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ABSTRACT 

Climate change has a profound impact on agriculture, as it depends on climate and environmental 

conditions. The rise in pests and diseases is a significant threat to crop yields, causing global crop 

production to experience yearly losses of up to 40% [1]. This loss has severe implications, leading to 

food insecurity and economic hardship worldwide. These, in turn, cost the global economy billions of 

dollars and pose a significant threat to global food security. Unfortunately, there is a common 

misconception that individual actions cannot make a huge difference in the fight against climate 

change. People tend to believe that the available solutions are too complex and inaccessible, leading 

to a sense of hopelessness. However, we must realize that acting on an individual level is crucial in the 

battle against this global crisis. Every effort made, no matter how small, has the power to create a ripple 

effect and inspire others to do the same. This misconception often stems from a lack of access to tools 

and knowledge that could help them make a meaningful impact. Our project aims to address this issues 

by developing 2 main outcomes, the first one is an empowering mobile app that provides a tool for 

users to help them normalize planting around them through our AI-powered smart planting guide, a 

community platform for raising awareness about climate change and sharing experiences and a 

pollution reporting feature and the second is a novel smart agriculture system that will help mitigate 

the effects of climate change on the agriculture sector. The system aims to provide farms and 

agricultural domains with comprehensive tools that will enable them to reduce the impact of climate 

change on crop yields and increase productivity. It will provide farms with a range of features and 

precision agriculture services like intelligent weed detection (common crop weeds), disease detection 

in rice and crop recommendation system based on soil analysis and IoT that provide insights to the 

farmers. The proposed novel smart agriculture system offers many services that address the challenges 

of climate change by decreasing greenhouse gas (GHG) emissions and increasing crop productivity. 

The system can reduce the presence of weeds within crops, monitor crop diseases to prevent them from 

spreading, and recommend crops based on environmental conditions such as humidity, temperature, 

and rainfall rate. 

 

 

 

 

 

 



I. INTRODUCTION 

Our Earth is dealing with a major issue known as climate change, as it affects our planet in numerous 

ways. One of the most significant impacts of climate change is on agriculture, where it poses a major 

threat to crop yields by increasing the spread of pests and diseases, resulting in annual losses of up to 

40% of crop production worldwide. This, in turn, costs the global economy billions of dollars and 

poses a significant threat to global food security. Weeds and crop diseases are the most common 

affecting issues that cause crop loss. Today losses caused by weeds and insects can reach 40% of total 

crop yields each year and this percentage is expected to increase significantly in the coming years [2].  

In an attempt to mitigate crop losses resulting from weeds and crop diseases, farmers are increasingly 

turning to chemical inputs such as fertilizers and pesticides. However, the uncontrolled and excessive 

use of these products poses a significant risk to both human health and the environment. In fact, a study 

by Costello et al. [3] demonstrated that living within 500 meters of agricultural land where pesticides 

are applied can increase the risk of Parkinson’s disease by up to 75%.  

To address this issue, farmers are now exploring a more precise and smart approach to farming called 

precision agriculture. This new approach aims to allocate the right doses of inputs such as fertilizers, 

herbicides, seed, and fuel, at the right time and place, using advanced technologies such as sensors, 

and machine learning algorithms. By adopting precision agriculture practices, farmers can minimize 

the use of chemical inputs, reduce the risk of environmental pollution, and optimize crop yields.  

Moreover, precision agriculture can help farmers save on costs associated with overuse or misuse of 

inputs, and also reduce the need for manual labor. Weed detection is a critical task in modern 

agriculture as it poses a significant threat to crop yields by competing with the main crop, particularly 

in the early stages of growth. In recent years, there has been an increasing demand for efficient and 

accurate weed detection techniques to reduce crop losses and optimize crop management practices. 

To address this need, we have developed a novel smart agriculture system that employs advanced deep 

learning algorithms to provide three main features, which are, intelligent weed detection system,  

intelligent paddy diseases detection system and crop recommendation and support system 

The first one is the Intelligent weed detection system to identify weeds in crop fields in multiple growth 

stages. The system is capable of identifying up to 15 different types of weeds, which are commonly 

found in agricultural fields. This system has the potential to significantly improve weed management 

practices, by detecting and controlling the spread of weeds at an early stage, thereby reducing the 

overall impact on crop yields. The deep learning models used in the system are based on ResNet50 

and EfficientNetB2 pre-trained models that can automatically extract high-level features from images 

of the crop fields.  

The other factor that can drastically impair crop production is the pathogens such as fungi and bacteria 

can lead to crop diseases. Because the illness is difficult to control on a broad scale, crop field 

monitoring is one of the most effective methods of control. It allows for early detection of the disease 

and the implementation of preventative measures. Our research has led us to focus on rice crops as 

they are a crucial source of food for many countries, and disease can cause significant economic losses  

Agro-meteorological factors can cause diseases in rice, and accurate diagnosis and treatment are 

essential for crop protection. Disease severity estimation based on digital image analysis has proven to 



be an effective strategy. However, excessive usage of chemical pesticides can increase the toxic level 

in agricultural products and production costs. Therefore, it is necessary to use pesticides cautiously by 

identifying the severity of the disease and targeting the affected areas. In order to tackle this issue, we 

are proposing an Intelligent paddy diseases detection system as a second feature provided by our 

novel smart agriculture system , we developed a fine-tuned transfer learning model to identify 15 

different paddy diseases. The model uses the ResNet34 pre-trained model to classify the diseases.  

The agricultural sector plays a significant role in a country's economy. Choosing the right crop based 

on factors such as soil quality, weather, water availability, seed availability, and crop cultivation 

knowledge is crucial. The term precision agriculture has been used to describe the incorporation of 

various technologies into traditional farming practices, to improve agricultural productivity and 

sustainability [4]. Modern technologies such as the Internet of Things (IoT) paves the foundation of 

precision agriculture that enables the minimization of human labor and cost as well as improving 

agricultural productivity. IoT generates large volumes of data which can be used for practices such as 

crop monitoring or disease detection. The analysis and interpretation of this data enables the 

understanding of relationships between various agricultural factors such as soil characteristics and 

climatic variables. 

The support system’s ultimate goal is to provide continuous support to farmers, giving them regular 

updates about their crops and fields, enabling them to make better decisions. To improve crop 

prediction and production, it's essential to consider various factors such as soil properties, weather 

conditions, water availability, temperature, sunlight, wind, and pollution levels. By using sensors to 

collect area-wise soil properties for nitrogen, phosphorus, potassium, pH value, temperature, moisture, 

and rainfall levels, farmers can determine the ideal crops to grow in a particular field. 

Therefore, we are proposing a new IoT-enabled soil analysis and crop recommendation support system 

IoT- SACRSS that will assist farmers in selecting the most suitable crops for each season based on 

soil nutrients and climate variables and also providing  precision agriculture with insights to help them 

save their crops and increase productivity. The system relies on a Random Forest classifier model 

that predicts the most suitable crops to grow based on temperature, soil pH, NPK values, humidity, and 

rainfall rate and with fuzzy logic and knowledgebase data the system returns the top 3 crops that will 

give the maximum productivity and minimum CO2 emissions from a 22 crop overall. The support 

system provides data-driven recommendations for achieving optimal nutrient quantities to improve 

crop yield. It recommends a customized mix of soil enhancers, such as urea and compost.  

The global community is facing the consequences of climate change especially in developing countries, 

and it is essential to take action to mitigate its effects. As part of this effort, we have developed an 

empowering app that provides users with a comprehensive tool to help them make a positive impact 

on the environment. The main feature is the AI-powered smart planting guide that helps individuals to 

normalize planting around them and make planting easier. In order to achieve this, we have developed 

two deep learning models using transfer learning to identify the plants’ type.  

Transfer Learning [5] is a technique for reusing a model that has already been trained on a huge dataset. 

It assists in the accurate detection of plant types. The smart planting guide identifies the plant type 

from either the leaves or the flowers of the plant. The flower classification model is based on the 

ResNet50 lightning pre-trained model architecture to perform classification on 16 different types of 

flowers. And for the leave’s classification model, it relies on a Linear Discriminant Analysis (LDA) 



that classifies different types of plants using leaves. We have developed a classification algorithm 

classifying 99 plant types.  

Our app also includes a community platform for raising awareness about climate change and sharing 

experiences. Additionally, our app has pollution reporting feature that allows the users to report any 

pollution activity especially the rice straws burning. Through these features, our app offers a practical 

solution for individuals to contribute towards environmental conservation. Overall, our app aims to 

empower individuals to make a significant impact on the environment and help them take steps towards 

a more sustainable future. 

1.1 Objectives 

The main objectives of this project are to develop these two outcomes, the empowering mobile app, 

and the smart agriculture system, to address the challenges faced by the agriculture sector due to 

climate change. The first objective is to develop an empowering mobile app that will provide a tool for 

users to help them normalize planting around them through our AI-powered smart planting guide, a 

community platform for raising awareness about climate change and sharing experiences, a pollution 

reporting feature. The second objective is to develop a novel smart agriculture system that will help 

mitigate the effects of climate change on the agriculture sector. The system aims to provide farms and 

agricultural domains with comprehensive tools that will enable them to reduce the impact of climate 

change on crop yields and increase productivity. The system will provide farms with a range of features 

and precision agriculture services like intelligent weed detection (common weeds), disease detection 

and crop recommendation system based on soil analysis and IoT that provide insights to the farmers.  

II. LITERATURE SURVEY 

2.1 Methodology: 

A systematic search was conducted using several online databases, including ResearchGate, IEEE 

Xplore, ACM Digital Library, and ScienceDirect. Keywords such as "climate change," "plant 

classification," "precision agriculture," "deep learning," "crop recommendations," "weed detection," 

"disease detection," "flower classification " and "smart farming" were used to identify relevant articles. 

Only peer-reviewed articles published in the last five years were included in this survey. 

2.2 Literature Review: 

In this section, we conducted a literature survey on climate change, agriculture, deep learning, and 

related tools and techniques. We reviewed several research papers, articles, and online resources to 

gain a better understanding of the subject matter. We also studied existing applications and systems 

that address climate change and agriculture sustainability. Researchers have attempted several methods 

to classify and diagnose plant diseases and extract their features. Deep learning alongside image 

processing and traditional machine learning techniques have been extensively used in the agricultural 

field. This section concentrates on some of the previous work that uses deep learning techniques to 

classify rice crops diseases, weed classification, leaves classification, flowers classification from 

digital images and crop recommendation systems using soil analysis.  

In recent times, Deep Learning and in particular the use of Convolutional Neural Networks (CNNs) 

has proven well suited for addressing computer vision problems of which plant classification can be 

considered to be one. Deep learning eliminates the need for domain expertise and hard-core feature 



extraction that only expert botanists can provide. One of the approaches used for weeds detection is 

machine learning. Bakhshipour and Jafari [6] evaluated weed detection with support vector machine 

(SVM) and ANN  in four species of common weeds in sugar beet fields using shape features.  

In [7], a semi-automatic Object Based Image Analysis (OBIA) procedure has been developed with 

Random Forests (RF) combined with feature selection techniques to classify soil, weeds, and maize. 

With all these articles, we can notice that the selected features change in general from one type of 

culture to another or from one type of data to another. Milioto et al. [8] provided accurate weed 

classification in real sugar beet fields with mobile agricultural robots. Bah et al. [9] applied AlexNet 

for weed detection in different crop fields such as beet, spinach, and bean in UAV imagery.  

In a recent study, Di Cicco et al. [10] suggested the use of synthetic training datasets. However, this 

technique requires precise modeling in terms of texture, 3D models and light conditions. Currently, 

most methods used for unsupervised data collection detect crop rows first, then label plants within the 

rows as crops and those between rows as weeds (inter-row weed) [11]. These methods strongly depend 

on the presence of weeds in the inter-row. Therefore, labeled data will be very unbalanced in cases 

where the field has fewer weeds between crop rows. This can reduce the efficiency of the trained 

models and promote overfitting. Though many open-source agriculture datasets have been available in 

recent years, the quality and amount of data do not meet the requirements of researchers [12, 13].  

In addition, models trained with such data fail to generalize and are not robust enough to be used in 

diverse practical environments [14]. One way to overcome these difficulties is by adopting image 

geometric- and intensity-based data augmentation [15, 16]. In addition, when CNNs are employed for 

machine vision tasks, transfer learning is preferred [15], where a pre-trained deep-learning model is 

fine-tuned with an available dataset for a particular task [17]. This approach has seen a lot of utilization 

for in-field weed identification [18-20]. For instance, Espejo-Garcia et al. developed a solution based 

on feature extraction from deep layers of various transfer-learned CNN models for automated crop and 

weed identification [18].  

However, such traditional image augmentation techniques and transfer learning provide highly 

correlated images and only little additional information to the deep-learning model. This not only 

reduces the ability of the model to generalize but leads to over-fitting problems. Several researchers 

have proposed an automated identification system for rice disease detection. In [21], rice disease 

detection was accomplished by considering the area of the diseased leaf using image processing and a 

model was developed using the Naive Bayes Classifier. This classifier could identify three types of 

diseases of paddy plants with a prediction accuracy of 89%. In [22], CNN and Multilayer Perceptron 

(MLP) models were proposed to achieve 81.03% and 91.25% accuracy.  

Author Chen et al. [23] used deep learning techniques to improve image processing and classification. 

They combined Dense Net and Inception modules and achieved high accuracy on a public dataset, with 

an average of 94.07% or higher. Their model also achieved an average accuracy of 98.63% for 

classifying rice disease images. Lei Feng et al. [24] employed hyperspectral imaging(HSI) to detect 

paddy leaf diseases and developed a CNN architecture as a classification model using deep transfer 

learning techniques. They found fine-tuning was the most efficient solution, achieving 88% accuracy. 

The field of smart farming heavily relies on the integration of machine learning and IoT technologies, 

but implementing these technologies comes with challenges. However, handling the hardware units 

and sensors can be challenging due to environmental factors. Soil fertility is critical to maintaining 



crop production levels, but the nutrient levels of soil decrease over time due to cultivation. One method 

to improve soil fertility is by optimally increasing it using sensor technology, which can improve soil 

quality, food safety, and crop profitability. One author suggested a model that implements sensors and 

machine learning in every stage of precision farming, including water management, crop selection, 

nutrient management, crop health management, yield management, and post-harvest management, to 

increase agricultural production levels. Different sensors can measure humidity, water level, soil 

moisture and pH value [25]. 

Smartphone applications are useful for integrating data aggregation, processing speed, and IoT ideals. 

These applications can collect information from weather stations and remote sensors for detailed 

analysis, enabling farmers to make decisions on weeding, watering, seeding, and fertilizing. One such 

application gathers data on soil tests, enabling machine learning algorithms to recommend suitable 

crops based on the results. 

The excessive use of chemical fertilizers imbalances the availability of soil nutrients, which are 

collected, classified, and can be analyzed using an extreme machine learning decision system. Hence, 

we should avoid a deficiency in NPK fertilizer in plants, as it might lead to bad results. Excess usage 

of fertilizer imbalances ecosystems. Precision agriculture assists with the appropriate usage of NPK 

fertilizer through IoT, WSN, and machine learning techniques [26].  

Shubham Prabhu, et.al. [27] has proposed a paper in which they put forward the soil analysis and crop 

prediction model. The main aim of the paper is to create a prediction engine that will be for the most 

suitable crop for a particular soil. As an initial step, authors have focused on predicting the accurate 

crop yield to the user by just analyzing the soil fertility as well as rainfall in the region entered by the 

user as an input. Basically, author considered five soil samples from different regions and then analysis 

is done based on temperature, moisture and humidity which is carried out at a regular interval of 24 

hours and the data is uploaded, displayed, and updated at an interval of 2 hours. All the data that is 

analyzed is continuously monitored, displayed, and uploaded on the IoT cloud. They have basically 

used three algorithms Naïve Bayes, Logistics and C4.5 [28] in which has given accuracy of 85% . 

As machine learning technology advances, increasingly sophisticated models have been proposed for 

automatic plant identification. With the widespread use of smartphones and the emergence of mobile 

apps like PlantNet [29], millions of plant photos have been collected. Mobile-based automatic plant 

identification is essential for real-world applications such as social-based ecological surveillance [30], 

invasive exotic plant monitoring [31], ecological science popularization, and more. Improving the 

performance of mobile-based plant identification models has become a priority for scholars and 

engineers. 

In recent years, many efforts have been made to extract local characteristics of leaves, flowers, or fruits. 

Most researchers use variations in leaf characteristics as a comparative tool for studying plants, and 

some leaf datasets, including the Swedish leaf dataset, Flavia dataset, and ICL dataset, are considered 

standard benchmarks. In [32], Soderkvist extracted shape characteristics and moment features of leaves 

and analyzed 15 different Swedish tree classes using backpropagation for the feed-forward neural 

network. Nilsback and Zisserman proposed a method of bag of visual word to describe the color, shape, 

texture features, and other characteristics [33]. In [34], Zhanget al. combined Harr features with SIFT 

features of flower image, coding them with nonnegative sparse coding method and classifying them 

by k-nearest neighbor method. 



 After so many years of continued exploration into plant recognition technology, the dedicated mobile 

applications such as LeafSnap [35], Pl@ntNet [29], can be conveniently used for identifying plants. In 

[36] the author has used a deep residual network that uses a residual map to identify the pest, including 

improved computational frameworks, specifically Graphical Processing Units (GPU) embedded 

processors. The author used DL to identify plant diseases. A deep convolutional neural network was 

used in this research. CNN, RNN, and GAN are the most common Deep Learning algorithms. 

2.3 Findings: 

The literature survey found that creating awareness about climate change is a complex issue, and 

traditional methods have not delivered fast enough results. Mobile applications have shown promise 

in promoting awareness and motivating individuals to take small actions that contribute to reducing 

climate change. AI and IoT technologies can be used to provide intelligent weed and disease detection 

systems, climate-friendly crop recommendations, and planting smart guides. The proposed smart 

farming system offers many services that address the challenges of climate change. The system can 

reduce the presence of weeds within crops, monitor crop diseases to prevent them from spreading, and 

recommend crops based on environmental conditions such as humidity, temperature, and rainfall rate. 

Deep learning models have shown promise in detecting weeds and diseases in crops and using them 

can significantly reduce the need for pesticides and herbicides. 

III.  PROBLEM SPECIFICATION 

Climate change has been identified as a significant threat to agriculture, resulting in annual crop 

production losses of up to 40%. The rise in pests and diseases due to climate change has led to severe 

implications, such as food insecurity, economic hardship, and a threat to global food security. 

Unfortunately, the general public often believes that individual actions cannot make a substantial 

difference in the fight against climate change, leading to a sense of hopelessness. This misconception 

may stem from a lack of access to tools and knowledge that could help people make a meaningful 

impact. Therefore, there is a need to develop an empowering mobile app and a novel smart agriculture 

system that will provide comprehensive tools to address the challenges of climate change in 

agriculture. The mobile app will feature an AI-powered smart planting guide that helps users to 

normalize planting around them, a community platform for raising awareness about climate change, 

and a pollution reporting feature. The smart agriculture system will provide farmers with a range of 

features and precision agriculture services such as intelligent weed detection, disease detection in rice, 

and a crop recommendation system based on soil analysis. 

The problem specification will focus on the development of the two outcomes, the mobile app, and the 

smart agriculture system. The primary aim is to provide comprehensive tools to enable farmers and 

individuals to reduce the impact of climate change on agriculture and increase productivity. The 

challenges that will be addressed include increasing crop productivity, reducing the presence of weeds 

within crops, and preventing the spread of crop diseases 

 

 

 

 



IV. IMPLEMENTATION 

This section describes some main concepts and methods used in the proposed models and applications. 
We have implemented the whole project through 3 main phases. 

Phase I : Data Acquisition 

A collection of six datasets that are involved which are: flower classification, leaf classification, cotton 
weeds, crop recommendation data, paddy diseases and weed seedlings, to satisfy model’s training needs.  

1- Flowers Dataset [37] 

The flower classification dataset is a collection of images of flowers from 16 different species. The 
dataset contains a total of 15740 images, with between 800 to 1027 images per species. Each image is 
labeled with the species it belongs to, making it a supervised learning problem for classification.  

2- Leaves Dataset [38] 

The Leaf Classification dataset consists approximately 1,584 images of leaf specimens (16 samples each 
of 99 species) which have been converted to binary black leaves against white backgrounds. Three sets 
of features are also provided per image: a shape contiguous descriptor, an interior texture histogram, 
and a fine-scale margin histogram. For each feature, a 64-attribute vector is given per leaf sample. 

3- Paddy Diseases Dataset [39] 

The Paddy Doctor Dataset provides a training dataset of 10,407 (75%) labeled paddy leaf images across 
ten classes (nine diseases and normal leaf). We also provide additional metadata for each image, such 
as the paddy variety and age. Our task is to develop an accurate disease classification model using the 
training dataset and then classify each sample in the test dataset of 3,469 (25%) paddy leaf images into 
one of the nine diseases or normal leaf. 

4- Seedlings Dataset [40] 

The plant seedling classification dataset contains a collection of images of plant seedlings from 12 
different species. The 12 different species divided as weeds and crops, 8 seedlings correspond to wild 
weeds like: loose silky-bent, common chickweed, scentless mayweed, small-flowered cranesbill, fat 
hen, charlock, cleavers, black-grass, and shepherd's purse and 4 seedlings that belong to common 
agriculture crops like sugar beet, maize, and common wheat at various stages of growth. The dataset 
contains a total of 5,539 images in the training set and 7,303 images in the test set, with each image 
labeled with the species it belongs to. 

5- Crop Recommendation Dataset [41] 

The Crop Recommendation dataset is a collection of data related to crop farming. The dataset includes 
information on different parameters such as soil content, temperature, humidity, and rainfall, which can 
be used to make informed decisions about farming strategy. The goal is to build a predictive model that 
can recommend the most suitable crops to grow in a particular farm based on these parameters. The 
dataset was constructed by aggregating datasets of rainfall, climate, and fertilizer data from India. 

6- Cotton Weeds Dataset [19] 

The dataset CottonWeedID15 consists of 5187 RGB images of 15 weeds that are common in cotton 
fields in the southern U.S. states. The images were manually labeled by weed scientists and trained 
individuals. The images are in JPEG format and have a resolution of 256 x 256 pixels.  

Phase II : Preprocessing Data & Training the Models 

After choosing the suitable dataset for each feature, the authors moved forward to build and train 
machine and deep learning models, starting with the IoT-Enabled Smart Agriculture System : 



To develop the Intelligent weed detection system, we have started to prepare our data. We had to 
prepare two datasets, the Cotton Weeds dataset, which consists of  15 weeds and the Plant Seedlings 
Dataset, consists of plant seedlings from 12 different species divided as 8 seedlings for weeds and 4 
seedlings that belong to common agriculture at various stages of growth. 

 

 Data Preprocessing 

For the Cotton Weeds dataset, we have used data augmentation, which is a technique used in machine 
learning and computer vision to increase the diversity of a training dataset. This is achieved by applying 
various transformations to the images or data samples, such as rotation, flipping, cropping, and color 
changes, in order to create new variations of the original data. These augmented samples can then be 
used to train machine learning models, improving their ability to generalize to new, unseen data. 

The authors have used a custom augmentation function (see Fig. 3), that applies a series of data 
augmentations to each image in the dataset. The augmentations are defined using the transforms module 
from PyTorch, and include random rotations, flips, and affine transformations, as well as random 
cropping with size (224, 224) and color jittering. The RandomApply function is also used to apply 
certain augmentations with a probability p, allowing for additional randomness in the dataset. 

Fig 1. Code snippet shows the RandomApply function. 

For the Plant Seedlings dataset, we have used data augmentation, with, such as horizontal flipping, 
shearing, scaling, translation, rotation, and brightness shift, to enhance the training process. These 
augmentations aimed to diversify the training data, improve the model's ability to handle variations in 
object orientation, shape, position, lighting conditions, and enhance its generalization. The 
ImageDataGenerator from TensorFlow was employed for data loading and augmentation operations, 
resulting in improved performance and robustness of the model. 

 Building & Training the Models 

After preparing the data of both datasets, the authors have developed two transfer learning classifiers, a 
fine-tuned ResNet50 deep learning model for the task of classifying cotton weeds into 15 categories and 
EfficientNetB2 deep learning model for classifying the plant seedlings.  

 ResNet50  

ResNet50 is a powerful convolutional neural network architecture that has been widely used in computer 
vision tasks due to its ability to achieve state-of-the-art performance on a variety of datasets. It uses the 
Residual Connections approach, which avoids "gradient vanishing" and speeds up the training. 
ResNet50 builds upon ResNet34 by utilizing a deeper network architecture to achieve higher accuracy 
without encountering the vanishing gradient problem. 

The ResNet50 architecture consists of 50 layers that function hierarchically (see Table 1), with the 
initial layers extracting low-level features and the deeper layers learning more complex, high-level 
features. Feature extraction is achieved using convolutional layers, batch normalization, and the 
Rectified Linear Unit activation function. The first layer is a convolutional layer with a 7x7 kernel size 
and a stride of 2, followed by a max-pooling layer with a 3x3 kernel size and a stride of 2 (see Fig. 2).  

 

 



Table 1. Resnet50 layers. 

Layer name Output Size 18-Layer 34-Layer 50-Layer 101-Layer 152-Layer

Conv1 112X112

Conv3_X 28x28
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Fig 2. Resnet50 architecture (Wikimedia Commons) 

For the training phase, a PyTorch Dataset object has been used, which can be passed to a Data Loader 
for efficient loading and batching of the data. During the classification stage, the ResNet50 network 
uses the extracted features to classify the input image into one of  15 categories, to identify the weeds. 
The features are passed through fully connected layers to produce a probability distribution over the 
feasible categories, with the category having the highest probability being designated as the predicted 
class of the image. Our implementation of the ResNet50 model was built using the PyTorch Lightning 
framework, which provides a high-level interface for training and evaluating deep learning models. The 
model was initialized with weights pre-trained on the large-scale ImageNet dataset, which contains over 
1 million labeled images across 1,000 categories. This pre-training allowed the model to learn a set of 
general features that could be fine-tuned for the specific task of weed classification. 

The ResNet50 model consists of multiple layers of convolutional and pooling operations, followed by 
a fully connected layer that produces the final predictions. We replaced the original fully connected 
layer with a new one consisting of two linear layers and a dropout layer in between, with the final output 
layer having the same number of neurons as the number of classes in our dataset (i.e., fifteen). We used 
the cross-entropy loss function to calculate the difference between the predicted and actual labels during 
training. We used the Adam optimizer with a learning rate of 3e-4 and a StepLR learning rate scheduler, 
which reduces the learning rate by a factor of 0.1 every two epochs (see Fig 3). We used a stratified k-
fold cross-validation approach with 4 folds to evaluate the model's performance on our dataset. 

K-fold cross-validation is a technique that helps in assessing the performance of a model by dividing 
the dataset into K subsets or folds of approximately equal size. The K-fold cross-validation method 
involves splitting the data into K parts, where K-1 parts are used for training the model, and the 
remaining one part is used for testing the model's performance. This process is repeated K times, with 



each subset used as the testing data once. The results are then averaged across the K experiments to get 
a final estimate of the model's performance (see Fig 4). 

The K-fold cross-validation is that it helps in providing a more accurate estimate of a model's 
performance. By using multiple splits of the data, we can get a better sense of how well our model 
generalizes to new data. K-fold cross-validation is used to evaluate the ResNet50Model. The dataset is 
split into 4 folds using the Stratified Fold function from scikit-learn. For each fold, a new instance of 
the ResNet50Model is created, and the model is trained on the training subset and evaluated on the 
validation subset using the PyTorch Lightning Trainer.  

Fig 3. Step Learning Rate  scheduler (Leonie Monigatti, 2022)                   Fig 4. K-fold cross-validation 

During training, we monitored the loss and accuracy metrics on both the training and validation datasets 
and used early stopping with a patience of two epochs to prevent overfitting. We also used the PyTorch 
Lightning metric module to calculate the accuracy of the test dataset after training was complete. 

 EfficientNetB2 

It is a convolutional neural network architecture (see Fig. 5) with a scaling method that uniformly scales 
depth, width, and resolution using a compound coefficient. This scaling approach enables efficient 
utilization of computational resources by uniformly adjusting network depth, width, and image size.  

 

 

 

 

 

 

 

 

Fig 5. EffiecientNetB2 Model architecture (Agarwal, 2020) 

The images were organized into a directory structure where each species had its own subdirectory 
containing the images. The dataset was split into a training set (80% of the images) and a validation set 
(20% of the images). We used Keras' ImageDataGenerator to apply data augmentation techniques such 
as rotation, shifting, shearing, zooming, and flipping to the training set images. This augmented data 
was used to train the model and improve its generalization performance. The model building process 
focused on implementing an efficient model to classify the weeds and crops seedlings with high 
accuracy.  

https://medium.com/@iamleonie?source=post_page-----24bbb262c863--------------------------------


The model's top layers were excluded to allow for customization. A global average pooling layer was 
added to obtain a fixed-length representation of the feature maps. To construct the predictor layers, a 
series of fully connected (Dense) layers were added, with ReLU activation functions for non-linearity. 
Dropout regularization was incorporated to prevent overfitting. The final layer consisted of a Dense 
layer with a softmax activation function, producing probabilities for each of the 12 target classes. 

The model was compiled using the Adam optimizer, Categorical Crossentropy loss function, and 
Categorical Accuracy as the evaluation metric. The model was trained using the provided training and 
validation data generators with a batch size of 32 for a total of 40 epochs. These training settings aimed 
to optimize model performance while preventing overfitting. The model was evaluated after each epoch 
using the validation set to monitor its performance and to prevent overfitting. The performance of the 
model was evaluated using accuracy and categorical cross-entropy loss metrics.  

Moving to the Paddy diseases detection system, we have started to prepare the dataset, The Paddy 
Doctor dataset contains 16,225 labeled paddy leaf images across 10 classes (9 different paddy diseases 
and healthy leaves). Our main objective is to develop a  deep learning-based model to classify the given 
paddy leaf images accurately. Therefore, we are  proposing a highly effective deep learning model based 
on the fine-tuned Residual Neural Network (ResNet34) architecture. 

 Data Preprocessing 

We started with a preprocessing pipeline that was designed to prepare image data for training and 
evaluation. The pipeline encompassed several key steps to ensure optimal data representation and 
facilitate efficient model learning. The dataset was split into separate training and validation sets, which 
allocated 90% of the data for training and 10% for validation. Furthermore, random shuffling of the was 
performed to eliminate any potential biases caused by the original order of the data. This randomization 
step enhances the generalization capabilities of the model by exposing it to a diverse and unbiased 
distribution of images during training. The preprocessing pipeline also incorporated a series of 
transformations to standardize and enhance the images. These transformations, encapsulated within the 
`transform` variable, included center cropping the images to a size of 446 pixels, resizing them to a 
uniform size of (256, 256) pixels, converting them to tensors and normalizing their pixel values. The 
normalization step employed specific mean and standard deviation values to align the image data with 
a standard distribution, facilitating more effective training and convergence of the model.(see Fig. 6) 

 

 

 

Fig 6. Sample of the augmented images 

 

 Building & Training the Models 

To train the model, we used the cross-entropy loss function, which is commonly used for multi-class 
classification problems. The Adam optimizer was employed to optimize the model parameters, with a 
learning rate of 1e-4. During training, we ran the model for 10 epochs and monitored the validation loss 
to prevent overfitting. We applied early stopping with a patience of 2 epochs to stop the training process 
if the validation loss did not improve. Throughout the training process, we collected the training and 
validation losses as well as the training and validation accuracies. These metrics provide insights into 
the model's performance and help in analyzing its learning behavior. 

 



For The Crop Recommendation and Support system “IoT-SACRSS”, we are proposing a support 
system to recommend the most suitable crop to grow based on IoT sensors data obtained from the fields 
and to help the farmland owners to have precision agricultural insights. We have developed various 
machine learning models and selected the one with the highest accuracy. The system relies on a KNN 
machine learning model that predicts the most suitable crops to grow based on temperature, soil pH, 
NPK values, humidity, and rainfall rate and using fuzzy logic and knowledgebase data the system 
returns the top 3 crops that will give the maximum productivity. The support system provides data-
driven recommendations for achieving optimal nutrient and environmental conditions to improve crop 
yield. It provides the farmer with soil health insights during the whole cultivation season and determines 
their land's nutrient needs based on the NPK values, the system recommends a customized mix of soil 
enhancers, such as biochar and compost. 

We have used data augmentation techniques for machine learning models involving various approaches 
to enhance model performance. Firstly, we have used  random sampling that involves duplicating rows 
or performing bootstrap sampling by randomly selecting rows with replacement to increase the dataset 
size. Secondly, Feature Engineering as Polynomial features and interaction features are created to 
capture non-linear relationships between variables. Binning discretizes continuous variables into 
distinct bins. Thirdly, noise injection gaussian (uniform noise) is added to feature values to introduce 
variability and improve model robustness. 

After Preprocessing data, we tried a variety of machine learning classifiers on the dataset : 

We started with a Decision Tree classifier that was trained and evaluated on the given dataset. The 
dataset was split into training (70%) and testing (30%) sets, and the classifier was trained on the training 
data using the "entropy" criterion. The accuracy of the classifier was measured using the testing data, 
and a classification report was generated to assess its performance in terms of precision, recall, F1-score, 
and support for each class. 

Secondly, K Nearest Neighbors (KNN) classifier was employed and assessed on the dataset. The 
classifier was trained using the training data and evaluated on the testing data. The KNN classifier was 
configured with a value of 9 for the “n_neighbors” parameter, indicating that it considered the labels of 
the 9 nearest neighbors when making predictions.  

And finally, the Random Forest classifier was utilized and evaluated on a given dataset. The classifier 

was trained using the training data and subsequently tested on the testing data. The Random Forest 

classifier was instantiated with 20 estimators and a random state of zero. After training the classifier, it 

was used to predict the target labels for the testing data. The accuracy of the classifier was calculated, 

and the obtained accuracy score was recorded.  

The classifier recommends the most suitable crop to grow based on data obtained from the fields, but 

we seek to achieve more climate-positive recommendations. Using the approximate values of water 

usage, and carbon footprint data for each crop, the system provide the carbon footprint and water usage 

for the top 3 predicted crops for a particular scenario, this will help the farmers to take climate-positive 

farming decisions. The crop data, including the aforementioned values, has been collected from 

FAOSTAT. For example, the three main grain crops have carbon footprint per unit area (CFA) equal to 

(4871 ± 418 kg CO2-eq·ha−1) for rice, (2766 ± 552 kg CO2-eq·ha−1) for wheat, and finally the maize 

(2439 ± 530 kg CO2-eq·ha−1). The rice showed the highest carbon footprint and contribution to the 

total greenhouse gas (GHG) emissions, mainly due to their larger cultivated areas and higher fertilizer 

application rates.  

The support system provides data-driven recommendations to get the optimal nutrients and 

environmental conditions to improve crop yield. It determines the land's nutrient needs based on the 



NPK values, the system recommends a customized mix of soil enhancers, such as biochar and compost. 

Using the proposed algorithms, the system can recommend the needed nutrient amounts based on the 

number of acres & the NPK values. Entered readings are compared against the ideal benchmarks and 

margins of 10% are applied to assure an acceptable buffer allowance. Difference between the two 

would mean deficiency or extreme soil environment conditions and based on it, the algorithm would 

recommend the needed nutrient amounts, based on the number of acres (see Algorithm 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moving to the second part of the project, the awareness app, we are proposing the AI-powered Smart 
Planting Guide. We have worked on identifying the plants type based on flowers and leaves 
characteristics and features. For the leaf classification model, we have developed a Linear Discriminant 
Analysis model to identify different types of plants based on leave shape, texture, and margins.   

The leave dataset was represented as binary black images against white backgrounds. Three sets of 
features are also provided per image: a shape contiguous descriptor, an interior texture histogram, and 
a fine-scale margin histogram. For each feature, a 64-attribute vector is given per sample (see Fig. 7). 

 

 

 

 

Fig 7. Sample images from the leave images dataset  

Machine learning classifiers are algorithms used in supervised learning that can be applied to various 

tasks, including leaf classification. These classifiers aim to learn a mapping between input data and 

output labels, which can be binary or multi-class. Different classifiers use different techniques to 

separate the data into classes, such as decision trees, random forests, and Linear Discriminant Analysis.  

Algorithm 1 The Nitrogen Requirements 



In agriculture, machine learning classifiers can be used to classify leaves based on their features, such 

as shape, texture, color, and size. And in our case, which is classifying different types of plants using 

leaves, we have developed a Linear Discriminant Analysis (LDA) classification algorithm that finds a 

linear combination of features to separate data into classes. The steps involved are: 

 Compute the mean value of each class. 

 Compute within-class (Sw) and between-class (Sb) scatter matrices. 

 Compute eigenvalues and eigenvectors of Sw-1 and Sb to find the directions of projection. 

 Project the data onto the new subspace defined by the eigenvectors. 

 

There are two types of scatter matrices that are computed in LDA. The within-class scatter matrix (Sw) 
measures the variability of the samples within each class, while the between-class scatter matrix (Sb) 
measures the difference between class means. These matrices are computed as in Eq.(1) & Eq. (2):  

 

                                                𝑆𝑤 = ∑ ∑ (𝑥 − 𝑚𝑖)(𝑥 − 𝑚𝑖)
𝑇

𝑥∈𝐶𝑖

𝑘
𝑖=1                                     (1) 

                                        Sb = ∑ ni(mi − m)(mi − m)Tk
i=1                                      (2) 

 

For the flower classification, we have developed a fine-tuned (ResNet50) model and trained it on the 
flower’s dataset . As the dataset was not large enough to train our model, we applied some data 
augmentation techniques. These techniques include random rotation, horizontal and vertical flipping, 
affine transformation, color jittering, random resized crop, random crop with padding, Gaussian blur, 
random perspective transformation, conversion to tensors, and normalization (see Fig. 8). These 
augmentations introduce variations to the images, enhancing the model's ability to generalize and handle 
diverse input data. By applying these transformations, the robustness and performance of the model 
trained on the flower dataset has improved. 

Fig 8. Sample of the augmented flowers images 

The flower classification model takes advantage of the pre-trained ResNet50 model and adds a custom 
fully connected layer to perform classification. The last layer of the model is replaced with a fully 
connected layer consisting of two linear layers and a dropout layer with a probability of 0.3 to prevent 
overfitting. The first linear layer takes the output of the model and passes it through 128 nodes. The 
second linear layer takes the output of the first linear layer and passes it through the number of classes 
in the dataset. The model uses the Cross-Entropy loss function and the Adam optimizer. A step scheduler 
is used for the optimizer. 

 

 

 



Phase III : Developing Together App & The Smart Farming Web Dashboard 

To utilize these AI models and IoT-SACRSS system, we focused on developing two end-user products, 
Together, a mobile application to raise awareness among communities about climate change and 
provide a tool to make planting easier and a web dashboard to provide farms and agricultural domain 
with comprehensive tools that will enable them to reduce the impact of climate change on crop yields 
and increase productivity. 

We have implemented all deep learning models in Python 3.9 programming language using TensorFlow 
and PyTorch  Libraries on the Kaggle platform using NVIDIA TESLA P100 GPUs. After training the 
models, we have saved their best  weights and developed a lightweight RESTful API using Flask to use 
our models and make predictions. Implemented python 3.7 using the PyCharm IDE and we deployed 
the backend code using AWS cloud services (EC2) and linked to the application. Android Studio has 
been used to develop the app using Flutter framework and dart language. MongoDB database system 
has been used to build the plant’s documents. 

The mobile application offers several features to encourage people to act against climate change. We 
have developed the app using Flutter as a cross-platform framework, connected to a backend API to 
receive the images, process them, infer, and return predictions. The app consists of  4 main features 
which are the AI-powered planting guide that can identify plant species from leaves, and flowers. This 
will help users to learn more about their plants and make planting easier. We have built our plant 
information database using MongoDB to provide a step-by-step guide on when to water the plant and 
all its information about how to care for it . The user can take a picture of his/her plant and the at the 
cloud will predict the plant type and based on the type; the data will be retrieved from the database. 
Each user has his own garden where he can add or remove his favorite plants.  

The app introduces a community platform where people can share stories, tips, and raise awareness 
through posts and discussions like a social network. Users can upload posts with or without pictures, 
share tips and facts and interact with each other with likes and comments. Firebase has been used to 
Authenticate users using google accounts along with Firestore & Fire storage services to handle the 
user’s data and social media platform data. Another feature of the app is the pollution report that will 
allow users to report polluting activities they observe around them feature will enable people to report 
polluting actions they see daily around them, such as burning rice straws, by using the user location and 
phone camera, the user can take a picture of the polluting activity to inform specialized authorities about 
it. And for the smart farming website, we have implemented the front-end using React J and bootstrap 
framework. For the backend a Django web application has been developed to make use of the AI 
models. It consists of 3 pages, dashboard, weed detection and disease detection.  

4.3 Result Analysis and Discussion   

This section presents and discusses the results obtained by the proposed models in detail.  

 ResNet50 Model  

Overall, our ResNet50 model achieved the higher accuracy among all the models that we have tried 

for the weed classification, with an average accuracy of over 93% across the 4 folds (see Table. 2). 

Table 3 presents a comparison between the models used in the experiment in terms of accuracy and 

where the proposed model achieved the highest accuracy across all the models used in the experiment. 

 

 

 



Table 3. Validation Accuracy achieved                             Table 2. Acc. & Loss achieved across folds         

   

 

 

 

 

 

                                                                                                        

 

 EfficientNetB2 Model 

The model building process focused on implementing an efficient model to classify the weeds and 

crops seedlings with high accuracy. As it was a challenge to extract features from the small seedlings, 

several deep neural network models, including MobileNetV2, VGG16, and EfficientNetB2 are 

proposed for transfer learning to classify images into their true classes (see Table. 4). The 

EfficientNetB2 showed the highest accuracy during training and validation with 97 % (see Fig. 9). 

Evaluation has been performed using Confusion Matrix (see Fig. 10).  

Table 4. Validation Accuracy scores achieved by each model 

Model                  Validation Accuracy Score 

MobileNetV2 0.9539 % 

EfficientNetB2             0.9799 % 

VGG16 0.9223 % 
 

 

 

 

 

 

 

 

Fig. 9 Accuracy curve for train and validation. 

 

                                                                           Fig. 10 Confusion matrix of the EfficientNetB2 model 

Model Valid. Acc. Score 

VGG19 0.8467 % 

ResNet50 0.9879 % 

CNN 0.7946 % 

Fold   Train 
Loss 

Val Loss Train 
Acc. 

Val Acc. 

1 0.209469 0.191695 0.941731 0.943445 

2 0.210408 0.191862 0.936304 0.939160 

3 0.216815 0.192072 0.935161 0.943445 

4 0.226620 0.215179 0.938018 0.943445 



2- Paddy diseases detection system  (ResNet34) 

The model exhibits remarkable capabilities in accurately classifying and identifying 12 distinct paddy 

leaf diseases. The model showed a high accuracy during  training and validation (see Fig. 11). 

 

                                    

 

 

 

                                          (a)                                                            (b) 

Fig. 11 Acc. & loss curves. (a) Acc. curve for train & valid. (b) Loss curve for train & validation. 

3- Crop Recommendation (Random Forest) 

The Random Forest Classifier showed the highest accuracy among the other classifiers (see Fig. 12). 

For evaluation, we have used confusion matrix (see Fig. 13). 

 

 

 

 

 

 

       Fig. 12 Acc. comparison between classifiers                 Fig. 13 Confusion matrix of the RF Classifier 

4- Flower Classification (Resnet50) 

Our fine-tuned ResNet50 model achieved the higher accuracy among all the models that we have 

tried for the weed classification, with an average accuracy of over 93% across 4 folds (see Fig. 14). 

 

 

 

 

Fig. 14  Accuracy curve for train and validation for the 

last 3 epochs in the 4th fold 

 



5- Leaves Classification (LDA) 

The LDA classifier achieved ≅ 0.98 % for validation accuracy (see Fig. 15).   

 

Fig. 15 Accuracy curve for train and validation 

V.  CONCLUSION AND FUTURE WORK 

In conclusion, this project proposes an innovative solution to the challenges of climate change and 

agriculture through the development of the "Together" mobile application. The app aims to create 

awareness and motivate individuals to take small actions that contribute to reducing climate change. It 

provides various solutions and habits to monitor while motivating users to continue making positive 

changes and gaining more awareness through achievable methods and make planting easier.. The 

proposed smart farming system addresses the challenges of climate change by decreasing GHG 

emissions and increasing crop productivity through the expansion of woodland and soil and carbon 

farming. The app employs AI and IoT technologies to provide intelligent weed and disease detection 

systems and guide crop recommendations based on environmental conditions. The "Together" app 

offers a unique approach to build a community of people concerned with climate change by focusing 

on habit-building, empowering communities to increase resilience against climate change. In this way, 

the app offers a practical and accessible solution that can make a meaningful impact towards achieving 

sustainable agricultural practices and combating climate change. 

5.1 Future Work 

 Expanding the app's features and functionality: The app can be enhanced by adding new features 

such as an interactive map to showcase the global impact of climate change, personalized carbon 

footprint calculators, and gamification elements to the app to make it more engaging. 

 Conducting further research and development: Further research can be conducted to improve the 

accuracy of the AI and IoT technologies used in the smart farming system. This could include 

developing more advanced sensors and algorithms to improve weed and disease detection and crop 

recommendations. 

 Evaluating the app's impact: It would be valuable to conduct studies to evaluate the effectiveness 

of the "Together" app in promoting sustainable habits and contributing to climate change 

mitigation. User feedback can also be collected to improve the app's user experience and identify 

areas for further improvement. 

 Scaling the app and farming system: The app and the smart farming system can be adapted and 

scaled to cover more plant types and crops.  



 Integration of drones and IoT technology for precision farming: In addition to the current farming 

system features, integrating drone and IoT technology can help farmers to monitor crop health and 

identify issues such as nutrient deficiencies, pest infestations, and drought stress. The drone can 

be equipped with sensors and cameras that collect data on soil and crop health, which can then be 

analyzed using AI algorithms to provide farmers with actionable insights.  
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VI.  APPENDICES  

Appendix A 

The following images shows the empowering app features (Fig. 1, 2, 3, 4, 5, 6, 7, 8, 9) 

 

       Fig. 1 Create Post                  Fig. 2 Community                 Fig. 3 User Profile             Fig. 4 Pollution Report   

  

 

Fig. 5 Planting Guide      Fig. 6 Garden            Fig. 7 Plant details           Fig. 8 Flower Identify        Fig. 9 Plant Info 

 


