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Abstract 

We conducted a genome-wide association study (GWAS) on income among individuals of 

European descent and leveraged the results to investigate the socio-economic health gradient 

(N=668,288). We found 162 genomic loci associated with a common genetic factor underlying 

various income measures, all with small effect sizes. Our GWAS-derived polygenic index 

captures 1 - 4% of income variance, with only one-fourth attributed to direct genetic effects. A 

phenome-wide association study using this polygenic index showed reduced risks for a broad 

spectrum of diseases, including hypertension, obesity, type 2 diabetes, coronary 

atherosclerosis, depression, asthma, and back pain. The income factor showed a substantial 

genetic correlation (0.92, s.e. = .006) with educational attainment (EA). Accounting for EA's 

genetic overlap with income revealed that the remaining genetic signal for higher income 

related to better mental health but reduced physical health benefits and increased participation 

in risky behaviours such as drinking and smoking.  
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Introduction 

Income is a crucial determinant of individuals' access to resources and overall quality of life. 

Extensive evidence shows that higher income is positively correlated with increased subjective 

well-being, better health, and longer life expectancy.1–5 For instance, the gap in life expectancy 

between the richest and poorest 1% of individuals in the US has been estimated to be 14.6 years 

for men (95% CI, 14.4 to 14.8 years) and 10.1 years for women (95% CI, 9.9 to 10.3 years).6 

Notably, higher income is associated with increased longevity and well-being across the entire 

income distribution, highlighting its broad relevance in current society.3,6,7  

Income is a complex phenotype influenced by many factors, including environmental 

conditions and education.8,9 Parents' socio-economic status shapes a child's developmental 

trajectory, including their skills, behaviours, educational attainment, career prospects, and 

eventual adult income.10,11 Moreover, certain heritable individual characteristics, such as 

cognitive ability and personality traits,12–14 are well-known predictors of income within 

contemporary Western societies. Twin studies have estimated income heritability in these 

societies to be around 40-50%.15–17 However, the heritability of income and its associated genes 

are not fixed; rather, they reflect social realities shaped by technological, institutional, and 

cultural factors.18 These factors are malleable and exhibit variations across different regions 

and historical epochs, which can lead to fluctuations in heritability estimates for socio-

economic status (SES) over time19,20 and imperfect genetic correlations across samples.21  

The results from statistically well-powered GWAS of SES present numerous 

opportunities to shed light on these social realities. For example, they allow investigating 

questions about sex differences in labour market processes, cross-country comparisons in the 

genetic architecture of income, and investigating the processes contributing to intergenerational 

social mobility.22 They also facilitate studies investigating the interaction effects between 

genetic and environmental factors. Furthermore, they enable the exploration of genetic 

correlations between income and health outcomes, potentially unveiling new insights into the 

socioeconomic health gradient.  

Two previous GWAS have been conducted on household income.23,24 The first was in 

a sample of 96,900 participants from the initial release of the UK Biobank (UKB)25 and found 

two loci. The second was carried out in the full release of the UKB with 286,301 individuals 

and found 30 approximately uncorrelated loci. A meta-analysis of these results with the 

genetically correlated trait educational attainment increased the effective sample size to 

505,541 individuals and identified 144 loci. A recent GWAS on occupational status in the UKB 

https://www.zotero.org/google-docs/?bzFVvl
https://www.zotero.org/google-docs/?dJ5m7h
https://www.zotero.org/google-docs/?jQA654
https://www.zotero.org/google-docs/?v7jj7V
https://www.zotero.org/google-docs/?LPebWs
https://www.zotero.org/google-docs/?Bwv4fp
https://www.zotero.org/google-docs/?InQD0r
https://www.zotero.org/google-docs/?Jnpti8
https://www.zotero.org/google-docs/?6UcrhE
https://www.zotero.org/google-docs/?7rVs6G
https://www.zotero.org/google-docs/?MgFsJO
https://www.zotero.org/google-docs/?9sCLSm
https://www.zotero.org/google-docs/?AFpDZm
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data identified cognitive skills, scholastic motivation, occupational aspiration, personality 

traits, and behavioural disinhibition (proxied by ADHD) as potential mediating factors linking 

genetics to occupational status.26  

Building on these earlier contributions, we conducted a GWAS leveraging multiple 

income measures. We ran sex-stratified analyses and meta-analyzed results from 32 cohorts 

across 12 economically advanced countries and three continents, yielding the largest GWAS 

on income to date with an effective sample size of N = 668,288 (Table 1). Due to data 

availability and statistical power considerations, our analyses and conclusions are restricted to 

individuals carrying genotypes most similar to the EUR panel of the 1000 Genomes dataset, as 

compared to individuals sampled elsewhere in the world (1KG-EUR-like individuals).   

The greater statistical power of our GWAS enabled us to conduct a series of follow-up 

analyses that investigate the socio-economic health gradient from a genetic perspective. In 

particular, we leveraged the data to compare the GWAS results for income and EA to 

disentangle their unique genetic correlates with health. Furthermore, our multi-sample 

approach and sex-specific GWAS results allowed us to test for possible differences in the 

genetic architecture of income across samples and sexes.  

For a less technical description of the paper and how it should -- and should not -- be 

interpreted, see the Frequently Asked Questions document (FAQ) and Box 1. 

  

Results 

Multivariate GWAS of income 

GWAS of four different measures of income 

 We used four measures of income (individual, occupational, household, and parental 

income) and conducted a GWAS meta-analysis of their shared genetic basis (Table 1). 

Supplementary Information section 2.1 discusses the differences between these measures 

and their relative advantages and disadvantages as proxies for individual income. Dropping 

parental income from the meta-analysis leads to a slight statistical power decrease but does not 

qualitatively change our results.   

A sex-stratified GWAS was carried out on each available income measure in each 

cohort, using at least the first 15 genomic principal components to control for population 

stratification. Inflation, business cycle, age effects, and other potential confounds were 

controlled for at the cohort level by using dummy variables (see preregistered analysis plan, 

https://www.zotero.org/google-docs/?P9FtTW
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section 6, https://osf.io/rg8sh/). We restricted our analyses to 1KG-EUR-like individuals who 

were not currently enrolled in an educational program or who were aged above 30 if their 

current enrollment status was unknown. The natural log transformation was applied to the 

income measures. We applied standardised quality control procedures to each cohort-level 

result (see Supplementary Information section 2.4 for details). For each sex and each income 

measure, we performed a sample-size-weighted meta-analysis with METAL.27 We then meta-

analyzed the male and female results of each income measure using MTAG,28 which accounts 

for any potential genetic relatedness between the male and female samples.  

The four income measures’ pairwise genetic correlation (rg) estimates demonstrated 

substantial shared genetic variance, with all pairwise rg’s at least 0.8 (Fig. 1a).  

 

Table 1. GWAS summary  

Measure N Female % # SNP Mean 𝜒𝜒2 # Loci h2 (s.e.) 

Household 497,413 0.55 11,500,222 1.54 41 0.06 (0.003) 

Individual 72,601 0.54 5,986,804 1.06 0 0.04 (0.007) 

Occupational 443,064 0.57 11,500,419 1.64 59 0.08 (0.003) 

Parental 128,724 0.50 6,144,179 1.11 1 0.05 (0.006) 

Income Factor 668,288* - 9,131,507 1.94 162 0.07 (0.002) 

Note: The Income Factor is derived from a meta-analysis across the four income measures: individual, 
occupational, household, and parental. * is the estimated effective sample size reported for the Income Factor. 
Some individuals contributed multiple times to different income measures. The mean 𝜒𝜒2 was computed only 
with the HapMap 3 SNPs. The number of approximately independent loci (sixth column) was obtained using 
FUMA. The SNP heritability (h2) was estimated with LDSC.  

 

The Income Factor 

Next, we meta-analyzed the association results across the four income measures using 

MTAG (see Supplementary Information section 2.5 for details). We observed that the MTAG 

procedure yields nearly identical results to genomic SEM’s common factor function.29 Thus, 

we hereafter refer to the meta-analyzed income as ‘the Income Factor.’ Since MTAG already 

https://osf.io/rg8sh/
https://www.zotero.org/google-docs/?ZmdPX1
https://www.zotero.org/google-docs/?6spxz4
https://www.zotero.org/google-docs/?broken=a77UIm
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applies a bias correction with the intercept from LDSC,30 we did not apply further adjustments 

for cryptic relatedness and population stratification.   

The Income Factor GWAS was estimated to have an effective sample size of 668,288, 

based on occupational income’s heritability scale (Neff = 1,198,347 based on individual 

income). The genetic correlation between individual income and the Income Factor is 

indistinguishable from 1 (Fig. 1a).  

Identification of genetic loci  

Across the four GWAS on different income measures, we identified 86 non-

overlapping loci in the genome (see Supplementary Information section 2.6 for the definition 

of loci and lead SNPs, and Extended Fig 5c for the distribution of associated loci across the 

four income traits). Table 1 summarises the results. Occupational and household income 

showed the most genetic associations (59 and 41 loci, respectively), as expected based on 

sample sizes and SNP-based heritability estimates based on linkage disequilibrium score 

regression (LDSC) (h2 = 0.08 (s.e. = 0.003) and 0.06 (s.e. = 0.003), respectively). Gene-based 

analysis was performed on the genes that overlapped with each loci using MAGMA, where 

102 attained genome-wide significance, with 63 being unique to occupational income, 24 

unique to household income, and 55 shared between the two. No other genes attained statistical 

significance (Extended Fig. 5c (b)).  

The meta-analysis across the income measures led to a substantial increase in power, 

which allowed us to identify 162 loci tagged by 207 lead SNPs (Fig. 1b). 88 of these loci were 

newly identified compared to the previously published GWAS household income result 

conducted in the UKB.24 The genetic correlation of the previous household income GWAS 

result was 0.92 (s.e. = 0.008) with the Income Factor and 0.94 (s.e. = 0.006) when we restrict 

our analysis to only our household income measure.  

Furthermore, we conducted Conditional and Joint Association Analysis (COJO) using 

the 207 lead SNPs associated with the Income Factor 29, revealing 57 secondary lead SNPs (p 

<= 5⨯10-8). 55 of these secondary lead SNPs were located within the original primary genomic 

loci (Supplementary Table 30, Supplementary Information 2.6).  

Effect sizes  

The effect sizes of the lead SNPs were small across all analyses. For example, adjusting 

for the statistical winner’s curse in the Income Factor results, one additional count in the effect 

https://www.zotero.org/google-docs/?broken=xz1vna
https://www.zotero.org/google-docs/?GTIkZU
https://www.zotero.org/google-docs/?lQBlDb
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allele of the median lead SNP was associated with an increase in income of 0.30%. These 

effect-size calculations require an assumption about the standard deviation of the dependent 

variable because MTAG yields standardised effect-size estimates; we use the standard 

deviation estimate of log hourly occupational wage from the UKB, which is 0.35. The 

estimated effects at the 5th and 95th percentiles were 0.18 and 0.60%, respectively (see 

Supplementary Information section 2.7). To put these estimates into perspective, the median 

annual earnings of full-time workers in the US was $56,473 in 2021.30 A 0.3% increase would 

equal an additional annual income of $169. In terms of the variance explained (R2), all of the 

lead SNPs each had R2 lower than 0.011% after adjustment for the statistical winner’s curse 

(Supplementary Fig. 2).  

Cross-sex and cross-country heterogeneity  

 The heritability of income and its genetic associations may vary across different social 

environments or different groups within an environment. To investigate the potential 

heterogeneity of genetic associations with income, we examined cross-cohort genetic 

correlations. We found that the inverse-variance weighted mean genetic correlations across 

pairs of cohorts were 0.45 (s.e. = 0.22) for individual income, 0.52 (s.e. = 0.13) for household 

income, and 0.90 (s.e. = 0.24) for occupational income (Supplementary Tables 28a-c).  

Next, we meta-analyzed cohorts from the same country with the same income measure 

available and estimated the genetic correlations across these countries (Estonia, Netherlands, 

Norway, United Kingdom, USA - Extended Data Figure 1a). For most country-pairs, the 

genetic correlation of the same income measure is >0.8. While meta-analysis increases 

statistical power and yields more precise estimates of the average effect size, it also tends to 

mask non-random heterogeneity in effect size estimates across samples. Despite this latter 

point, we find that occupational income in Norway displayed lower genetic correlations with 

occupational or household income in other countries, ranging from 0.43 (s.e. = 0.23) to 0.82 

(s.e. = 0.10). Similarly, occupational income’s genetic correlation with educational attainment 

(EA) was also lower in Norway (rg = 0.69, s.e. = 0.08) compared to the other countries. These 

findings align with phenotypic evidence that ranks Norway lowest among OECD countries in 

terms of financial returns for obtaining a college degree.31 Next, we investigated whether the 

large number of samples from the United Kingdom in our meta-analysis could have skewed 

our results. To address this, we conducted a separate meta-analysis procedure for the British 

and non-British cohorts, comprising participants from 10 countries. We obtained two distinct 

GWAS results for the Income Factor and found a perfect genetic correlation of 1.001 (s.e. = 

https://www.zotero.org/google-docs/?28gKdz
https://www.zotero.org/google-docs/?bh0APu
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0.03) between them. Thus, the average effect sizes of SNPs associated with the Income Factor 

are almost identical in British and non-British cohorts.  

We observed slight between-sex heterogeneity in the genetic associations of income, as 

supported by the evidence presented in Extended Data Figure 1b. The estimated between-sex 

genetic correlations based on meta-analysed GWAS results for individual, occupational, and 

household income were 1.06 (s.e. = 0.32), 0.91 (s.e. = 0.03), and 0.95 (s.e. = 0.03), respectively. 

Notably, the latter two estimates were statistically distinguishable from unity but remained 

above 0.9. Most cohort-specific cross-sex genetic correlations for income are too noisy to be 

interpreted (Supplementary Tables 17b-d). One exception is the UK Biobank sample, which 

shows a non-perfect genetic correlation between men and women for occupational income (rg 

= 0.91, s.e. = 0.03). Another exception is the Danish iPsych cohort, where we estimated a 

genetic correlation of 0.76 (s.e. = 0.10) between maternal and paternal income. These findings 

are consistent with the hypothesis that men and women face non-identical labour market 

conditions. The lower genetic correlation between maternal and paternal income suggests that 

differences in labour market conditions were more pronounced in previous generations.  

We also conducted the Income Factor GWAS for the male and female results separately 

and found that their genetic correlation was statistically indistinguishable from one (rg = 0.98, 

s.e. = 0.02). 

Comparison with educational attainment 

Genetic correlation with educational attainment 

 To compare the GWAS results for the Income Factor with those for EA, we first 

conducted an auxiliary GWAS on EA to obtain the most-powered GWAS result of EA with 

the summary statistics currently available to us: We first carried out a GWAS of EA in the 

UKB, based on the protocol of the latest EA GWAS (EA4).32 We then meta-analyzed these 

GWAS results with the EA3 summary statistics21 that did not include the UKB, using the meta-

analysis version of MTAG. While previous GWASs on income found somewhat inconsistent 

results on the genetic correlation between educational attainment (EA)21,32 and income (rg = 

0.90 (s.e. = 0.04)23 and 0.77 (s.e. = 0.02)24), with much greater precision, we found a high 

genetic correlation that is very close to the first reported estimate (rg = 0.917, s.e. = 0.006). 

Among the input income measures, the genetic correlation with EA was higher for occupational 

and parental income (rg = 0.95 and 0.92; s.e. = 0.01 and 0.05 respectively) and lower for 

https://www.zotero.org/google-docs/?DWoIxl
https://www.zotero.org/google-docs/?cCK6xx
https://www.zotero.org/google-docs/?4nvmKb
https://www.zotero.org/google-docs/?dg8MJl
https://www.zotero.org/google-docs/?lhRyhq
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individual and household income (rg = 0.81 and 0.82; s.e. = 0.07 and 0.01 respectively). 

Furthermore, 138 out of 161 loci for the Income Factor overlapped with those for EA.  

 The rg estimate of 0.917 between the Income Factor and EA implies that only 1 - 0.9172 

= ~16% of the genetic variance of the Income Factor would remain once the genetic covariance 

with EA was statistically removed.  

 

GWAS-by-Subtraction  

We employed the GWAS-by-subtraction approach using Genomic SEM33 to identify 

this residual genetic signal (referred to as ‘NonEA-Income’). We identified one locus of 

genome-wide significance for NonEA-Income, marked by the lead SNP rs34177108 on 

chromosome 16 (Extended Data Fig 2c). This locus was previously found to be associated 

with vitamin D levels, cancer, as well as hair and skin-related traits such as colour, sun 

exposure, possibly picking up on uncontrolled population stratification (Supplementary 

Tables 38-41).    

Polygenic prediction 

We conducted polygenic index (PGI) analyses with individuals of European ancestry 

in the Swedish Twin Registry (STR), which was not included in our meta-analysis. We chose 

STR as the main prediction cohort because it has twins and administrative data on individual, 

occupational, and household income. In addition, we also used the UKB siblings (UKB-sib) 

and the Health and Retirement Study (HRS) from the US as prediction cohorts. For the UKB-

sib, occupational and household income measures were available. For the HRS, a self-reported 

individual income measure was available. In the STR and the UKB-sib cohorts, except when 

examining within-family prediction, we randomly selected only one individual from each 

family. 

After generating hold-out versions of GWAS on the Income Factor and EA to remove 

the sample overlap with each prediction sample, we constructed PGIs for the Income Factor 

and EA using LDpred234. Before conducting prediction analyses, we residualised the log of 

income on demographic covariates, including a third-degree polynomial in age, year of 

observation, and interactions with sex. We measured the prediction accuracy as the incremental 

R2 from adding the PGI to a regression of the phenotype on a set of baseline covariates, which 

were the top 20 genetic principal components and genotype batch indicators.  

https://www.zotero.org/google-docs/?yTVcEi
https://www.zotero.org/google-docs/?HaVvHW
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A cohort-specific upper bound for the theoretically possible predictive accuracy of PGIs 

on income can be obtained by the GREML35 estimate of the SNP-based heritability of income, 

which is close to 10% for the available income measures in the STR and UKB sibling sample 

(SI Table 13).  

The actual prediction accuracy of PGIs for income is lower than the theoretical 

maximum, primarily due to finite GWAS sample size but also due to imperfect genetic 

correlations across meta-analysed cohorts and differences in measurement accuracy of income 

across samples.36  

In the STR (Fig. 2), the Income Factor PGI predicted ΔR2 = 1.3% (95% CI: 1.0-1.6) for 

individual income, 3.7% (95% CI: 3.1-4.2) for occupational income, and 1.0% (95% CI: 0.6-

1.4) for household income. The EA PGI had predictive accuracy results in a similar range for 

individual and household income, except for occupational income, for which the accuracy was 

larger: ΔR2 = 4.7% (95% CI: 4.0-5.4). Extended Fig 3b shows average income levels per PGI 

quintile in the STR sample. The expected income of individuals increases monotonically for 

higher PGI quintiles. Predictive accuracy is highest for individual income, the most accurate 

measure of income (derived from Swedish registry data). The difference in average income for 

individuals in the lowest and highest quintile of the PGI distribution is ~0.2 standard deviations.  

In the UKB-sib, the predictive accuracy of the Income Factor PGI was ΔR2 = 4.7% 

(95% CI: 4.3-5.2) for occupational income and 3.9% (95% CI: 3.5-4.3) for household income. 

The EA PGI achieved a better predictive accuracy for occupational income (ΔR2 = 6.9%, 95% 

CI: 6.3-7.4), while only slightly higher for household income (ΔR2 = 4.4%, 95% CI: 3.9-4.8). 

In terms of the coefficient estimates in the UKB-sib, one standard deviation increase in the 

Income Factor PGI was associated with a 7.2% increase in the occupational income (95% CI: 

6.7-7.7) and a 12.3% increase in the household income (95% CI: 11.4-13.2). These estimates 

were comparable to the effect of one additional year of schooling on income, whose estimates 

tend to range from 5 to 15%.8,9,37    

In the HRS,  the Income Factor PGI had ΔR2 = 2.7% (95% CI: 2.1-3.3) for predicting 

individual income, which was close to the EA PGI’s result (ΔR2 = 3.1%, 95% CI: 2.4-3.8).  

The predictive power of the Income Factor PGI approached zero once EA or the EA 

PGI was controlled for. In the UKB-sib, ΔR2 decreased below 1% for occupational and 

household income, while the estimates were still statistically different from zero (Extended 

Data Fig. 3 and Supplementary Table 21).   

https://www.zotero.org/google-docs/?TxqqOZ
https://www.zotero.org/google-docs/?5TOKgE
https://www.zotero.org/google-docs/?4jXZz8
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Although the income PGI is useful for population-level analyses, its predictive accuracy 

is far too low to make forecasts about the income of any specific individual (see FAQ section 

3.2). 

Direct vs. indirect genetic effects 

We estimated the share of the direct genetic effect in the overall population effect 

captured by the Income Factor PGI, following the recent approach that imputes parental 

genotypes from first-degree relatives.32,38 Using the UKB-sib sample, we isolated the direct 

effect of the PGI from the population effect on occupational and household income by 

controlling for parental PGIs. We found that the ratio of direct-to-population effect estimates 

is 0.51 (s.e. = 0.05) and 0.49 (s.e. = 0.05) for occupational and household income, respectively 

(Supplementary Table 22). These results imply that only 24.0% or 25.7% of the Income 

Factor PGI’s predictive power was due to direct genetic effects, which was very close to the 

result for the EA PGI estimated elsewhere (25.5%).38   

Income and health 

Genetic correlations with psychiatric and health traits 

We next explored the genetic correlations of the Income Factor, educational attainment 

(EA), and NonEA-Income with phenotypes related to behaviours, psychiatric disorders, and 

physical health (Fig. 4). LDSC estimates revealed that the genetic correlations of EA and the 

Income Factor largely align. However, noticeable differences emerged for traits in the 

psychiatric and psychological domains. Specifically, NonEA-Income is associated with a 

reduced risk for certain psychiatric disorders previously reported to correlate positively with 

EA.39–41 These discrepancies were observed for schizophrenia (rg = -0.29, s.e. = 0.04),  autism 

spectrum (rg = -0.27, s.e. = 0.06), and obsessive-compulsive disorder (rg = -0.22, s.e. = 0.08). 

One possible interpretation of these findings is that these psychiatric disorders have more 

severe negative effects on individual performance in the labour market than in the educational 

system.  

Intriguingly, NonEA-Income exhibits a near-zero genetic correlation with cognitive 

performance (rg = 0.03, s.e. = 0.03). At the same time, both EA and the general income (INC) 

factor display strong positive genetic correlations with it  (rg = 0.66, s.e. = 0.01 and  rg = 0.63, 

s.e. = 0.01, respectively). This may suggest that high cognitive performance primarily 

influences income through education. Furthermore, this result is consistent with high income 

https://www.zotero.org/google-docs/?pChPPB
https://www.zotero.org/google-docs/?XPV7p1
https://www.zotero.org/google-docs/?684Dkr
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being attainable through social connections, inherited wealth, entrepreneurial activities, or 

well-paying jobs that do not require high cognitive performance.  

While EA and the general Income Factor have substantial negative genetic correlations 

with health-related behaviours such as age of smoking initiation, smoking persistence, 

cigarettes per day, and alcohol dependence, we found that NonEA-Income has near-zero 

genetic correlations with these traits (albeit the latter have substantially larger error margins of 

the point estimates).  

NonEA-Income also displayed genetic correlations with other phenotypes that are 

similar to EA. Specifically, NonEA-Income had negative genetic correlations with major 

depressive disorder (rg = -0.15, s.e. = 0.04), anxiety disorder (rg = -0.19, s.e. = 0.05), and the 

related trait of neuroticism (rg = -0.14, s.e. = 0.03), but positive genetic correlations with 

subjective well-being (rg = 0.32, s.e. = 0.06), general risk tolerance (rg = 0.13, s.e. = 0.04), and 

height (rg = 0.11, s.e. = 0.03). The differences in correlations for neuroticism, subjective well-

being, and risk tolerance were statistically significant when comparing EA and NonEA-

Income, with NonEA-Income showing stronger positive correlations with well-being and risk 

tolerance and a less negative correlation with neuroticism. 

Phenome-wide association study (PheWAS) on electronic health records 

Next, we conducted a phenome-wide association study of the Income Factor PGI based 

on electronic health records from the UKB siblings' holdout sample. We tested 115 diseases 

with sex-specific sample prevalence no lower than 1%. In total, 50 diseases from different 

categories were associated with the Income Factor PGI after Bonferroni correction and 14 after 

controlling for parental PGI (Fig. 3, Extended Data Fig. 4 and Supplementary Tables 27a-

b). In all cases, a higher Income Factor PGI value was associated with reduced disease risk, 

including reduced risk for hypertension, gastroesophageal reflux disease (GERD), type 2 

diabetes, obesity, osteoarthritis, back pain, and depression. The strongest association of a 

higher Income Factor PGI and a disease was found for essential hypertension.  

Biological annotation 

We used FUMA42 to find genes implicated in Income Factor GWAS. FUMA uses four 

mapping approaches: positional, chromatin interaction, expression quantitative trait locus 

(eQTL) mapping, and MAGMA gene-based association tests. In total, 2,385 protein-coding 

genes were implicated by at least one of the methods, out of which 225 genes were implicated 

by all four methods (Extended Data Fig. 5a). Only three of these commonly implicated genes 

https://www.zotero.org/google-docs/?huoXxl
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were unique for the Income Factor, compared to the genes implicated in EA GWAS by at least 

one of the four methods or previously prioritised for EA.21  

 We then performed tissue-specific enrichment analyses using LDSC-SEG43 and 

MAGMA gene-property analyses44 (see Supplementary Information section 7). Both 

methods indicated dominant enrichment for tissues of the central nervous system (Extended 

Data Fig. 5b), consistent with the previous results for household income and EA.21,24   

 Next, we compared the genes identified with MAGMA for the Income Factor with 

those identified for EA and household income. We find that of the 368 genes associated with 

the Income Factor, 98 were not discovered for educational attainment or household income yet 

(Extended Fig. 5b (a) & Supplementary Tables 32-34). We further examined the biological 

processes of genes associated with the Income Factor, EA, and household income with FUMA 

GENE2FUNC. Using a test of overrepresentation, we find three biological processes at FDR 

< 0.05 that are unique to the Income Factor: neuronal migration (FDR = 0.012), bone formation 

in early development (FDR = 0.036), and the formation of axons (FDR = 0.047). The overlap 

among biological processes detected for each trait at FDR < 0.05 is shown in Extended Fig 5b 

(b) (Supplementary Tables 35-37). 

 

Discussion 

We conducted the largest GWAS on income to date, incorporating individual, 

household, occupational, and parental income measures. Our study design provided increased 

statistical power, identifying more genetic variants and improving the predictive power of the 

polygenic index (PGI) compared to previous income GWAS. Additionally, it allowed for 

comprehensive additional analyses.  

Furthermore, we found a strong genetic correlation between income and educational 

attainment (EA). 

Our analyses highlighted numerous associations between better health and higher 

income that are influenced by genetic differences among individuals. These better health 

outcomes include lower BMI, blood pressure, type-2 diabetes, depression, and reduced stress-

related disorders. We note that the genetic overlap between income and health could be driven 

by different causal mechanisms, including pleiotropic effects of genes, limited income 

opportunities for individuals with health problems, or health advantages for individuals with 

higher income. Investigating these causal mechanisms is outside the scope of this study. 

https://www.zotero.org/google-docs/?o0AijT
https://www.zotero.org/google-docs/?mVfZ52
https://www.zotero.org/google-docs/?v89vqn
https://www.zotero.org/google-docs/?KYubqv
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Interestingly, the genetic components of income not shared with EA (NonEA-Income 

Factor) showed weaker associations with better physical health and health-related behaviour, 

such as drinking and smoking. One possible interpretation of this finding is that better health 

outcomes of higher socioeconomic status in wealthy countries are more due to their association 

with education rather than with income or wealth, consistent with findings from quasi-

experimental studies.45–47  

In contrast, we found negative genetic correlations of the NonEA-Income Factor with 

schizophrenia, bipolar disorder, autism, and obsessive-compulsive disorder, while EA 

exhibited positive genetic correlations with these psychiatric outcomes. This may indicate that 

the educational system is more accommodating to individuals with these disorders than the 

labour market and/or that talents associated with these genetic risks (e.g., higher IQ with 

autism48 or creativity with bipolar disorder and schizophrenia49) are more advantageous in 

school than in the labour market.   

While our GWAS results contribute to constructing an income-specific PGI with 

improved predictive accuracy, the EA PGI remains a comparable or even better predictor of 

income and socio-economic status. This is due to even larger sample sizes in recent GWAS on 

EA (N ~ 3 million), lower measurement error in educational attainment compared to measures 

of income and the high genetic correlation between income and EA.  

It is important to point out that the results of our study reflect the specific social realities 

of the analysed samples and are not universal or unchangeable. This is exemplified by the 

substantial heterogeneity in the genetic architecture of income that we found across our cohorts 

of European descent, as well as the non-perfect genetic correlation between sexes. This 

heterogeneity is consistent with previous findings where the polygenic signal for other 

measures of SES (such as educational attainment) varies by culture20 and by country51. This 

genetic heterogeneity is indicative of phenotypic heterogeneity between cultures, where the 

heritable traits linked to income may not be universal but rather vary and reflect the differences 

between societies in which heritable traits are facilitative of income differences.  

We emphasise that our results are limited to individuals whose genotypes are 

genetically most similar to the EUR panel of the 1000 Genomes reference panel compared to 

people sampled in other parts of the world. Our results have limited generalizability and do not 

warrant meaningful comparisons across different groups or predictions of income for specific 

individuals (FAQ). To increase the representation of individuals from diverse backgrounds, 

cohort and longitudinal studies should seek to sample more diverse and representative samples 

of the global population. 

https://www.zotero.org/google-docs/?zO32UT
https://www.zotero.org/google-docs/?uIhhe6
https://www.zotero.org/google-docs/?w7ilf8
https://www.zotero.org/google-docs/?JIhAgR
https://www.zotero.org/google-docs/?N9eSld
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Studies of genetic analyses of behavioural phenotypes have been prone to 

misinterpretation, such as characterising identified associated variants as ‘genes for income.’ 

Our study illustrates that such characterisation is incorrect for many reasons: The effect of each 

individual SNP on income is minimal, capturing less than 0.01% of the overall variance in 

income. Furthermore, the genetic loci we identified correlate with many other traits, including 

education and a wide range of health outcomes. Finally, the finding that only one-quarter of 

the genetic associations we identified are due to direct genetic effects suggests the potential 

importance of family-specific factors, including potential resemblance between parents, and 

environmental factors as important drivers of income inequality.   
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Box 1. Understanding Genetics and Income: A Cautionary Overview 

Given the frequent misunderstanding of research on genetics and human behaviour, it is 
important to recognize the complexities underlying connections between genes and social 
outcomes and to communicate what our findings mean clearly and with appropriate nuance. 

What did we do and why? 

Several types of 'luck' help shape an individual's life trajectory, such as their society of birth, 
parents, and the genetic variants they inherit. Our study captures elements of this by 
examining the relationship between millions of genetic variants and income through a 
genome-wide association study (GWAS). GWASs of income can provide valuable insights 
into the genetic factors associated with income and how they interact with environmental 
factors, enhancing our understanding of intergenerational mobility and socioeconomic 
disparities.  

GWASs of income can shed light on societal processes that favour certain genetic 
predispositions, providing insights into our socioeconomic system, but also into the 
relationships between income and health disparities. Recent GWASs have shown that socio-
economic outcomes share genetic overlap with various health outcomes, with a considerable 
portion mediated through social environments.50 

What did we find? 

We identified numerous genetic variants associated with income, each with minor effects 
but collectively correlating with education, cognition, behaviour, and health. We found 
notable differences between income and educational attainment in their genetic associations 
with health outcomes. For several psychiatric disorders - namely autism, schizophrenia, and 
OCD - the genetic relationships acted in opposing directions. Shared genetic effects between 
income and health may stem from various causes. Genes might affect both income and 
health. Alternatively, higher income could lead to better health outcomes, not only directly 
but also indirectly through improved living conditions from family-members or 
neighbourhoods. Conversely, existing health problems may limit income opportunities, 
potentially due to reduced work capacity or increased healthcare costs.  

When predicting differences between siblings, the overall predictive strength of these 
genetic effects diminishes significantly — by approximately 75%. Possible explanations for 
this include that the direct causal effects of the genetic variants are smaller compared to the 
causal effects of environmental factors that correlate with these genetic variants (e.g., the 
effects of parental nurture on their children) and that the way parents resemble each other 
(assortative mating) magnifies the predictive power of genetic effects.  

https://www.zotero.org/google-docs/?NsDpq4
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We observed some variability in the genetic factors influencing income across the Western 
countries we analysed and between genders, underscoring that the genetic associations we 
report here should not be interpreted as fixed or universal.  

Neither genetic nor environmental determinism is warranted 

Historically, misinterpreting the role of genetics in shaping social outcomes has 
occasionally fueled controversial ideologies with far-reaching consequences. It is important 
to mitigate the risk of such misunderstandings, particularly the notions of genetic or 
environmental determinism. In this context, we emphasise the following:  

One's genetic makeup or the family and societal environment into which they are born does 
not dictate their intrinsic value. The genetic variants that matter for income, and their effects, 
depend on the environment, i.e., on what skills are valued by the labour market and by 
society. As the labour market changes, or as government policies change, so can the variants 
and their effects.  

It is important to recognize how genetics can impact income through diverse pathways, 
affecting one’s own or one’s parents’ health, cognition, skills, and productivity-related 
behavioural tendencies, such as creativity, risk taking, or adaptability. Additionally, genetics 
can influence characteristics favoured or discriminated against in the labour market due to 
societal preferences.  

As with previous genetic studies on social outcomes like educational attainment, the 
findings of this study have limited generalisability across different populations.  



19 

  

References 

1. Ridley, M., Rao, G., Schilbach, F. & Patel, V. Poverty, depression, and anxiety: Causal 

evidence and mechanisms. Science 370, eaay0214 (2020). 

2. Braveman, P. A., Cubbin, C., Egerter, S., Williams, D. R. & Pamuk, E. Socioeconomic 

Disparities in Health in the United States: What the Patterns Tell Us. Am. J. Public 

Health 100, S186–S196 (2010). 

3. Stevenson, B. & Wolfers, J. Subjective well-being and income: Is there any evidence of 

satiation? Am. Econ. Rev. 103, 598–604 (2013). 

4. Wilkinson, R. G. & Marmot, M. Social Determinants of Health: The Solid Facts. (World 

Health Organization, 2003). 

5. Stringhini, S. et al. Socioeconomic status and the 25× 25 risk factors as determinants of 

premature mortality: a multicohort study and meta-analysis of 1· 7 million men and 

women. The Lancet 389, 1229–1237 (2017). 

6. Chetty, R. et al. The association between income and life expectancy in the United States, 

2001-2014. Jama 315, 1750–1766 (2016). 

7. Adler, N. E. et al. Socioeconomic status and health: The challenge of the gradient. Am. 

Psychol. 49, 15–24 (1994). 

8. Card, D. Estimating the Return to Schooling: Progress on Some Persistent Econometric 

Problems. Econometrica 69, 1127–1160 (2001). 

9. Trostel, P., Walker, I. & Woolley, P. Estimates of the economic return to schooling for 28 

countries. Labour Econ. 9, 1–16 (2002). 

10. Becker, G. S. & Tomes, N. An Equilibrium Theory of the Distribution of Income and 

Intergenerational Mobility. J. Polit. Econ. 87, 1153–1189 (1979). 

11. Bowles, S. & Gintis, H. The Inheritance of Inequality. J. Econ. Perspect. 16, 3–30 

https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC


20 

(2002). 

12. Bowles, S., Gintis, H. & Osborne, M. The Determinants of Earnings: A Behavioral 

Approach. J. Econ. Lit. 39, 1137–1176 (2001). 

13. Acemoglu, D. Technical change, inequality, and the labor market. J. Econ. Lit. 40, 7–72 

(2002). 

14. Corak, M. Income inequality, equality of opportunity, and intergenerational mobility. J. 

Econ. Perspect. 27, 79–102 (2013). 

15. Hyytinen, A., Ilmakunnas, P., Johansson, E. & Toivanen, O. Heritability of lifetime 

earnings. J. Econ. Inequal. 17, 319–335 (2019). 

16. Taubman, P. The determinants of earnings: Genetics, family, and other environments: A 

study of white male twins. Am. Econ. Rev. 66, 858–870 (1976). 

17. Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era — concepts 

and misconceptions. Nat. Rev. Genet. 9, 255–266 (2008). 

18. Harden, K. P. & Koellinger, P. D. Using genetics for social science. Nat. Hum. Behav. 4, 

567–576 (2020). 

19. Silventoinen, K. et al. Genetic and environmental variation in educational attainment: an 

individual-based analysis of 28 twin cohorts. Sci. Rep. 10, 12681 (2020). 

20. Rimfeld, K. et al. Genetic influence on social outcomes during and after the Soviet era in 

Estonia. Nat. Hum. Behav. 2, 269–275 (2018). 

21. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association 

study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112 (2018). 

22. Kong, A. et al. The nature of nurture: Effects of parental genotypes. Science 359, 424–

428 (2018). 

23. Hill, W. D. et al. Molecular Genetic Contributions to Social Deprivation and Household 

Income in UK Biobank. Curr. Biol. 26, 3083–3089 (2016). 

https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC


21 

24. Hill, W. D. et al. Genome-wide analysis identifies molecular systems and 149 genetic 

loci associated with income. Nat. Commun. 10, 1–16 (2019). 

25. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. 

Nature 562, 203–209 (2018). 

26. Akimova, E. T., Wolfram, T., Ding, X., Tropf, F. C. & Mills, M. C. Polygenic 

predictions of occupational status GWAS elucidate genetic and environmental interplay 

for intergenerational status transmission, careers, and health. bioRxiv 2023.03. 31.534944 

(2023). 

27. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of 

genomewide association scans. Bioinformatics 26, 2190–2191 (2010). 

28. Turley, P. et al. Multi-trait analysis of genome-wide association summary statistics using 

MTAG. Nat. Genet. 50, 229–237 (2018). 

29. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics 

identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012). 

30. Semega, J. & Kollar, M. US Census Bureau, Current Population Reports, P60-276, 

Income in the United States: 2021. (Washington, DC: US Government Publishing Office, 

2022). 

31. OECD. Education at a Glance 2021: OECD Indicators. (Organisation for Economic Co-

operation and Development, Paris, 2021). 

32. Okbay, A. et al. Polygenic prediction of educational attainment within and between 

families from genome-wide association analyses in 3 million individuals. Nat. Genet. 1–

13 (2022) doi:10.1038/s41588-022-01016-z. 

33. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the 

multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019). 

34. Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. Bioinformatics 

https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC


22 

36, 5424–5431 (2020). 

35. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human 

height. Nat. Genet. 42, 565–569 (2010). 

36. Vlaming, R. de et al. Meta-GWAS Accuracy and Power (MetaGAP) Calculator Shows 

that Hiding Heritability Is Partially Due to Imperfect Genetic Correlations across Studies. 

PLOS Genet. 13, e1006495 (2017). 

37. Dickson, M. The Causal Effect of Education on Wages Revisited*. Oxf. Bull. Econ. Stat. 

75, 477–498 (2013). 

38. Young, A. I. et al. Mendelian imputation of parental genotypes improves estimates of 

direct genetic effects. Nat. Genet. 54, 897–905 (2022). 

39. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. 

Nat. Genet. 47, 1236–1241 (2015). 

40. Okbay, A. et al. Genome-wide association study identifies 74 loci associated with 

educational attainment. Nature 533, 539–542 (2016). 

41. Lam, M. et al. Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia 

Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways. Am. J. 

Hum. Genet. 105, 334–350 (2019). 

42. Watanabe, K., Taskesen, E., Van Bochoven, A. & Posthuma, D. Functional mapping and 

annotation of genetic associations with FUMA. Nat. Commun. 8, 1–11 (2017). 

43. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies 

disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018). 

44. Leeuw, C. A. de, Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: Generalized Gene-

Set Analysis of GWAS Data. PLOS Comput. Biol. 11, e1004219 (2015). 

45. Cesarini, D., Lindqvist, E., Östling, R. & Wallace, B. Wealth, health, and child 

development: Evidence from administrative data on Swedish lottery players. Q. J. Econ. 

https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC


23 

131, 687–738 (2016). 

46. Cutler, D. M. & Lleras-Muney, A. Education and Health: Evaluating Theories and 

Evidence. (National bureau of economic research Cambridge, Mass., USA, 2006). 

47. Lleras-Muney, A. The relationship between education and adult mortality in the United 

States. Rev. Econ. Stud. 72, 189–221 (2005). 

48. Grove, J. et al. Identification of common genetic risk variants for autism spectrum 

disorder. Nat. Genet. 51, 431–444 (2019). 

49. Power, R. A. et al. Polygenic risk scores for schizophrenia and bipolar disorder predict 

creativity. Nat. Neurosci. 18, 953–955 (2015). 

50. Abdellaoui, A., Dolan, C. V., Verweij, K. J. & Nivard, M. G. Gene–environment 

correlations across geographic regions affect genome-wide association studies. Nat. 

Genet. 54, 1345–1354 (2022). 

51. Tropf, F. C. et al. Hidden heritability due to heterogeneity across seven populations. Nat. 

Hum. Behav. 1, 757–765 (2017). 

52. Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-

analyses. Nat. Protoc. 9, 1192–1212 (2014). 

53. Demange, P. A. et al. Investigating the genetic architecture of noncognitive skills using 

GWAS-by-subtraction. Nat. Genet. 53, 35–44 (2021). 

54. Lichtenstein, P. et al. The Swedish Twin Registry: a unique resource for clinical, 

epidemiological and genetic studies. J. Intern. Med. 252, 184–205 (2002). 

55. Sonnega, A. et al. Cohort profile: the health and retirement study (HRS). Int. J. 

Epidemiol. 43, 576–585 (2014). 

56. The International HapMap 3 Consortium. Integrating common and rare genetic variation 

in diverse human populations. Nature 467, 52 (2010). 

57. Wu, P. et al. Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow 

https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC
https://www.zotero.org/google-docs/?VnecXC


24 

Development and Initial Evaluation. JMIR Med. Inform. 7, e14325 (2019). 

Contribution 

H.K., C.A.P.B., T.A.D., R.K.L., A.O., R.D.V., and P.D.K. designed the GWAS meta-analysis. 
P.D.K oversaw the study. C.A.P.B. was the lead analyst for the meta-analysis, responsible for 
GWAS, quality control, and meta-analysis. H.K. was the lead analyst for the follow-up 
analyses, including heterogeneity, MiXeR, GWAS-by-subtraction, genetic correlation, PGI 
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Methods 

This section provides the overall summary of the analysis methods. Further details are available 

in the Supplementary Information.  

GWAS meta-analysis 

We pre-registered our analysis plan for the main income GWAS meta-analysis on August 30 

2018 (https://osf.io/rg8sh/). We used four measures of income (individual, occupational, 

household, and parental income) and conducted a multivariate GWAS to combine these 

different measures. In total, we recruited 32 cohorts. Some of these cohorts contributed to 

multiple income measures. Supplementary Tables 1 and 2 summarise the income measures 

used for each cohort. Supplementary Section 2.1 provides details on the phenotype definition. 

The study was limited to 1KG-EUR-like individuals who were not enrolled in an educational 

program at the time of survey or who were above the age of 30 if their current enrollment status 

was unknown.   

 Each cohort conducted the additive association analysis as follows. The log-

transformed income measure was regressed on the count of effect-coded alleles of the given 

SNP, controlling for any sources of variation in income that do not reflect individual earning 
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potential according to the data availability of each cohort. This included hours worked (with 

square and cubic terms), year of survey, indicators for employment status (retired, 

unemployed), self-employment, and pension benefits (see Supplementary Table 4). In addition, 

the covariates included at least the top 15 genetic principal components and cohort-specific 

technical covariates related to genotyping (genotyping batches and platforms). This analysis 

was performed for male and female samples separately.  

We applied a stringent QC protocol based on the EasyQC software package52 to the 

GWAS results from each cohort (see Supplementary Information section 2.4 for more 

detail). In order to combine multiple GWAS results on different income measures collected 

from multiple cohorts, we performed the meta-analysis in several steps. First, for each income 

measure and each sex, we meta-analyzed the cohort-level GWAS results with METAL27 using 

sample-size weighting. Second, for each income measure, we meta-analyzed the male and 

female results by using the meta-analysis version of MTAG.28 To extract the common genetic 

factor from the four GWAS results with different income measures, we again leveraged 

MTAG, allowing for different heritabilities among the input traits.  

Independent loci were identified using FUMA.42 First, independent significant SNPs 

were defined using a cut-off of P < 5×10‑8 and as independent from any other SNP (r2 <0.6) 

within a 1-mb window. Next, lead SNPs are identified as significant SNPs independent from 

each other at r2 <0.1. Finally, independent genomic loci are formed from all independent 

signals that are in physical proximity to each other by merging independent significant SNPs 

closer than 250kb into a single locus using the 1000 genomes EUR reference panel to ensure 

the accuracy of the loci borders were not influenced by missing data in our GWAS. As such, 

the distance between two loci defined by FUMA is between the SNPs in LD with the 

independent significant SNPs rather than between the independent significant SNPs 

themselves. 

Cross-sex and cross-country heterogeneity  

We investigated the potential environmental heterogeneity in the GWAS of income by 

estimating the cross-cohort genetic correlations by sex or by country with LDSC.39 Sex-specific 

meta-analysis results for each income measure were available as intermediary outputs from the 

meta-analysis procedure. In addition, we conducted Income Factor GWAS on the sex-specific 

results, which yielded an effective sample size of 360,197 for men and 353,429 for women. 

 To derive country-specific GWAS meta-analyses, we only used occupational and 

household income, for which we were able to obtain a sufficiently large sample size for 
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multiple countries. We obtained the household income GWAS for the USA (Neff = 30,855), the 

UK (Neff = 387,579), and the Netherlands (Neff = 40,533); and the occupational income GWAS 

for Estonia (Neff = 75,682), Norway (Neff = 42,204), the UK (Neff = 279,883), and the 

Netherlands (Neff = 24,425). 

Comparative analysis with EA 

We compared our Income Factor GWAS results with the GWAS of EA by examining genetic 

correlation with LDSC and using the GWAS-by-subtraction approach.53 Here, we used a 

version of EA summary statistics slightly different from publicly available ones. The latest EA 

GWAS study revised the coding of the years of schooling in the UKB32 to better reflect the 

educational qualification of the participants. Based on the new coding, we conducted a GWAS 

of EA in the UKB. Then, by using MTAG with the meta-analysis option, we meta-analyzed 

the UKB result with EA3 summary statistics21 that did not include the UKB. 

 We then statistically decomposed the estimated genetic association of the Income 

Factor into the indirect effect due to EA and the direct effect unexplained by EA (NonEA-

Income), leveraging the GWAS-by-subtraction approach in genomic SEM.33,53 We 

implemented this method in the form of a mediation model. 

PGI analysis 

We conducted three sets of analyses based on the polygenic index (PGI): 1) prediction analysis, 

2) direct genetic effect estimation, and 3) phenome-wide association study of common 

diseases. 

For the PGI prediction analysis, we used the Swedish Twin Registry (STR),54 UKB 

siblings (UKB-sib), and the Health and Retirement Study (HRS).55 We constructed PGIs using 

the meta-analysis results of income excluding a prediction cohort at a time, as well as a PGI 

based on the EA GWAS summary statistics constructed in the same way for comparison. PGIs 

were created only with HapMap3 SNPs56 as these SNPs have good imputation quality and 

provide good coverage for 1KG-EUR-like individuals. We derived PGIs based on a Bayesian 

approach implemented in the software LDpred2.34  

We measured the prediction accuracy based on incremental R2, which is the difference 

between the R2
 from a regression of the phenotype on the PGI and the baseline covariates and 

the R2
 from a regression on the baseline covariates only. Because income typically contains 

substantial demographic variation, we pre-residualized the log of income for demographic 

covariates. Then, as baseline covariates, we only included the top 20 genetic PCs and genotype 
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batch indicators. Because income data was available for multiple years for the STR and the 

HRS, we residualised the log of income for age, age2, age3, sex, and interactions between sex 

and the age terms within each year and obtained the mean of residuals for each individual. For 

the UKB-sib, which only had cross-sectional data, we residualised the log of income for age, 

age2, age3, sex, dummies for survey year, and interactions between sex and the rest. For the EA 

measure (years of education), we applied the same procedure with birth year dummies.  We 

constructed confidence intervals for the incremental R2 by bootstrapping the sample 1,000 

times. 

To estimate the direct genetic effect of the Income Factor PGI, we used snipar38 to 

impute missing parental genotypes from sibling and parent-offspring pairs. Parental PGIs were 

then created with the imputed SNPs. We estimated the direct genetic effect of the PGI by 

controlling for the parental PGI. This analysis was conducted only with the UKB-sib sample. 

See Supplementary Information 5.2 for further details. 

To explore the clinical relevance of the Income Factor PGI for common diseases, we 

carried out a phenome-wide association study, using the in-patient electronic health records for 

115 diseases with sex-specific sample prevalence no lower than 1% in the UKB-sib sample. 

We derived case-control status according to the phecode scheme by mapping the UKB’s ICD-

9/10 records to phecodes v1.2.57 We fitted a linear regression of case-control status on the 

Income Factor PGI while controlling for the parental PGIs to capture the direct genetic effects 

of income PGI. As covariates, we also included the year of birth, its square term, and its 

interactions with sex, genotype batch dummies, and 20 genetic PCs. Standard errors were 

clustered by family. 
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Fig. 1. Multivariate genome-wide association study of income 

a. LD score regression (LDSC) estimates of pairwise genetic correlations between the four input income measures, the meta-analyzed income (Income Factor), and educational attainment. 
The diagonal elements report SNP heritabilities from LDSC. The standard errors are reported in the parentheses. Some of the results were out-of-bound estimates (exceeding 1.2).    
b. Manhattan plot presenting the GWAS results of Income Factor. P values are plotted on -log10 scale. The red crosses indicate the lead SNPs found from FUMA (r2 < 0.1). 



 
 

 
Fig. 2. Polygenic prediction of income measures 

The figure reports polygenic prediction results in the Swedish Twin Registry (STR), the UK Biobank (UKB) siblings, and the Health and Retirement Study (HRS) with polygenic indexes 
(PGI) for Income Factor and EA. Prior to fitting the regressions, each phenotype was residualized of demographic covariates (sex, a third-degree polynomial in age, and interactions with 
sex) within each wave and the mean of the residuals was obtained across the waves for each individual (only a single wave for the UKB siblings). Incremental R2 is the difference between 
the R2 from regressing the residualized outcome on the PGI and the controls (20 genetic PCs and genotyping batch indicators) and the R2 from a regression only on the controls. Only 
individuals of European ancestry were included and one sibling from each family was randomly chosen: N = 24,946 (individual), 19,245 (occupational), and 15,655 (household) for the STR; 
15,556 (occupational), and 18,303 (household) for the UKB siblings; and 6,171 (individual) for the HRS. The error bars indicate 95% confidence intervals obtained by bootstrapping the 
sample 1,000 times. 
 

  



 
 

Fig. 3. Phenome-wide association study of the Income Factor PGI (without parental PGI controls) in electronic health records for the UKB sibling sample 

This figure illustrates the genetic association of Income Factor PGI with 115 diseases from 15 categories without controlling for parental PGIs. The yellow boxes, with arrows pointing to the 

observations and -log10(p) values reported after the phenotypes, highlight diseases that are strongly with the Income Factor PGI (-log10(p)>10).  



 
Fig. 4. Genetic correlation estimates  

Genetic correlation estimates of Income Factor, NonEA-Income, and EA. The estimates were obtained from LDSC. The black asterisks indicate the statistical significance for NonEA-Income 

at the false discovery rate (FDR) of 5% and the asterisks were indicated in red if the estimate was also significantly different from the estimate for EA at the FDR of 5%. The standard error 

for the difference was computed from jackknife estimates. 
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Extended Fig. 1. Cross-cohort genetic correlations of income stratified by sex and country 

LDSC estimates for cross-cohort genetic correlations of income a. between countries and b. between male (M) and female (F). The diagonal elements report SNP heritabilities. The standard 

errors are reported in the parentheses. Some of the results were out-of-bound estimates (exceeding 1.2).  
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Extended Fig. 2. Polygenic overlap of income with EA and GWAS-by-

subtraction  

a. Venn diagram presenting MiXeR results on unique and shared polygenic 
components for Income Factor (orange) and EA (blue). The estimated numbers 

of unique and shared variants are reported in thousands and by the areas of the 
circles (0.45 and 2,260 variants for income and EA, respectively; 11,153 shared 
variants). rg is the global genetic correlation while rs is the correlation within the shared variants. The standard errors are reported in the parentheses.  
b. The GWAS-by-subtraction model of non-EA income describes the genetic effect of income for SNP j (𝛽𝛽𝑗𝑗

𝐼𝐼𝐼𝐼𝐼𝐼) as the sum of two components: 1) 𝛼𝛼𝛽𝛽𝑗𝑗
𝐸𝐸𝐸𝐸: the indirect effect that reflects the 

genetic association of EA and 2) 𝛿𝛿j: the direct effect from SNP to income that reflects the genetic effect of income after statistically removing its genetic covariance with EA. Note that the 
diagram only depicts a statistical meditation for the sake of interpretation and is not meant to imply any directionality or causal ordering of SNPs to phenotypes. 
c. Manhattan plot showing the non-EA genetic associations of Income Factor (NonEA-Income, corresponding to 𝛿𝛿j from b.). P values are plotted on -log10 scale.  
   



 

 
Extended Fig. 3a. Polygenic prediction of income with additional controls 

The figure reports polygenic prediction results in the UKB siblings with PGI for Income Factor and additional controls (EA or the PGI for EA). Prior to fitting the regressions, each phenotype 

was residualized of demographic covariates (a third-degree polynomial in age, year of observation, and interactions with sex). Incremental R2 is the difference between the R2 from regressing 

the residualized outcome on the PGI for Income Factor and the controls and the R2 from a regression only on the controls. The baseline controls include 20 genetic PCs and genotyping batch 

indicators. Only individuals of European ancestry were included and one sibling from each family was randomly chosen. The error bars indicate 95% confidence intervals obtained by 

bootstrapping the sample 1,000 times.  



 

 

(1) Individual income (2) Occupational income (3) Household income 

   
 

Extended Fig. 3b. Prediction accuracy.  

Figures (1) - (3) show average levels of individual/occupational/household income per PGI quintile in STR, along with 95% confidence intervals. The analyses contain N = 28,359 / 21,990 

/ 17,418 observations respectively. Outcomes were first residualised on sex and the first 20 principal components and then normalized to have a mean zero and standard deviation of one.  

  



 

 



Extended Fig. 4. Phenome-wide association study of the Income Factor PGI in electronic health records for the UKB sibling sample 

The figure reports results from a phenome-wide association study in the in-patient electronic health records of the UKB sibling sample for 115 diseases with sex-specific sample prevalence 

no lower than 1%. The case-control status was derived according to the phecode scheme by mapping the UKB’s ICD-9/10 records to phecodes v1.2. The case-control status was regressed 

on the Income Factor PGI with and without controlling for the parental PGI. Other covariates included year of birth, its square term, and their interactions with sex, genotype batch dummies, 

and 20 genetic PCs. The standard errors were clustered by family. The sign of the coefficient estimates was revered to indicate the decrease in the probability of having case status. The results 

were plotted only for diseases significantly associated with Income Factor PGI  at the FDR of 5%. with the parental PGI controlled for. The error bars indicate the unadjusted 95% confidence 

intervals.   



a.        b. 

Extended Fig. 5a. Biological annotation 

a. The Venn diagram shows the overlap of genes implicated for Income Factor by positional mapping, eQTL mapping, chromatin interaction mapping, and MAGMA gene-based analysis.  

b. The figures present the tissue-specific enrichment analysis results based on LDSC-SEG (left) and MAGMA gene-property analysis (right). Each circle indicates a tissue or cell type from 

either the GTEx or the Franke lab gene expression datasets. Larger circles show statistical significance at the false discovery rate 5%. The full results are reported in Supplementary Table 

26.  
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Extended Fig. 5b. Vene diagram of genes associated with the Income Factor, household income, and educational attainment  

(a.) Gene based statistics were derived using MAGMA performed on the Income Factor. Gene-based statistics for household income and educational attainment were sourced from Hill et al. 

2019 and Lee et al. 2018 respectively. A Bonferroni correction was applied for each trait to determine statistical significance. (b.) Vene diagram of gene sets associated with the Income 

Factor, household income and educational attainment based on FUMA GENE2FUNC analyses and a test of overrepresentation at FDR  <0.05. See Supplementary Tables 35-37 for further 

details. 

 

 



 

 

 

 

 

 

 

 
 

 

Extended Fig. 5c. Venn diagram of loci across phenotypes.  

The diagram shows how genome-wide significant loci and genes mapped to the 86 independent loci are distributed across the four income phenotypes. (a.). The 86 genome-wide significant 

loci and their overlap across the four income phenotypes is shown (b.) Gene-based statistics were derived using MAGMA for genes whose physical boundaries overlapped with a genome-

wide significant loci from the four income phenotypes.  

 

  



 

 

 

  
 

Supplementary Fig. 1. Manhattan plots of income measures 

Manhattan plot presenting the results of GWAS of each income measure. P values are plotted on -log10 scale. The red crosses indicate the lead SNPs found from FUMA (r2 < 0.1).  
 
  



 
Supplementary Fig. 2. Effect sizes of Income Factor GWAS 

Each point represents the effect size (variance explained) adjusted for winner’s curse for the top 50 lead SNPs from the GWAS of Income Factor. 
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