
 
Supplementary Information  

 
Associations between common genetic variants and income provide 

insights about the socio-economic health gradient 
  



1 

Table of contents 
1. Study Overview 2 
2. GWAS, quality control, and meta-analysis 2 

2.1. Phenotype definition and construction 3 
2.1.1. General definition 3 
2.1.2. Individual income 4 
2.1.3. Household income 4 
2.1.4. Occupational income 4 

2.1.4.1. UK Biobank and ALSPAC mothers 4 
2.1.4.2. Lifelines and Netherlands Twin Registry 5 
2.1.4.3. Estonian Genome Center 6 
2.1.4.4. HUNT 6 

2.1.5. Parental income (iPSYCH) 6 
2.2. Genotyping and imputation 6 
2.3. Association analyses 6 
2.4. Quality control 7 
2.5. Meta-analysis 8 
2.6. Identification of genomic loci 9 
2.7. Winner’s-curse adjustment 10 

3. Environmental heterogeneity 10 
3.1. Between-sex heterogeneity 10 
3.2. Cross-country heterogeneity 11 

4. Comparison with educational attainment 11 
4.1. Biological annotation 11 
4.2. LDSC and MiXeR 12 
4.3. GWAS-by-subtraction 13 
4.4. Concordant and discordant sets 14 

5. Polygenic score analyses of income 14 
5.1. Baseline polygenic prediction 14 

5.1.1. The STR income data description 16 
5.2. Within-family polygenic prediction 16 

6. Genetic correlation analysis 17 
7. Biological annotation 18 

7.1. Gene mapping 18 
7.2. Tissue-specific enrichment analysis 18 

8. GREML heritability estimation 18 
9. Phenome-wide association study 18 
10. Cohort acknowledgements 19 

10.1. ALSPAC (Avon Longitudinal Study of Parents and Children) 19 
10.2. CoLaus (Cohorte Lausannoise) 20 
10.3. Croatia - Korcula 20 
10.4. EGCUT (Estonian Genome Center, University of Tartu) 20 
10.5. FTC (Finnish Twin Cohort) 21 
10.6. HUNT (Trøndelag Health Study) 21 



2 

10.7. iPSYCH 21 
10.8. LifeLines 21 
10.9. MOBA (Norwegian Mother, Father and Child Cohort Study) 22 
10.10. NEO (The Netherlands Epidemiology of Obesity Study) 22 
10.11. NTR (Netherlands Twin Registry) 23 
10.12. QIMR (Queensland Institute of Medical Research) 23 
10.13. RS (Rotterdam Study) 23 
10.14. SHIP (Study of Health in Pomerania) 23 
10.15. STR (Swedish Twin Registry) 24 
10.16. UKHLS (Understanding Society) 24 

11. References 24 

 

1. Study Overview 

We conducted a genome-wide association study (GWAS) of income, using four income 
measures and data collected from more than 600,000 participants in 26 cohorts from 12 
countries. Due to data availability and statistical power considerations, our analyses were 
restricted to individuals carrying genotypes most similar to the EUR panel of the 1000 
Genomes data set (1KG-EUR), as compared to individuals samples elsewhere in the world. 
The meta analysis across cohort-level results was carried out per each income measure and 
then the results across the four income measures were combined by extracting their shared 
genetic basis. Then a number of follow-up analyses were conducted. First, we investigated the 
environmental heterogeneity between sex and between countries. Second, we examined the 
shared genetic factor with educational attainment (EA). Third, we performed polygenic 
prediction analyses. Fourth, we estimated the genetic correlation of income with a number of 
other related phenotypes and compared the results with the estimates for EA. Finally, we 
performed brief biological annotation analyses.     

This study was carried out under the auspices of the Social Science Genetic Association 
Consortium (https://www.thessgac.org/). 

 

2. GWAS, quality control, and meta-analysis 

We pre-registered our analysis plan for the main income GWAS meta-analysis on August 30 
2018 (https://osf.io/rg8sh/). In total, we recruited 31 cohorts, which have one of the following 
income measures available: individual, occupational household, and parental income. Some of 
these cohorts contributed to multiple income measures.  
 
The sample inclusion criteria according to our analysis plan are as follows: 

 
1. Samples are of European ancestry (1KG-EUR-like individuals); 
2. They are finished with education. If such information is unavailable, limit analyses to 

those aged >30 years  

https://www.thessgac.org/
https://osf.io/rg8sh/
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3. All relevant covariates are available for the individual 
4. They  were  successfully  genotyped  genome-wide  (recommended  individual  

genotyping rate: > 95%). 
5. They passed the cohort-specific standard quality controls (e.g., excluding individuals 

who are genetic outliers in the cohort). 
6. In  the  case  of  self-reported  income, unreasonable  answers  should  be  removed  

(e.g., negative income or  yearly  income > 10 mio EUR). The number of deleted 
observations and the respective reason for deletion as well as income histograms need 
to be reported in the descriptive statistics summary file of the cohort. 

    

2.1. Phenotype definition and construction 

Individual income is the result of various factors including achieved qualifications (e.g. 
education, learnt occupation, experience), personal characteristics (e.g. leadership, cognitive 
skills, consciousness), the demand and supply for these qualifications and characteristics in the 
labor market, and personal choices about labor supply (e.g. due to personal preferences, 
decisions about division of labor among household members). In this paper, we aimed to study 
the genetic factor for such individual earning potential. For this purpose, it was ideal to use 
individual income measures. However, individual income information was typically not 
collected in most of the genotyped samples. To circumvent such empirical challenges, we used 
four measures of income (individual, occupational, household, and parental income) and 
conducted a multivariate GWAS to combine these different measures. Supplementary Tables 
1-2 summarize the details of income measures used for each cohort. 

2.1.1. General definition 

For all income measures considered, we defined the main phenotype as the natural log of 
income before-tax. It is important to use the log transformation here because this allows us to 
correct for the typical skewness of the income distribution, which will return a better linear fit, 
as well as to model the percentage change in income, which is unit-free. Ideally, the phenotype 
included all “earned'' financial compensation (salaries, income from self-employment, profits 
from running one’s own business, bonuses, vacation benefits) but excluded non-earned 
monetary transfers such as rental income, capital gains, dividends, and transfers from the 
government, family, or former spouses. 

Many cohorts opted to use categorical responses to measure individual or household 
income. In these cases, we converted these categories to a semi-continuous measure by taking 
the natural logarithm of the midpoint of the category. As the top and bottom category are often 
open-ended and do not have a midpoint, we converted the top category by taking the logarithm 
of 4/3 times the lower bound of that category and the bottom category by taking  the logarithm 
of 3/4 times the upper bound of that category. 

When multiple observations of the income measure per individual were available (i.e. 
longitudinal data), we first regressed the income measure on all control variables including 
time-specific intercepts. Then, the mean of the residuals for each person were taken as the 
phenotype.  
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Some of the cohorts of older adults had a large share of retired individuals who may 
have been receiving pension. For these individuals, we used their last observed wage. If their 
last wage was not available, we derived occupational wage from their last occupation. In either 
case, they were treated as if they were observed while they had their last job. For instance, if a 
65-year-old retired individual was surveyed in 2009 and her past wage or occupational wage 
for the job that she had in 2006 was available, her age and year of observation was 62 and 2006, 
respectively, in the control variables. 

Individuals who are unemployed or economically inactive at the time of survey were 
treated like pensioners if they had an income in the past. In other words, their last observed 
income or occupation was used.  

2.1.2. Individual income 

Official registry data (e.g. from tax records) are most ideal to obtain high-accuracy measures 
of individual income. However, the linkage between genetic data and registry data was 
normally not feasible due to privacy concerns. Therefore, we mainly relied on self-reports of 
income, despite likely measurement error.   

2.1.3. Household income 

We considered household income as an alternative measure of individual income. Household 
income aggregates the individual incomes of all household members (e.g. spouses and possibly 
even children or other relatives). Therefore, household income captures not only factors that 
contribute towards individual income, but also other factors such as the ability and desire to 
attract a spouse and the characteristics of the spouse. Nonetheless, household income can still 
serve as a reliable proxy of individual income.  

2.1.4. Occupational income 

When detailed occupation information was available with standardized coding, we derived (the 
logarithm of) occupational income based on the national statistics data for each country. 
Occupation encompasses income potential and typically also reflects educational attainment, 
personal interests, social prestige and labor market opportunities. In comparison to individual 
income, occupational income only captures between-occupation variation in individual 
income. However, occupational income is less likely to suffer large measurement error because 
it is easier to recall occupation than income, while occupation-specific income is obtained from 
the national statistics of the relevant country. Occupational income measures were mainly used 
for larger cohorts. Due to different data availability across different countries in which those 
cohorts are based, slightly different approaches were used for different cohorts, which are 
summarized below.    

2.1.4.1. UK Biobank and ALSPAC mothers 

The UK Biobank recorded the occupation of participants with the UK’s standardized 
occupational classification (SOC) 2000 version, which is coded in 4-digit numbers representing 
a hierarchical structure. Similarly, ALSPAC also provided occupational information in the 
same coding for the mother participants, while their income was not surveyed. For these British 
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cohorts, we applied the approach that we developed in ref1. This approach was originally 
developed to impute income based on occupation and demographic information, rather than to 
derive occupational wage. The income imputed this way can be interpreted as expected income 
per occupation adjusted for demographics, which therefore is not essentially different from 
occupational income. 

The details of the approach are available in the appendix of ref1. Here we only provide 
the overall summary. From the Annual Survey of Hours and Earnings, we obtained the tax-
registry-based estimates of sex-specific mean and median hourly wages for each occupational 
group defined by 4-digit level SOC. Using the Labour Force Survey (LFS), a large 
representative survey data of the UK population, we fit a regression model of log hourly wages 
using mean and median wages for each occupation along with demographic variables and 
interaction terms. The log occupational wages were then derived as the predicted outcomes 
from this regression. In the appendix of ref1, it was shown that occupational wages constructed 
from this method yielded an out-of-sample R2 = 0.50 with self-reported log hourly wages in 
British Household Panel Survey, another independent representative survey of the UK.   

2.1.4.2. Lifelines and Netherlands Twin Registry 

A similar approach was taken for two Dutch cohorts: Lifelines and Netherlands Twin Registry 
(NTR). We mirrored the approach for the British cohorts as closely as possible. Here we used 
data from the Dutch Labour Force Survey, ‘Enquête Beroepsbevolking’ (EBB). The EBB is a 
national representative survey of the Dutch labor force, conducted by Statistics Netherlands 
(CBS). We used a merged dataset containing 479,893 individuals in yearly waves from 2012 
to 2017, where we excluded multiple observations per individual by taking the latest 
observation. The EBB used a Dutch version of standardized occupation codes, BRC,  
developed by CBS based on the International Standardized Classification of Occupation 
(ISCO) 08 standard.  

As the EBB was the only national representative survey containing standardized 
occupation codes, we fitted a regression model and calculated the mean and median hourly 
wages per occupation group in the same sample. We standardized hourly wages to the year 
2012 using the consumer price index calculated by CBS. We then calculated the mean and 
median wage for each 4-digit occupation code separately for each sex. If there are less than 10 
people per occupation code, we calculated the mean and median using a pooled sample of both 
sexes. If there are less than 10 people per occupation code in the pooled sample, we used the 
3-digit occupation code instead. If the 3 digit occupation code still did not yield a sufficient 
sample size, we used the 2-digit occupation code. The same model specification as the UK 
model was used for the wage prediction model.    

Given the estimated model, we constructed the log hourly wages per occupation in the 
NTR and LifeLines. The accuracy of the model was tested by taking the 2017 EBB subset as a 
hold-out sample (N = 91,821) and re-estimating the regression model using the 2012 – 2016 
subset excluding those present in the 2017 (N = 388,072). Regressing the log hourly wage on 
the imputed log hourly wage in the 2017 EBB subset yielded an R2 of 0.47, which is similar to 
that for the UK case above.  

https://www.zotero.org/google-docs/?7CbNyh
https://www.zotero.org/google-docs/?sUo1Bd
https://www.zotero.org/google-docs/?z8CdyR
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2.1.4.3. Estonian Genome Center  

For the Estonian Genome Center (EGCUT), we employed a simpler algorithm. We used the 
mean log wage of each occupation code, estimated for men and women separately, using the 
2011 population census data from Statistics Estonia. EGCUT used 3-digit occupation codes 
based on the ISCO-88 standard while Statistics Estonia used occupation codes based on the 
ISCO-08 standard. The mean log wages for each ISCO-08 code were matched to the ISCO-88 
codes based on the correspondence file published by the International Labour Organisation. 
When multiple ISCO-08 codes corresponded to a single ISCO-88 code, we took the average of 
the estimated means of the ISCO-08 codes. 

We tested the accuracy of the occupational wage estimates by examining their 
correlation with the self-reported log wages in the Structure of Earnings Survey (N=369,247 
individuals aged 25 to 64). This resulted in R2 = 0.44, which is similar to the results of the 
Dutch and British cases.  

2.1.4.4. HUNT 

For the Norwegian cohort HUNT, we used a similar approach to that for EGCUT. Here, we 
used sex-specific mean wage statistics from 2015 to 2019 from the Statistics Norway 
(https://www.ssb.no/en/statbank/table/11418/). Similarly to the case of EGCUT, HUNT used 
3-digit occupation codes based on the ISCO-88 standard while Statistics Norway used 
occupation codes based on the ISCO-08. The two are matched together in the same way as was 
done for EGCUT.  

2.1.5. Parental income (iPSYCH) 

While the income information of the participants of iPSYCH was available, they were too 
young that their current income was unlikely to reflect their life-time earnings potential. 
Therefore, we opted to use the income of their parents instead, which was collected from the 
Danish registry data. Specifically, we used the average earnings of the age 30 ~ 55 for each 
parent. This approach can be interpreted as using the offspring genotype as a proxy for the 
genotype of the parent.  

2.2. Genotyping and imputation 

Supplementary Table 3 reports cohort-level information on the genotyping platform, quality-
control filters for the genotype data and subjects prior to imputation, subject-level exclusion 
criteria, and the reference panel and software used for imputation. As the reference panel for 
imputation, either the 1000 Genomes Project2 or Haplotype Reference Consortium (HRC)3 was 
used except for a few cohorts that additionally used cohort-specific reference data.  

2.3. Association analyses 

Each cohort estimated the following linear regression model for each SNP. 
𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑆𝑆𝑆𝑆𝑃𝑃𝑖𝑖𝑗𝑗 + 𝑍𝑍𝑖𝑖 ′𝛾𝛾 + 𝜀𝜀𝑖𝑖  

𝑦𝑦𝑖𝑖 is the log-transformed income phenotype for individual i, 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑗𝑗 the count of effect-coded 
allele of the SNP j, 𝑍𝑍𝑖𝑖 the vector that contains control variables with corresponding coefficients 

https://www.zotero.org/google-docs/?Co7tEP
https://www.zotero.org/google-docs/?gVLrjY
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𝛾𝛾, and 𝜀𝜀𝑖𝑖 the error component. Each cohort was asked to control for any sources of variation in 
income that do not reflect individual earning potential according to their data availability. This 
includes hours worked (with square and cubic terms), year of survey, indicators for 
employment status (retired, unemployed), self-employment, pension benefit, and etc (see 
Supplementary Table 4). Importantly, each cohort was asked to include at least top 15 genetic 
principal components (PC) to account for population stratification, as well as cohort-specific 
technical covariates related to genotyping (genotyping batches and platforms). For household 
income, the number of adult members was also controlled for if possible.   
 This model was estimated for male and female samples separately in light of the 
possible between-sex heterogeneity. Generally, the linear mixed model approach was 
preferred, which additionally models the error component with random genetic effects in order 
to account for the family structure and cryptic relatedness. The cohorts were advised to use 
BOLT-LMM4 for implementation. For smaller family-based cohorts, for which BOLT-LMM’s 
approximation approach was not expected to work well, fastGWA5 was used instead. 
Otherwise, the association analysis was performed without the random effect component. 

2.4. Quality control 

We  applied  a  stringent  quality-control (QC)  protocol to each set of GWAS results of each 
cohort based on the EasyQC software package (version 9.2) developed by the GIANT 
consortium6, as well as additional steps developed by the SSGAC7–9. As the reference panel, 
we used HRC v.1.13. All issues raised during the QC protocol were resolved through iterations 
with cohort analysts, before the meta-analyses.  

The details of the QC protocols as well as the QC of the HRC reference panel is 
described in the supplementary materials of ref9. Here we only provide the overall summary. 
The main steps include removing SNPs with missing or incorrect numerical values (a p-value 
outside of [0,1], for instance); a minor allele frequency (MAF) below 0.1% or a minor-allele 
count (MAC) below 200; a low imputation accuracy (0.6 for MACH, 0.7 for IMPUTE, 0.8 for 
PLINK); the effect-coded allele or the other allele with values different from “A,” “C,” “G,” 
or “T.”; a Hardy-Weinberg Equilibrium p-value lower than 10-3 (N<1000), 10-4 

(1000≤N<2000), or 10-5 (2000≤N<10000) ; and an allele frequency different from the allele 
frequency in the reference panel by more than 0.2. We also removed duplicate SNPs or SNPs 
absent in the reference panel. 

After applying these steps, the resulting output was inspected to determine if an unusual 
number of SNPs were removed during one of the steps and when necessary errors were 
resolved together with the cohort analysts. 

2.5. Meta-analysis 

In order to obtain a single GWAS output that combines multiple GWAS results on different 
income measures collected from multiple cohorts, we performed the meta-analysis in several 
steps, as follows.  

https://www.zotero.org/google-docs/?NXPTyT
https://www.zotero.org/google-docs/?8NlZ2L
https://www.zotero.org/google-docs/?lMorkC
https://www.zotero.org/google-docs/?FPkjo6
https://www.zotero.org/google-docs/?33tCDB
https://www.zotero.org/google-docs/?XgrfWh
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Step 1. For each income measure and for each sex, we meta-analyzed the cohort-level GWAS 
results with METAL using sample-size weighting, which resulted in 8 sets of GWAS 
summary statistics given the four income measures. 

Step 2. For each income measure, we meta-analyzed the male and female results by using the 
meta-analysis version of MTAG, which specifies the perfect genetic correlation and 
equal heritability among the input traits. This version of MTAG can be interpreted as 
a generalized inverse-variance-weighted meta-analysis. In addition to the variance of 
the estimates, MTAG exploits additional information from the intercepts of LD score 
regressions to compute the weights and standard errors. This approach helped account 
for the unadjusted relatedness between the male and female samples. Prior to running 
MTAG, we dropped the SNPs with N = Nmale + Nfemale smaller than 50% of the 
maximum N to make sure that there were no SNPs with an excessively smaller sample 
size.   

Step 3. To combine the four GWAS results with different income measures, we again 
leveraged MTAG with the perfect genetic correlation specification while allowing for 
different heritability among the input traits. This approach allowed us to meta-analyze 
results from different measures that may have different heritability or measurement 
error as well as to account for the sample overlap, which was important given that 
some individuals were included in multiple GWAS results with different income 
measures. 

As opposed to the meta-analysis with METAL, MTAG, a multivariate analysis tool, 
can only output the common set of SNPs among the input GWAS summary statistics. This led 
to a considerably low number of SNPs (4,885,528) after Step 3 due to the individual income 
and parental income GWAS results, which did not have any biobank-scale cohort and therefore 
had a smaller coverage over the genome.  

To circumvent this issue, we repeated Step 3 without 1) individual income, 2) parental 
income, and 3) both individual and parental income. We first verified that all of the four sets 
of meta-analyzed results, including the one with all the measures, had pairwise genetic 
correlation estimates larger than 0.99 and their heritability estimates were almost identical from 
LDSC10. These results indicate that the multivariate meta-analysis results are not sensitive to 
dropping individual and/or parental income. Therefore, for each available SNP, we took the 
result that gave the largest Z statistic in absolute value among the four results. As a result, we 
obtained 4,885,528 SNPs from the MTAG result with the all four measures and 6,599,628 
SNPs from the MTAG result which only includes occupational and household income. We 
dropped 2,353,649 SNPs whose effective sample size (see below) fell below 70% of the 
maximum effective sample size (=692,936). In total, 9,131,507 SNPs were included in the final 
output. 

We observed that MTAG with the perfect genetic correlation specification yields 
numerically almost equivalent results with genomic SEM’s default common factor function11. 
We applied genomic SEM’s common factor function to extract a common underlying factor of 
the four income measures. Using a set of SNPs established by the International HapMap 3 
consortium12, we found that the Z statistics from the meta-analysis result from MTAG (Step 3) 
had an R2 of 0.998 with the Z statistics from the genomic SEM’s common factor results. The 

https://www.zotero.org/google-docs/?cd4mul
https://www.zotero.org/google-docs/?0SDyKX
https://www.zotero.org/google-docs/?gmH8r4
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mean χ2 statistics was slightly higher for MTAG (2.118 versus 2.108). In light of this result, 
we refer to the meta-analyzed income as ‘the income factor’ (Income Factor) to emphasize that 
this result reflects the shared genetic factor underlying multiple income measures.   

We computed the effective sample size exploiting the fact that the standardized beta 
estimates can be approximated as 𝑍𝑍/√𝑁𝑁 for large N. Using the MTAG-produced standardized 
estimates 𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠, we computed the effective sample size per SNP as follows: 

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 = (
𝑍𝑍
𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠

)2 

In the downstream analyses, we used these per-SNP effective sample sizes since typical GWAS 
softwares re-compute the standardized estimates from the MAF, N, and Z statistic based on the 
same approximation. To evaluate the overall sample size, we took the average of these per-
SNP effective sample sizes using the SNPs with 0.1 < MAF < 0.4 since these SNPs tend to be 
less noisy. As a result, we estimated the overall sample size of our Income Factor GWAS to be 
668,288.   

Since MTAG already applies a bias-correction with the intercept of LD score 
regression, we did not apply further bias adjustments. Also, to measure the effect sizes, we 
used the (partial) coefficient of determination (R2), which is the square of the standardized beta 
estimates.  

2.6. Identification of genomic loci 

We used FUMA v1.5.213 with the default parameters to define genomic loci associated with 
Income Factor. Here, we briefly explain the procedure. See the original paper for more detail. 
FUMA first finds independent significant SNPs with a genome-wide significance (p < 5x10-8) 
such that they are independent from each other at r2 < 0.6. Then, independent lead SNPs are 
identified from the independent significant SNPs such that they are independent from each 
other at r2 < 0.1. FUMA then forms genomic loci by grouping independent significant SNPs if 
they are less apart than 250 kb. As a result, a genomic risk locus can contain multiple 
independent significant SNPs and multiple lead SNPs. To define the border of each locus, SNPs 
that have r2 ≥ 0.6 are identified for each of the independent significant SNPs from the reference 
data, including those not available in the input GWAS summary statistics. We used the 1000 
Genomes Project as the reference data, which is readily available in FUMA. 
  
In addition, we ran Conditional and Joint Association Analysis (COJO) using the Genome-
wide Complex Trait Analysis (GCTA) software to refine our understanding of the genetic 
architecture underlying the trait of interest. The analysis was performed with a window size of 
100,000 base pairs (bp), conditioned on 207 primary lead SNPs from 162 loci, previously 
identified as significantly associated with the Income Factor. Our COJO analysis revealed 57 
secondary lead SNPs that surpassed the Bonferroni corrected threshold for statistical 
significance (p <= 5⨯10-8), conditioning on the primary lead SNPs. Notably, 55 of these 
secondary lead SNPs were located within the original primary genomic loci, underscoring their 
potential role in the same genetic regions initially implicated in the association with the Income 
Factor. The remaining two secondary lead SNPs were identified at novel loci, which had not 
been recognized in relation to the primary lead SNPs. These findings highlight the presence of 

https://www.zotero.org/google-docs/?60DvCF
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additional genetic variants that contribute to the Income factor, thereby enriching our 
understanding of its complex genetic basis. See details of these secondary lead SNPs in 
Supplementary Table 30. 
 

 

2.7. Winner’s-curse adjustment  

We used an empirical Bayes framework to adjust for winner’s curse bias in the estimated effect 
sizes from the lead SNPs, following the approach described in ref7,14. The marginal effect sizes 
of SNPs are assumed to be drawn from the following mixture distribution: 𝑁𝑁(0, 𝜏𝜏2) with 
probability 𝜋𝜋  and 0 otherwise. Here 𝜋𝜋 is the fraction of the non-null SNPs and 𝜏𝜏2 is their effect-
size variance.  

We estimated the parameters 𝜋𝜋 and 𝜏𝜏2 by maximum likelihood, using all the SNPs from 
our Income Factor meta analysis, which yielded 𝜋𝜋� = 0.65 and 𝜏̂𝜏2 = 3.01⨯10-6. On average 
among the SNPs with 0.1 < MAF < 0.4, this corresponds to the shrinking factor of 0.67, which 
implies that we need to shrink the GWAS effect estimate by 33% to obtain the winner’s-curse-
adjusted estimate, conditioning that the SNP is non-null. For full technical details of these 
derivations, see the Supplementary Note of ref7,14.  

We then computed the 5th, 50th and 95th percentile of the effect-size distribution of the 
lead SNPs as follows. We simulated 10,000 effect sizes from the posterior distribution of each 
lead SNP and obtained the 5th, 50th and 95th percentiles from the complete set of simulated 
effect sizes.  

 

3. Environmental heterogeneity 

We investigated the potential environmental heterogeneity in the GWAS of income by 
examining the cross-cohort genetic correlations by sex or by country.  

3.1. Between-sex heterogeneity 

We estimated genetic correlation using LDSC between male and female meta-analysis results 
for each income measure (from Step 1 in Section 2.5). In addition, we conducted Income Factor 
GWAS on the sex-specific results (Step 3 in Section 2.5), which yielded an effective sample 
size of 360,196.7 for men and 353,429.1 for women. We then estimated the genetic correlation 
between the sex-specific Income Factor results.  

3.2. Cross-country heterogeneity 

We derived country specific GWAS meta-analyses on two measures of income, occupational 
and household income, for which we were able to secure a sufficiently large sample size for 
multiple countries. We applied Step 1 and 2 in Section 2.5 using the cohorts from each country. 
As a result, we obtained the household income GWAS for the USA (Neff = 30.855), the UK 
(Neff = 387,579), and the Netherlands (Neff = 40,533); and the occupational income GWAS for 
Estonia (Neff = 75,682), Norway (Neff = 42,204), the UK (Neff = 279,883), and the Netherlands 

https://www.zotero.org/google-docs/?F2eiT8
https://www.zotero.org/google-docs/?4GjIW9
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(Neff = 24,425). We then estimated pairwise gene`tic correlations between these results with 
LDSC. 

Next, we examined whether our meta-analysis results could be driven by the cohorts 
from the UK due to a dominantly large share of the British cohorts in the meta-analysis. We 
repeated the meta-analysis procedure (Step 1-3 in Section 2.5) separately with the British and 
non-British cohorts (from 11 countries), which yielded two GWAS results for Income Factor. 
The effective sample size was 414,978 for the UK result and 330,639 for the non-UK result. 
We then estimated the genetic correlation between them.   

 

4. Comparison with educational attainment 

We compared our Income Factor GWAS results with the GWAS of educational attainment 
(EA, measured as years of education) in several approaches by examining 1) implicated genes 
and biological functions, 2) genetic correlation with LDSC, 3) polygenic overlap with 
MiXeR15, and 4) GWAS-by-subtraction16.  

Here, we used a version of EA summary statistics that is slightly different from those 
publicly available. The latest EA GWAS study17 revised the coding of the years of schooling 
in the UKB, which better reflects the educational qualification of the participants. We 
conducted a GWAS of EA in the UKB based on the new coding. Then, by using MTAG with 
the meta-analysis option, we meta-analyzed the UKB result with EA3 summary statistics that 
did not include the UKB. This increased the mean  from 2.53 of the original EA3 result to 
2.94. We found 872 loci tagged by 1,473 lead SNPs.  

4.1. Biological annotation 

To examine if the Income Factor was capturing the same underlying biology as household 
income and educational attainment, we used MAGMA and a test of overrepresentation 
performed using the GENE2FUNC process in FUMA (version 1.5.2). First, gene-based 
statistics were derived for the Income Factor and educational attainment (Lee et al. 2018) using 
MAGMA. For household income, the MAGMA gene-based statistics were taken from 
Supplementary Table 18 by Hill et al. (2019). Next, genes that passed a Bonferroni correction 
were retained and compared across the Income Factor, educational attainment (Lee et al. 2018), 
and household income (Hill et al. 2019). This comparison can be seen in the Venn diagram in 
Extended Fig 5b (a). 
  
Second, using the GENE2FUNC in FUMA, we performed a hypergeometric test to determine 
if the genes identified using MAGMA were overrepresented in biological pathways using 
MsigDB. Gene sets that attained statistical significance (FDR <0.05) in the Income Factor, 
educational attainment, and household income were retained and compared against each other 
(Extended Fig 5b (b)). 
  

https://www.zotero.org/google-docs/?U0XPLj
https://www.zotero.org/google-docs/?erJjtY
https://www.zotero.org/google-docs/?kZJSV8
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4.2. LDSC and MiXeR   

Using LDSC10, we estimated that the genetic correlation between Income Factor and EA is 
0.92 (s.e. = 0.01). This result was consistent with the previous reports, which ranged from 0.90 
to 0.941,18,19. Though providing a useful summary of the shared genetic basis, the global genetic 
correlation only estimates the average correlation of genetic associations and does not capture 
mixtures of effect directions.  

To gain further insights, we used MiXeR15 tool to estimate the degree of polygenic 
overlap between Income Factor and EA. MiXeR exploits a bivariate causal mixture model, 
which allows for estimating: 1) the number of non-null SNPs specific to each trait, 2) the 
number of SNPs with non-null effect for both traits, and 3) the genetic correlation within the 
shared variants.  

More specifically, MiXeR models GWAS effects as a mixture of four components: 1) 
SNPs with null effects for both traits, 2) non-null SNPs specific to trait 1, 3) non-null SNPs 
specific to trait 2, and 4) SNPs with non-null effects for both traits. Each of the four components 
is represented by the proportion of its member SNPs denoted by 𝜋𝜋o,  𝜋𝜋1, 𝜋𝜋2, and 𝜋𝜋12, 
respectively. The SNPs in the second and third components (non-null SNPs specific to each 
trait) are assumed to be distributed with 𝑁𝑁(0,𝜎𝜎𝑘𝑘2) for trait k = 1 and 2, respectively. The SNPs 
in the fourth component (the shared non-null SNPs) are distributed with a bivariate normal 
distribution with the variance-covariance matrix:  

 𝜎𝜎1
2 𝜌𝜌12𝜎𝜎1

2𝜎𝜎1
2 

 

 𝜌𝜌12𝜎𝜎1
2𝜎𝜎1

2 𝜎𝜎2
2 

 

where 𝜌𝜌12 indicates the correlation of the GWAS effects within the shared SNPs.  
Under the MiXeR model, the global genetic correlation is estimated as: 𝜌𝜌12𝜋𝜋12 /

 �(𝜋𝜋1 + 𝜋𝜋12)(𝜋𝜋2 + 𝜋𝜋12), which is the correlation of effects within the shared variants scaled 
by the normalized degree of their polygenic overlap. Therefore, a low global genetic correlation 
may indicate a low correlation within the shared variants and/or a low degree of polygenic 
overlap. 

The estimated model suggests that the set of SNPs associated with the Income Factor 
is entirely nested within the set of SNPs associated with EA, with 83.2% of the EA SNPs shared 
with income (Extended Data Fig. 2a). Furthermore, the genetic correlation within the shared 
component is perfect (rg = 1.00, s.e. = 0.002). As a result, the global genetic correlation, which 
is a composite measure of the polygenic overlap and genetic correlation within the shared set, 
was estimated to be 0.91 (s.e. = 0.01), consistent with the LDSC result.  

4.3. GWAS-by-subtraction 

To explore the results from MiXeR, we statistically decomposed the estimated genetic 
association of Income Factor into the indirect effect due to EA and the direct effect unexplained 
by EA (denoted ‘NonEA-Income’ hereafter), using the GWAS-by-subtraction approach16. 
While this method was implemented as a Cholesky model in the original study, we 
implemented this in a form of the mediation model, which produces numerically equivalent 
results. The main difference is that we did not specify latent factors whose variance was fixed 

https://www.zotero.org/google-docs/?ArdKDW
https://www.zotero.org/google-docs/?8OmYfg
https://www.zotero.org/google-docs/?RdOTmX
https://www.zotero.org/google-docs/?H6vvMN
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to unity. This therefore only affects the scale of the beta estimates and standard errors, while 
the Z statistics are the same.   

More specifically, we set up a genetic mediation model of Income Factor with EA as 
an mediator (Extended Data Fig. 2b). Under this model, the genetic association of Income 
Factor for SNP j (𝛽𝛽𝑗𝑗

𝐼𝐼𝐼𝐼𝐼𝐼) can be written as 𝛽𝛽𝑗𝑗
𝐼𝐼𝐼𝐼𝐼𝐼 = 𝛼𝛼 × 𝛽𝛽𝑗𝑗

𝐸𝐸𝐸𝐸 + 𝛿𝛿𝑗𝑗, where each component is 
defined as: 

- 𝛼𝛼 × 𝛽𝛽𝑗𝑗
𝐸𝐸𝐸𝐸: indirect mediated effect that captures the genetic association of EA (𝛽𝛽𝑗𝑗

𝐸𝐸𝐸𝐸) 
scaled by the correlation between Income Factor and EA (𝛼𝛼)  

- 𝛿𝛿𝑗𝑗: direct effect representing the genetic association of Income Factor unexplained by 
EA (NonEA-Income).  

In this model, the SNPs that are associated with EA but not associated with income 
(corresponding to the blue part in Extended Data Fig. 2a) are SNPs whose direct effects on 
income (𝛿𝛿𝑗𝑗) are strong enough to offset their indirect effects (𝛼𝛼 × 𝛽𝛽𝑗𝑗

𝐸𝐸𝐸𝐸). These are SNPs with 
effects whose signs are discordant across EA and NonEA-Income. On the other hand, SNPs 
with null association for NonEA-Income imply that there will be a perfect genetic correlation 
between income and EA within such SNPs (corresponding to the orange part of Extended 
Data Fig. 2a). It is important to note that this model does not imply any causal direction 
between the variables. The above decomposition always holds for any given GWAS effects 
from two traits.  

We estimated this model using genomic SEM11, which essentially involves estimating 
the non-EA genetic association of Income Factor (𝛿𝛿𝑗𝑗) and the correlation between EA to income 
(𝛼𝛼).  

Instead of the default European reference panel from phase 3 of the 1000 Genomes 
Project2 provided by genomic SEM, we used the HRC European reference panel to increase 
the SNP coverage. Genomic SEM uses a reference panel to align SNPs and obtain MAF 
estimates, which in turn are used to compute the per-allele effect sizes standardized with respect 
to the phenotype. As a result, 7,274,585 SNPs were included in the final output. 

4.4. Concordant and discordant sets 

We classified the SNPs as concordant or discordant on the basis of the sign concordance of 𝛿𝛿𝑗𝑗 

and 𝛽̂𝛽𝑗𝑗
𝐸𝐸𝐸𝐸

 estimates. Out of 7,274,585 SNPs, 4,056.295 SNPs were classified as discordant 

(corresponding to 55.8%). The sign discordance here implies that the size of 𝛽̂𝛽𝑗𝑗
𝐼𝐼𝐼𝐼𝐼𝐼

 is much 

smaller than that of 𝛽̂𝛽𝑗𝑗
𝐸𝐸𝐸𝐸

. 
To validate this result, we tested in an independent sample whether the SNPs with the 

sign discordance between EA and NonEA-Income had weaker genetic associations of income. 
We grouped the SNPs into two sets according to the sign concordance. We then estimated the 
partitioned heritability of income for these two groups of SNPs in unrelated individuals from 
the sibling subsample of the UKB.  

More specifically, we used GCTA20 to construct two genomic relatedness matrices 
(GRM), one with 681,049 discordant SNPs and the other with 537,607 concordant SNPs, all 

https://www.zotero.org/google-docs/?aqocex
https://www.zotero.org/google-docs/?RpGWo0
https://www.zotero.org/google-docs/?4mjBF3
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of which were from the HapMap3 set. Here the SNPs were stratified from the GWAS results 
excluding the UKB sibling sample and their close relatives. After removing the individuals 
whose occupational or household income was not available, we identified unrelated individuals 
from the sibling sample by applying --grm-singleton 0.05, using a merged GRM from the two 
GRMs. Then, the heritability was estimated each for occupational and household income, 
specifying the two GRMs separately in the model. The sample size was 12,689 and 16,972 for 
occupational and household income, respectively. As covariates, we included age, age2, age3, 
sex, dummies for survey year, and interactions between sex and the rest. 

We confirmed that the heritability of income was contributed disproportionately more 
by the concordant SNPs and far less by the discordant SNPs. The concordant SNPs accounted 
for 70.0% of the heritability (s.e. = 19.5%) for occupational income and 75.3% for household 
income (s.e. = 15.8%). In both cases, only the heritability component for the concordant SNPs 
was statistically significant.  
 

5. Polygenic score analyses of income 

5.1. Baseline polygenic prediction 

We conducted a validation analysis based on polygenic prediction with 1KG-EUR-like 
individuals in the Swedish Twin Registry (STR), which was not included in our meta-analysis. 
We chose the STR as the main prediction cohort for its accurate income data collected from 
administrative data sources, which include individual, occupational, and household income 
(see the subsection below for the detail). In addition, we also used the UKB siblings (UKB-
sib) and the Health and Retirement Study (HRS) from the US as prediction cohorts. For the 
UKB-sib, occupational and household income measures were available, while a self-reported 
individual income measure was available for the HRS.  

We constructed polygenic indexes (PGI), using the meta-analysis results of income 
excluding a prediction cohort at a time, as well as a PGI based on the EA GWAS summary 
statistics in the same way for comparison. PGIs were created only with HapMap3 SNPs12 as 
these SNPs are known to have good imputation quality and provide good coverage in 1KG-
EUR-like samples. Furthermore, the SNPs were limited to those available in both income and 
EA summary statistics for the sake of precise comparison. We used the reference panel from 
the HRC. The details of QC for this panel can be found in the Supplementary Information of 
ref17.  

We derived PGIs based on a Bayesian approach implemented in the software 
LDpred221. LDpred2 is an extension of LDpred22, which adjusts for LD and computes 
individual SNP weights by using posterior means of LD-independent effect-size distributions. 
LDpred2 improves LDpred approach by 1) using a LD window based on genetic distances, 
which can better accommodate long LD regions and 2) allowing for Bayesian updating of p 
(the proportion of causal SNPs) and h2 (SNP heritability) parameters (called LDpred2-auto). 
As priors, we set 0.2 for p and LDSC h2 estimates for h2 parameters. While the authors of 
LDpred2 recommend running LDpred2 genome-wide, we ran Ldpred2 per chromosome for its 

https://www.zotero.org/google-docs/?wCQg3F
https://www.zotero.org/google-docs/?FCVDtx
https://www.zotero.org/google-docs/?8NRBYu
https://www.zotero.org/google-docs/?GMSz9e
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computational efficiency given that prediction results are barely different for a well-powered 
GWAS.  

Since the STR sample was genotyped with three different platforms, which gave too 
few common HapMap3 SNPs after quality-control filters, we applied LDpred2 for the SNPs 
available in each batch and created PGIs for each batch. We then included indicators for these 
different batches in the prediction analyses.  

In order to create PGIs for the UKB siblings, we re-conducted the GWAS of income 
and EA excluding the sibling sample as well as their close relatives (up to the third degree of 
relatedness). We then performed the meta analyses again.     

For both the STR and the UKB siblings, we randomly chose one sibling from each 
family to avoid complications due to having relatives in the sample. We measured the 
prediction accuracy on the basis of the incremental R2, which is the difference between the R2 
from a regression of the phenotype on the PGI and the baseline covariates and the R2 from a 
regression on the baseline covariates only. We constructed confidence intervals for the 
incremental R2 by bootstrapping the sample 1,000 times. 

Because income typically contains substantial demographic variation, we pre-
residualized the log of income for demographic covariates. Then, as baseline covariates, we 
only included top 20 genetic PCs and genotype batch indicators. Because income data was 
available for multiple years for the STR and the HRS, we residualized the log of income for 
age, age2, age3, sex, and interactions between sex and the age terms within each year and 
obtained the mean of residuals for each individual. For the UKB-sib, which only had cross-
sectional data, we residualized the log of income for age, age2, age3, sex, dummies for survey 
year, and interactions between sex and the rest. For EA measure (years of education), we 
applied the same procedure for consistency while using dummies of birth year in place of the 
age terms.  

5.1.1. The STR income data description 

Individual income  
We used work income (including work-related benefits) for each year from 1990 to 2018 from 
Sweden’s registry data. For the years of 1970, 1975 and 1985, the census data was also used. 
The sample was limited to individuals of at least 30 years of age at each point. A few extreme 
outliers were removed by trimming at the 99th percentile.  
 
Household income 
Household income data only existed for a few years in the late census data. Therefore, all the 
observations were taken from the 1990s. The same sample filtering and the outlier removal was 
applied. 
 
Occupational income 
Work income averages (including work-related benefits) per category of three-digit ISCO 
codes (SSYK, the Swedish version) were obtained per year from 2001 to 2016 from the 
population level data (except for 2014 where the occupation codes were missing). These were 
then matched to the corresponding year-code observations in the STR data. 



16 

5.2. Within-family polygenic prediction 

Genetic associations of SES traits are known to particularly suffer confounds due to indirect 
genetic effects such as genetic nurture and population stratification23–25. Recent studies17,26 
have shown that, by controlling for parental PGIs, the direct genetic effect can be isolated from 
the overall population effect captured by the PGI. In the case of EA, the direct genetic effect 
was shown to account for 30.9% of the overall predictive power of the EA PGI.  

We followed the same approach to estimate the share of the direct genetic effect in the 
overall population effect captured by Income Factor PGI. We imputed missing parental 
genotypes from sibling and parent-offspring pairs, using the tool snipar27. To apply the 
imputation algorithm, we prepared the data as follows. We first identified individuals with 
“White British’ ancestry” and first-degree relatives based on the kinship coefficients (first-
degree if > 0.177) provided by the UKB. We then used KING software27 to infer the sibling 
and parent–offspring relations by specifying “--related-degree 1”.    

As inputs for snipar, we only used high quality common SNPs from the HapMap3 set 
as well as directly genotyped SNPs (imputation INFO score > 0.99 and MAF>1%). We first 
phased these SNPs from the imputed genotype data using eagle v2.4.128 with 1000 Genomes 
Phase 3 reference panel. We then used these phased SNPs as inputs for snipar to impute missing 
parental genotypes. This procedure resulted in 1,244,153 SNPs in total whose missing rate was 
lower than 1%.  
 Following the same procedure in Section 5.1, we created a PGI for Income Factor by 
applying LDpred2 to this set of SNPs for the UKB sibling sample. For each individual in this 
sample, we also created parental PGIs using the imputed parental genotypes. Each PGI was 
then normalized to have a variance of 1. The phenotypes (the log of occupational income or 
household income) were residualized for age, age2, age3, sex, dummies for survey year, and 
interactions between sex and the age and year terms, as well as top 20 genetic PCs and genotype 
batch indicators. Then, the residualized phenotypes were also normalized to have a variance of 
1  separately in males and females. As a result, regression estimates of PGI represent (partial) 
correlations, and their squares indicate proportions of phenotypic variance explained. 
 For the prediction analysis, we estimated the following regression model:  

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 + 𝛼𝛼(𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝(𝑗𝑗) + 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚(𝑗𝑗)) + 𝜀𝜀𝑖𝑖𝑖𝑖  
where 𝑦𝑦𝑖𝑖𝑖𝑖 is the phenotype of individual i in family j, 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 the PGI, 𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝(𝑗𝑗) the paternal PGI, 
𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚(𝑗𝑗) the maternal PGI, and 𝜀𝜀𝑖𝑖𝑖𝑖 the error term. 𝛿𝛿 represents the direct genetic effect of the 
PGI and 𝛼𝛼 reflects indirect genetic effects and the effects of other genetic and environmental 
factors including the confounding due to non-random mating. The derivations in ref17,26 show 
that this regression gives an unbiased estimate of 𝛿𝛿, while the population effect, denoted 𝜓𝜓, is 
then equal to  𝛿𝛿 + (1 + 𝑟𝑟𝑎𝑎𝑎𝑎)𝛼𝛼, where 𝑟𝑟𝑎𝑎𝑎𝑎 is the correlation between 𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝(𝑗𝑗) and 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚(𝑗𝑗). 
 We fitted the above regression by OLS and clustered the standard errors by family to 
account for within-family dependence. We estimated 𝑟𝑟𝑎𝑎𝑎𝑎 using the correlation between 
siblings’ PGI, which is equal to (1 + 𝑟𝑟𝑎𝑎𝑚𝑚)/2 (see the supplementary note section 8 of ref26). 
For Income Factor PGI, this was estimated to be 0.107. Given these estimates, we computed 
estimates for 𝜓𝜓 as well as the ratio of direct genetic effect to the population effect, 𝛿𝛿 / 𝜓𝜓 . We 
then derived standard errors for the estimates of 𝜓𝜓 and 𝛿𝛿 / 𝜓𝜓 by using the delta method.  

https://www.zotero.org/google-docs/?hZB8ZM
https://www.zotero.org/google-docs/?rbVXlD
https://www.zotero.org/google-docs/?8sbg1j
https://www.zotero.org/google-docs/?n6D6wV
https://www.zotero.org/google-docs/?NswGBV
https://www.zotero.org/google-docs/?524JRg
https://www.zotero.org/google-docs/?xhGtAC
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6. Genetic correlation analysis 

We estimated genetic correlations of Income Factor, EA, and NonEA-Income with a wide set 
of traits, including socioeconomic, behavioral, and physical and mental health traits. We used 
LDSC to estimate the genetic correlations (rg), using the pre-computed LD scores from the 
authors. and computed the difference in rg between EA and NonEA-Income. We derived the 
standard errors for the difference in rg on the basis of jackknife estimates, using the same 
default approach of LDSC. Then, the false discovery rate correction was applied to the resulting 
p-values. 

The phenotypes included in this genetic correlation analysis are as follows: Subjective 
well-being14, Parental lifespan29, Cognitive performance7, General risk tolerance9, 
Chronotype30, Sleep duration30, Age of smoking initiation31, Smoking persistence31, Cigarettes 
per day31, Drinks per week31, Alcohol dependence32, Height33, BMI33, Waist-to-hip ratio33, 
Blood pressure (in-house GWAS conducted in the UKB sample), Type 2 diabetes34, 
Triglycerides35, ADHD36, Bipolar disorder37, Schizophrenia38, Autism spectrum39, Anorexia 
nervosa40, Obsessive compulsive disorder41, Major depressive disorder42, Anxiety disorder43, 
Neuroticism44, Stress-related disorder45, Cannabis use disorder46, Cross disorder47 
 

7. Biological annotation 

7.1. Gene mapping 

We used FUMA v1.5.213 with the default parameters to find genes implicated in Income Factor 
GWAS, which used four mapping approaches to link the identified SNPs to protein-coding 
genes. First, the genes were mapped to the SNPs on the basis of physical proximity with a 10 
kb window. Second, the genes were mapped according to expression quantitative trait locus 
(eQTL). We used the eQTL data from GTEx v848 and BRAINEAC49. Third, the genes were 
mapped based on significant chromatic interactions with the builtin chromatic interaction data. 
Fourth, we considered the genes that were statistically significant with Bonferroni correction 
from MAGMA gene-based association tests, which convert the mean chi-square of member 
SNPs into a gene-level test statistic.   

7.2. Tissue-specific enrichment analysis 

We performed tissue-specific enrichment analyses using two approaches: LDSC-SEG50 and 
MAGMA gene-property analyses51. First, we applied LDSC-SEG to estimate tissue or cell-
type specific enrichment, using the pre-computed LD scores by the authors according to the 
gene expression annotations from Franke lab52 and GTEx v6 data48. Second, MAGMA gene-
property analysis was used to examine relationships between gene-level associations and 
tissue-specific gene expression profiles. The gene expression data were taken from GTEx v8.  

https://www.zotero.org/google-docs/?gP0CND
https://www.zotero.org/google-docs/?LzOzQI
https://www.zotero.org/google-docs/?KSgXRf
https://www.zotero.org/google-docs/?ALHySU
https://www.zotero.org/google-docs/?cJ3k1Z
https://www.zotero.org/google-docs/?nnYuki
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8. GREML heritability estimation 

We estimated the heritability of different income measures in the STR and UKB-sib samples 
with GREML from GCTA20. Such estimates are useful for gauging the maximum predictive 
power that could be achieved by the PGI. For both data sets, only the HapMap3 SNPs were 
included in the GRM and unrelated individuals were identified by applying --grm-singleton 
0.05. The phenotypes were residualized (and averaged per individual for the STR) prior to the 
analyses in the same way from the prediction analyses. The results were reported in the 
Supplementary Table 13 along with the LDSC heritability estimates from the GWAS meta-
analysis results.    

9. Phenome-wide association study 

We explored the clinical relevance of the Income Factor PGI for common diseases in the sibling 
sample of the UKB. We conducted a phenome-wide association study, using the in-patient 
electronic health records for 115 diseases with sex-specific sample prevalence no lower than 
1%. We derived case-control status according to the phecode scheme by mapping the UKB’s 
ICD-9/10 records to phecodes (https://phewascatalog.org/phecodes, version 1.2)53,54. These 
ICD-9/10 records were collected from hospitalization, cancer, and death registries (as of May 
2021).  

 We fitted a linear regression of case-control status on the Income Factor PGI while 
controlling for the parental PGIs to specifically capture the direct genetic effects of income 
PGI. As covariates, we also included year of birth, its square term, and their interactions with 
sex, genotype batch dummies, and 20 genetic PCs. The standard errors were clustered by 
family. 

In total, 14 diseases from various categories were significantly associated with the 
direct genetic effect of the Income Factor PGI at false discovery rate < 0.05 (Extended Fig. 4 
and Supplementary Table 27). The results suggest that having a higher Income Factor PGI 
can lead to lower risk for cardiovascular diseases, digestive issues, Type 2 diabetes, obesity, 
depression, tobacco use disorder, and musculoskeletal issues.  
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and laboratory technicians, clerical workers, research scientists, volunteers, managers, 
receptionists and nurses. The UK Medical Research Council and Wellcome (Grant ref: 
217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC. This 
publication is the work of the authors and they will serve as guarantors for the contents of this 
paper. GWAS data was generated by Sample Logistics and Genotyping Facilities at Wellcome 
Sanger Institute and LabCorp (Laboratory Corporation of America) using support from 
23andMe.  

https://phewascatalog.org/phecodes
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Please note that the study website contains details of all the data that is available through a fully 
searchable data dictionary and variable search tool" and reference the following webpage: 
http://www.bristol.ac.uk/alspac/researchers/our-data/. Ethical approval for the study was 
obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics 
Committees. Consent for biological samples has been collected in accordance with the Human 
Tissue Act (2004). Informed consent for the use of data collected via questionnaires and clinics 
was obtained from participants following the recommendations of the ALSPAC Ethics and 
Law Committee at the time. At age 18, study children were sent 'fair processing' materials 
describing ALSPAC’s intended use of their health and administrative records and were given 
clear means to consent or object via a written form. Data were not extracted for participants 
who objected, or who were not sent fair processing materials.  
  
Study data were collected and managed using REDCap electronic data capture tools hosted at 
the University of Bristol. REDCap (Research Electronic Data Capture) is a secure, web-based 
software platform designed to support data capture for research studies. DOI: 
10.1016/j.jbi.2008.08.010 
 
Pregnant women resident in Avon, UK with expected dates of delivery between 1st April 1991 
and 31st December 1992 were invited to take part in the study. 20,248 pregnancies have been 
identified as being eligible and the initial number of pregnancies enrolled was 14,541. Of the 
initial pregnancies, there was a total of 14,676 foetuses, resulting in 14,062 live births and 
13,988 children who were alive at 1 year of age. The total sample size for analyses using any 
data collected after the age of seven is therefore 15,447 pregnancies. Of these 14,901 children 
were alive at 1 year of age. Of the original 14,541 initial pregnancies, 338 were from a woman 
who had already enrolled with a previous pregnancy, meaning 14,203 unique mothers were 
initially enrolled in the study. As a result of the additional phases of recruitment, a further 630 
women who did not enrol originally have provided data since their child was 7 years of age. 
This provides a total of 14,833 unique women (G0 mothers) enrolled in ALSPAC as of 
September 2021. G0 partners were invited to complete questionnaires by the mothers at the 
start of the study and they were not formally enrolled at that time. 12,113 G0 partners have 
been in contact with the study by providing data and/or formally enrolling when this started in 
2010. 3,807 G0 partners are currently enrolled. 
 

10.2. CoLaus (Cohorte Lausannoise) 

The authors would like to thank all the people who participated in the recruitment of the 
participants, data collection and validation, particularly Nicole Bonvin, Yolande Barreau, 
Mathieu Firmann, François Bastardot, Julien Vaucher, Panagiotis Antiochos, Cédric 
Gubelmann, Marylène Bay and Benoît Delabays. 
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10.3. Croatia - Korcula 

This research was funded by the Medical Research Council UK, the Croatian National Centre 
of Research Excellence in Personalized Healthcare grant (number KK.01.1.1.01.0010), and the 
Centre of Competence in Molecular Diagnostics (KK.01.2.2.03.0006). 

10.4. EGCUT (Estonian Genome Center, University of Tartu) 

The authors wish to acknowledge the participants of the Estonian Biobank for their 
contributions. 
The activities of the EstBB are regulated by the Human Genes Research Act, which was 
adopted in 2000 specifically for the operations of EstBB. Individual level data analysis in 
EstBB was carried out under ethical approval by the Research Ethics Committee of the 
University of Tartu (Approval number 288/M-18), using data according to release application 
6-7/GI/33516 from the Estonian Biobank. 
 
The Estonian Genome Center analyses were partially carried out in the High Performance 
Computing Center, University of Tartu. The authors also acknowledge support for the 
development of the infrastructure of the Estonian Genome Centre from the Estonian Research 
Infrastructures Roadmap project No. SP1GI16442T “Estonian Centre for Genomics II”. The 
work of the Estonian Genome Center, University of Tartu was funded by the European Union 
through Horizon 2020 research and innovation program under grants no. 810645 and 894987, 
through the European Regional Development Fund projects GENTRANSMED (2014-
2020.4.01.15-0012), MOBEC008, MOBERA21 and Estonian Research Council Grants 
PRG791 and PRG1291. We also acknowledge the Estonian Biobank Research Team (E-mail: 
EstBBresearch@ut.ee) responsible for data collection, genotyping, quality control and 
imputation, including Andres Metspalu  (andres.metspalu@ut.ee), Lili Milani 
(lili.milani@ut.ee), Reedik Mägi (reedik.magi@ut.ee), Mari Nelis (mari.nelis@ut.ee), Georgi 
Hudjashov (georgi.hudjashov@ut.ee). 
 

10.5. FTC (Finnish Twin Cohort) 

Phenotype and genotype data collection in the twin cohort has been supported by the Wellcome 
Trust Sanger Institute, the Broad Institute, ENGAGE – European Network for Genetic and 
Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413,  and the 
Academy of Finland (grants  264146, 308248, 312073, 336823, and 352792 to JKaprio).  

10.6. HUNT (Trøndelag Health Study) 

The Trøndelag Health Study (HUNT) is a collaboration between HUNT Research Centre 
(Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and 
Technology), Trøndelag County Council, Central Norway Regional Health Authority, and the 
Norwegian Institute of Public Health. The genotyping in HUNT was financed by the National 
Institutes of Health; University of Michigan; the Research Council of Norway; the Liaison 
Committee for Education, Research and Innovation in Central Norway; and the Joint Research 



21 

Committee between St Olavs hospital and the Faculty of Medicine and Health Sciences, 
NTNU. Laxmi Bhatta and Ben M. Brumpton received support from the HUNT Center for 
Molecular and Clinical Epidemiology; Faculty of Medicine and Health Sciences, NTNU; The 
Liaison Committee for Education, Research and Innovation in Central Norway; and the Joint 
Research Committee between St Olavs Hospital and the Faculty of Medicine and Health 
Sciences, NTNU. 

10.7. iPSYCH 

The iPSYCH consortium is supported by the Lundbeck foundation (grant nos. R1-2=A9118 
and R155-2014-1724). The funders had no role in study design, data collection and analysis, 
decision to publish or preparation of the manuscript. 

10.8. LifeLines 

The Lifelines Biobank initiative has been made possible by funding from the Dutch Ministry 
of Health, Welfare and Sport, the Dutch Ministry of Economic Affairs, the University Medical 
Center Groningen (UMCG the Netherlands), University of Groningen and the Northern 
Provinces of the Netherlands. The generation and management of GWAS genotype data for 
the Lifelines Cohort Study is supported by the UMCG Genetics Lifelines Initiative (UGLI). 
UGLI is partly supported by a Spinoza Grant from NWO, awarded to Cisca Wijmenga. The 
authors wish to acknowledge the services of the Lifelines Cohort Study, the contributing 
research centers delivering data to Lifelines, and all the study participants. 
 
The following individuals contributed to the Lifelines study: 
Raul Aguirre-Gamboa (1), Patrick Deelen (1), Lude Franke (1), Jan A Kuivenhoven (2), 
Esteban A Lopera Maya (1), Ilja M Nolte (3), Serena Sanna (1), Harold Snieder (3), Morris A 
Swertz (1), Peter M. Visscher (3,4), Judith M Vonk (3), Cisca Wijmenga (1) 
(1) Department of Genetics, University of Groningen, University Medical Center Groningen, 
The Netherlands 
(2) Department of Pediatrics, University of Groningen, University Medical Center Groningen, 
The Netherlands 
(3) Department of Epidemiology, University of Groningen, University Medical Center 
Groningen, The Netherlands 
(4) Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 
Australia. 

10.9. MOBA (Norwegian Mother, Father and Child Cohort Study) 

The Norwegian Mother, Father and Child Cohort Study (MOBA) is supported by the 
Norwegian Ministry of Health and Care Services and the Ministry of Education and Research. 
We are grateful to all the participating families in Norway who take part in this on-going cohort 
study. 
 
We thank the Norwegian Institute of Public Health (NIPH) for generating high-quality genomic 
data. This research is part of the HARVEST collaboration, supported by the Research Council 
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of Norway (#229624). We also thank the NORMENT Centre for providing genotype data, 
funded by the Research Council of Norway (#223273), South East Norway Health Authorities 
and Stiftelsen Kristian Gerhard Jebsen. We further thank the Center for Diabetes Research, the 
University of Bergen for providing genotype data and performing quality control and 
imputation of the data funded by the ERC AdG project SELECTionPREDISPOSED, Stiftelsen 
Kristian Gerhard Jebsen, Trond Mohn Foundation, the Research Council of Norway, the Novo 
Nordisk Foundation, the University of Bergen, and the Western Norway Health Authorities. 
 
This work was supported by in part by Research Council of Norway through its Centre of 
Excellence funding scheme, grant number 262700.  
 

10.10. NEO (The Netherlands Epidemiology of Obesity Study) 

The NEO study is supported by the participating Departments, the Division, and the Board of 
Directors of the Leiden University Medical Centre, and by the Leiden University, Research 
Profile Area ‘Vascular and Regenerative Medicine’. The authors of the NEO study thank all 
participants, all participating general practitioners for inviting eligible participants, all research 
nurses for data collection and the NEO study group: Pat van Beelen, Petra Noordijk and 
Ingeborg de Jonge for coordination, laboratory and data management.  

10.11. NTR (Netherlands Twin Registry) 

We warmly thank all twin and family members for their participation. 

10.12. QIMR (Queensland Institute of Medical Research) 

Data collection funded from various grants from Australian NHMRC and US NIH. 

10.13. RS (Rotterdam Study) 

The generation and management of GWAS genotype data for the Rotterdam Study (RS I, RS 
II, RS III) was executed by the Human Genotyping Facility of the Genetic Laboratory of the 
Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands. The GWAS 
datasets are supported by the Netherlands Organisation of Scientific Research NWO 
Investments (nr. 175.010.2005.011, 911-03-012), the Genetic Laboratory of the Department of 
Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-
015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for 
Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project nr. 
050-060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and 
Marjolein Peters, MSc, and Carolina Medina-Gomez, MSc, for their help in creating the 
GWAS database, and Karol Estrada, PhD, Yurii Aulchenko, PhD, and Carolina Medina-
Gomez, MSc, for the creation and analysis of imputed data. 
 
The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, 
Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the 
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Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and 
Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and 
the Municipality of Rotterdam. The authors are grateful to the study participants, the staff from 
the Rotterdam Study and the participating general practitioners and pharmacists. 

10.14. SHIP (Study of Health in Pomerania) 

SHIP is part of the Community Medicine Research net of the University of Greifswald, 
Germany, which is funded by the Federal Ministry of Education and Research (grants no. 
01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social 
Ministry of the Federal State of Mecklenburg-West Pomerania, and the network ‘Greifswald 
Approach to Individualized Medicine (GANI_MED)’ funded by the Federal Ministry of 
Education and Research (grant 03IS2061A). Genome-wide data have been supported by the 
Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant from 
Siemens Healthineers, Erlangen, Germany and the Federal State of Mecklenburg- West 
Pomerania. The University of Greifswald is a member of the Caché Campus program of the 
InterSystems GmbH. 

10.15. STR (Swedish Twin Registry) 

The Swedish Twin Registry is managed by Karolinska Institutet and receives funding through 
the Swedish Research Council under the grant no 2017-00641. Genotyping was performed by 
the SNP&SEQ Technology Platform in Uppsala (www.genotyping.se). The facility is part of 
the National Genomics Infrastructure supported by the Swedish Research Council for 
Infrastructures and Science for Life Laboratory, Sweden. The SNP&SEQ Technology Platform 
is also supported by the Knut and Alice Wallenberg Foundation. 

10.16. UKHLS (Understanding Society) 

University of Essex, Institute for Social and Economic Research. (2022). Understanding 
Society: Waves 1-12, 2009-2021 and Harmonised BHPS: Waves 1-18, 1991-2009. [data 
collection]. 17th Edition. UK Data Service. SN: 6614, http://doi.org/10.5255/UKDA-SN-6614-
18. 
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