\begin{comment} python -m ibeis.scripts.gen_cand_expts --exec-parse_latex_comments_for_commmands --fname figdef2.tex \end{comment} \begin{comment} # Fig for scale space can be seen here http://opticalengineering.spiedigitallibrary.org/article.aspx?articleid=1089124 http://opticalengineering.spiedigitallibrary.org/data/Journals/OPTICE/22119/017204_1_1.png \end{comment} % -------- \begin{comment} wget http://xphilipp.developpez.com/contribuez/scalespace.png -O ~/latex/cand/figures2/ScaleSpaceFigure.png python -m ibeis.scripts.specialdraw scalespace --dpath ~/latex/crall-thesis-2017/ --save figures2/ScaleSpaceFigure.png --dpi 300 --clipwhite --diskshow \end{comment} \newcommand{\ScaleSpaceFigure}{ \begin{figure}[ht!] \centering \includegraphics[width=.8\textwidth]{figures2/ScaleSpaceFigure.png} \captext[\caplbl{ScaleSpaceFigure}A scale space pyramid]{ % --- A Gaussian pyramid is used as a scale space representation of an image. A property of scale space is that doubling the scale is equivalent to downsampling the image by half. The set of images of a specific size correspond to an octave. The images within each octave are the intervals. % --- } \label{fig:ScaleSpaceFigure} \end{figure} } \begin{comment} python -m vtool.patch --test-draw_kp_ori_steps \ --fname=zebra.png --fx=121 --stride=2 \ --dpath ~/latex/crall-thesis-2017/ --save figures2/testfindkpdirection.jpg \ --saveparts --diskshow --figsize=10,5 --dpi=300 --hspace=.4 --top=.9 this is bugged in mpl 2.0.2, but works in 2.0.0 python -m vtool.patch --test-draw_kp_ori_steps --fname=zebra.png --fx=121 --show python -m vtool.patch --test-draw_kp_ori_steps --fname=zebra.png --fx=121 --dpath . --save KpOri.jpg --figsize=10,5 --dpi=300 --diskshow --top=0.8 --saveparts python -m vtool.patch --test-draw_kp_ori_steps --fname=zebra.png --fx=121 --dpath . --save KpOri.jpg --figsize=10,5 --dpi=300 --diskshow --top=0.9 --hspace=.4 --left=.04 --bottom=.05 --wspace=.2 --hspace=.3 \end{comment} \newcommand{\testfindkpdirection}{ \begin{figure}[ht!] \centering \begin{subfigure}[h]{0.23\textwidth}\centering\includegraphics[height=60pt]{figures2/testfindkpdirectionA.jpg}\caption{}\label{sub:testfindkpdirectiona}\end{subfigure} ~~%-- \begin{subfigure}[h]{0.23\textwidth}\centering\includegraphics[height=100pt]{figures2/testfindkpdirectionB.jpg}\caption{}\label{sub:testfindkpdirectionb}\end{subfigure} ~~%-- \begin{subfigure}[h]{0.23\textwidth}\centering\includegraphics[height=100pt]{figures2/testfindkpdirectionC.jpg}\caption{}\label{sub:testfindkpdirectionc}\end{subfigure} ~~%-- \begin{subfigure}[h]{0.23\textwidth}\centering\includegraphics[height=100pt]{figures2/testfindkpdirectionD.jpg}\caption{}\label{sub:testfindkpdirectiond}\end{subfigure} ~~%-- \begin{subfigure}[h]{0.23\textwidth}\centering\includegraphics[height=100pt]{figures2/testfindkpdirectionE.jpg}\caption{}\label{sub:testfindkpdirectione}\end{subfigure} ~~%-- \begin{subfigure}[h]{0.23\textwidth}\centering\includegraphics[height=100pt]{figures2/testfindkpdirectionF.jpg}\caption{}\label{sub:testfindkpdirectionf}\end{subfigure} ~~%-- \begin{subfigure}[h]{0.23\textwidth}\centering\includegraphics[height=100pt]{figures2/testfindkpdirectionG.jpg}\caption{}\label{sub:testfindkpdirectiong}\end{subfigure} ~~%-- \begin{subfigure}[h]{0.23\textwidth}\centering\includegraphics[height=100pt]{figures2/testfindkpdirectionH.jpg}\caption{}\label{sub:testfindkpdirectionh}\end{subfigure} ~~%-- \begin{subfigure}[h]{1\textwidth}\centering\includegraphics[width=\textwidth]{figures2/testfindkpdirectionI.jpg}\caption{}\label{sub:testfindkpdirectioni}\end{subfigure} \captext[\caplbl{testfindkpdirection}Computing the dominant gradient orientation]{ % --- The top row shows: \cref{sub:testfindkpdirectiona} the input image with a single elliptical keypoint, \cref{sub:testfindkpdirectionb} the normalized keypoint, \cref{sub:testfindkpdirectionc,sub:testfindkpdirectiond} the squared x and y image derivatives. The middle row shows: \cref{sub:testfindkpdirectione} the gradient magnitudes, \cref{sub:testfindkpdirectionf} the Gaussian weighted gradient magnitude, \cref{sub:testfindkpdirectiong,sub:testfindkpdirectionh} the orientation at each pixel. The final row~\cref{sub:testfindkpdirectioni} shows the histogram of weighted orientations. The starred positions show the dominant gradient orientations localized to sub-orientation accuracy. % --- } \label{fig:testfindkpdirection} \end{figure} } \begin{comment} python -m plottool.viz_featrow draw_feat_row --fname zebra.png --fx=121 \ --dpath ~/latex/crall-thesis-2017/ --save figures2/vizfeatrow.jpg \ --figsize=6,3 --dpi 300 --diskshow --saveparts python -m plottool.viz_featrow --test-draw_feat_row --fname zebra.png --fx=121 --save foo.jpg --figsize=6,3 --dpi 300 --diskshow \end{comment} \newcommand{\vizfeatrow}{ \begin{figure}[h] \centering \begin{subfigure}[h]{0.47\textwidth}\centering\includegraphics[width=\textwidth]{figures2/vizfeatrowA.jpg}\caption{}\label{sub:vizfeatrowA}\end{subfigure} ~~% -- \begin{subfigure}[h]{0.47\textwidth}\centering\includegraphics[width=\textwidth]{figures2/vizfeatrowB.jpg}\caption{}\label{sub:vizfeatrowB}\end{subfigure} \captext[\caplbl{vizfeatrow}Example of a SIFT descriptor]{ % --- \Cref{sub:vizfeatrowA} shows a SIFT feature superimposed over pixels it describes. \Cref{sub:vizfeatrowB} shows the same SIFT descriptor as a flat histogram. Notice the correspondence between the colors of the histogram bars. % --- } \label{fig:vizfeatrow} \end{figure} } \begin{comment} python -m plottool.draw_sv --test-show_sv_simple --dpath ~/latex/crall-thesis-2017/ --save figures2/figSVInlier.jpg --figsize=12,6 --dpi 300 --clipwhite --diskshow \end{comment} \newcommand{\figSVInlier}{ \begin{figure}[ht!] \centering \includegraphics[width=.6\textwidth]{figures2/figSVInlier.jpg} \captext[\caplbl{figSVInlier}Before and after spatial verification]{ % --- This shows the matches before and after spatial verification. Inconsistent matches are shown in red. Consistent matches are shown in blue. Notice that not all spatially consistent matches are correct. % --- } \label{fig:figSVInlier} \end{figure} }