#!/bin/bash __notes__=" SeeAlso: ../../../../../scripts/prepare_drop3.sh " data_splits(){ DVC_DPATH=$(geowatch_dvc) DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ python -m geowatch.cli.queue_cli.prepare_splits \ --base_fpath="$DVC_DPATH/$DATASET_CODE/combo_LM.kwcoco.json" \ --run=0 --backend=tmux } prep_teamfeat_drop3(){ # Team Features on drop2 #DVC_DPATH=$(geowatch_dvc --hardware="ssd") DVC_DPATH=$(geowatch_dvc) DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ python -m geowatch.cli.queue_cli.prepare_teamfeats \ --base_fpath="$DVC_DPATH/$DATASET_CODE/data.kwcoco.json" \ --gres="2,3" \ --with_landcover=1 \ --with_depth=0 \ --with_materials=1 \ --with_invariants=1 \ --do_splits=1 \ --depth_workers=0 \ --cache=1 --run=1 --backend=tmux #--backend=slurm #python -m geowatch.cli.queue_cli.prepare_splits --base_fpath=$DVC_DPATH/Drop2-Aligned-TA1-2022-01/combo_L.kwcoco.json --run=False } grab_feats_from_horologic(){ # On horologic source ~/local/init/utils.sh ls_array "KWCOCO_FNAMES" "*_ILM_nowv_*.kwcoco.json" bash_array_repr "${KWCOCO_FNAMES[@]}" for FNAME in "${KWCOCO_FNAMES[@]}"; do kwcoco reroot --src "./$FNAME" --dst "$FNAME" \ --old_prefix="/home/local/KHQ/jon.crall/data/dvc-repos/smart_watch_dvc-ssd/Aligned-Drop3-TA1-2022-03-10/" --new_prefix="" \ --absolute=False done kwcoco validate --require_relative=True "${KWCOCO_FNAMES[@]}" # On namek DVC_DPATH=$(geowatch_dvc) echo "DVC_DPATH = $DVC_DPATH" rsync -azvprRP horologic:data/dvc-repos/smart_watch_dvc-ssd/Aligned-Drop3-TA1-2022-03-10/_assets/./uky_invariants "$DVC_DPATH"/Aligned-Drop3-TA1-2022-03-10/_assets rsync -azvprRP --prune-empty-dirs --include "*/" --include="*combo*ILM*nowv*.kwcoco.json" --exclude="*" horologic:data/dvc-repos/smart_watch_dvc-ssd/./Aligned-Drop3-TA1-2022-03-10/ "$DVC_DPATH" } gather-checkpoints-repackage(){ ################################# # Repackage and commit new models ################################# DVC_DPATH=$(geowatch_dvc) DATASET_CODE=Aligned-Drop3-TA1-2022-03-10 EXPT_GROUP_CODE=eval3_candidates KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE python -m geowatch.tasks.fusion.repackage gather_checkpoints \ --dvc_dpath="$DVC_DPATH" \ --storage_dpath="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/packages" \ --train_dpath="$DVC_DPATH/training/$HOSTNAME/$USER/$DATASET_CODE/runs/*/lightning_logs" \ --push_jobs=8 \ --mode=list } schedule-prediction-and-evlauation(){ python -m geowatch.tasks.fusion.dvc_sync_manager "list" python -m geowatch.tasks.fusion.dvc_sync_manager "pull evals" python -m geowatch.tasks.fusion.dvc_sync_manager "pull packages" python -m geowatch.tasks.fusion.dvc_sync_manager "push evals" #python -m geowatch.tasks.fusion.dvc_sync_manager "push packages evals" DVC_DPATH=$(geowatch_dvc) cd "$DVC_DPATH" git pull ################################# # Pull new models on eval machine ################################# DVC_DPATH=$(geowatch_dvc --hardware="hdd") cd "$DVC_DPATH" git pull dvc pull -r aws -R models/fusion/eval3_candidates/packages dvc pull -r aws -R models/fusion/eval3_candidates/eval ################################# # Run Prediction & Evaluation ################################# # TODO: # - [X] Argument for test time augmentation. # - [ ] Argument general predict parameter grid # - [ ] Can a task request that slurm only schedule it on a specific GPU? # Note: change backend to tmux if slurm is not installed DVC_DPATH=$(geowatch_dvc) DATASET_CODE=Aligned-Drop3-TA1-2022-03-10 EXPT_GROUP_CODE=eval3_candidates KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json # The devices flag does not work for the slurm backend. (Help wanted) TMUX_GPUS="0,1" #TMUX_GPUS="1," python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --devices="$TMUX_GPUS" \ --model_globstr="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/packages/*Simplify*/*.pt" \ --test_dataset="$VALI_FPATH" \ --set_cover_algo="approx," \ --run=1 --skip_existing=True --backend=tmux TMUX_GPUS="0,1,2,3" python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --devices="$TMUX_GPUS" \ --model_globstr="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/packages/*/*xfer*V3*.pt" \ --test_dataset="$VALI_FPATH" \ --run=1 --skip_existing=True --backend=tmux TMUX_GPUS="0,1,2,3" python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --devices="$TMUX_GPUS" \ --model_globstr="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/packages/*/*scratch*V3*.pt" \ --test_dataset="$VALI_FPATH" \ --run=1 --skip_existing=True --backend=tmux # Iarpa BAS metrics only on existing predictions python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --devices="$TMUX_GPUS" \ --model_globstr="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/packages/*/*V3*.pt" \ --test_dataset="$VALI_FPATH" \ --skip_existing=True \ --enable_pred=0 \ --enable_eval=0 \ --enable_iarpa_eval=0 \ --backend=tmux --run=1 ################################# # Commit Evaluation Results ################################# # Be sure to DVC add the eval results after! DVC_DPATH=$(geowatch_dvc --hardware="hdd") cd "$DVC_DPATH" # Check for ls -al models/fusion/eval3_candidates/eval/*/*/*/*/eval/curves/measures2.json ls -al models/fusion/eval3_candidates/eval/*/*/*/*/eval/tracking/*/iarpa_eval/scores/merged/summary2.json # Check for uncommited evaluations # shellcheck disable=SC2010 ls -al models/fusion/eval3_candidates/eval/*/*/*/*/eval/curves/measures2.json | grep -v ' \-> ' # shellcheck disable=SC2010 ls -al models/fusion/eval3_candidates/eval/*/*/*/*/eval/tracking/*/iarpa_eval/scores/merged/summary2.json | grep -v ' \-> ' #du -shL models/fusion/eval3_candidates/eval/*/*/*/*/eval/curves/measures2.json | sort -h dvc add models/fusion/eval3_candidates/eval/*/*/*/*/eval/curves/measures2.json python -c "import sys, pathlib, watch.utils.simple_dvc; watch.utils.simple_dvc.SimpleDVC().add([p for p in sys.argv[1:] if not pathlib.Path(p).is_symlink()])" models/fusion/eval3_candidates/eval/*/*/*/*/eval/curves/measures2.json python -c "import sys, pathlib, watch.utils.simple_dvc; watch.utils.simple_dvc.SimpleDVC().add([p for p in sys.argv[1:] if not pathlib.Path(p).is_symlink()])" models/fusion/eval3_candidates/eval/*/*/*/*/eval/tracking/*/iarpa_eval/scores/merged/summary2.json git commit -am "add eval from $HOSTNAME" git push dvc push -r aws -R models/fusion/eval3_candidates/eval # For IARPA metrics dvc unprotect models/fusion/eval3_candidates/eval/*/*/*/*/eval/tracking/*/iarpa_eval/scores/merged/summary2.json dvc add models/fusion/eval3_candidates/eval/*/*/*/*/eval/tracking/*/iarpa_eval/scores/merged/summary2.json git commit -am "add iarpa eval from $HOSTNAME" git push dvc push -r aws -R models/fusion/eval3_candidates/eval #dvc push -r local_store -R models/fusion/eval3_candidates/eval } aggregate-results(){ ################################# # Aggregate Results ################################# # On other machines DVC_DPATH=$(geowatch_dvc --hardware="hdd") DVC_DPATH=$(geowatch_dvc) cd "$DVC_DPATH" git pull #dvc checkout aws models/fusion/eval3_candidates/eval/*/*/*/*/eval/curves/measures2.json.dvc #DVC_DPATH=$(geowatch_dvc) #cd "$DVC_DPATH" git pull dvc pull -r aws -R models/fusion/eval3_candidates/eval/*/*/*/*/eval/curves/measures2.json.dvc #dvc pull -r aws -R models/fusion/eval3_candidates/eval #DVC_DPATH=$(geowatch_dvc --hardware="hdd") EXPT_GROUP_CODE=eval3_candidates #EXPT_NAME_PAT="*" EXPT_NAME_PAT="*" #EXPT_NAME_PAT="*Drop3*" EXPT_NAME_PAT="*" #EXPT_NAME_PAT="BOTH_TA1_COMBO_TINY_p2w_raw*" #EXPT_NAME_PAT="BOTH_TA1_COMBO_TINY_p2w_raw*" MODEL_EPOCH_PAT="*" PRED_DSET_PAT="*" PRED_CFG_PAT="*" MEASURE_GLOBSTR=${DVC_DPATH}/models/fusion/${EXPT_GROUP_CODE}/eval/${EXPT_NAME_PAT}/${MODEL_EPOCH_PAT}/${PRED_DSET_PAT}/${PRED_CFG_PAT}/eval/curves/measures2.json python -m geowatch.tasks.fusion.aggregate_results \ --measure_globstr="$MEASURE_GLOBSTR" \ --out_dpath="$DVC_DPATH/agg_results/$EXPT_GROUP_CODE" \ --dset_group_key="*Drop3*combo_LM_nowv_vali*" \ --classes_of_interest "Site Preparation" "Active Construction" \ --io_workers=10 --show=True #\ #--embed=True --force-iarpa DVC_DPATH=$(geowatch_dvc) cd "$DVC_DPATH" git pull dvc pull -r aws -R models/fusion/eval3_candidates/eval/*/*/*/*/eval/curves/measures2.json.dvc EXPT_GROUP_CODE=eval3_candidates EXPT_NAME_PAT="*" MODEL_EPOCH_PAT="*" PRED_DSET_PAT="*" PRED_CFG_PAT="*" MEASURE_GLOBSTR=${DVC_DPATH}/models/fusion/${EXPT_GROUP_CODE}/eval/${EXPT_NAME_PAT}/${MODEL_EPOCH_PAT}/${PRED_DSET_PAT}/${PRED_CFG_PAT}/eval/curves/measures2.json python -m geowatch.tasks.fusion.aggregate_results \ --measure_globstr="$MEASURE_GLOBSTR" \ --out_dpath="$DVC_DPATH/agg_results/$EXPT_GROUP_CODE" \ --dset_group_key="*Drop3*combo_LM_nowv_vali*" \ --classes_of_interest "Site Preparation" "Active Construction" \ --io_workers=10 --show=True } schedule-prediction-and-evaluate-team-models(){ # For Uncropped DVC_DPATH=$(geowatch_dvc) DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPT_GROUP_CODE=eval3_candidates KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --devices="0,1" \ --model_globstr="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/packages/DZYNE*/*.pt" \ --test_dataset="$VALI_FPATH" \ --run=0 --skip_existing=True --backend=serial } recovery_eval(){ DVC_DPATH=$(geowatch_dvc --hardware="hdd") DATASET_CODE=Aligned-Drop3-TA1-2022-03-10 EXPT_GROUP_CODE=eval3_candidates KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json TMUX_GPUS="0,1,2,3" #--model_globstr="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/models_of_interest-2.txt" \ python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --devices="$TMUX_GPUS" \ --model_globstr="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/models_of_interest.txt" \ --test_dataset="$VALI_FPATH" \ --enable_pred=1 \ --enable_eval=redo \ --enable_track=0 \ --enable_iarpa_eval=0 \ --chip_overlap=0.3 \ --tta_time=0 \ --tta_fliprot=0 \ --bas_thresh=0.1 \ --draw_heatmaps=1 --draw_curves=1 \ --skip_existing=1 --backend=tmux --run=0 python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --devices="$TMUX_GPUS" \ --model_globstr="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/models_of_interest.txt" \ --test_dataset="$VALI_FPATH" \ --enable_pred=1 \ --enable_eval=0 \ --enable_track=1 \ --enable_iarpa_eval=0 \ --skip_existing=True --backend=tmux --run=0 #models/fusion/eval3_candidates/packages/BASELINE_EXPERIMENT_V001/BASELINE_EXPERIMENT_V001_epoch=8-step=47069.pt #models/fusion/eval3_candidates/packages/Drop3_SpotCheck_V323/Drop3_SpotCheck_V323_epoch=18-step=12976.pt #models/fusion/eval3_candidates/packages/Drop3_SpotCheck_V313/Drop3_SpotCheck_V313_epoch=34-step=71679.pt DVC_DPATH=$(geowatch_dvc --hardware="hdd") DATASET_CODE=Aligned-Drop3-TA1-2022-03-10 EXPT_GROUP_CODE=eval3_candidates KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE #VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json writeto "$DVC_DPATH/models/fusion/eval3_candidates/models_of_interest-2.txt" " models/fusion/eval3_candidates/packages/Drop3_SpotCheck_V319/Drop3_SpotCheck_V319_epoch=29-step=61439-v2.pt " ls "$DVC_DPATH"/models/fusion/$EXPT_GROUP_CODE/pred/*/*Drop3* MODEL_GLOBSTR=$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/packages/*/*.pt #MODEL_GLOBSTR="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/models_of_interest-2.txt" TMUX_GPUS="0,1,2,3,4,5,6" python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --devices="$TMUX_GPUS" \ --model_globstr="$MODEL_GLOBSTR" \ --test_dataset="$VALI_FPATH" \ --enable_pred=0 \ --enable_eval=0 \ --enable_track=1 \ --enable_iarpa_eval=1 \ --chip_overlap=0.3 \ --tta_time=0 \ --tta_fliprot=0 \ --bas_thresh=0.1 --hack_bas_grid=0 \ --skip_existing=1 --backend=tmux --run=0 DVC_DPATH=$(geowatch_dvc --hardware="hdd") EXPT_GROUP_CODE=eval3_candidates #MEASURE_GLOBSTR=$DVC_DPATH/models/fusion/eval3_candidates/eval/BASELINE_EXPERIMENT_V001/pred_BASELINE_EXPERIMENT_V001_epoch=11-step=62759/Aligned-Drop3-TA1-2022-03-10_combo_LM_nowv_vali.kwcoco/predcfg_abd043ec/eval/curves/measures2.json EXPT_GROUP_CODE=eval3_candidates #EXPT_NAME_PAT="*" EXPT_NAME_PAT="*" #EXPT_NAME_PAT="*Drop3*" EXPT_NAME_PAT="*" #EXPT_NAME_PAT="BOTH_TA1_COMBO_TINY_p2w_raw*" MODEL_EPOCH_PAT="*" MODEL_EPOCH_PAT="*V319_epoch=29*" PRED_DSET_PAT="*" PRED_CFG_PAT="*" MEASURE_GLOBSTR=${DVC_DPATH}/models/fusion/${EXPT_GROUP_CODE}/eval/${EXPT_NAME_PAT}/${MODEL_EPOCH_PAT}/${PRED_DSET_PAT}/${PRED_CFG_PAT}/eval/curves/measures2.json ls "$MEASURE_GLOBSTR" python -m geowatch.tasks.fusion.aggregate_results \ --measure_globstr="$MEASURE_GLOBSTR" \ --out_dpath="$DVC_DPATH/agg_results/$EXPT_GROUP_CODE" \ --dset_group_key="*Drop3*combo_LM_nowv_vali*" --show=0 \ --io_workers=10 --show=False \ --classes_of_interest "Site Preparation" "Active Construction" --force-iarpa # ----------- TMUX_GPUS="0," python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --devices="$TMUX_GPUS" \ --model_globstr="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/models_of_interest-2.txt" \ --test_dataset="$VALI_FPATH" \ --enable_pred=0 \ --enable_eval=0 \ --enable_track=1 \ --enable_iarpa_eval=1 \ --chip_overlap=0.3 \ --tta_time=0,1,2,3 \ --tta_fliprot=0 \ --bas_thresh=0.1,0.2 \ --skip_existing=True --backend=tmux --run=1 TMUX_GPUS="0,1,2,3,4,5,6,7,8" python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --devices="$TMUX_GPUS" \ --model_globstr="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/models_of_interest.txt" \ --test_dataset="$VALI_FPATH" \ --enable_pred=0 \ --enable_eval=0 \ --enable_track=1 \ --enable_iarpa_eval=1 \ --bas_thresh=0.2 \ --skip_existing=True --backend=tmux --run=1 # \ #--embed=True } fix-bad-commit(){ pyblock " import glob eval_fpaths = list(glob.glob('models/fusion/eval3_candidates/eval/*/*/*/*/eval/curves/measures2.json')) fixme = [] for eval_fpath in eval_fpaths: eval_fpath = ub.Path(eval_fpath) eval_dvc_fpath = eval_fpath.augment(tail='.dvc') if eval_dvc_fpath.exists(): text = eval_dvc_fpath.read_text() if '=====' in text: fixme.append(eval_fpath) print(text) from watch.utils.simple_dvc import SimpleDVC dvc = SimpleDVC('.') dvc.unprotect(fixme) for p in fixme: p.augment(tail='.dvc').delete() " } singleton_commands(){ DVC_DPATH=$(geowatch_dvc) MODEL_FPATH=$DVC_DPATH/models/fusion/eval3_candidates/packages/Drop3_bells_mlp_V305/Drop3_bells_mlp_V305_epoch=5-step=3071-v1.pt DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json #PRED_FPATH=$HOME/data/dvc-repos/smart_watch_dvc/models/fusion/eval3_candidates/pred/Drop3_bells_mlp_V305/pred_Drop3_bells_mlp_V305_epoch=5-step=3071-v1/Aligned-Drop3-TA1-2022-03-10_combo_LM_nowv_vali.kwcoco/predcfg_abd043ec/pred.kwcoco.json python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --devices="$TMUX_GPUS" \ --model_globstr="$MODEL_FPATH" \ --test_dataset="$VALI_FPATH" \ --skip_existing=0 \ --enable_pred=0 \ --enable_eval=1 \ --enable_eval=1 \ --enable_track=redo \ --enable_iarpa_eval=redo \ --backend=serial --run=0 # Find all models that have predictions DVC_DPATH=$(geowatch_dvc) cd "$DVC_DPATH" ls models/fusion/eval3_candidates/pred/*/*/*/*/pred.kwcoco.json } export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) DVC_DPATH=$(geowatch_dvc --hardware="hdd") WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" INITIAL_STATE="noop" EXPERIMENT_NAME=Drop3_BASELINE_Template DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=0.25 \ --saliency_loss='dicefocal' \ --class_loss='dicefocal' \ --num_workers=8 \ --devices "1" \ --batch_size=1 \ --accumulate_grad_batches=1 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --dropout=0.1 \ --attention_impl=exact \ --chip_size=380 \ --time_steps=5 \ --chip_overlap=0.0 \ --time_sampling=soft+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --decoder=mlp \ --method="MultimodalTransformer" \ --arch_name=smt_it_stm_p8 \ --normalize_inputs=1024 \ --max_epochs=40 \ --patience=40 \ --max_epoch_length=2048 \ --draw_interval=5m \ --num_draw=1 \ --amp_backend=apex \ --dist_weights=False \ --use_centered_positives=True \ --stream_channels=8 \ --temporal_dropout=0 \ --init="$INITIAL_STATE" \ --amp_backend=apex \ --num_sanity_val_steps=0 \ --init="noop" \ --package_fpath="$PACKAGE_FPATH" \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --num_sanity_val_steps=0 \ --dump "$WORKDIR/configs/drop3_baseline_20220323.yaml" # horologic abalate1 # ------------------ DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" INITIAL_STATE="noop" EXPERIMENT_NAME=drop3_abalate1 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_baseline_20220323.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --init="$INITIAL_STATE" \ --dump "$WORKDIR/configs/drop3_abalate1.yaml" export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_BASELINE_BOTH_V301 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=1.00 export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_BASELINE_BOTH_V302 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=1.00 export CUDA_VISIBLE_DEVICES=2 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_BASELINE_BAS_V303 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 export CUDA_VISIBLE_DEVICES=3 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_BASELINE_SC_V304 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 # toothbrush abalate1 # ------------------- DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE="noop" EXPERIMENT_NAME=bells_and_whistles DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_baseline_20220323.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --num_workers=8 \ --devices "1" \ --batch_size=1 \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=0.35 \ --saliency_loss='dicefocal' \ --class_loss='focal' \ --learning_rate=3e-4 \ --weight_decay=1e-5 \ --channels="$CHANNELS" \ --accumulate_grad_batches=4 \ --chip_size=380 \ --time_steps=6 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=8 \ --max_epochs=80 \ --patience=80 \ --max_epoch_length=2048 \ --use_centered_positives=True \ --stream_channels=8 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.1,Site Preparation*2.0" \ --init="$INITIAL_STATE" \ --dump "$WORKDIR/configs/bells_and_whistles_teamfeat.yaml" export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_bells_mlp_V305 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/bells_and_whistles_teamfeat.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --decoder=mlp export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_bells_seg_V306 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/bells_and_whistles_teamfeat.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --decoder=segmenter --init=/home/joncrall/data/dvc-repos/smart_watch_dvc/training/toothbrush/joncrall/Aligned-Drop3-TA1-2022-03-10/runs/Drop3_bells_mlp_V305/lightning_logs/version_0/package-interupt/package_epoch0_step511.pt # namek abalate1 # -------------- export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" INITIAL_STATE="noop" EXPERIMENT_NAME=bells_and_whistles DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_baseline_20220323.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --num_workers=8 \ --devices "1" \ --batch_size=1 \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=1.00 \ --neg_to_pos_ratio=0.35 \ --saliency_loss='dicefocal' \ --class_loss='focal' \ --learning_rate=3e-4 \ --weight_decay=1e-5 \ --channels="$CHANNELS" \ --accumulate_grad_batches=4 \ --chip_size=256 \ --time_steps=5 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=8 \ --max_epochs=80 \ --patience=80 \ --max_epoch_length=2048 \ --use_centered_positives=True \ --normalize_inputs=10000 \ --stream_channels=8 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.1,Site Preparation*2.0" \ --init="$INITIAL_STATE" \ --dump "$WORKDIR/configs/bells_and_whistles.yaml" export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10 EXPERIMENT_NAME=Drop3_bells_raw_mlp_V307 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/bells_and_whistles.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --decoder=mlp export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_bells_raw_seg_V308 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/bells_and_whistles.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --decoder=segmenter export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10 EXPERIMENT_NAME=Drop3_bells_raw_mlp_V307-a DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/bells_and_whistles.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --decoder=mlp export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_bells_raw_seg_V308-a DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/bells_and_whistles.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --decoder=segmenter # horologic abalate1 - v2 # ----------------------- export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_BASELINE_BAS_V304-a DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_BASELINE_BAS_V304-b DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 export CUDA_VISIBLE_DEVICES=2 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_BASELINE_BAS_V304-c DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 export CUDA_VISIBLE_DEVICES=3 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_BASELINE_BAS_V304-d DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 # namek # ----------------------- export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" EXPERIMENT_NAME=Drop3_BASELINE_BAS_V309 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --max_epochs=120 \ --patience=120 # yardrat # ------- export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" EXPERIMENT_NAME=Drop3_SEARCH_BAS_V310 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --max_epochs=80 \ --patience=80 \ --dist_weights=True \ --time_steps=5 \ --time_sampling=soft2 \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=200m \ --num_draw=0 \ --max_epoch_length=10000 \ --normalize_inputs=10000 \ --stream_channels=8 \ --temporal_dropout=0.5 # namek # ----------------------- export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" EXPERIMENT_NAME=Drop3_SEARCH_BAS_V311 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --max_epochs=80 \ --patience=80 \ --dist_weights=True \ --time_steps=5 \ --time_sampling=hardish3 \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=200m \ --num_draw=0 \ --max_epoch_length=10000 \ --normalize_inputs=10000 \ --stream_channels=8 \ --temporal_dropout=0.5 # yardrat # ------- export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" EXPERIMENT_NAME=Drop3_SEARCH_BAS_V312 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --max_epochs=80 \ --patience=80 \ --dist_weights=True \ --time_steps=5 \ --time_sampling=soft2 \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=200m \ --num_draw=0 \ --max_epoch_length=10000 \ --normalize_inputs=10000 \ --stream_channels=8 \ --temporal_dropout=0.5 # tooshbrush spotcheck # -------------------- export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" EXPERIMENT_NAME=Drop3_SpotCheck_V313 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --max_epochs=80 \ --patience=80 \ --num_workers=4 \ --dist_weights=True \ --time_steps=7 \ --time_sampling=hardish3 \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=1m \ --num_draw=8 \ --stream_channels=8 \ --temporal_dropout=0.5 \ --normalize_inputs=2048 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" EXPERIMENT_NAME=Drop3_SpotCheck_V314 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --num_workers=4 \ --max_epochs=80 \ --patience=80 \ --dist_weights=True \ --time_steps=7 \ --time_sampling=hardish3 \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=1m \ --num_draw=8 \ --stream_channels=8 \ --temporal_dropout=0.5 # horologic abalate2 # ------------------ export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_BASELINE_BOTH_V315 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=1.00 export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_BASELINE_BOTH_V316 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=1.00 \ --normalize_inputs=2000 export CUDA_VISIBLE_DEVICES=2 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_BASELINE_BAS_V317 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --normalize_inputs=2048 export CUDA_VISIBLE_DEVICES=3 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ EXPERIMENT_NAME=Drop3_BASELINE_SC_V318 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --normalize_inputs=4096 # tooshbrush spotcheck2 # -------------------- export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" EXPERIMENT_NAME=Drop3_SpotCheck_V319 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=0.01 \ --global_saliency_weight=1.00 \ --max_epochs=160 \ --patience=160 \ --num_workers=4 \ --dist_weights=True \ --time_steps=6 \ --channels="$CHANNELS" \ --time_sampling=hardish3 \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=8 \ --use_centered_positives=True \ --normalize_inputs=2048 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.1,Site Preparation*2.0" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red,nir|swir16|swir22" EXPERIMENT_NAME=Drop3_SpotCheck_V321 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=0.01 \ --global_saliency_weight=1.00 \ --learning_rate=3e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_steps=6 \ --time_sampling=hardish3 \ --channels="$CHANNELS" \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_n12 \ --decoder=mlp \ --draw_interval=5m \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=2048 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.1,Site Preparation*2.0" INITIAL_STATE_BASELINE="$DVC_DPATH"/models/fusion/eval3_candidates/packages/BASELINE_EXPERIMENT_V001/BASELINE_EXPERIMENT_V001_epoch=20-step=109829-v1.pt export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" EXPERIMENT_NAME=Drop3_SpotCheck_V323 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --class_loss='focal' \ --saliency_loss='focal' \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --accumulate_grad_batches=4 \ --max_epochs=160 \ --patience=160 \ --num_workers=4 \ --dist_weights=True \ --time_steps=11 \ --channels="$CHANNELS" \ --time_sampling=soft2+distribute \ --time_span=6m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=False \ --normalize_inputs=2048 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --init="$INITIAL_STATE_BASELINE" # horologic 2022-04-05 # -------------------- INITIAL_STATE_BASELINE="$DVC_DPATH"/models/fusion/eval3_candidates/packages/BASELINE_EXPERIMENT_V001/BASELINE_EXPERIMENT_V001_epoch=20-step=109829-v1.pt INITIAL_STATE_V323="$DVC_DPATH"/models/fusion/eval3_candidates/packages/Drop3_SpotCheck_V323/Drop3_SpotCheck_V323_epoch=18-step=12976.pt export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json INITIAL_STATE_V323="$DVC_DPATH"/models/fusion/eval3_candidates/packages/Drop3_SpotCheck_V323/Drop3_SpotCheck_V323_epoch=18-step=12976.pt CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE=$DVC_DPATH/models/fusion/eval3_candidates/packages/Drop3_SpotCheck_V323/Drop3_SpotCheck_V323_epoch=18-step=12976.pt EXPERIMENT_NAME=Drop3_TeamFeats_LM_xfer323_V324 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --class_loss='focal' \ --saliency_loss='focal' \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --accumulate_grad_batches=4 \ --max_epochs=160 \ --patience=160 \ --num_workers=0 \ --dist_weights=True \ --chip_size=256 \ --time_steps=11 \ --channels="$CHANNELS" \ --time_sampling=soft2+distribute \ --time_span=6m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=False \ --normalize_inputs=2048 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --init="$INITIAL_STATE_V323" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE=$DVC_DPATH/models/fusion/eval3_candidates/packages/Drop3_SpotCheck_V323/Drop3_SpotCheck_V323_epoch=18-step=12976.pt EXPERIMENT_NAME=Drop3_TeamFeats_LM_xfer323_V325 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME INITIAL_STATE_V323="$DVC_DPATH"/models/fusion/eval3_candidates/packages/Drop3_SpotCheck_V323/Drop3_SpotCheck_V323_epoch=18-step=12976.pt python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --init="$INITIAL_STATE" \ --class_loss='focal' \ --saliency_loss='dicefocal' \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --accumulate_grad_batches=4 \ --max_epochs=160 \ --chip_size=288 \ --patience=160 \ --num_workers=4 \ --dist_weights=0 \ --time_steps=9 \ --channels="$CHANNELS" \ --time_sampling=soft2+distribute \ --time_span=6m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=True \ --normalize_inputs=2048 \ --stream_channels=16 \ --multimodal_reduce=mean \ --temporal_dropout=0.5 \ --init="$INITIAL_STATE_V323" export CUDA_VISIBLE_DEVICES=2 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json CHANNELS="matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE=$DVC_DPATH/models/fusion/eval3_candidates/packages/Drop3_SpotCheck_V323/Drop3_SpotCheck_V323_epoch=18-step=12976.pt EXPERIMENT_NAME=Drop3_TeamFeats_LM_scratch_V326 INITIAL_STATE_BASELINE="$DVC_DPATH"/models/fusion/eval3_candidates/packages/BASELINE_EXPERIMENT_V001/BASELINE_EXPERIMENT_V001_epoch=20-step=109829-v1.pt DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --class_loss='focal' \ --saliency_loss='focal' \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --accumulate_grad_batches=4 \ --max_epochs=160 \ --patience=160 \ --num_workers=4 \ --dist_weights=True \ --chip_size=288 \ --time_steps=11 \ --channels="$CHANNELS" \ --time_sampling=soft2+distribute \ --time_span=6m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=True \ --normalize_inputs=8 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --init="$INITIAL_STATE_BASELINE" export CUDA_VISIBLE_DEVICES=3 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json INITIAL_STATE_BASELINE="$DVC_DPATH"/models/fusion/eval3_candidates/packages/BASELINE_EXPERIMENT_V001/BASELINE_EXPERIMENT_V001_epoch=20-step=109829-v1.pt CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE=$DVC_DPATH/models/fusion/eval3_candidates/packages/Drop3_SpotCheck_V323/Drop3_SpotCheck_V323_epoch=18-step=12976.pt EXPERIMENT_NAME=Drop3_TeamFeats_LM_xfer1_v328 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --class_loss='focal' \ --saliency_loss='focal' \ --global_change_weight=0.00 \ --global_class_weight=0.00 \ --global_saliency_weight=1.00 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --accumulate_grad_batches=4 \ --max_epochs=160 \ --patience=160 \ --num_workers=0 \ --dist_weights=True \ --chip_size=224 \ --time_steps=15 \ --channels="$CHANNELS" \ --time_sampling=soft2+distribute \ --time_span=6m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=False \ --normalize_inputs=2048 \ --stream_channels=64 \ --temporal_dropout=0.5 \ --init="$INITIAL_STATE_BASELINE" # toothbrush 2022-04-05 # -------------------- DVC_DPATH=$(geowatch_dvc) export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE=$DVC_DPATH/models/fusion/eval3_candidates/packages/Drop3_SpotCheck_V323/Drop3_SpotCheck_V323_epoch=18-step=12976.pt EXPERIMENT_NAME=Drop3_TeamFeats_LM_xfer1_V327 INITIAL_STATE_BASELINE="$DVC_DPATH"/models/fusion/eval3_candidates/packages/BASELINE_EXPERIMENT_V001/BASELINE_EXPERIMENT_V001_epoch=20-step=109829-v1.pt DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --init="$INITIAL_STATE" \ --class_loss='focal' \ --saliency_loss='dicefocal' \ --global_change_weight=0.00 \ --global_class_weight=0.001 \ --global_saliency_weight=1.00 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --accumulate_grad_batches=4 \ --neg_to_pos_ratio=0.2 \ --max_epochs=160 \ --patience=160 \ --chip_size=256 \ --num_workers=4 \ --dist_weights=True \ --time_steps=11 \ --channels="$CHANNELS" \ --time_sampling=soft2+distribute \ --time_span=6m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=True \ --normalize_inputs=2048 \ --stream_channels=16 \ --multimodal_reduce=mean \ --temporal_dropout=0.2 \ --init="$INITIAL_STATE_BASELINE" export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10/ KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22,matseg_0|matseg_1|matseg_2|matseg_3,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" INITIAL_STATE=$DVC_DPATH/models/fusion/eval3_candidates/packages/Drop3_SpotCheck_V323/Drop3_SpotCheck_V323_epoch=18-step=12976.pt EXPERIMENT_NAME=Drop3_TeamFeats_LM_xfer323_V327 INITIAL_STATE_V323="$DVC_DPATH"/models/fusion/eval3_candidates/packages/Drop3_SpotCheck_V323/Drop3_SpotCheck_V323_epoch=18-step=12976.pt DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --init="$INITIAL_STATE" \ --class_loss='focal' \ --saliency_loss='dicefocal' \ --global_change_weight=0.00 \ --global_class_weight=0.003 \ --global_saliency_weight=1.00 \ --learning_rate=4e-4 \ --weight_decay=1e-5 \ --accumulate_grad_batches=4 \ --max_epoch_length=4096 \ --max_epochs=160 \ --patience=160 \ --num_workers=4 \ --dist_weights=True \ --chip_size=288 \ --time_steps=10 \ --channels="$CHANNELS" \ --time_sampling=soft2+distribute \ --time_span=3m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --accumulate_grad_batches=4 \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=True \ --normalize_inputs=2048 \ --stream_channels=32 \ --multimodal_reduce=mean \ --temporal_dropout=0.2 \ --init="$INITIAL_STATE_V323" # next is 329 ###### # End of Phase I Evaluations ###### export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json CHANNELS="blue|green|red" EXPERIMENT_NAME=Drop3_Simplify_S2_RGB_V330 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --class_loss='focal' \ --saliency_loss='dicefocal' \ --global_change_weight=0.0 \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --max_epoch_length=4096 \ --max_epochs=160 \ --patience=160 \ --num_workers=4 \ --dist_weights=False \ --chip_size=380 \ --time_steps=5 \ --batch_size=1 \ --accumulate_grad_batches=1 \ --channels="$CHANNELS" \ --exclude_sensors "L8" \ --time_sampling=soft2+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=True \ --normalize_inputs=2048 \ --stream_channels=16 \ --multimodal_reduce=mean \ --temporal_dropout=0.2 \ --init="noop" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json CHANNELS="blue|green|red" EXPERIMENT_NAME=Drop3_Simplify_S2_RGB_time_V331 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --class_loss='focal' \ --saliency_loss='dicefocal' \ --global_change_weight=0.0 \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --max_epoch_length=4096 \ --max_epochs=160 \ --patience=160 \ --num_workers=4 \ --dist_weights=False \ --chip_size=32 \ --time_steps=100 \ --batch_size=1 \ --accumulate_grad_batches=1 \ --channels="$CHANNELS" \ --exclude_sensors "L8" \ --time_sampling=soft2+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=True \ --normalize_inputs=2048 \ --stream_channels=16 \ --multimodal_reduce=mean \ --temporal_dropout=0.2 \ --init="noop" export CUDA_VISIBLE_DEVICES=3 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_LM_nowv_vali.kwcoco.json CHANNELS="blue|green|red" EXPERIMENT_NAME=Drop3_Simplify_S2_L8_RGB_V332 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --class_loss='focal' \ --saliency_loss='dicefocal' \ --global_change_weight=0.0 \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --max_epoch_length=4096 \ --max_epochs=160 \ --patience=160 \ --num_workers=4 \ --dist_weights=False \ --chip_size=380 \ --time_steps=5 \ --batch_size=1 \ --accumulate_grad_batches=1 \ --channels="$CHANNELS" \ --time_sampling=soft2+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=True \ --normalize_inputs=2048 \ --stream_channels=16 \ --multimodal_reduce=mean \ --temporal_dropout=0.2 \ --init="noop" export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red,invariants:16" EXPERIMENT_NAME=Drop3_Simplify_S2_RGB_I_V333 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --class_loss='focal' \ --saliency_loss='dicefocal' \ --global_change_weight=0.0 \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --max_epoch_length=4096 \ --max_epochs=160 \ --patience=160 \ --num_workers=4 \ --dist_weights=False \ --chip_size=380 \ --time_steps=5 \ --batch_size=1 \ --accumulate_grad_batches=1 \ --channels="$CHANNELS" \ --exclude_sensors "L8" \ --time_sampling=soft2+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=True \ --normalize_inputs=2048 \ --stream_channels=16 \ --multimodal_reduce=mean \ --temporal_dropout=0.2 \ --init="noop" export CUDA_VISIBLE_DEVICES=3 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red,invariants:16" EXPERIMENT_NAME=Drop3_Simplify_S2_L8_RGB_I_V334 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --class_loss='focal' \ --saliency_loss='dicefocal' \ --global_change_weight=0.0 \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --max_epoch_length=4096 \ --max_epochs=160 \ --patience=160 \ --num_workers=4 \ --dist_weights=False \ --chip_size=380 \ --time_steps=5 \ --batch_size=1 \ --accumulate_grad_batches=1 \ --channels="$CHANNELS" \ --time_sampling=soft2+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=True \ --normalize_inputs=2048 \ --stream_channels=16 \ --multimodal_reduce=mean \ --temporal_dropout=0.2 \ --init="noop" # 2022-06-22 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json CHANNELS="invariants:16" EXPERIMENT_NAME=Drop3_Simplify_S2_L8_I_V335 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --class_loss='focal' \ --saliency_loss='dicefocal' \ --global_change_weight=0.0 \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --max_epoch_length=4096 \ --max_epochs=160 \ --patience=160 \ --num_workers=4 \ --dist_weights=False \ --chip_size=380 \ --time_steps=5 \ --batch_size=1 \ --accumulate_grad_batches=1 \ --channels="$CHANNELS" \ --time_sampling=soft2+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=True \ --normalize_inputs=2048 \ --stream_channels=16 \ --multimodal_reduce=mean \ --temporal_dropout=0.2 \ --init="noop" export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json CHANNELS="invariants:16" EXPERIMENT_NAME=Drop3_Simplify_S2_L8_I_V335 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --class_loss='focal' \ --saliency_loss='dicefocal' \ --global_change_weight=0.0 \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --max_epoch_length=4096 \ --max_epochs=160 \ --patience=160 \ --num_workers=4 \ --dist_weights=False \ --chip_size=380 \ --time_steps=5 \ --batch_size=1 \ --accumulate_grad_batches=1 \ --channels="$CHANNELS" \ --time_sampling=soft2+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=True \ --normalize_inputs=2048 \ --stream_channels=16 \ --multimodal_reduce=mean \ --temporal_dropout=0.2 \ --init="noop" export CUDA_VISIBLE_DEVICES=2 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json CHANNELS="invariants:16" EXPERIMENT_NAME=Drop3_Simplify_S2_I_V336 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --exclude_sensors "L8" \ --class_loss='focal' \ --saliency_loss='dicefocal' \ --global_change_weight=0.0 \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --max_epoch_length=4096 \ --max_epochs=160 \ --patience=160 \ --num_workers=4 \ --dist_weights=False \ --chip_size=380 \ --time_steps=5 \ --batch_size=1 \ --accumulate_grad_batches=1 \ --channels="$CHANNELS" \ --time_sampling=soft2+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=True \ --normalize_inputs=2048 \ --stream_channels=16 \ --multimodal_reduce=mean \ --temporal_dropout=0.2 \ --init="noop" export CUDA_VISIBLE_DEVICES=3 DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Aligned-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_ILM_nowv_vali.kwcoco.json CHANNELS="blue|green|red,invariants:16" EXPERIMENT_NAME=Drop3_Simplify_S2_I_V337 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --channels="$CHANNELS" \ --exclude_sensors "L8" \ --class_loss='focal' \ --saliency_loss='dicefocal' \ --global_change_weight=0.0 \ --global_class_weight=0.0 \ --global_saliency_weight=1.00 \ --learning_rate=1e-4 \ --weight_decay=1e-5 \ --max_epoch_length=4096 \ --max_epochs=160 \ --patience=160 \ --num_workers=4 \ --dist_weights=False \ --chip_size=380 \ --time_steps=5 \ --batch_size=1 \ --accumulate_grad_batches=1 \ --channels="$CHANNELS" \ --time_sampling=soft2+distribute \ --time_span=7m \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5m \ --num_draw=4 \ --use_centered_positives=True \ --normalize_inputs=2048 \ --stream_channels=16 \ --multimodal_reduce=mean \ --temporal_dropout=0.2 \ --init="noop"