#!/bin/bash CROPPED_PRE_EVAL_AND_AGG(){ ################################# # 1. Repackage and commit new models ################################# python -m geowatch.tasks.fusion.dvc_sync_manager "push packages evals" python -m geowatch.tasks.fusion.dvc_sync_manager "pull evals" python -m geowatch.tasks.fusion.dvc_sync_manager "pull packages" DVC_DPATH=$(geowatch_dvc --hardware="ssd") DVC_DPATH=$(geowatch_dvc --hardware="hdd") cd "$DVC_DPATH" git pull DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 EXPT_GROUP_CODE=eval3_sc_candidates KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE python -m geowatch.tasks.fusion.repackage gather_checkpoints \ --dvc_dpath="$DVC_DPATH" \ --storage_dpath="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/packages" \ --train_dpath="$DVC_DPATH/training/$HOSTNAME/$USER/$DATASET_CODE/runs/*/lightning_logs" \ --push_jobs=8 --dvc_remote=aws \ --mode=commit ################################# # 2. Pull new models (and existing evals) on eval machine ################################# DVC_DPATH=$(geowatch_dvc --hardware="hdd") cd "$DVC_DPATH" git pull dvc pull -r aws -R models/fusion/eval3_sc_candidates/packages dvc pull -r aws -R models/fusion/eval3_sc_candidates/eval ################################# # 3. Run Prediction & Evaluation ################################# DVC_DPATH=$(geowatch_dvc --hardware="hdd") DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 EXPT_GROUP_CODE=eval3_sc_candidates KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE #BUNDLE_SUFFIX=data_wv_vali.kwcoco.json #BUNDLE_SUFFIX=combo_D_wv_vali.kwcoco.json #BUNDLE_SUFFIX=combo_DL_s2_wv_vali.kwcoco.json #BUNDLE_SUFFIX=combo_DILM_s2_wv_vali.kwcoco.json #EXPT_MODEL_GLOBNAME="CropDrop3_SC_s2*wv_*invar*_*V03*" BUNDLE_SUFFIX=combo_DLM_s2_wv_vali.kwcoco.json EXPT_MODEL_GLOBNAME="CropDrop3_SC_s2*wv_*tf*_*V*" SSD_DVC_DPATH=$(geowatch_dvc --hardware="ssd") SSD_KWCOCO_BUNDLE_DPATH=$SSD_DVC_DPATH/$DATASET_CODE SSD_VALI_FPATH=$SSD_KWCOCO_BUNDLE_DPATH/$BUNDLE_SUFFIX VALI_FPATH=$KWCOCO_BUNDLE_DPATH/$BUNDLE_SUFFIX if [ -f "$SSD_VALI_FPATH" ]; then VALI_FPATH=$SSD_VALI_FPATH fi #tmux_spawn \ python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --gpus="0,1,2,3" \ --model_globstr="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/packages/$EXPT_MODEL_GLOBNAME/*.pt" \ --test_dataset="$VALI_FPATH" \ --enable_pred=1 \ --enable_eval=1 \ --enable_actclf=1 \ --enable_actclf_eval=1 \ --draw_heatmaps=0 \ --without_alternatives \ --skip_existing=1 --backend=tmux --run=0 python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --gpus="0,1,2,3" \ --model_globstr="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_s2wv_invar_scratch_V030/CropDrop3_SC_s2wv_invar_scratch_V030_epoch=78-step=53956-v1.pt" \ --test_dataset="$VALI_FPATH" \ --enable_pred=0 \ --enable_eval=1 \ --enable_actclf=1 \ --enable_actclf_eval=1 \ --draw_heatmaps=1 \ --without_alternatives \ --skip_existing=1 --backend=tmux --run=0 ################################# # 4. Commit Evaluation Results ################################# DVC_DPATH=$(geowatch_dvc --hardware="hdd") python -m geowatch.tasks.fusion.dvc_sync_manager "push evals" --dvc_remote=aws # Check for uncommited evaluations # shellcheck disable=SC2010 ls -al models/fusion/eval3_sc_candidates/eval/*/*/*/*/eval/curves/measures2.json | grep -v ' \-> ' # shellcheck disable=SC2010 ls -al models/fusion/eval3_sc_candidates/eval/*/*/*/*/eval/actclf/*/*_eval/scores/merged/summary3.json | grep -v ' \-> ' #dvc unprotect models/fusion/eval3_sc_candidates/eval/*/*/*/*/eval/tracking/*/iarpa_eval/scores/merged/summary2.json #dvc unprotect models/fusion/eval3_sc_candidates/eval/*/*/*/*/eval/curves/measures2.json #dvc add models/fusion/eval3_sc_candidates/eval/*/*/*/*/eval/curves/measures2.json python -c "import sys, pathlib, watch.utils.simple_dvc; watch.utils.simple_dvc.SimpleDVC().add([p for p in sys.argv[1:] if not pathlib.Path(p).is_symlink()])" models/fusion/eval3_sc_candidates/eval/*/*/*/*/eval/actclf/*/*_eval/scores/merged/summary3.json python -c "import sys, pathlib, watch.utils.simple_dvc; watch.utils.simple_dvc.SimpleDVC().add([p for p in sys.argv[1:] if not pathlib.Path(p).is_symlink()])" models/fusion/eval3_sc_candidates/eval/*/*/*/*/eval/curves/measures2.json #dvc add models/fusion/eval3_sc_candidates/eval/*/*/*/*/eval/tracking/*/iarpa_eval/scores/merged/summary2.json git commit -am "add measures from $HOSTNAME" && git pull && git push dvc push -r aws -R models/fusion/eval3_sc_candidates/eval dvc push -r aws -R models/fusion/*/eval ################################# # 5. Aggregate Results ################################# # Pull all results onto the machine you want to eval on DVC_DPATH=$(geowatch_dvc --hardware="hdd") cd "$DVC_DPATH" git pull dvc pull -r aws -R models/fusion/eval3_sc_candidates/eval ##### DVC_DPATH=$(geowatch_dvc --hardware="hdd") EXPT_GROUP_CODE=eval3_sc_candidates #EXPT_NAME_PAT="*" EXPT_NAME_PAT="*" #EXPT_NAME_PAT="*Drop3*" EXPT_NAME_PAT="*" #EXPT_NAME_PAT="*tf*" #EXPT_NAME_PAT="BOTH_TA1_COMBO_TINY_p2w_raw*" MODEL_EPOCH_PAT="*" PRED_DSET_PAT="*" PRED_CFG_PAT="*" MEASURE_GLOBSTR=${DVC_DPATH}/models/fusion/${EXPT_GROUP_CODE}/eval/${EXPT_NAME_PAT}/${MODEL_EPOCH_PAT}/${PRED_DSET_PAT}/${PRED_CFG_PAT}/eval/curves/measures2.json GROUP_KEY="*Drop3*s2_wv*" #GROUP_KEY="*Drop3*" python -m geowatch.tasks.fusion.aggregate_results \ --measure_globstr="$MEASURE_GLOBSTR" \ --out_dpath="$DVC_DPATH/agg_results/$EXPT_GROUP_CODE" \ --dset_group_key="$GROUP_KEY" --show=True \ --classes_of_interest "Site Preparation" "Active Construction" --embed=True #"Post Construction" } special_evaluation(){ DVC_DPATH=$(geowatch_dvc --hardware="hdd") cd "$DVC_DPATH" source "$HOME"/local/init/utils.sh #geowatch model_info models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_s2wv_tf_xver7_V013/CropDrop3_SC_s2wv_tf_xver7_V013_epoch=0-step=2047-v1.pt #models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V001/CropDrop3_SC_V001_epoch=55-step=114687-v1.pt writeto models/fusion/eval3_sc_candidates/models_of_interest.txt " models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V001/CropDrop3_SC_V001_epoch=1-step=4095-v1.pt models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V001/CropDrop3_SC_V001_epoch=20-step=43007-v1.pt models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V001/CropDrop3_SC_V001_epoch=90-step=186367-v1.pt models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V003/CropDrop3_SC_V003_epoch=17-step=36863-v1.pt models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V003/CropDrop3_SC_V003_epoch=30-step=63487.pt models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V004/CropDrop3_SC_V004_epoch=100-step=206847.pt models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V004/CropDrop3_SC_V004_epoch=11-step=24575-v2.pt models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V005/CropDrop3_SC_V005_epoch=1-step=4095.pt models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V006/CropDrop3_SC_V006_epoch=13-step=3583-v1.pt models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V006/CropDrop3_SC_V006_epoch=71-step=18431.pt models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_s2wv_raw_xver7_V012/CropDrop3_SC_s2wv_raw_xver7_V012_epoch=0-step=2047-v1.pt models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_wvonly_D_V011/CropDrop3_SC_wvonly_D_V011_epoch=129-step=266239.pt models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_wvonly_D_V011/CropDrop3_SC_wvonly_D_V011_epoch=81-step=167935.pt models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_xver1_V007/CropDrop3_SC_xver1_V007_epoch=14-step=30719.pt models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_xver1_V007/CropDrop3_SC_xver1_V007_epoch=17-step=36863.pt models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_xver1_V008/CropDrop3_SC_xver1_V008_epoch=26-step=55295-v1.pt " MODEL_GLOBSTR="$DVC_DPATH/models/fusion/$EXPT_GROUP_CODE/packages/*/*.pt" MODEL_GLOBSTR="$DVC_DPATH"/models/fusion/eval3_sc_candidates/models_of_interest.txt DVC_DPATH=$(geowatch_dvc --hardware="hdd") DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 EXPT_GROUP_CODE=eval3_sc_candidates KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE #VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_vali.kwcoco.json #VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_D_wv_vali.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DL_s2_wv_vali.kwcoco.json #VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json python -m geowatch.tasks.fusion.schedule_evaluation schedule_evaluation \ --gpus="0,1,2,3,4,5,6,7,8" \ --model_globstr="$MODEL_GLOBSTR" \ --test_dataset="$VALI_FPATH" \ --enable_pred=0 \ --enable_eval=0 \ --enable_track=0 \ --enable_iarpa_eval=0 \ --enable_actclf=1 \ --enable_actclf_eval=1 \ --draw_heatmaps=1 \ --draw_curves=1 \ --pred_workers=4 \ --chip_overlap=0.3 \ --tta_time=0 \ --tta_fliprot=0 \ --hack_sc_grid=1 \ --skip_existing=1 --backend=tmux --run=0 } prep_features(){ export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc --hardware="hdd") echo "DVC_DPATH = $DVC_DPATH" BASE_DPATH="$DVC_DPATH/Cropped-Drop3-TA1-2022-03-10/data.kwcoco.json" python -m geowatch.cli.queue_cli.prepare_teamfeats \ --base_fpath="$BASE_DPATH" \ --dvc_dpath="$DVC_DPATH" \ --gres="0,1" \ --with_landcover=1 \ --with_depth=1 \ --with_materials=1 \ --with_invariants=1 \ --do_splits=1 \ --depth_workers=0 \ --cache=1 --backend=tmux --run=0 python ~/code/watch/scripts/special_reroot.py combo_DILM_s2_wv_*.kwcoco.json # Or rsync features rsync -azvprRP "$HOME"/data/dvc-repos/smart_watch_dvc/Cropped-Drop3-TA1-2022-03-10/./_assets ooo:data/dvc-repos/smart_watch_dvc/Cropped-Drop3-TA1-2022-03-10 rsync -azvprRP "$HOME"/data/dvc-repos/smart_watch_dvc/Cropped-Drop3-TA1-2022-03-10/./combo* ooo:data/dvc-repos/smart_watch_dvc/Cropped-Drop3-TA1-2022-03-10 rsync -avprRP --compress "$HOME"/data/dvc-repos/smart_watch_dvc/Cropped-Drop3-TA1-2022-03-10/./_assets horologic:data/dvc-repos/smart_watch_dvc-hdd/Cropped-Drop3-TA1-2022-03-10 rsync -avprRP "$HOME"/data/dvc-repos/smart_watch_dvc/Cropped-Drop3-TA1-2022-03-10/./combo* horologic:data/dvc-repos/smart_watch_dvc-hdd/Cropped-Drop3-TA1-2022-03-10 rsync -avprRP "$HOME"/data/dvc-repos/smart_watch_dvc/Cropped-Drop3-TA1-2022-03-10/./combo_DLM_s2_wv_vali.kwcoco.json horologic:data/dvc-repos/smart_watch_dvc-hdd/Cropped-Drop3-TA1-2022-03-10 rsync -avprRP "$HOME"/data/dvc-repos/smart_watch_dvc/Cropped-Drop3-TA1-2022-03-10/./combo_DLM_*.kwcoco.json horologic:data/dvc-repos/smart_watch_dvc-hdd/Cropped-Drop3-TA1-2022-03-10 rsync -azvprRP "$HOME"/data/dvc-repos/smart_watch_dvc/Cropped-Drop3-TA1-2022-03-10/./_assets horologic:data/dvc-repos/smart_watch_dvc-hdd/Cropped-Drop3-TA1-2022-03-10 rsync -azvprRP "$HOME"/data/dvc-repos/smart_watch_dvc/Cropped-Drop3-TA1-2022-03-10/./combo* horologic:data/dvc-repos/smart_watch_dvc-hdd/Cropped-Drop3-TA1-2022-03-10 rsync -azvprRP "$HOME"/data/dvc-repos/smart_watch_dvc/Cropped-Drop3-TA1-2022-03-10/./dzyne* horologic:data/dvc-repos/smart_watch_dvc-hdd/Cropped-Drop3-TA1-2022-03-10 rsync -azvprRP "$HOME"/data/dvc-repos/smart_watch_dvc/Cropped-Drop3-TA1-2022-03-10/./rutgers* horologic:data/dvc-repos/smart_watch_dvc-hdd/Cropped-Drop3-TA1-2022-03-10 # Move to ssd on horologic rsync -azvprRP "$HOME"/data/dvc-repos/smart_watch_dvc-hdd/Cropped-Drop3-TA1-2022-03-10/./_assets "$HOME"/data/dvc-repos/smart_watch_dvc-ssd/Cropped-Drop3-TA1-2022-03-10 rsync -azvprRP "$HOME"/data/dvc-repos/smart_watch_dvc-hdd/Cropped-Drop3-TA1-2022-03-10/./combo_DILM_s2_wv* "$HOME"/data/dvc-repos/smart_watch_dvc-ssd/Cropped-Drop3-TA1-2022-03-10 FNAME=combo_DILM_s2_wv_train.kwcoco.json FNAME=combo_DILM_s2_wv_vali.kwcoco.json '/media/joncrall/raid/home/joncrall/data/dvc-repos/smart_watch_dvc/Cropped-Drop3-TA1-2022-03-10' kwcoco reroot --src $FNAME --dst $FNAME \ --old_prefix="/media/joncrall/raid/home/joncrall/data/dvc-repos/smart_watch_dvc/Cropped-Drop3-TA1-2022-03-10" --new_prefix="" \ --new_prefix="" --absolute=False kwcoco validate $FNAME --require_relative=True kwcoco reroot --src combo_DILM_s2_wv_vali.kwcoco.json --dst combo_DILM_s2_wv_vali.kwcoco \ --old_prefix="/data/projects/smart/smart_watch_dvc/Cropped-Drop3-TA1-2022-03-10" \ --new_prefix="" --absolute=False kwcoco reroot --src combo_DILM_nowv_vali.kwcoco.json --dst combo_DILM_nowv_vali.kwcoco.json \ --old_prefix="/home/local/KHQ/jon.crall/data/dvc-repos/smart_watch_dvc-hdd/Cropped-Drop3-TA1-2022-03-10" \ --new_prefix="" --absolute=False kwcoco validate combo_DILM_nowv_train.kwcoco.json --require_relative=True FNAME=combo_DILM_s2_wv_vali.kwcoco.json kwcoco validate $FNAME --require_relative=True FNAME=combo_DILM_s2_wv_train.kwcoco.json kwcoco validate $FNAME --require_relative=True } # tooshbrush cropped # ------------------ export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_vali.kwcoco.json CHANNELS="red|green|blue" EXPERIMENT_NAME=CropDrop3_SC_V001 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=6 \ --learning_rate=3e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=6m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=1m \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=1024 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.1,Site Preparation*2.0" \ --init=/home/joncrall/data/dvc-repos/smart_watch_dvc/training/toothbrush/joncrall/Aligned-Drop3-TA1-2022-03-10/runs/Drop3_SpotCheck_V319/lightning_logs/version_2/checkpoints/epoch=60-step=124927.ckpt # ooo export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_vali.kwcoco.json CHANNELS="red|green|blue" EXPERIMENT_NAME=CropDrop3_SC_V003 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=9 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=6m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=1024 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.01,Site Preparation*2.0" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_vali.kwcoco.json CHANNELS="red|green|blue" EXPERIMENT_NAME=CropDrop3_SC_V004 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=12m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=1024 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.01,Site Preparation*2.0" # namek export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_vali.kwcoco.json CHANNELS="red|green|blue" EXPERIMENT_NAME=CropDrop3_SC_V004 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=soft2 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=False \ --num_draw=8 \ --normalize_inputs=1024 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.01,Site Preparation*2.0" export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_vali.kwcoco.json CHANNELS="red|green|blue|near-ir1|near-ir2|red-edge|yellow" EXPERIMENT_NAME=CropDrop3_SC_V004 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=soft2 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=False \ --num_draw=8 \ --normalize_inputs=1024 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.01,Site Preparation*2.0" # namek export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE python -m geowatch.cli.queue_cli.prepare_splits \ --base_fpath="$KWCOCO_BUNDLE_DPATH/data.kwcoco.json" \ --run=0 --backend=serial export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_s2_wv_vali.kwcoco.json CHANNELS="red|green|blue" EXPERIMENT_NAME=CropDrop3_SC_V005 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --saliency_loss='focal' \ --class_loss='focal' \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=soft2 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=False \ --num_draw=8 \ --normalize_inputs=1024 \ --stream_channels=16 \ --temporal_dropout=0.5 export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_s2_wv_vali.kwcoco.json CHANNELS="red|green|blue" EXPERIMENT_NAME=CropDrop3_SC_V006 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --accumulate_grad_batches=8 \ --saliency_loss='focal' \ --class_loss='focal' \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=soft2 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=False \ --num_draw=8 \ --normalize_inputs=1024 \ --stream_channels=16 \ --temporal_dropout=0.5 ##### oooo DVC_DPATH=$(geowatch_dvc) INIT_STATE_V001=$DVC_DPATH/models/fusion/eval3_sc_candidates/pred/CropDrop3_SC_V001/pred_CropDrop3_SC_V001_epoch=90-step=186367-v1/Cropped-Drop3-TA1-2022-03-10_data_wv_vali.kwcoco.pt (cd "$DVC_DPATH" && dvc pull -r aws smart_watch_dvc/models/fusion/eval3_sc_candidates/pred/CropDrop3_SC_V004/pred_CropDrop3_SC_V004_epoch=36-step=75775/Cropped-Drop3-TA1-2022-03-10_data_wv_vali.kwcoco.pt) export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_vali.kwcoco.json CHANNELS="red|green|blue" EXPERIMENT_NAME=CropDrop3_SC_xver1_V007 INIT_STATE_V001=$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V001/CropDrop3_SC_V001_epoch=90-step=186367-v1.pt DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=12m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=1024 \ --stream_channels=32 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.5,No Activity*0.001,Post Construction*0.01,Site Preparation*3.0" \ --init="$INIT_STATE_V001" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_wv_vali.kwcoco.json CHANNELS="red|green|blue" EXPERIMENT_NAME=CropDrop3_SC_xver1_V008 INIT_STATE_V001=$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V001/CropDrop3_SC_V001_epoch=90-step=186367-v1.pt DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.0003 \ --saliency_loss='dicefocal' \ --class_loss='focal' \ --chip_size=256 \ --time_steps=12 \ --learning_rate=3e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=1024 \ --stream_channels=64 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.01,Site Preparation*2.0" \ --init="$INIT_STATE_V001" # tooshbrush cropped + Depth WV only # ---------------------------------- export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_D_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_D_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_D_wv_vali.kwcoco.json CHANNELS="red|green|blue|depth" EXPERIMENT_NAME=CropDrop3_SC_wvonly_D_V009 INIT_STATE_V003=$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V003/CropDrop3_SC_V003_epoch=30-step=63487.pt DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=9 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=6m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=1536 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --init="$INIT_STATE_V003" \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.01,Site Preparation*2.0" export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DL_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DL_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DL_s2_wv_vali.kwcoco.json geowatch stats "$VALI_FPATH" #CHANNELS="WV:red|green|blue|depth,S2:red|green|blue|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" CHANNELS="red|green|blue|depth,red|green|blue|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" EXPERIMENT_NAME=CropDrop3_SC_wvonly_D_V010 INIT_STATE_V003=$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V003/CropDrop3_SC_V003_epoch=30-step=63487.pt DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=9 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=6m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=1536 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --init="$INIT_STATE_V003" \ --modulate_class_weights="positive*0,negative*0,background*1.0,No Activity*0.0,Post Construction*0.01,Site Preparation*2.0" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DL_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DL_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DL_s2_wv_vali.kwcoco.json geowatch stats "$VALI_FPATH" #CHANNELS="WV:red|green|blue|depth,S2:red|green|blue|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" CHANNELS="red|green|blue|near-ir1|near-ir2|depth,red|green|blue|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" EXPERIMENT_NAME=CropDrop3_SC_wvonly_D_V011 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=9 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=6m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=1536 \ --stream_channels=24 \ --temporal_dropout=0.5 \ --init=noop # tooshbrush cropped + Depth WV only (2022-04-12) # ----------------------------------------------- DVC_DPATH=$(geowatch_dvc) INIT_STATE_V011="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_wvonly_D_V011/CropDrop3_SC_wvonly_D_V011_epoch=81-step=167935.pt" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json geowatch stats "$VALI_FPATH" #CHANNELS="WV:red|green|blue|depth,S2:red|green|blue|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" CHANNELS="blue|green|red|near-ir1,blue|green|red|nir|swir16|swir22" EXPERIMENT_NAME=CropDrop3_SC_s2wv_raw_xver7_V012 INIT_STATE_V007="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_xver1_V007/CropDrop3_SC_xver1_V007_epoch=5-step=12287.pt" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=12m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=2048 \ --stream_channels=32 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.5,No Activity*0.001,Post Construction*0.01,Site Preparation*3.0" \ --init="$INIT_STATE_V007" export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json geowatch stats "$VALI_FPATH" #CHANNELS="WV:red|green|blue|depth,S2:red|green|blue|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" CHANNELS="blue|green|red|near-ir1|depth,blue|green|red|nir|swir16|swir22|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field|matseg_0|matseg_1|matseg_2|matseg_3|mat_up5:64" EXPERIMENT_NAME=CropDrop3_SC_s2wv_tf_xver7_V013 INIT_STATE_V007="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_xver1_V007/CropDrop3_SC_xver1_V007_epoch=5-step=12287.pt" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=12m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=2048 \ --stream_channels=32 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.5,No Activity*0.001,Post Construction*0.01,Site Preparation*3.0" \ --init="$INIT_STATE_V007" # ooo #INIT_STATE_V011="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_wvonly_D_V011/CropDrop3_SC_wvonly_D_V011_epoch=81-step=167935.pt" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DL_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DL_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DL_s2_wv_vali.kwcoco.json CHANNELS="blue|green|red|near-ir1|depth,blue|green|red|nir|swir16|swir22|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" EXPERIMENT_NAME=CropDrop3_SC_s2wv_tf_xver11_V013 INIT_STATE_V011="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_wvonly_D_V011/CropDrop3_SC_wvonly_D_V011_epoch=81-step=167935.pt" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=11 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=12m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=1024 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.5,No Activity*0.001,Post Construction*0.01,Site Preparation*3.0" \ --init="$INIT_STATE_V011" export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DL_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DL_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DL_s2_wv_vali.kwcoco.json geowatch stats "$VALI_FPATH" CHANNELS="blue|green|red|near-ir1|depth,blue|green|red|nir|swir16|swir22|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" EXPERIMENT_NAME=CropDrop3_SC_s2wv_tf_xver11_V014 INIT_STATE_V007="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_xver1_V007/CropDrop3_SC_xver1_V007_epoch=5-step=12287.pt" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=9 \ --learning_rate=1e-4 \ --num_workers=2 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=12m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=2048 \ --stream_channels=24 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.5,No Activity*0.001,Post Construction*0.01,Site Preparation*3.0" \ --init="$INIT_STATE_V011" # namek #INIT_STATE_V011="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_wvonly_D_V011/CropDrop3_SC_wvonly_D_V011_epoch=81-step=167935.pt" export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE ls "$KWCOCO_BUNDLE_DPATH" TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_s2_wv_train.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_s2_wv_train.kwcoco.json geowatch stats "$VALI_FPATH" CHANNELS="blue|green|red|near-ir1,blue|green|red|nir|swir16|swir22" EXPERIMENT_NAME=CropDrop3_SC_s2wv_raw_xver11_V015 INIT_STATE_V011="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_wvonly_D_V011/CropDrop3_SC_wvonly_D_V011_epoch=81-step=167935.pt" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=12m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=2048 \ --stream_channels=32 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.5,No Activity*0.001,Post Construction*0.01,Site Preparation*3.0" \ --init="$INIT_STATE_V011" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE ls "$KWCOCO_BUNDLE_DPATH" TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_s2_wv_train.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_s2_wv_train.kwcoco.json geowatch stats "$VALI_FPATH" CHANNELS="blue|green|red|near-ir1,blue|green|red|nir|swir16|swir22" EXPERIMENT_NAME=CropDrop3_SC_s2wv_raw_xver7_V016 INIT_STATE_V007="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_xver1_V007/CropDrop3_SC_xver1_V007_epoch=5-step=12287.pt" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=hardish3 \ --time_span=12m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=2048 \ --stream_channels=32 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.5,No Activity*0.001,Post Construction*0.01,Site Preparation*3.0" \ --init="$INIT_STATE_V007" # tooshbrush cropped + Depth WV only (2022-04-13) # ----------------------------------------------- DVC_DPATH=$(geowatch_dvc) export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json #CHANNELS="WV:red|green|blue|depth,S2:red|green|blue|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" CHANNELS="blue|green|red|near-ir1,blue|green|red|nir|swir16|swir22" EXPERIMENT_NAME=CropDrop3_SC_s2wv_raw_xver12_V018 INIT_STATE_V012="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_s2wv_raw_xver7_V012/CropDrop3_SC_s2wv_raw_xver7_V012_epoch=19-step=40959-v1.pt" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --accumulate_grad_batches=8 \ --global_saliency_weight=0.00 \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=False \ --time_sampling=hardish3 \ --time_span=12m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=2048 \ --stream_channels=32 \ --temporal_dropout=0.5 \ --modulate_class_weights="positive*0,negative*0,background*1.5,No Activity*0.001,Post Construction*0.01,Site Preparation*3.0" \ --init="$INIT_STATE_V012" # namek RGB continue # ----------------------------------------------- export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/data_s2_wv_vali.kwcoco.json CHANNELS="red|green|blue" EXPERIMENT_NAME=CropDrop3_SC_s2wv_rgb_xver6_V019 INIT_STATE_V006="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_V006/CropDrop3_SC_V006_epoch=71-step=18431.pt" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --accumulate_grad_batches=8 \ --saliency_loss='focal' \ --class_loss='dicefocal' \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=False \ --time_sampling=soft2 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=False \ --num_draw=8 \ --normalize_inputs=2048 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --init="$INIT_STATE_V006" ##### toothbrush 2022-04-17 export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json #CHANNELS="WV:red|green|blue|depth,S2:red|green|blue|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" CHANNELS="blue|green|red|near-ir1|depth,blue|green|red|nir|swir16|swir22|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field|matseg_0|matseg_1|matseg_2|matseg_3|mat_up5:64" EXPERIMENT_NAME=CropDrop3_SC_s2wv_tf_scratch_V020 INIT_STATE_V007="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_xver1_V007/CropDrop3_SC_xver1_V007_epoch=5-step=12287.pt" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --accumulate_grad_batches=8 \ --saliency_loss='focal' \ --class_loss='focal' \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=False \ --time_sampling=soft2 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=False \ --num_draw=8 \ --normalize_inputs=2048 \ --stream_channels=16 \ --temporal_dropout=0.5 export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json #CHANNELS="WV:red|green|blue|depth,S2:red|green|blue|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" CHANNELS="blue|green|red|near-ir1|depth,blue|green|red|nir|swir16|swir22,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field,matseg_0|matseg_1|matseg_2|matseg_3|mat_up5:64" EXPERIMENT_NAME=CropDrop3_SC_s2wv_tf_scratch_V021 INIT_STATE_V007="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_xver1_V007/CropDrop3_SC_xver1_V007_epoch=5-step=12287.pt" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --accumulate_grad_batches=8 \ --saliency_loss='focal' \ --class_loss='focal' \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=8 \ --max_epochs=160 \ --patience=160 \ --dist_weights=False \ --time_sampling=soft2 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=False \ --num_draw=8 \ --normalize_inputs=1024 \ --stream_channels=16 \ --temporal_dropout=0.5 ##### horologic 2022-04-17 export CUDA_VISIBLE_DEVICES=2 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json #CHANNELS="WV:red|green|blue|depth,S2:red|green|blue|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" CHANNELS="blue|green|red|near-ir1|depth,blue|green|red|nir|swir16|swir22|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field|matseg_0|matseg_1|matseg_2|matseg_3|mat_up5:64" EXPERIMENT_NAME=CropDrop3_SC_s2wv_tf_scratch_V022 INIT_STATE_V007="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_xver1_V007/CropDrop3_SC_xver1_V007_epoch=5-step=12287.pt" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --accumulate_grad_batches=1 \ --saliency_loss='focal' \ --class_loss='focal' \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=False \ --time_sampling=soft2 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=False \ --num_draw=8 \ --normalize_inputs=1024 \ --stream_channels=16 \ --temporal_dropout=0.5 export CUDA_VISIBLE_DEVICES=3 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json #CHANNELS="WV:red|green|blue|depth,S2:red|green|blue|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" CHANNELS="blue|green|red|near-ir1|depth,blue|green|red|nir|swir16|swir22,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field,matseg_0|matseg_1|matseg_2|matseg_3|mat_up5:64" EXPERIMENT_NAME=CropDrop3_SC_s2wv_tf_scratch_V023 INIT_STATE_V007="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_xver1_V007/CropDrop3_SC_xver1_V007_epoch=5-step=12287.pt" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --accumulate_grad_batches=1 \ --saliency_loss='focal' \ --class_loss='focal' \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=False \ --time_sampling=soft2 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=False \ --num_draw=8 \ --normalize_inputs=1024 \ --stream_channels=16 \ --temporal_dropout=0.5 ##### toothbrush 2022-04-19 --continue export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc) WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json #CHANNELS="WV:red|green|blue|depth,S2:red|green|blue|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" CHANNELS="blue|green|red|near-ir1|depth,blue|green|red|nir|swir16|swir22|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field|matseg_0|matseg_1|matseg_2|matseg_3|mat_up5:64" EXPERIMENT_NAME=CropDrop3_SC_s2wv_tf_cont_V024 INIT_STATE_V020="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_s2wv_tf_scratch_V021/CropDrop3_SC_s2wv_tf_scratch_V021_epoch=10-step=2815.pt" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --accumulate_grad_batches=8 \ --saliency_loss='focal' \ --class_loss='focal' \ --chip_size=256 \ --time_steps=12 \ --learning_rate=8e-4 \ --num_workers=6 \ --max_epochs=160 \ --patience=160 \ --dist_weights=False \ --time_sampling=soft2 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=20min \ --use_centered_positives=False \ --num_draw=8 \ --normalize_inputs=2048 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --init="$INIT_STATE_V020" export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc --hardware="hdd") WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json #CHANNELS="WV:red|green|blue|depth,S2:red|green|blue|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" CHANNELS="blue|green|red|near-ir1|depth,blue|green|red|nir|swir16|swir22,forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field,matseg_0|matseg_1|matseg_2|matseg_3|mat_up5:64" EXPERIMENT_NAME=CropDrop3_SC_s2wv_tf_cont_V025 INIT_STATE_V021="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_s2wv_tf_scratch_V020/CropDrop3_SC_s2wv_tf_scratch_V020_epoch=5-step=1535.pt" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --accumulate_grad_batches=8 \ --saliency_loss='focal' \ --class_loss='dicefocal' \ --chip_size=256 \ --time_steps=5 \ --learning_rate=1e-3 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=False \ --time_sampling=soft2 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --max_epoch_length=4096 \ --use_centered_positives=False \ --num_draw=8 \ --normalize_inputs=1024 \ --multimodal_reduce=mean \ --stream_channels=24 \ --temporal_dropout=0.5 \ --init="$INIT_STATE_V021" export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=$(geowatch_dvc --hardware="hdd") WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json #CHANNELS="WV:red|green|blue|depth,S2:red|green|blue|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field" CHANNELS="blue|green|red|near-ir1|depth,blue|green|red|nir|swir16|swir22|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field|matseg_0|matseg_1|matseg_2|matseg_3|mat_up5:64" EXPERIMENT_NAME=CropDrop3_SC_s2wv_tf_cont2_V026 INIT_STATE_V024="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_s2wv_tf_cont_V024/CropDrop3_SC_s2wv_tf_cont_V024_epoch=4-step=1279.pt" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --accumulate_grad_batches=8 \ --saliency_loss='focal' \ --class_loss='focal' \ --chip_size=256 \ --time_steps=12 \ --learning_rate=3e-3 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=False \ --time_sampling=soft2 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=False \ --num_draw=4 \ --normalize_inputs=2048 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --multimodal_reduce=mean \ --init="$INIT_STATE_V024" ##### toothbrush 2022-04-25 --continue export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc --hardware="hdd") WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json INIT_STATE_V024="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_s2wv_tf_cont_V024/CropDrop3_SC_s2wv_tf_cont_V024_epoch=4-step=1279.pt" CHANNELS="blue|green|red|near-ir1|depth,blue|green|red|nir|swir16|swir22|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field|matseg_0|matseg_1|matseg_2|matseg_3|mat_up5:64" EXPERIMENT_NAME=CropDrop3_SC_s2wv_tf_cont24_V027 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --accumulate_grad_batches=1 \ --saliency_loss='focal' \ --class_loss='dicefocal' \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=6 \ --max_epochs=160 \ --patience=160 \ --dist_weights=False \ --time_sampling=hardish3 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=2048 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --init="$INIT_STATE_V024" ##### toothbrush 2022-04-26 --continue fixed sampler export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc --hardware="hdd") WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json INIT_STATE_V024="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_s2wv_tf_cont_V024/CropDrop3_SC_s2wv_tf_cont_V024_epoch=4-step=1279.pt" CHANNELS="blue|green|red|near-ir1|depth,blue|green|red|nir|swir16|swir22|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field|matseg_0|matseg_1|matseg_2|matseg_3|mat_up5:64" EXPERIMENT_NAME=CropDrop3_SC_s2wv_tf_cont24_V028 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --accumulate_grad_batches=1 \ --saliency_loss='focal' \ --class_loss='dicefocal' \ --chip_size=256 \ --time_steps=12 \ --learning_rate=1e-4 \ --num_workers=6 \ --max_epochs=160 \ --patience=160 \ --dist_weights=False \ --time_sampling=hardish3 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=2048 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --init="$INIT_STATE_V024" ##### toothbrush 2022-04-26 --continue fixed sampler export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc --hardware="hdd") WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json INIT_STATE_V024="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_s2wv_tf_cont_V024/CropDrop3_SC_s2wv_tf_cont_V024_epoch=4-step=1279.pt" CHANNELS="blue|green|red|near-ir1|depth,blue|green|red|nir|swir16|swir22|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field|matseg_0|matseg_1|matseg_2|matseg_3|mat_up5:64" EXPERIMENT_NAME=CropDrop3_SC_s2wv_tf_cont24_V029 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --accumulate_grad_batches=3 \ --saliency_loss='focal' \ --class_loss='dicefocal' \ --chip_size=256 \ --time_steps=12 \ --learning_rate=3e-4 \ --num_workers=6 \ --max_epochs=160 \ --patience=160 \ --dist_weights=False \ --time_sampling=hardish3 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=2048 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --init="$INIT_STATE_V024" ##### horologic 2022-04-27 invariants export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc --hardware="ssd") WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DILM_s2_wv_vali.kwcoco.json CHANNELS="blue|green|red,invariants:0:16" EXPERIMENT_NAME=CropDrop3_SC_s2wv_invar_scratch_V030 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME #true || \ # geowatch stats "$VALI_FPATH" #true || \ # kwcoco validate "$VALI_FPATH" --require_relative=True python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --accumulate_grad_batches=3 \ --saliency_loss='focal' \ --class_loss='dicefocal' \ --chip_size=256 \ --time_steps=12 \ --learning_rate=3e-4 \ --num_workers=4 \ --max_epochs=160 \ --patience=160 \ --dist_weights=True \ --time_sampling=soft2 \ --time_span=7m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=False \ --num_draw=8 \ --normalize_inputs=1024 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --init="noop" ##### toothbrush 2022-04-26 --continue fixed sampler export CUDA_VISIBLE_DEVICES=1 DVC_DPATH=$(geowatch_dvc --hardware="ssd") WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json INIT_STATE_V028="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_s2wv_tf_cont24_V028/CropDrop3_SC_s2wv_tf_cont24_V028_epoch=1-step=4095-v1.pt" CHANNELS="blue|green|red|near-ir1|depth,blue|green|red|nir|swir16|swir22|forest|brush|bare_ground|built_up|cropland|wetland|water|snow_or_ice_field|matseg_0|matseg_1|matseg_2|matseg_3|mat_up5:64" EXPERIMENT_NAME=CropDrop3_SC_s2wv_tf_cont28_V031 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --accumulate_grad_batches=1 \ --saliency_loss='focal' \ --class_loss='focal' \ --chip_size=256 \ --time_steps=7 \ --learning_rate=1e-4 \ --num_workers=6 \ --max_epochs=160 \ --patience=160 \ --dist_weights=False \ --time_sampling=soft2 \ --time_span=6m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=2048 \ --stream_channels=16 \ --temporal_dropout=0.5 \ --init="$INIT_STATE_V028" ##### toothbrush 2022-04-26 --continue fixed sampler export CUDA_VISIBLE_DEVICES=0 DVC_DPATH=$(geowatch_dvc --hardware="ssd") WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Cropped-Drop3-TA1-2022-03-10 KWCOCO_BUNDLE_DPATH=$DVC_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_train.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_DLM_s2_wv_vali.kwcoco.json INIT_STATE_V028="$DVC_DPATH/models/fusion/eval3_sc_candidates/packages/CropDrop3_SC_s2wv_tf_cont24_V028/CropDrop3_SC_s2wv_tf_cont24_V028_epoch=1-step=4095-v1.pt" CHANNELS="blue|green|red|near-ir1|depth,blue|green|red,matseg_0|matseg_1|matseg_2|matseg_3|mat_up5:64" EXPERIMENT_NAME=CropDrop3_SC_s2wv_tf_dm_cont28_V032 DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME python -m geowatch.tasks.fusion.fit \ --config="$WORKDIR/configs/drop3_abalate1.yaml" \ --default_root_dir="$DEFAULT_ROOT_DIR" \ --name=$EXPERIMENT_NAME \ --train_dataset="$TRAIN_FPATH" \ --vali_dataset="$VALI_FPATH" \ --test_dataset="$TEST_FPATH" \ --global_change_weight=0.00 \ --global_class_weight=1.00 \ --global_saliency_weight=0.00 \ --accumulate_grad_batches=3 \ --saliency_loss='focal' \ --class_loss='focal' \ --chip_size=256 \ --time_steps=5 \ --learning_rate=3e-4 \ --num_workers=6 \ --max_epochs=160 \ --patience=160 \ --dist_weights=False \ --time_sampling=soft2 \ --time_span=6m \ --channels="$CHANNELS" \ --tokenizer=linconv \ --optimizer=AdamW \ --arch_name=smt_it_stm_p8 \ --decoder=mlp \ --draw_interval=5min \ --use_centered_positives=True \ --num_draw=8 \ --normalize_inputs=2048 \ --stream_channels=32 \ --temporal_dropout=0.2 \ --init="$INIT_STATE_V028"