of-the-art epigenetic clocks continue ticking in immortalized cell cultures68,69 and in
naked-mole rats70,71, where mortality exhibits minimal changes with age. These observations
raise questions about the use of existing epigenetic clocks, trained for chronological age, for
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mortality prediction. At the same time, the absence of a mechanistic explanation behind
epigenetic clocks impedes their clinical use as aging biomarkers.

Stochasticity behind the clock does not imply that there is no biological value in the clock.
Stochastic accumulation of damage is chiefly influenced by genetics and may be influenced
by lifestyle, diet, interventions and other factors, hence it is possible both to reset stochastic
changes to some other state (younger or older) and change the rate of damage
accumulation (in both directions, up and down). Therefore, stochasticity of epigenetic clocks
might be a good indicator of cumulative damage, with the contribution of cumulative
deleteriousness of the environment in which an organism lives, or of cumulative non-specific
damage. However, it is less clear how stochastic epigenetic clocks would capture the effects
of target-specific therapies or some non-promiscuous aging changes. We anticipate that
there might be two different kinds of clocks necessary for the quantification of aging:
stochastic for the estimation of cumulative damage, and co-regulated for the estimation of
programmatic effects of longevity interventions. Current approaches for building epigenetic
clocks mix up these two qualitatively different components, limiting their predictive power for
testing interventions.

Limitations of the study
Apart from a technical limitation of our study due to the high sparsity of scDNAm datasets
produced by the state-of-the-art sequencing methods, we note other non-technical
limitations below. Any technical variation and noise in the data would count against our
definition of co-regulation, however, we extensively tested the stability of our algorithm (see
Methods, Ext. Data Fig 8) and showed that it is stable to a large proportion of missed
measured and/or incorrectly labeled CpGs. More complex patterns of co-regulation, such as
negative regulation, time-delayed feedback motives, allelic expression, noise regulons, and
others, may be missed by the definition of co-regulation used in the present study due to the
lack of high quality scDNAm data. Also, the fact that a random stochastic model can
reproduce empirical distributions of tissue DNAm is not sufficient to state that the generative
process is random and stochastic, yet we use it here as the first-order approximation of
reality (see, for example, a transcriptomic change initially interpreted as “noise”, later proved
to be deterministic72). Deterministic single-cell heterogeneity may account for a part of
stochastic changes identified herein. There may be inherent sources of noise in scDNAm
levels similar to those observed in transcriptional signals73, which we cannot account for with
the currently available data. To completely rule out the possibility of mis-classification of
some co-regulated CpG sites as stochastic, one would need to have access to a technique
of longitudinal in vivo targeted non-destructive measurement of DNAm levels in single cells,
which is yet to be developed. Currently available scDNAm techniques, such as bisulfite
sequencing used in the present study for conceptual and illustrative single-cell analysis, are
not yet capable of producing datasets of sufficiently high coverage and quality for a complete
resolution of epigenetic aging dynamics. We leave this for future research when more
advanced scDNAm sequencing technologies become available.
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Supplementary Information

Methods

Single-cell stochastic model of DNAm changes
For each CpG site, we assume the aging trajectory of its methylation level is controlled by
three parameters: — the initial methylation level, — the rate of demethylation in a unit of𝑞 𝑝

𝑑

time, — the rate of methylation in a unit of time. The model is assumed to be purely𝑝
𝑚

stochastic, which means that the state of a CpG site in a short time interval has∆𝑡
probability to get methylated and probability to get demethylated .𝑝

𝑚
∆𝑡 𝑝

𝑑
∆𝑡

Assuming that there are cells in a sample, we can denote by and the numbers of𝑛 𝑛
𝑑

𝑛
𝑚

cells that are demethylated or methylated for a given CpG site. The aging dynamics for 𝑛
𝑚

and would be describable by the following rate equations:𝑛
𝑑

𝑛
𝑚

(𝑡 + ∆𝑡) =  𝑛
𝑚

(𝑡) (1 − 𝑝
𝑑
∆𝑡) + 𝑛

𝑑
(𝑡)𝑝

𝑚
∆𝑡,

𝑛
𝑑
(𝑡 + ∆𝑡) =  𝑛

𝑑
(𝑡) (1 − 𝑝

𝑚
∆𝑡) + 𝑛

𝑚
(𝑡)𝑝

𝑑
∆𝑡.

Conservation of the total number of sites is satisfied, which is shown by the summation of
the two equations above: . To derive the𝑛

𝑚
(𝑡 + ∆𝑡) + 𝑛

𝑑
(𝑡 + ∆𝑡) = 𝑛

𝑚
(𝑡) + 𝑛

𝑑
(𝑡) = 𝑛

differential equation for the average methylation level , we use the fact that𝑥(𝑡) =
𝑛

𝑚
(𝑡)

𝑛

,𝑛
𝑑
(𝑡) = 𝑛 − 𝑛

𝑚
(𝑡)

𝑛
𝑚

(𝑡+∆𝑡)− 𝑛
𝑚

(𝑡)

∆𝑡  =− 𝑛
𝑚

(𝑡)𝑝
𝑑

+ (𝑛 − 𝑛
𝑚

(𝑡))𝑝
𝑚

,

and by dividing both sides of the equation by , we obtain:𝑛
𝑑𝑥(𝑡)

𝑑𝑡 ≈ 𝑥(𝑡+∆𝑡)− 𝑥(𝑡)
∆𝑡  = 𝑝

𝑚
− 𝑥(𝑡)(𝑝

𝑑
+ 𝑝

𝑚
).

The exact solution of the above equation reads

(S1)𝑥(𝑡) =
𝑝

𝑚

𝑝
𝑚

+𝑝
𝑑

+ (𝑞 −
𝑝

𝑚

𝑝
𝑚

+𝑝
𝑑

) exp(− (𝑝
𝑚

+ 𝑝
𝑑
)𝑡).

To understand the meaning of the three introduced parameters , let us further𝑞, 𝑝
𝑚

, 𝑝
𝑑

analyze the above equation. The initial value of the average methylation level is defined by
, whereas with time the methylation level tends to the asymptotic value𝑥(0) = 𝑞

. The rate of exponential decay is equal to the sum of the rates of
𝑡→∞
lim 𝑥(𝑡) =

𝑝
𝑚

𝑝
𝑚

+𝑝
𝑑

methylation and demethylation .𝑝
𝑚

+ 𝑝
𝑑
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It is worth noting that even though the process generating the dynamics is purely stochastic,
it doesn’t necessarily lead to the saturation of the methylation level at the level 0.5. To the
contrary, by varying the three parameters we may obtain an aging trajectory of a CpG site
starting at any point from 0 to 1, and tending to any other methylation level from 0 to 1,
whereas the rate of change would be controlled by the absolute values of the methylation
and demethylation rates for each particular site. The above analysis considers a single CpG
site and its aging trajectories. The values of the model parameters may be𝑞, 𝑝

𝑚
, 𝑝

𝑑

characteristic of a genomic position, and may bear some biological meaning.

Seven clusters of tissue DNAm changes during aging
In Fig. 1g, we clustered typical trajectories of DNAm level changes during aging into seven
broad categories based on their initial methylation level and the direction of changes: three
clusters not changing significantly (no significant Pearson correlation between DNAm levels
and age, ) with age by their initial DNAm level for dynamics 1, 4 and 7 in the𝑝 > 0. 05
intervals , and , respectively. Dynamics 2 and 5 trend towards[0; 0. 25] [0. 25; 0. 75] [0. 75; 1]
the methylation level of 0.5, while starting in the intervals and ,[0; 0. 25] [0. 75; 1]
respectively. Dynamics 3 and 6 start in the interval and trend up and down,[0. 25; 0. 75]
respectively. For dynamics 2, 3, 5 and 6, DNAm levels had a significant Pearson correlation
with age, .𝑝 < 0. 05

Fitting experimental tissue DNAm aging trajectories to
stochastic model prediction
In order to fit the experimental aging trajectories for CpG sites comprising the Petkovich et
al. clock, we use the three-parametric stochastic aging trajectory derived above in Eq. (S1),
and apply Python's fitting tool scipy.optimize.curve_fit74.

Simulating random subset of aging trajectories predicted by the
stochastic model
To show how a subset of aging trajectories corresponding to randomly sampled parameters

, we use Eq. (S1) and randomly draw the parameters from the uniform distributions𝑞, 𝑝
𝑚

, 𝑝
𝑑

defined on the following intervals: , . The number of sampled𝑞 ∈ [0, 1] 𝑝
𝑚

, 𝑝
𝑑

∈ [0, 0. 0015]

sets is equal to the number of CpG sites in the Petkovich et al. clock.
The bundle of random trajectories is thus fully defined by a single parameter — the upper
bound for the rates , which is set here to . The maximal rate of exponential𝑝

𝑚
, 𝑝

𝑑
0. 0015

decay among all CpG sites hence represents the critical parameter of the(𝑝
𝑚

+ 𝑝
𝑑
)

𝑚𝑎𝑥

stochastic model. It might be related to the typical level of deleteriousness of the
environment for the organism. Therefore, might be a proxy to the identification(𝑝

𝑚
+ 𝑝

𝑑
)

𝑚𝑎𝑥

of the maximal lifespan for a species.
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The role of sequencing coverage depth on tissue DNAm
changes
To study the role of sequence coverage depth on the aging changes of DNAm levels, we
repeated the analysis for Fig. 1c, for CpG sites with higher and lower coverage. Originally,
we used 10X coverage depth, and tested whether 30X coverage significantly changes the
maximum change of DNAm aging changes (Ext. Data Fig 7). We used those CpGs that
have 30X coverage in more than 200 mice out of 255 mice (high coverage limit), and fewer
than 50 mice out of 255 mice (low coverage limit). The analysis indicates that lower
coverage leads to higher amplitudes of DNAm changes thoughout lifespan, but we did not
find any qualitative difference between 10X and 30X (high coverage) regimes.

Cell-type deconvolution for tissue DNAm signals
To test whether our predictions may be affected by cell-type composition changes, we used
the web-interface for EpiDISH75–77. In order to do so, we converted mouse genome positions
(mm10) to human positions (hg38) with the help of the UCSC Genome Browser liftover
tool78, and used the closest available probe for the EPIC chip for each CpG. A converted
table of DNAm levels for CpG sites was uploaded to EpiDISH for cell-type deconvolution.
The transformation of mouse genomic positions to the human EPIC probes is not a
one-to-one lossless procedure, and can potentially distort the cell-type deconvolution.
Moreover, EpiDISH was designed to be used for human samples. We assume that the
results produced by EpiDISH would be, at least partially, translatable to our mouse blood
samples.

We normalized the fractions of cell types by the maximum value throughout the mouse
lifespan. Our analysis of cell-type deconvolution for the CpGs whose DNAm levels changed
significantly after the Bonferroni correction for multiple comparisons (Ext. Data Fig 7c and d)
did not show any significant Pearson correlation for B, CD4T, CD8T cells, but showed a
significant negative Pearson correlation for NK ( , ), neutrophils (𝑟 =− 0. 28 𝑝 < 0. 001

, ), monocytes ( , ) and eosinophils ( ,𝑟 =− 0. 60 𝑝 < 0. 001 𝑟 =− 0. 58 𝑝 < 0. 001 𝑟 =− 0. 60
). This observation is consistent with previous observations for cell composition of𝑝 < 0. 001

PBMCs in C57BL/6J mice79. The typical relative change of neutrophils, monocytes and
eosinophils is on the order of 30%, which is similar to the largest relative change of DNAm
levels (Fig. 1c, Ext. Data Fig 7a and b). The similarity may indicate that the strong changes
causing the nonlinearity observed in the DNAm dynamics can be accounted for by the
cell-composition changes. However, given that the cell-decomposition analysis directly used
the same DNAm information as was used in the prior analysis of the aging dynamics of
DNAm levels, the observation and reasoning it causes may be circular. To exhaustively
account for cell-composition changes, one should have access to cell sorting data
associated with DNAm sequencing which was not performed in the original paper4.

Genomic enrichment analysis for epigenetic profiles
For genomic annotation of epigenetic profiles we used R package annotatr60.
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Single-cell DNAm data analysis
Due to the high sparsity of single-cell DNAm data, we had to extensively use filtering by
coverage. For illustrative purposes of identifying visually recognizable co-regulated clusters,
we set a threshold of coverage for each CpG for it to be measured in 15 young cells and 15
old cells. In each of the cells, we had to keep all CpGs covered by at least 1 NGS read due
to low coverage. For enrichment analysis, we lowered the filter to 5 young and 5 old cells.
For muSCs, one old mouse had to be censored because of an extremely low coverage. For
embryonic scDNAm, we set the threshold at 25 covered cells for each embryonic stage for
each CpG.

For correlation analysis we developed custom correlative algorithms that were able to ignore
omitted CpGs in some cells, and use only those that were measured. To avoid the
confounding factor of different coverage in young and old cells for identifying CpGs whose
methylation significantly correlated with age, we also produced a pseudo-bulk sample for
each of the mice by calculating the average methylation level for each of the CpGs. A CpG
was considered significantly correlated with age if it was associated with age in both single
cell data, and in the pseudo-bulked data.

For inter-cell Pearson correlative analysis, we used a custom Python code taking into
account only those methylation values that had a non-zero coverage. Non-measured CpGs
with zero coverage were not used for calculating the Pearson correlation. The threshold
correlation value for a pair of CpGs to be considered co-regulated was chosen to be in the
range from 0.1 to 0.9, which must be satisfied in three groups of mice: only young mice, only
old mice and all mice. For embryonic data, there were four groups corresponding to each of
the embryonic days E4.5-7.5. That further allowed lowering the limit for false positive
identification of co-regulation in the case of low coverage.

Algorithm for identification of co-regulation in sparse scDNAm
data
For identification of co-regulated clusters in sparse scDNAm data, we developed an
algorithm based on the inter-cellular Pearson correlation for pairs of CpG sites. The
algorithm takes into account a high level of sparsity due to the low coverage of sequencing.

For practical calculations, we use the Pearson correlation coefficient of a pair of CpGs

defined as , where the unbiased mean methylation level for𝑟
𝑔

𝑖
,𝑔

𝑗 = 𝑛
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A pair of CpGs was called “co-regulated” if the inter-cell Pearson correlation was larger than
a given threshold correlation value in the range from 0.1 to 0.9, which had to be satisfied in
three groups of mice (only young mice, only old mice and all mice) for the aging studies, and
at each embryonic stage and all stages combined for the embryonic studies.
We extensively tested this algorithm on simulated data (Ext. Data Fig. 8). The simulation
assumed 40 young and 40 old cells, each having 200 CpGs forming 4 blocks of 50 CpGs.
The first half of CpGs are stochastic, and the second half is co-regulated. In each group of
100 CpGs, 50 CpGs originally have the DNAm level of 30%, and reaching 70% in older cells,
another 50 CpGs start at 70% and decrease methylation to 30%. We tested the algorithm’s
stability to errors in DNAm sequencing (identifying sites methylated instead of demethylated,
and vice versa), and missing values (having no coverage). The error rate was varied from 0
to 40%, and the missing values percentage from 0 to 90%. The algorithm exhibits robust
identification for co-regulated CpGs up to 30% of errors, and 60% of missed values. The
worst case scenario the algorithm handled well was 40% of missed values and 20% of
errors. The algorithm tends to penalize co-regulation if the percentage of errors grows,
whereas it favors co-regulation if we decrease the number of missed values. At the same
time, the algorithm is stable to changes of the threshold of correlation, when 10% of errors
are present in a wide range of percentages of missing values (up to 60%). Overall, the
simulation check confirmed that the algorithm has met the necessary criteria.

Enrichment analysis in aging-associated splicing events
To detect age-associated splicing events, we downloaded RNA-sequencing files of muscle
tissue from Genotype-Tissue Expression (GTEx) database57, quantified all alternative
splicing events and modeled the association with age using linear regression. In total, 2,260
aging-associated alternative splicing events were identified. For each CpG site, we checked
if the CpG site fell in at least one aging-associated splicing event (from the start site of the
first exon to the end site of the last exon in an alternative splicing event), or surrounding the
splicing event within 5kb. We counted this type of CpG site in each CpG cluster and
compared it with random regions of the background genome.

Transcription factor binding regions
We used the ENCODE transcription factor binding database80 for identification of genomic
regions corresponding to transcription factor binding sites. The database is based on
ChIP-seq combining chromatin immunoprecipitation with DNA sequencing to infer possible
binding sites of DNA-associated proteins. Prior to use, mouse CpG sites from the mm10
reference mouse genome were mapped to the conserved human CpG sites in the hg38
human reference genome with the help of the UCSC Genome Browser liftover tool78.

Enrichment analysis in phenome-wide EWAS signals
We analyzed the enrichment of CpG sites from co-regulated and stochastic clusters in hits
from 6,993 epigenome-wide association studies in humans, obtained from the EWAS
catalog58. Mouse CpG sites from the mm10 reference mouse genome were mapped to the
conserved human CpG sites in the hg19 human reference genome with the help of the
UCSC Genome Browser liftover tool78. Then, the nearest human CpG sites in the Illumina
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EPIC array within 100 base-pairs were identified and used for the enrichment. For each
EWAS hit, Fisher’s exact test was performed to determine the enrichment of either
co-regulated or stochastic clusters for a given trait. We did not correct our EWAS analysis for
potential biases due to the selectivity of RRBS to CpG dense regions, and the DNAm arrays
to CpG inclusion selection72.

Global Coordination Level (GCL)
Consider an matrix representing the gene expression of genes from single cells,𝑁 × 𝑀 𝑁 𝑀
i.e., a matrix element represents the expression level of gene in cell . To quantify the𝑋

𝑖,𝑗
 𝑖 𝑗

global coordination level, we first divide the genes into two random subsets, and ,𝑆𝑘
1

𝑆𝑘
2

each of them consists of genes. Then, we measure the dependency level𝑁/2
where and . In this study, we use bcdCorr,𝐷
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the dependency level between two high-dimensional variables, described in detail before29,
but essentially any high dimensional dependency measure can be used (e.g., mutual
information). We repeat these steps times and define the GCL as the average of the𝑚

dependency levels 𝐺𝐶𝐿(𝑋) = 1/𝑚
𝑘=1

𝑚

∑ 𝐷
𝑘
 

Previously29, we showed that the GCL stabilizes for m>50. Accordingly, in our analysis we
choose m=50.

Single-cell RNAseq data analysis
In single-cell RNAseq data (scRNAseq), we analyzed GCL of three different clusters in five
cohorts of cells obtained from six different mice. Gene expression is represented as the
logarithm of normalized counts, i.e., transcript per million (TPM), for each cell, =𝑋

𝑖,𝑗

. We applied the following routine across all cell cohorts: (a) Remove genes𝑙𝑜𝑔
2
(𝑇𝑃𝑀

𝑖,𝑗
+ 1)

that are expressed ( >2) in fewer than 10% of the cells in each cohort. (b) Filter cells for𝑋
𝑖,𝑗

which the number of expressed genes ( >2) is larger or smaller than two standard𝑋
𝑖,𝑗

deviations from the mean number of expressed genes. We analyzed two sets of genes:
“Stochastic” and “Co-regulated” that were mapped from scDNAm data according to the
mapping described in the main text. Each of these sets had a different size and a different
gene expression profile, with different mean expression values. In order to reduce possible
biases due to the size and average gene expression profile, when comparing the GCL of
these groups, we have sampled each group in a way that will ensure similar gene set sizes
and mean gene expression profiles.

We normalized the GCL value of each geneset to the GCL values of corresponding
‘surrogate’ gene sets (“Co-regulated” and “Stochastic”). These surrogate gene sets were
randomly selected from a subset of genes with similar expression levels as the gene-set
genes. Thus, each surrogate gene set preserved the size of the original gene set and
mimicked its expression profile (Extended Data Fig. 4d–f in Ref.29 for a detailed explanation
of the surrogate procedure). By analyzing the distribution of GCL values of the gene set
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compared with the distribution of the surrogate gene sets, we can test whether the former
tend to have elevated/lower coordination.

The normalized GCL score was calculated as a Z-score against the surrogate GCL
distribution:

.𝑍‒𝑠𝑐𝑜𝑟𝑒(𝐺𝐶𝐿
𝑔𝑟𝑜𝑢𝑝

) =
𝐺𝐶𝐿

𝑔𝑟𝑜𝑢𝑝
−𝑚𝑒𝑎𝑛(𝐺𝐶𝐿

𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒
)

𝑠𝑡𝑑(𝐺𝐶𝐿
𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒

)

To produce Fig. 7d, we used co-regulated, stochastic and random gene lists to produce
three subsets of our scRNAseq data. Then, we applied the log-normalization of counts in
each dataset, and ran principal component analysis of the resulting data matrices. For
plotting, we chose two first principal components, and calculated their Pearson correlation
with age and its p-value.

Extended Data

Extended Data Fig. 1. Dynamics of CpG sites significantly associated with age in scDNAm data47.
The dominant cluster of 92% of all CpG sites changes stochastically (green boxes), whereas
co-regulated clusters represent 8% of all CpG sites changing with age (red boxes). Penalized
regression models are biased towards stochastic CpG sites, since they penalize any kind of
correlation across the CpG sites used in the model (Lasso and ElasticNet clocks). Color represents
the value of the regression weights. Co-regulated clusters contain fewer non-zero weights in the
regression models. Therefore, the penalized regression models lower the fraction of co-regulated
sites used for building DNAm aging clocks.
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Extended Data Fig. 2. Biological annotation of co-regulated and stochastic clusters. a. Number
of co-regulated and stochastic sites as a function of the correlation threshold for 502 CpGs passing
the coverage filter (15 cells of young mice, and 15 cells of old mice measured simultaneously). b.
Number of co-regulated and stochastic sites as a function of the correlation threshold for 51,895
CpGs passing the coverage filter (5 cells of young mice, and 5 cells of old mice measured
simultaneously). c. Evolutionary conservation score (phastCons) for co-regulated, stochastic and
random sites as a function of the correlation threshold for 51,895 CpGs passing the coverage filter (5
cells of young mice, and 5 cells of old mice measured simultaneously). d. phastCons evolutionary
conservation score distributions for CpGs comprising stochastic and co-regulated clusters compared
to random regions of the genome (left panel). Co-regulated clusters show significantly higher
evolutionary conservation than the random regions, whereas stochastic clusters are significantly less
conserved than both the random regions and co-regulated clusters. phastCons evolutionary
conservation score distributions for CpGs comprising hypermethylated and hypomethylated clusters
compared to random regions of the genome (right panel). Hypermethylated clusters show
significantly lower evolutionary conservation scores than both the random regions and
hypomethylated regions. e. Enrichment with transcription-factor (TF) binding sites and CpG islands
for co-regulated and stochastic clusters, hypermethylated and hypomethylated regions vs. random
regions of the genome. The level of statistical significance was chosen at after the Bonferroni0. 05
correction for multiple comparisons.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2023. ; https://doi.org/10.1101/2022.09.26.509592doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509592
http://creativecommons.org/licenses/by/4.0/


Extended Data Fig. 3. Global coordination levels for the antisense DNA strand. a. Global
coordination level of gene expression for genes associated with the co-regulated and stochastic
clusters of CpGs in young mice ( months old: Y4, Y5, Y7 and Y8) and old mice ( months old: O12 24
and O5). Blue distributions (“Real” in legend) represent true distributions of the GCL for the given
gene sets, whereas “Surrogate” distributions are for surrogate gene sets that were randomly selected
from a subset of genes with similar expression levels as the gene-set genes. Each surrogate gene set
preserved the size of the original gene set and mimicked its expression profile, but did not represent
any known KEGG pathway. b. For normalization of results presented in a, we use Z-scores of the
GCL relative to the corresponding surrogate gene sets. Co-regulated genes show a significantly
higher level of transcriptomic coordination than the stochastic ones for all mice. The results in a and b
are shown for the antisense DNA strand.
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Extended Data Fig. 4. Co-regulation routine details for analyzing embryonic development. a.
Number of CpGs in co-regulated and stochastic clusters for embryonic data as a function of the
correlation threshold. b. Histogram of Pearson correlation coefficients for pairs of CpGs for embryonic
development. The typical correlation coefficient is low, thus implying a high level of sequencing noise
in the data.

Extended Data Fig. 5. Enrichment for alternative splicing events. a. Enrichment analysis of
age-associated alternative splicing events (Alt Spl) for the CpGs comprising co-regulated, stochastic,
hypermethylated and hypomethylated clusters (left), and for the alternative splicing events within a 5
kb distance of the CpGs clusters in the genome (right). Co-regulated clusters showed a lower
percentage of alternative splicing events than stochastic clusters, though the difference was not
statistically significant (Fisher’s exact test). The correlation threshold is 0.4. b. Same as a for the
correlation threshold 0.5.
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Extended Data Fig. 6. Enrichment of co-regulated and stochastic clusters against EWAS hits.
Each horizontal bar represents an enriched term. The X-axis shows the -log10(P-value), signed by
log2 (Odds ratio). Only the EWAS trait with significant enrichment (P < 0.05) are included and
annotated. The results presented for correlation threshold: a. 0.4. b. 0.5.
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Extended Data Fig. 7. Role of coverage depth on DNAm changes during aging. The range of
DNAm changes at CpGs sites in the dataset. Histograms are shown for all CpG sites and for the
CpGs significantly changing with age. a. For CpG sites covered at the 30X coverage depth in no more
than 50 mice out of 255 mice. b. For CpG sites covered at the 30X coverage depth in more than 200
mice out of 255 mice. c. Cell-type decomposition (EpiDISH) of tissue DNAm based on the CpG sites
significantly changing with age after the Bonferroni correction for multiple testing. Neutrophils,
monocytes and eosinophils were inferred to be decreasing significantly with age. All values were
normalized to the maximum for a corresponding cell type. D. Same as c for B, CD4T, CD8T and NK
cells. Only NK cells changed significantly with age.
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Extended Data Fig. 8. Tests of the algorithm for identification of co-regulated CpGs on
simulated data. Simulation assumes 40 old and 40 young cells, each having 200 CpGs forming 4
blocks of 50 CpGs. The first half of CpGs are stochastic, the second half is co-regulated. In each
group of 100 CpGs, 50 CpGs originally have the DNAm level of 30%, and reaching 70% in older cells,
another 50 CpGs start at 70% and decrease methylation to 30%. The percentage of missed CpGs
and the percentage of errors in identification DNAm level are varied, as well as the correlation
threshold. a. Accuracy and b. F1 score of identification of co-regulated sites as a function of
correlation threshold, assuming 10% of errors in DNAm levels, and missing values varying from 0% to
90% (in legend). c. Simulated data for 0% missed values, and errors varied from 20%, 30% and 40%
respectively, along with the predicted co-regulated/stochastic CpGs (red for stochastic, green for
co-regulated). d. Same as c for 0% of errors, and 40%, 60% and 80% of missed values. e. Same as c
for 20% of errors, and 40%, 60% and 80% of missed values.
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Extended Data Fig. 9. Heatmap of gene expression profiles for co-regulated, stochastic and random
gene lists for young and old cells. Gene expression heatmaps are plotted for the top-41 genes ranked
according to the first principal component weights from Fig. 7d. The gene expression levels were
log-normalized.
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