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Abstract

We present a model of pattern memory and retrieval with novel, technically useful and biologically
realistic properties. Specifically, we enter n variations of k pattern classes (n*k patterns) onto a cortex-
like balanced inhibitory-excitatory network with heterogeneous neurons, and let the pattern spread
within the recurrent network. We show that we can identify high mutual-information (MI) neurons
as major information-bearing elements within each pattern representation. We employ a simple one-
shot adaptive (learning) process focusing on high MI neurons and inhibition. Such ’localist plasticity’
has high efficiency, because it requires only few adaptations for each pattern. Specifically, we store
k=10 patterns of size s=400 in a 1000/1200 neuron network. We stimulate high MI neurons and in
this way recall patterns, such that the whole network represents this pattern. We assess the quality
of the representation (a) before learning, when entering the pattern into a naive network, (b) after
learning, on the adapted network, and (c) after recall by stimulation. The recalled patterns could be
easily recognized by a trained classifier. The recalled pattern ’unfolds’ over the recurrent network with
high similarity to the original input pattern. We discuss the distribution of neuron properties in the
network, and find that an initial Gaussian distribution changes into a more heavy-tailed, lognormal
distribution during the adaptation process. The remarkable result is that we are able to achieve reliable
pattern recall by stimulating only high information neurons. This work provides a biologically-inspired
model of cortical memory and may have interesting technical applications.
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1 Introduction

Storing patterns and achieving sequence-
independent recall is a problem for neural network
models. We are interested in exploring the con-
cept of localist ensemble memory in cortical
networks (??). From biology we know that there
are both synaptic and intrinsic plasticity (?),

which have a ‘hidden’ component in cell-internal
memory (?). Here we want to explore the concept
of storing memory by local plasticity in neurons
within ensemble-like neuronal groups. For this
purpose we define a realistic excitatory-inhibitory
network with recurrent interactions and use sim-
ple, visually-defined patterns (?) as inputs to the
network. We then examine the representations
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that develop on a naive network, where ’naive’
means without previously stored patterns, and
in the absence of plasticity. Representations are
classified by a downstream machine learning
mechanism. The machine learning mechanism
stands for other interpretations, for instance, con-
tralateral, or subcortical brain areas, which are
not explicitly modelled (cf. Fig. 1).
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Fig. 1 Architecture of the system: patterns from a field of
20x20 excitatory neurons are ’loaded’ onto E neurons from
an E-I network. The network of E (N=1000) and I neurons
(N=200) generates a representation. The representation is
identified by a downstream (e.g., subcortical) classifier.

The construction chosen is a suitable model
for cortical networks (??), it is also reminiscent
of LSN (?) and ESN (?) models. To implement
plasticity, we perform an information-theoretic
analysis over neurons and patterns (??) to find
the neurons with the highest mutual information
(MI) for each class of patterns. Such high MI
response neurons form spontaneously in the rep-
resentations. The existence of high MI neurons
is an emergent property of the network setup. It
turns out that while absolute MI values for neu-
rons differ across classes, and the number of high
MI neurons above a threshold is different for each
class, we can rank the highest MI neurons for each
pattern class. We select only the high MI neu-
rons to use for plasticity. The idea is to ’compress’
the pattern information into the high MI neu-
rons’ intrinsic properties and adjacency network,
i.e. perform localist plasticity. Then by stimulating
only these neurons, we can recall neural repre-
sentations and we achieve high precision pattern
recall (?).

We also look at inhibitory neurons which play
an important role in defining ensembles in real
cortical networks. When an ensemble is activated,
inhibitory plasticity guarantees that the activated

ensemble is less inhibited, while inhibition remains
strong for all other neurons.

When there is low or no overlap in the high
MI neurons for each pattern class, localist learning
means that there is a disjunctive set of adaptations
for each pattern set. Dissimilar pattern classes are
stored free of interference. The goal of our exper-
iments is to ensure that pattern information can
be retrieved by stimulation of a few, high MI neu-
rons alone - even though the patterns were learned
from a full input representation.

2 Methods

2.1 Neurons and Network Structure

The network model is initialized as a fully con-
nected model with E (=1000) excitatory neurons
and I (=200) inhibitory neurons, plus P (=400)
pattern input neurons, which are directly linked
to 400 of E excitatory neurons, in order to ’load’
patterns of length P into the network. The connec-
tions between the P neurons and corresponding E
neurons is strong enough to ensure solid transfer of
activity. Synaptic connections within the network
are of type NMDA, AMPA and GABA-A and are
modeled as in (?).

Neurons are modeled as spiking neural mod-
els as in (?) with an equation for the membrane
model v and an equation for the gating variable
u (Eq 1), such that v is set back to a low mem-
brane potential v := c; and the gating variable u
is increased by an amount d (u := u+ d), when a
neuron spikes (at v(t) = θ and θ = 30mV ).

v̇ = 0.04v2 + 5v + 140− u− Isyn
u̇ = a(bv − u)

(1)

For excitatory neurons, parameters are vari-
able in order to capture different types of neurons
and generate different distributions of intrinsic
excitability. For excitatory neurons, parameters a
and b are varied in our model (cf. (?)), which
results in different intrinsic excitability of a neu-
ron, cf. Table 1. The gain g is captured by g = γ ·a.
We measure the baseline rates as spontaneous neu-
ral activity with a background input of around
0.15nA. This variation of parameters also allows
for intrinsic plasticity.
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Table 1 Parameter ranges for excitatory and inhibitory neurons

Parameter E I P

a 0.006 . . . 0.034 0.3 0.1
b 0.06 . . . 0.34 0.1 0.1
c -70 -70 -70
d 3 2 3
θ 30mV 30mV 30mV
γ 2.5 · 104 5.0 · 104 2.0 · 104
baseline rate (Hz at 0.15nA) 3-7 20 6

For inhibitory neurons, the parameters are

a = 0.3, b = 0.1, c = −70mV, d = 2.

This results in inhibitory neurons firing around
20Hz. For the input pattern neurons P, the values
are similar with a lower gain and longer delay (a =
0.1, b = 0.1, c = −70mV, d = 3).

We initialize excitatory neurons with a Gaus-
sian distribution over its gain and baseline rate,
such that we use a mean of µ = 5 and distribution
σ2 = 0.96 for the rate. Attested values for cor-
tical neurons in mice are rate distributions with
µ = 4.96 and σ2 = 0.31 (?).

Initially, the network has full connectivity for
E-E, E-I and I-E synapses. There are no I-I
connections. Synaptic strength is set to achieve
baseline activity in the network with a background
input (∼ 0.15nA). Accordingly, the network is ini-
tialized with a Gaussian distribution of synaptic
strength for both AMPA and NMDA connections
between E-E (µ = 0.0015, σ = 0.00027) and E-I
(µ = 0.014, σ = 0.00024). For GABA-A connec-
tions, we use a Gaussian distribution with µ =
−0.5 and σ2 = 0.1.

There is a signal delay between neurons, which
is randomly distributed:

� AMPA: 10 . . . 30ms
� NMDA1: 10 . . . 15ms
� GABA-A: 5 . . . 15ms

We do not use this parameter during plasticity.

2.2 Patterns

In order to use a simple set of variations of pat-
terns which can be easily classified into classes,

1NMDA has intrinsic delays of about 120ms

we used the MNIST database (?) for 10 handwrit-
ten digits, with 50 variations for each digit. The
format was an integer vector (for the grayscale
values) of length 400 (10x50=500 patterns).

We load patterns into the E+I (=1200)
processing network via P (=400) pattern neu-
rons which have a single excitatory connection
(AMPA) to 400 E neurons in the processing net-
work. We apply one input pattern of length 400 at
a time for 300ms. We measure the resulting neural
representation for the pattern after end of applica-
tion. Spike rates recorded from excitatory neurons
(E=1000 neurons) for a length of about 300ms are
regarded as the neural representation of the pat-
tern. After that time, the neural representation
fades away in our set-up.

2.3 Classification of Representations

In our work we wanted to give an overall impres-
sion of whether the adaptation method used could
demonstrate pattern learning (i.e. correct inter-
pretation of new, never-seen patterns). We used an
ML system, AutoGluon (???), which is a super-
vised training method using a mixture-of-experts
approach. It employs several mechanisms for pat-
tern classification in parallel - all of them have
access to the pattern representation, and they are
tested against a validation set. It achieves its per-
formance by combining models from a variety of
learning algorithms such as Random Forests, K-
Neighbors, Categorical Boosting, Gradient Boost-
ing Machines, Neural Networks, and combined
ensemble models (?). The results are accumulated
and those with the better prediction are weighted
stronger for the goal of pattern classification of
new patterns.

After training the basic models, the predic-
tions of these models on a validation data set are
used to train a meta-model, which will yield a
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weighted combination of predictions of the basic
models. Figure 2 shows how three basic learning
algorithms are combined to achieve a combined
classification result, which has a score value higher
than each of the basic components.

Fig. 2 AutoGluon: combination of classification mod-
els in a stack. The “score val” is the score for the
validation data set. The weighted combination (Model
Weighted Ensemble L2) achieves a higher value by a learnt
weighted combination of the predictions of the 3 individual
models.

We wanted to use this to demonstrate that
acceptable pattern learning occurs. We made no
attempt of improving our results, or of tackling
complex datasets.

The Autogluon classifier is presented with the
neural representations for the 50 ∗ 10 = 500 pat-
terns. The classifier’s task is to recognize the
correct digit for each pattern. The original neural
representations for patterns are labeled, and the
algorithm is trained to classify them (’supervised
learning’).

Combining different pattern classification
methods is very likely also a technique that is used
in biology to arrive at best results, results which
may be best suited to specific tasks. In this respect
it is remarkable that cortical activation patterns
are accessible to (one could say ”observed by”)
different networks: contralateral cortical networks,
striatal networks, hippocampus, midbrain areas
like substantia nigra and VTA, the cerebellum etc.
Quite obviously the ability to classify patterns is
different in all those brain areas, and this diver-
sity serves many purposes, such as task-dependent
classification results, and will have different levels
of precision. There is no need to assume that there
is a single learning algorithm used by the brain.

The test phase consists in recognizing repre-
sentations from stimulating of a few high MI neu-
rons alone after neural plasticity. These ’recalled’
neural representations were derived from stimulat-
ing m high MI neurons where m = 5, 10, 20. We
can show that these representations are recognized
by the classifier based on their similarity with

the original representations. This is a remarkable
result.

2.4 Information Theoretical
Analysis

Each pattern class s is presented with equal
probability p(s) = 1/Ndigits, where Ndigits = 10.

The response for each neuron is the rate
response r. To simplify, we distinguish 3 rate
responses (A,B,C), with fs

rel as the neuron’s firing
rate for digit pattern s relative to its baseline rate
(Eq. 2).

r =

A 80% < fs
rel < 120% unchanged

B fs
rel ≤ 80% low

C fs
rel ≥ 120% high

(2)

Now for each set of 50 variations of a digit, each
neuron has a probability for each of the three
responses. For instance, for digit 5, neuron j may
have A = 0.8, B = 0.1, C = 0.1, or 40 times A,
5 times B and 5 times C. Assume that overall
p(A) = 0.5, p(B) = 0.25, p(C) = 0.25.

We calculate the mutual information (MI) (?)
between each digit s (10 with 50 variations) and
rate response r for each neuron n as in (Eq. 3):

MIsn =
∑

r∈{A,B,C} p(s, r) ∗ log2
p(s|r)
p(s)

= p(s,A) ∗ log2
p(s|A)
p(s)

+p(s,B) ∗ log2
p(s|B)
p(s)

+p(s, C) ∗ log2
p(s|C)
p(s)

(3)

Assume p(digit5) = 0.1 overall. Since A is
the ’neutral’ option of a fluctuating value in an
intermediate range, neuron j would not be very
specific in recognizing pattern 5. Its mutual infor-
mation (MI5j ) would be (0.054 + (−0.01322) +
(−0.01322) = 0.0278 bit).

Figure 3 shows the overall MI for each excita-
tory neuron of the network after processing 500
patterns without any plasticity. The neurons are
arranged according to their intrinsic baseline fir-
ing rate (right-to-left, and top-to-bottom). MI is
higher after plasticity. There is no correlation with
the firing rate.

We can also calculate the mutual information
for each neuron with respect to each digit pattern.
For each neuron, we have 10 values for MIsn, since
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Fig. 3 Increase of MI by plasticity. No correlation between baseline firing rate and MI. 1000 E neurons are shown on a
25x40 grid. The numbering is ordered by the baseline firing rate of each neuron (left to right and top to bottom). MI is
calculated for all 500 patterns. (a) before plasticity is applied, (b) after plasticity is applied.

there are s = 1..10 digit patterns. We then rank
the m highest MIsn values for each digit pattern.
The result is shown in Fig. 4a–c. There are no
shared high MI neurons for m = 5, and few for
m = 10, m = 20.

2.5 Plasticity

Adaptation is based on a neuron’s information
content (MI). The system has access to the mutual
information of a neuron for patterns. A neuron
must have high MI (for some pattern) in order
to undergo plasticity. For each pattern, we rank
neurons by mutual information, and select the m
highest neurons which are active for this pattern,
for m = 5, 10, 20 (Fig. 4). Surprisingly, the specific
size of m shows little difference for the behavior
of the system.

We use two types of single-shot update rules,
for intrinsic plasticity, and for synaptic plasticity.

� Intrinsic plasticity: For the adaptation of high
MI neuronal parameters a, b, we use an expo-
nential update rule:

a := a · e(a−amin)/(λ(amax−amin)))

b := b · e(b−bmin)/(κ(bmax−bmin)))

With this rule, we strengthen the excitability in
a non-linear fashion with stretch factors λ = 3
and κ = 3. It turned out that a proportional
update rule (a · (1 + λ)) did not lead to desired
results.
When parameters a and b were already high,
and the neuron had a high intrinsic activation,
further adaptation of the parameters could
cause undesirable behavior, such as intense
bursting-like activity. This is an artifact of

using a parameterized neuron model which
is non-optimal for extreme values. Lowering
the learning rate overall would lead to a lack
of intrinsic learning for the bulk of low-firing
neurons. Therefore we chose an exponential
form, which ensured that learning intensity
was matched to the existing activity level:
strong learning for low activity neurons, weaker
learning for high activity neurons. It is easy to
imagine a biological basis for this.

� Synaptic connections:

– For high MI neurons m only, their postsynap-
tic (input) connections are updated according
to the activation of the input neurons i: if the
response activation is high (type C, Eq 2), the
connection will be strengthened

wm,i := wm,i (1 + α1) ; α1 = 0.4

This parameter α1 was set manually such
that recall was optimized. For responses
A (unchanged) and B (low), wm,i is left
unchanged. A single update of synaptic value
is sufficient.

– Presynaptic (output) connections are
updated according to the activation response
of the neurons o: if the response is high
(type C, Eq 2), the presynaptic connection is
strengthened:

wo,m := wo,m (1 + β1) ; β1 = 400

Here β1 ∼ 400 shifts the weight to a much
higher value.
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Fig. 4 Ranked high MI neurons (m) for a naive network representation, unique for each digit (0-9), marked by color. (a)
m = 5 neurons per pattern, (b) m = 10 neurons, and (c) m = 20 neurons. Shared high MI neurons are marked as round
and black. There are no shared high MI neurons for m = 5. They are sparse even at higher m.

Synaptic connections for output neurons ω
with unchanged or low responses are addi-
tionally weakened:

wω,m = wω,m (1− β2) ; β2 = 0.9

The updates for weakened synapses were not
crucial in our experiments, they mainly serve
to better calibrate the overall distributions.

� Tuning inhibition:

- For each pattern, a few inhibitory neurons
inh are selected to receive strengthened con-
nections from pattern-specific high MI neu-
rons n:

winh,n := winh,n (1 + γ1) ; γ1 = 200

- The GABA-A connections from inhibitory
neurons inh to excitatory neurons e with
unchanged or negative response are also
strengthened in order to suppress neurons
which do not participate in coding for the

pattern:

we,inh := we,inh (1 + γ2) ; γ2 = 8000

For inhibition, parameters selectively
strengthen and suppress synapses and in this
way a trace of the neural representation is
’carved’ into the network.

In this case, meta-parameters were hand-tuned
to achieve appropriate results for localist recall.
The different magnitudes of the meta-parameters
α1, β1, β2, γ1, γ2 are explained by the size of the
neuronal sets that are being linked, e.g., α1 for the
connections from ∼ 200 type C neurons to ∼ 10
m neurons and β1 for the connections from ∼ 10
m neurons to ∼ 200 type C neurons. Automatic
setting and re-calibration of parameters could be
added and might uncover more parameter combi-
nations with acceptable solutions (’regimes’). It is
most likely that calibration by homeostatic plas-
ticity, which occurs from time to time, would also
stabilize the parameter regimes, and make some
weakening rules unnecessary.
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The intrinsic plasticity rule means that a neu-
ron which carries much information for a pattern
will increase its intrinsic frequency. It will also
adjust its input and output connections. The pat-
tern will leave a trace at that neuron. We have
seen that intrinsic frequency and high MI are ini-
tially not correlated (Fig. 3). For small sets of
high MI neurons, there is limited overlap in the
identity of the high MI ’concept’ neurons for each
pattern (Fig. 4), and therefore the update rules
are mostly disjoint (separate). A high MI neuron’s
input synapses are updated only when they receive
positive pattern input from input neurons i. How-
ever, all of its output synapses are updated. As a
result, we have few, local updates which further-
more are applied only once, which makes plasticity
highly efficient.

3 Results

3.1 Neural Representations and
Classification

We modeled the network similar to a corti-
cal network, which receives pattern information
from thalamic input neurons (?). Accordingly, we
used a vector representation of visual patterns
for perceptual input and added weak fluctuat-
ing background noise (of 1.5nA). We initialized
the network with random (Gaussian) distributions
of neural parameters such that the network had
heterogeneous intrinsic strengths and synaptic
weights. The naive network, without any plastic-
ity, developed neural representations for, in this
case, 500 pictures from 10 classes. The neural
representations, which lasted ∼ 300ms, could be
analyzed for information content of individual
neurons using the tool of mutual information. It

turned out, like we noticed before (?), that neu-
rons with high mutual information develop for
each input pattern class. These neurons could rep-
resent pattern classes in the manner of symbolic or
’concept’ neurons. They stand for the whole pat-
tern. We developed a localist form of plasticity to
make pattern representation permanent. Then, by
stimulating only very few (m = 5 − 10) high-MI
neurons, we recall pattern representations suffi-
ciently to allow for correct pattern classification
by a machine learning classifier (Section 3.4).

For the naive representations, without any
plasticity applied, we show that the projection
of the 400 pixel input pattern onto the 1200
recurrent cortical network model resulted in rec-
ognizable neural representations. Figure 5 shows
neural representations for digit ”6”.

1. before application of plasticity, when the pat-
tern is presented to the naive network through
input neurons P (Figure 5a),

2. after plasticity, when pattern is presented to
the learned network through input neurons P
(Figure 5b), and

3. after plasticity, when the representation is
’recalled’ from stimulation of the ’concept’
high-MI neurons alone (Figure 5c).

The results from two different example runs
are summarized in Table 2. A reduction of recall
precision after adaptation (Figure 5b) which
allows to generalize to unseen patterns is in accord
with many results from the computational ML
literature.

Figure 8 shows that the number of strong
response neurons is reduced after training. Pre-
sumably, increased inaccuracy is a result of com-
pression of pattern representation (see below
Section 3.4).
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Fig. 5 Neural rate representation for digit patterns. Excitatory neurons on the left side of each panel, inhibitory neurons
on the right. (a) Activity after presentation with a pattern ”6” before plasticity, (b) The same after application of plasticity
rules. (c) Activity after stimulation of 10 high MI neurons (red). Patterns (a–c) were all classified correctly as representing
digit ”6”. The high inhibitory activity contributes to specificity of representation.
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Table 2 Accuracy of representations during learning. Two different examples (run A and B) are shown.

run naive trained recall m = 5 recall m = 10 recall m = 20
A 472/500 (94%) 422/500 (84%) 10/10 10/10 9/10
B 477/500 (95%) 437/500 (87%) 10/10 9/10 8/10

3.2 Mutual Information Analysis of
Representations

When we analyzed the neural representations for
information content, by measuring mutual infor-
mation (MI) between each neuron and the 10 digit
input patterns, we could see that there is no or
weak correlation between high MI and high base-
line rate overall in the network (Figure 3). The
correlation is low before plasticity (r = −0.09
(Pearson), −0.10 (Spearman)) and remains low
with r = 0.048, 0.06 after plasticity.

After plasticity, the mutual information (for
500 patterns) in the network is higher for each
pattern (Figure 6). This shows that the network
has stored pattern-specific information. It has
increased its information content specifically for
each of the learned patterns.
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Fig. 6 Average MI per digit before applying plasticity
(red) and after training (blue) for run A.

Before training we set up a network with dif-
ferent initializations. This is why we get slightly
different results in different runs (cf. Table 2).
After training the results are fully deterministic
(the background input is always the same). The
high MI sets give the same results for each recall
experiment. The MI system has no internal source
of noise, randomness, or indeterminacy.

Our aim was to identify high MI neurons for
each digit which could be regarded as ’symbolic’
abstractions of the whole pattern. I.e., we were

looking for the m neurons for each digit pattern,
which are highest ranked by mutual information.
Our results show that these neurons have a low
amount of overlap (Figure 4). Most high MI neu-
rons are unique and spread connections over the
whole network. No calculations are offered here on
the relations between data sets, network size, and
number of MI neurons. This would allow to gener-
alize the results of this form of plasticity beyond
the chosen example.

3.3 Localist Plasticity and Recall

In order to store the representations of pattern
input that appear on the naive, randomly initial-
ized network, we apply plasticity rules. Our goal
is to compress the information into selected neu-
rons and their surrounding ensembles, and recall
patterns by stimulating those high-level, ’con-
cept’ neurons. There are experimental indications
for such constructions (??), and they also have
enormous advantages in intelligence applications.

We have shown that MI is distributed in such
a way that few neurons have high MI. We want
to use these neurons like symbolic abstractions.
In a number of experimental publications (??),
a hub-spoke representation for each pattern has
been suggested (?). We believe that such struc-
tures imply great advantages for recall. It should
be sufficient to target only the high-order neurons
for activation, which then activate their feature
structures, and in this way reconstruct the whole
pattern (cf. also (??)).

Accordingly, we use a simple, one-shot plastic-
ity rule, focused on high MI neurons. We may label
this type of plasticity rule ”localist”, because it
only affects few neurons and their synaptic envi-
ronment. The basic idea is to form a trace of
the input pattern activation as recorded in the
intrinsic excitability and synaptic connections of
selected neurons (cf. Section 2.5). The localist
restriction of parameter updates is the decisive
difference to a distributed network update rule,
and ensures its specific recall properties. It is also
computationally very efficient.
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Fig. 7 Pattern recall: classification for each digit pattern
(a) by supervised learning (black) and (b) from recalled
representations with m = 5 (green), m = 10 (blue), and
m = 20 (red). The dashed line shows the chance level p =
0.1.

3.4 Classification of recalled
patterns

The AutoGluon classifier had been trained with
the neural representations recorded over 300ms of
the 50 variants for each digit, presented to the
network before plasticity is applied.

The trained classifier was subjected to the
recalled representations on the network, after plas-
ticity has been applied (Table 2, Figure 7). The
representations unfold from selected stimulation
(m = 5, 10, 20) of high-MI neurons. The results
are shown in Figure 7. They show, without further
analysis, that recall of a complete representation
from a few ’concept’ neurons is possible and that
the recalled representations are similar enough to
the original representations to be recognized.

The analysis of errors showed an interesting
result: the input representations both before and
after plasticity yielded a number of confusions
involving the digits, mostly for the patterns ”2”
and ”5”. But the stimulated representations show
an error exclusively for ”0”, which was always
correctly classified before.

What is going on? The structural remap of the
pattern representations (cf. Fig. 9) leads to new
results similarity and overlap. The input similar-
ity or likelihood of confusion, while kept during
plasticity, is not carried over to the stimulated
representations. We have arrived at a new ’sym-
bolic’ transform, the properties of which depend
on various factors: the choice of m, the selection of
inhibitory neurons, the network initialization, etc.
It is worthwhile to mention that the stimulated

’symbolic transform’ is fully deterministic (as long
as the background input is non-stochastic). The
advantages of a deterministic response to stimula-
tion may become apparent in later applications.

Nonetheless, we can retrieve a version of the
original input representation after plasticity learn-
ing. Thus there is local storage at a small set of
neurons for large patterns of hundreds of neurons,
such that stimulation of these neurons allows to
’unfold’ and spread activations to retrieve large
representations. For each pattern, only a small
subset of neurons and synapses are affected by
plasticity. As we can see from Fig. 8, there is
reduction of activation on all neurons not affected
by an input pattern as in Fig. 8a (pre-plasticity)
vs. b (post-plasticity). These percentages are very
stable across patterns.

What the percentages show is that in a naive
network there is a large number of neurons with
minimal response to patterns. In a trained net-
work most neurons show suppressed activation
in response to a pattern. about 20% have no
response, and about 10% raise their activation
level. The naive state could be said to have a
’reservoir’ of unallocated neurons (??). After plas-
ticity, the number of high activation neurons is
somewhat reduced—one could speak of a ’com-
pressed’ active representation.

3.5 Analysis of the results

The goal of the localist plasticity is to allow
restoration of representations with high accuracy
from activation of high MI neurons alone.

With our model, pattern recall by localist
stimulation of such ’concept’ neurons can be
investigated. To understand the process we look
at the neural representation after plasticity has
been applied. The feature representations for each
concept may be overlapping, and the same fea-
tures can be re-used in multiple representations
(cf. Fig.9). Nonetheless, the digit patterns retain
a significant proportion of features, which are
unique to each digit.

We can also show that the mutual information
values for each pattern as the sum of the MI values
over the high-ranking neurons increases as a result
of plasticity (Fig. 6).

Interestingly, our localist plasticity changes the
initial Gaussian distribution to a wider lognor-
mal distribution with heavy-tail characteristics
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a

low

15% 22%

high

64% unchanged

b

70% low

19%

unchanged

11%
high

c

72% low

19%

unchanged

9%
high

Fig. 8 Exemplification of localist learning (mean of 50 variations for ”1”): (a) patterns prior to plasticity, (b) after plasticity,
and (c) after targeted stimulation with (m = 10 per digit). The percentage of E neurons with no response (a) becomes low
activity in (b, c). Number of high-activity neuron (a) becomes compressed (b, c).

(cf. Figure 10), (?). The overall distribution of
intrinsic gain parameters a and b after plastic-
ity approaches a lognormal distribution, where
the high-MI neurons are substantially strength-
ened (Figure 10a). The picture is more complex
for synaptic weights, because only few weights
are changed by plasticity in our example. For
m = 10 high MI (=concept) neurons, only ≈ 6400
AMPA connections (out of ≈ 106, that is 0.5%)
are adapted. This leads to an uneven distribution
of synaptic weights (Figure 10b). Extrapolating
for larger numbers of weight updates could lead to
a biologically attested lognormal distribution.

It is remarkable that all pattern memories
are stored in parallel, and stimulation of pattern-
specific neurons will reproduce the associated
distributed pattern with considerable accuracy
over the whole network. Learning a pattern with
localist adaptation minimally affects the response
of the network to other patterns. The network
shows considerable independence in its response
to input. Our simple learning rule could be further
developed.

The questions of unique features for pat-
terns vs. overlap of features (Fig. 9 colored
vs. grey/black target neurons) is important for

a

”1” ”7”

”1” 21% unique
”7” 24% unique b

”0” ”4”

”0” 33% unique
”4” 32% unique c

”5” ”6”

”5” 36% unique
”6” 39% unique

Fig. 9 Network connection graph after plasticity for three examples. Target neurons for the strongest 100 connections
from high-MI neurons (red) and their connections are shown. Unique feature neurons are colored, black indicates a shared
feature neuron, grey feature neurons overlap with other digits. a: fewer unique neurons indicating higher similarity, b: more
unique, and c: most unique features.
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Fig. 10 (a) Distribution of the intrinsic gain parameters a and b before applying plasticity (blue), and after plasticity
(green). The Gaussian distribution is stretched to a lognormal distribution. (b) Distribution of strength of E-E AMPA
connections prior to applying plasticity (blue), fitted to a Gaussian. After plasticity, the distribution consists of three
different groups (green): strong synapses, which have been strengthened during plasticity, a group of weakened synapses,
and a majority of unchanged synapses. We assume that ’housekeeping’ by homeostatic plasticity (sleep) would lead to an
attested distribution.

abstraction and generalization. It is an open ques-
tions, which patterns are suitable for a concept-
feature ’symbolic’ abstraction and whether a
learning mechanism is successful which imposes
a structure onto the material for ease of simple
one-shot learning. But it is entirely possible that
cortical plasticity structures the learning mate-
rial. This could be complemented by other types
of structural learning in cortical and subcortical
areas. The enormous simplicity of the plasticity
rule and the relative success of the given example
problem is to be understood on the background of
imposed structure learning.

There are implications from this work for
biology and for technical applications.

- biology: We show that a cortical model is able to
form high-level ’concept’ neurons where individ-
ual pattern information is stored in a localized
manner. A version of the pattern information
can be retrieved from these neurons, forming a
feature ensemble as in Fig. 9. These results fit
with recent experimental work (?). It has been
empirically shown that up-regulation of intrin-
sic excitability occurs for those neurons which
are part of an ensemble (engram) (?).

- technical: Input patterns are learned as high
information ’concept’ neurons and their con-
nections in a single trial. Over time, a number
of different patterns can be stored in this way.
Questions of pattern storage and separation,
overlap and similarity (generalization, abstrac-
tion) by feature neurons are an obvious next
step to make technical applications feasible.

4 Discussion

We developed a mechanism to store patterns in
cortical-like networks using a neuronal ensem-
ble, more precisely a concept-feature ensemble.
The plasticity rule stores patterns on the network
by localist adaptation of high MI neurons and
their synaptic connections, creating a hub-spoke
structure. By stimulating only single-pattern high
MI ’concept’ neurons, the resulting representation
unfolds on the network and is similar enough to
be recognized by a trained classifier. Activating
select neurons by direct stimulation results in a
whole set of related neurons to recreate a simi-
lar pattern to the original. In our network model
individual neurons are recruited as pattern stor-
age elements. We thus achieve a localist memory
with a distributed component.

Such a concept-feature ensemble need not be
just a passive storage of pattern information. The
’concept’ neurons may also act as ’control’ neu-
rons, when they are interacting with each other,
forming a set of high-level neurons with access to
their feature neurons as needed.

It is noticeable that the learning method
imposes a structure on the network that is char-
acteristic, could be significant for biological cogni-
tion, and well-suited for symbolic computation.

We have not discussed the biological mecha-
nisms which could underlie such selective plastic-
ity, but there are possibilities in the cell-internal
memory which filters the information by a number
of indicators, such as small molecules and proteins
(?).
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The possibilities for structure-imposed pat-
tern abstraction learning by cortical networks are
much more comprehensive, involving techniques of
control, e.g., for inferences.

We have also not yet analyzed the possibili-
ties for blends and interference between patterns
which may serve to create higher-order memory.
Our method of representing pattern information
in a network allows for efficient storage of concept-
feature ensembles. This has been exemplified here
for the first time.
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