# INV SHARED EXPERIMENT # ~/code/watch/scripts/generate_ta2_features.sh DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=${DVC_DPATH:-$HOME/data/dvc-repos/smart_watch_dvc} WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop1_October2021 ARCH=smt_it_joint_p8 EXPERIMENT_NAME=Saliency_${ARCH}_raw_performer_s64_t13_hist_v005 KWCOCO_BUNDLE_DPATH=${KWCOCO_BUNDLE_DPATH:-$DVC_DPATH/drop1-S2-L8-aligned} TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_train_data.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_vali_data.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_vali_data.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt # Write train and prediction configs export CUDA_VISIBLE_DEVICES="0" python -m geowatch.tasks.fusion.fit \ --channels=${CHANNELS} \ --name=$EXPERIMENT_NAME \ --method="MultimodalTransformer" \ --arch_name=$ARCH \ --chip_size=64 \ --chip_overlap=0.0 \ --time_steps=13 \ --time_span=3y \ --time_sampling=soft+distribute \ --batch_size=8 \ --accumulate_grad_batches=4 \ --num_workers=16 \ --attention_impl=performer \ --neg_to_pos_ratio=1.0 \ --global_class_weight=1.0 \ --global_change_weight=1.0 \ --global_saliency_weight=1.0 \ --negative_change_weight=0.05 \ --change_loss='dicefocal' \ --saliency_loss='focal' \ --class_loss='cce' \ --normalize_inputs=2048 \ --diff_inputs=False \ --max_epochs=100 \ --match_histograms=True \ --patience=100 \ --gpus=1 \ --learning_rate=1e-3 \ --weight_decay=1e-5 \ --num_draw=8 \ --dropout=0.1 \ --window_size=8 \ --eval_after_fit=True \ --default_root_dir=$DEFAULT_ROOT_DIR \ --package_fpath=$PACKAGE_FPATH \ --train_dataset=$TRAIN_FPATH \ --vali_dataset=$VALI_FPATH \ --test_dataset=$TEST_FPATH \ --num_sanity_val_steps=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=${DVC_DPATH:-$HOME/data/dvc-repos/smart_watch_dvc} WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop1_October2021 ARCH=smt_it_joint_p8 EXPERIMENT_NAME=Saliency_${ARCH}_raw_performer_s64_t13_nohist_v006 KWCOCO_BUNDLE_DPATH=${KWCOCO_BUNDLE_DPATH:-$DVC_DPATH/drop1-S2-L8-aligned} TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_train_data.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_vali_data.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_vali_data.kwcoco.json CHANNELS="blue|green|red|nir|swir16|swir22" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt # Write train and prediction configs export CUDA_VISIBLE_DEVICES="1" python -m geowatch.tasks.fusion.fit \ --channels=${CHANNELS} \ --name=$EXPERIMENT_NAME \ --method="MultimodalTransformer" \ --arch_name=$ARCH \ --chip_size=64 \ --chip_overlap=0.0 \ --time_steps=13 \ --time_span=3y \ --time_sampling=soft+distribute \ --batch_size=8 \ --accumulate_grad_batches=4 \ --num_workers=16 \ --attention_impl=performer \ --neg_to_pos_ratio=1.0 \ --global_class_weight=1.0 \ --global_change_weight=1.0 \ --global_saliency_weight=1.0 \ --negative_change_weight=0.05 \ --change_loss='dicefocal' \ --saliency_loss='focal' \ --class_loss='cce' \ --normalize_inputs=2048 \ --diff_inputs=False \ --max_epochs=100 \ --match_histograms=False \ --patience=100 \ --gpus=1 \ --learning_rate=1e-3 \ --weight_decay=1e-5 \ --num_draw=8 \ --dropout=0.1 \ --window_size=8 \ --eval_after_fit=True \ --default_root_dir=$DEFAULT_ROOT_DIR \ --package_fpath=$PACKAGE_FPATH \ --train_dataset=$TRAIN_FPATH \ --vali_dataset=$VALI_FPATH \ --test_dataset=$TEST_FPATH \ --num_sanity_val_steps=0