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§1.1: Historical introduction to complex analysis: 

Complex analysis is splendid realm within the world of mathematics, 

unmatched for its beauty and power. It has sometimes unexpected application to 

virtually every part of mathematics. It is broadly applicable beyond mathematics, and 

in particular, it provides powerful tools for the science and engineering. 

The quadratic equation        has no solution in real-number system 

because there is no real number whose square is -1. New types of numbers, called 

complex numbers, have been introduced to provide solution to such equations. 

As early as the 16th century, a symbol √   was introduced to provide solution 

of the quadratic equation  x2+1=0 this symbol, later denoted by the litter i , was 

regarded as a fictitious or imaginary numbers which could be manipulated 

algebraically like an ordinary real number, except that its square was -1. 

Later in the 18th century, Karl Gauss (1777-1855) and William Hamilton 

(1805-1865) independently and almost simultaneously proposed the idea of defining 

complex numbers as the order pairs (a ,b) of real numbers endowed with certain 

special properties. In the same time, Euler discovered the connection between 

trigonometric function and exponential functions through complex analysis and he 

invented the notation    . However, it was not until the 19th century that the 

foundations of complex analysis were laid. Among the many mathematicians and 

scientists who contributed, there are three who stand out as having influenced 

decisively the course of development of complex analysis. The first is Augustin-Louis 

Cauchy (1789-1857), who development the theory systematically, with the complex 

integral calculus, Cauchy’s theorem, and the Cauchy integral formula playing 

fundamental roles.  

The other two are Karl Theodor Weierstrass (1815-1897) and Bernhard 

Riemann (1826-1866), who appeared on the mathematical scene about the middle of 

the 19th century. Weierstrass developed the theory from a starting point of convergent 

power series, and this approach led towards more formal algebraic developments. 

Riemann contributed a more geometric point of view. His ideas had a tremendous 

impact not only on complex analysis but also upon mathematics as a whole, through 

his view took hold only gradually. 
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One of the most important subject in the complex is the integration, so that the 

scientists give the integration some focus to study and make it applicable. The most 

scientist who provided accomplishments in this field is Cauchy, who is provide his 

integration formula as alternative for some method of integration like contour integral, 

antiderivatives, and Goursat theorem . 

In this research, we will discuss Cauchy integral formula and one of the most 

important theorems that depends on Cauchy integral formula, which is residue 

theorem, but first we will introduce the integration in general (in real valued 

functions) and the integration in the complex. 

 

 

§1.2: Introduction to integral: 

The geometric problems that motivated the development of the integral calculus 

(determination of lengths, areas, and volumes) arose in the ancient Egyptian 

civilization. Where solutions were found, the related to concrete problems such as the 

measurement of a quantity of grain. Greek philosophers took a more abstract 

approach. In fact, Eudoxus (around 400 B.C.) and Archimedes (250 B.C.) formulated 

ideas of integration, as we know it today. 

 Integral calculus developed independently, and without an obvious connection 

to differential calculus, the calculus became a ‘whole’ in the last part of the 17th 

century when Isaac Barrow, Isaac Newton, and Gottfried Leibniz (with help from 

others) discovered that the integral of a function could be found by asking what was 

we differentiated to obtain that function . 

The following introduction of integration is the usual one. It displays the concept 

geometrically and then defines the integral in 19th century language of limits. This 

form of definition establishes the basis for a wide variety of applications. 
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Consider the area of the region bounded by       , the x-axis, and the joining 

vertical segments (coordinates) x=a & x=b. as shown in figure below. 

Subdivide the interval       into n sub-interval by means of the points 

                 chosen arbitrarily. In each of the new intervals, 

                           choose points               arbitrarily. 

 Form the sum 

 f(   (     + f(   (      +..............+ f(   (                          (i) 

 

By writing     ,     , and            , this can be written as: 

∑               

 

   

 ∑         

 

   

                                

 

Geometrically, this sum represents the total area of all rectangles in the above figure. 
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We now let the number of subdivisions   increase in such a way that each 

       If as a result the sum (i) or (ii) approaches a limit which does not depend on 

the mode of subdivision, we denote this limit by: 

   
   

∑         

 

   

 ∫       
 

 

 

This is called the definite integral of     between a and b. This symbol        

is called the integrand, and [a,b] is called the range of integration. We call a and b the 

limit of integration, a being the lower limit of integration and b the upper limit. 

In complex variable the situation is change a bit, the integration was derived by 

differentiation as follows. 

Let                        ….…………..(iii)              

where the function   and   are real-valued functions of   . 

The derivative      , or 
       

  
, of the function (iii) at a point   is defined as : 

                   

Provided each of the derivatives   and    exist at  , so that the integration provide as 

: 

∫         ∫         ∫       
 

 

 

 

 

 

 

Example:  

∫            ∫           ∫       
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Terminology: 

Curves (contours) are functions          , that is                   

where           are continuous. 

Simple closed contour: the function              is simple closed when if           

                 then                             

Complex domain is any connected open subset of the complex plane   

Simply Connected domain: a domain   in   is simply connected if the inside 

of every simple closed curve in the domain is in the domain. 

Open Disc: The open disc of radius   and center    is the set                 

Interior Point: If   is a set in  , then    is an interior point             such 

that an open disc of radius   centered at    is a subset of  . 

Complex Differentiable:   is complex differentiable at   if  

    
ℎ  

𝑓 𝑧0+ℎ  𝑓 𝑧0 

ℎ
 exists. and it is called        

ML inequality: If   is an upper bound of the function and L is the arc length 

of the curve C, then|∮       
 

|     

Analytic Function: Suppose   is a connected open subset of  . Then      

is complex analytic, if   is complex differentiable at every point of  . 

Singularity: If a complex function   fails to be analytic at a point       , then 

this point is said to be a singularity or singular point of the function 

Order of a zero: Suppose      is analytic. If          , then the order of the 

zero at    is the smallest integer   such that              

Isolated Singularity: a function      has an isolated singularity at    iff      

such that      is analytic in                  
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     ∑         
 

 

    

 

Removable Singularity: a function      has a Removable singularity at    if 

it have not any negative power terms. 

Pole: a function      has a Pole at    if it have finite negative power terms. 

Essential Singularity: a function      have an Essential Singularity at    if it 

have infinite negative power terms 

Result from Cauchy- Goursat theorem: 

∮
  

    
 

 

  𝜋  

Positively oriented curve is a simple closed curve such that it is traveled on 

Counterclockwise. 
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§2: Cauchy integral formula 
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§2: Cauchy integral formula: 

Integral representation formulas are powerful tools for studying functions. One 

application of an integral representation is to estimate the size of the function being 

represented. Another is to obtain formula for derivative. The prototype of the integral 

representation is provided by the Cauchy integral formula, which represent an analytic 

function.  

The integral representation will allow us to show that all the derivatives of analytic 

function are analytic. In addition, it allow us to obtain power series expansion for 

analytic function.  

 

§2.1: First Formula: 

The idea in this theorem is: If   is analytic in a simply connected domain D and   is 

any point in D, then the quotient 
𝑓   

 𝑧 𝑧0 
is not analytic in D. As a result, the integral 

𝑓   

 𝑧 𝑧0 
  is not always zero around a simple closed contour C that contains   . This 

remarkable result indicates that the values of an analytic function   at points inside a 

simple closed contour C are determined by the values of    on the contour C. 

Theorem: (Cauchy integral formula)  

Let   be analytic in a simply connected domain D, and let C be a simple closed 

contour lying entirely within D. If   is any point within C, then 

      
 

 𝜋 
∮

    

    
   

 

                       

Proof: Let D be a simply connected domain, C a simple closed contour in D, and    

an interior point of C. In addition, let 𝐶  be a circle centered at    with radius small 

enough that it is interior to C.  
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By contours, we can write 

∮
    

    
   

 

 ∮
    

    
   

  

                          

We wish to show that the value of the integral on the right in     is  𝜋       . 

 We add and subtract       to the right hand side      so we obtain  

∮
    

    
   

  

 ∮
                

    
   

  

 

      ∮
  

    
 

  

 ∮
          

    
   

  

                               

But we know that  

∮
  

    
 

  

  𝜋  

Thus,       becomes: 

∮
    

    
   

  

  𝜋       ∮
          

    
                          

  

 

Since   is continuous at    for any arbitrarily small    , there exists     such 

that                whenever        . In particular, if we choose the circle 

𝐶  to be        
 

 
  , then by the ML-inequality the absolute value of the integral 

on the right side of (4) satisfies 

|∮
          

    
   

  

|  
 

   
 𝜋 (

 

 
)   𝜋   



13 
 

In other words, the absolute value of the integral can be made arbitrarily small by 

taking the radius of the circle 𝐶  to be sufficiently small. This can happen only if the 

integral is zero.  

By dividing both sides of the equation      by  𝜋  we have 

 

 𝜋 
(∮

    

    
   

  

  𝜋        ) 

               
 

 𝜋 
∮

    

    
   

  

         

The Cauchy integral formula can be used to evaluate contour integrals.  

Since we often work problems without a simply connected domain explicitly defined, 

a more practical restatement of the theorem is : 

If   is analytic at all points within and on a simple closed contour C, and   is any 

point interior to C, then        
 

   
∮

𝑓 𝑧 

𝑧 𝑧0
   

 
  

Example:2.1.1: 

Evaluate ∮
𝑧   𝑧+ 

𝑧+ 
  

 
 where C is the circle      . 

Solution: 

 First we identify              and       as a point within the circle C. 

Next, we observe that   is analytic at all points within and on the contour C. thus by 

the Cauchy integral formula we obtain  

∮
       

   
  

 

  𝜋       

  𝜋         𝜋         
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Example: 2.1.2: Evaluate: ∮
 

    
   

 
  Where C 

is the circle        . 

Solution: 

 By factoring                  , we see 

that    is the only point within the closed contour 

at which the integrand fails to be analytic. 

Now by writing 
𝑧

𝑧 + 
 

 

    

𝑧   
 we can identify 

     
𝑧

𝑧+  
 this function is analytic at all points within and on the contour C. From 

the Cauchy integral formula we then have 

 ∮
 

    
   

 

 ∮

 
    
    

    𝜋        𝜋 
  

   

 𝜋  

§2.2: Second Formula: 

We can now use the Cauchy integral formula to prove that all the derivative for an 

analytic function is analytics; that is, if   is analytic at a point   , then               

and so on, are also analytic at   . Moreover, the values of the derivatives 

                       are given by a formula similar to Cauchy integral formula. 

Theorem: 

Let   be analytic in a simply connected domain D, and let C be a simple closed 

contour lying entirely within D. If   is any point within C, then 

         
  

 𝜋 
∮

    

      
 + 
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Proof: 

Let     . We will prove that all the derivatives exist at   .   First, let us prove the 

above formula for      . We use Cauchy’s integral formula for   to evaluate 

             

 
 

             

 
 

 

 𝜋  
[∮

    

        
   ∮

    

    
  

  

] 

 
 

 𝜋  
∮

     

(        )      
  

 

 

 
 

 𝜋 
∮

    

(        )      
  

 

 

Now 

 

(        )      
 

 

      
 
 

 

(        )      
 

 

      
 
 

 
 

      
 
 

 

(        )      
 
 

So 

             

 
 

 

 𝜋 
∮

    

      
 
  

 

  

 

 𝜋 
∮
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To get the result, we need to prove that the limit of (   goes to 0 as   goes to 0. We 

are going to find an upper bound for 

|
    

                
 
| 

First,   is continuous on C as it is analytic there,so for all   𝐶, we have          

for some    . Also, let d = min{          } as   runs along C then for all     𝐶 

         so  

|
    

      
 
|  

 

  
 

Then, from the properties of the modulus, we always have 

                                  So let us choose   such that       
 

 
 . Then 

           
 

 
 

 

 
 so 

|
    

                
 
|  

  

  
 

Then 

      |
 

 𝜋 
∮

     

                
 
  

 

|     
  

𝜋  
 

Where   ∮     
 

 is the length of C. so as      , we deduce that       and 

therefore  

          
ℎ  

             

 
 

 

 𝜋 
∮
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Now we proceed by induction. Suppose, for       

         
  

 𝜋 
∮

    

      
 + 

   
  

 

Then 

                   

 
 

  

 𝜋  
∮     (

 

         + 
 

 

      
 + 

)   
 

 

Now we write  

 

         + 
 

 

      
 + 

 
 

      
 + 

 

   
 

    
  + 

 
 

      
 + 

 

 
 

      
 + 

(
     

 
    

  + 

   
 

    
  + 

) 

And use  

    +                     

For the numerator in the brackets to get  

 

         + 
 

 

      
 + 

 
 

      
 + 

 

   
 

    
  + 

    

∑ (  
 

    
)
  

   

 

 
 

      
 + 

      
 + 

         + 
∑ (  

 

    
)
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Now, using the binomial, 

(  
 

    
)
 

 ∑ 𝐶 
 

 

   

     (
 

    
)
 

    ∑ 𝐶 
 

 

   

     
    

      
 
 

Collecting everything, we can write the following rather long equality 

 

         + 
 

 

      
 + 

 
      

      
 + 

 
      

      
 + 

  

      
 +           + 

         + 
 

  

         + 
  

∑ ∑ 𝐶 
 
     

    

      
 + 

 

   

 

   

 

Now the nice thing is that the modulus of the right hand side is      times some 

constant B say involving   and higher power of      This is seen using the same 

bounds as before for         and             

|
 

         + 
 

 

      
 + 

 
      

      
 + 

|      𝐵 

Therefore we can write 

|
                   

 
 

      

 𝜋 
∮

    

      
 + 

  
 

|  
   𝐵  

 𝜋
   

Where   and   are as before. In the limit       we obtain 

   +       
      

 𝜋 
∮

    

      
 + 
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Example2.2.1: evaluate  

∮
   

      
  

 

 

Where C is the circle       

Solution: 

 Inspection of the integrand shows that it is not analytic at      and      , but 

only      lies within the closed contour. By writing the integrand as 

   

      
 

   
   
  

 

We can identify               
𝑧+ 

𝑧+ 
  

By the quotient rule        
 6

 𝑧+   
 and so we have  

∮
   

      
   

 𝜋 

   

        
 𝜋

  
  

 

 

Example2.2.2: evaluate 

∮
    

       
  

 

 

Where C is the contour shown in the figure  

Solution: 

 Although C is not a simple closed contour, we can 

think of it as the union of two simple closed contours 

𝐶  and 𝐶  as indicated in Figure above 
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∮
    

       
   

 

∮
    

       
  

  

 ∮
    

       
  

  

 

 

  ∮

    
      

 
  

  

 ∮

    
 

      
  

  

  𝐼  𝐼  

We are in a position to use both first formula and second formula.  

To evaluate 𝐼 , we identify       and                       . By first formula 

it follows that 

𝐼  ∮

    
      

 
  

  

  𝜋        𝜋  

To evaluate 𝐼  we identify     ,                       and 

                     . From the second formula we obtain 

 

𝐼  ∮

    
 

      
   

 𝜋 

    

       𝜋         𝜋        

Finally we get 

∮
    

       
   

 

 𝐼  𝐼   𝜋   𝜋         𝜋        
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§3: Residues 
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§3.1: Laurent series: 

The Laurent series is a representation of a complex function      as a series. Unlike 

the Taylor series which expresses      as a series of terms with non-negative powers 

of  , a Laurent series includes terms with negative powers. A consequence of this is 

that a Laurent series may be used in cases where a Taylor expansion is not possible. 

If     is a singularity of a function  , then certainly f cannot be expanded in apower 

series with    as its center. However, about an isolated singularity     , it is 

possible to represent f by a series involving both negative and non-negative  integer 

powers of      ; that is  

       
   

      
 
 

   

      
 
                     

    

we can write the above expansion as the sum of two series: 

     ∑          
   ∑         

 

 

   

 

   

 

The two series on the right-hand side are given special names. The part with negative 

powers of       , i s called the principal part of the series and will converge 

for |
 

𝑧   𝑧0
|       or equivalently for            

 

  
      The part consisting of the 

nonnegative powers of       , the other part is called the analytic part of the series 

and will converge for             .  

Hence, the sum of the principal part and the analytic part converges when   satisfies 

both              and             , that is, when z is a point in an annular 

domain defined by                 . 

By summing over negative and nonnegative integers, the series is called a Laurent 

series and can be written compactly as 

     ∑         
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Laurent’s series: Let   be analytic within the annular 

domain D defined by                 . Then   has the 

series representation 

     ∑         
 

 

    

 

valid for                 . The coefficients    are given 

by: 

   
 

 𝜋 
∮

    

      
 + 

   
 

                   

Where C is a simple closed curve that lies entirely within D and has    in its interior. 

As shown in Figure above. 

§3.2: Residues: 

The residue theorem was discovered around 1814 (stated explicitly in 1831) by 

Cauchy as he attempted to generalize and put under one umbrella the computations of 

certain special integrals, some of them involving complex substitutions, that were 

done by Euler, Laplace, Legendre, and other mathematicians. 

If we extend Cauchy’s integral theorem to functions having isolated singularities, then 

the integral is in general not equal to zero. Instead, each singularity contributes a term 

called the residue. The following theorem shows that this residue depends only on the 

coefficient of       
   in the Laurent expansion of the function near the singularity 

  , since all the other powers of        has single valued integrals and so integrate 

to zero. 

Suppose that   has an isolated singularity at   . We know from Laurent Theorem, that 

  has a Laurent series in an annulus around   : for                , 

       
   

      
 
 

   

      
 
                     

    

Furthermore, the series can be integrated term by term over any path that lies in the 

annulus                . Let 𝐶     be any positively oriented circle that lies in 

               . If we integrate the Laurent series term by term over 𝐶     and 
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use the fact that ∮       
 

  𝑧0 
      if     and ∮

 

𝑧 𝑧0  𝑧0 
     𝜋 , we find 

∮     
  𝑧0 

        𝜋 ; hance 

    
 

 𝜋 
∮        
  𝑧0 

 

The coefficient    is called the residue of   at    and is denoted by             or 

simply          when there is no risk of confusing the function  .  

Residue theorem: Let C be a simple closed positively oriented path. Suppose that   

is analytic inside and on C, except at finitely many isolated singularities              

inside C. Then 

∮         𝜋 ∑          

 

    

  

Proof: For every            , let       denote the principal part of      at   .  

   is analytic in C except at   . It follows that the function 

          ∑      

 

   

 

Is analytic in C ,so that 

∮         
 

 

And so  

∮        
 

∑ ∮      
 

 

   

    

∮         𝜋 ∑          
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Rule1: Suppose that    is an isolated singularity of  . Then   has a simple pole at    

if and only if 

             
𝑧 𝑧0

             

Rule2: if      = 
  𝑧 

  𝑧 
, where   and   are analytic at   ,          , and      has a 

simple zero at   , then 

   (
    

    
   )  

     

      
 

Example3.1: Let C be a simple closed positively oriented 

path such that     , and   are in the interior of C and    is 

in the exterior of C .Find 

∮
  

     

 

Solution: The function       
 𝑧

𝑧   
  has isolated 

singularities at        and     

Three of these are inside C, which    and +1. 

∮
  

     

  𝜋 (                     ) 

We have                          , so   and    are simple roots of 

the polynomial       . Hance       
 𝑧

𝑧   
 has simple poles at        and    , 

Using the factorization                         , we have at        

          
𝑧  

     
 

    
    

𝑧  

 

               
 

 
 

               
|  
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Similarly, at        we have 

          
𝑧  

     
 

    
    

𝑧  

 

               
 

 
 

               
|  

 

    
 

And at         we have 

           
𝑧   

     
 

    
    

𝑧   

 

               
 

 
 

               
|   

 

     
 

Then  

 

∮
  

     

  𝜋 (
 

 
 

 

 
 

 

 
)  

 𝜋 

 
 

Rule3: Suppose that    is a pole of order       of  . Then the residue of   at    is 

             
𝑧 𝑧0

 

      

    

     
       

       

Where as usual the derivative of order 0 of a function is the function itself. 

Example 3.2: let C be the simple closed path shown in 

Figure, (A) Compute the residues of      
𝑧 

 𝑧 +       𝑧
 

at all the isolated singularities inside C. (B) evaluate  

∮
  

    𝜋  
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Solution (A) there is three steps we will follow to answer this question. 

Step1: Determine the singularities of   inside C. the function      
𝑧 

 𝑧 +       𝑧
 is 

analytic except where    𝜋    or       . 

Thus   has isolated singularities at   𝜋 and at  𝜋 where   is an integer. Only 0 and 

 𝜋 are inside C. 

Step2: Determine the type of the singularities of   inside C. Let us start with the 

singularity at 0. 

Using    
𝑧  

   𝑧

𝑧
  , it follows that    

𝑧  

 

    𝑧
  , and so  

   
𝑧  

        
𝑧  

 

     

 

    𝜋   
       

Then      has a removable singularity at     . To treat the singularities at  𝜋, we 

consider 
 

𝑓 𝑧 
 

 𝑧+     𝑧     

𝑧 
. Clearly 

 

𝑓 𝑧 
 has a zero of order 2 at  𝜋, and so      has 

a pole of order 2 at  𝜋. 

Step3: Determine the residues of   inside C. At 0,   has a removable singularity, so 

       , and hence the residue of   at 0 is 0.  

At  𝜋, we apply Rule3, with            𝜋. Then 

     𝜋     
𝑧   

 

  
     𝜋        

    
𝑧   

 

  
[

  

    𝜋       
] 

    
𝑧   

      𝜋             𝜋            

    𝜋       
 

 
     𝜋    𝜋     𝜋      𝜋 

  𝜋       𝜋
  

 

 𝜋     𝜋
 

    𝜋

 𝜋       𝜋
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(B) using the result in (A) we obtain  

∮
  

    𝜋  
 
    

    𝜋              𝜋  
 

 

  ( 
 

     𝜋
 

    𝜋

        𝜋
) 

Rule4: Suppose that 0 is an isolated singularity of an even function  . Then 

               

Example3.3: Compute      
 

 

     
 

𝑧
     

Solution: The function  
 

 

     
 

𝑧
 is even and has an isolated (essential) singularity at 

0. By Rule4,    ( 
 

 

     
 

𝑧
   )    

Example3.4: evaluate ∮
  

𝑧 + 𝑧 
  

 
, where the contour C is the circle       

Solution: using the factorization                reveals that the integrand 

     has a pole of order 3 at     and a simple pole at       . 

But only the pole       lies within the given contour and so we have 

∮
 𝑧

      
  

 

  𝜋               𝜋 
 

  
   
𝑧  

  

   
   

 𝑧

       
 

 𝜋    
𝑧  

           𝑧

      
 

  𝜋
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