Samia Ashraf | (22011513-022)

1) Dataset Selection

• Choose a dataset from Kaggle that aligns with the research focus global health statistics data,).

2) Data Pre-Processing

Data pre-processing means cleaning data. It is different in both type of variables. In quantitative variables it is done by removing all errors like missing values and outliers . In qualitative data it is done by converting data from nominal to ordinal if needed

Checking for Missing Values

Frequencies

Command

Analyze > Descriptive Statistics>Frequencies

Statistics

					Healthca	Hospit			
	Prevalenc	Incidenc	Mortalit		re	al Beds		Average	Reco
	e Rate	e Rate	y Rate	Population	Access	per		Treatment	y Ra
	(%)	(%)	(%)	Affected	(%)	1000	DALYs	Cost (USD)	(%)
N	3685	3685	3685	3685	3685	3685	3685	3685	30
	0	0	0	0	0	0	0	0	
	İ								
Mean	10.07	7.50	5.01	498832.04	75.04	5.20	2485.69	25092.73	74
Std. Error of Mean	.094	.071	.047	4744.222	.239	.044	23.651	237.469	
Median	10.16	7.45	4.95	500187.00	75.55	5.12	2499.00	24943.00	74
Mode	3	11	3ª	123560ª	94	5	23ª	35639ª	
Std. Deviation	5.699	4.304	2.846	287994.230	14.533	2.699	1435.738	14415.366	14.3

Variance	32.480	18.522	8.102	82940676424.	211.202	7.282	2061344.1	207802767.8	204.4
				522			87	63	
Skewness	018	.033	.023	.012	030	.026	015	.006	.0
Std. Error of	.040	.040	.040	.040	.040	.040	.040	.040	.0
Skewness									
Kurtosis	-1.171	-1.225	-1.195	-1.200	-1.209	-1.166	-1.208	-1.201	-1.2
Std. Error of	.081	.081	.081	.081	.081	.081	.081	.081	.0
Kurtosis									
Range	20	15	10	998583	50	10	4999	49877	
Minimum	0	0	0	1372	50	1	1	117	
Maximum	20	15	10	999955	100	10	5000	49994	
Sum	37097	27628	18457	1838196075	276511	19178	9159775	92466724	2739
Percentiles	5.32	3.79	2.52	244909.00	62.42	2.91	1230.00	12573.50	61
	10.16	7.45	4.95	500187.00	75.55	5.12	2499.00	24943.00	74
	14.88	11.24	7.48	750772.50	87.62	7.51	3718.50	37562.50	86
					$\overline{}$		-	4———	

a. Multiple modesexist. The smallestvalue is shown

Interpretation:

The dataset provides descriptive statistics for health-related variables across 3,685 records. Key metrics include a mean prevalence rate of 10.07%, average treatment cost of \$25,092.73, and mean healthcare access at 75.04%. Variance is high in variables like population affected and treatment costs, reflecting substantial variability across cases. Most variables exhibit normal distribution characteristics, with minimal skewness and kurtosis deviations.

ii) Outliers

Outliers are extreme large or extreme small values which don't fit in our data . before working further more on the data we have to check outliers . there are two basic methods for detection of outliers i) Trimmed means

ii) Boxplot / Box and Whisker plot

Commands

Graphs > Legacy dialogue > Boxplot

Case Processing Summary

Cases

	Va	lid	Mis	sing	То	tal	
	N	Percent	N	Percent	N	Percent	
Prevalence Rate (%)	3685	100.0%	0	0.0%	3685	100.0%	
Incidence Rate (%)	3685	100.0%	0	0.0%	3685	100.0%	
Mortality Rate (%)	3685	100.0%	0	0.0%	3685	100.0%	
Population Affected	3685	100.0%	0	0.0%	3685	100.0%	
Healthcare Access (%)	3685	100.0%	0	0.0%	3685	100.0%	
Doctors per 1000	3685	100.0%	0	0.0%	3685	100.0%	
Hospital Beds per 1000	3685	100.0%	0	0.0%	3685	100.0%	
Average Treatment Cost	3685	100.0%	0	0.0%	3685	100.0%	
(USD)							
Recovery Rate (%)	3685	100.0%	0	0.0%	3685	100.0%	
DALYs	3685	100.0%	0	0.0%	3685	100.0%	
Improvement in 5 Years	3685	100.0%	0	0.0%	3685	100.0%	
(%)							
Per Capita Income (USD)	3685	100.0%	0	0.0%	3685	100.0%	
Education Index	3685	100.0%	0	0.0%	3685	100.0%	
Urbanization Rate (%)	3685	100.0%	0	0.0%	3685	100.0%	

I can make a box plot but they have no outliers in my data

Interpretation:

The dataset contains 3,685 valid records for all variables, with no missing data across health-related indicators such as prevalence rate, incidence rate, mortality rate, and healthcare access.

iii) Transform Variables

All the qualitative variables are transformed into categorical variable if they needed . We replaced some of the qualitative variables into categorical variables with new names such as ;

DiseaseName into DieseaseName_1

Disease_Category into Disease_Category_1

AgeGroup into AgeGroup_1

Gender into Gender_1

TreatmentType into TreatmentType_1

AvailabilityofVccinesTreatment into AvailabilityofVccinesTreatment_1

Commands

We can use three different commands for transformation

- Transform >Auto Recode
- Transform > recode into same variable
- Transform > recode into different variable

3) Descriptive statistics & Visualizations

In descriptive statistics we are going to check mean, median, mode and all other values like skewness and kurtosis etc.

Central Tendency

Measure of mean, median, and mode

SPSS calculations

Descriptive Statistics

D

	Descriptive of							
	N	Range	Minimum	Maximum	Mea	an	Std.	
	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	St	
Prevalence Rate (%)	3685	20	0	20	10.07	.094		
Incidence Rate (%)	3685	15	0	15	7.50	.071		
Mortality Rate (%)	3685	10	0	10	5.01	.047		
Population Affected	3685	998583	1372	999955	498832.04	4744.222	2	
Healthcare Access (%)	3685	50	50	100	75.04	.239		
Doctors per 1000	3685	5	1	5	2.74	.022		
Hospital Beds per 1000	3685	10	1	10	5.20	.044		
Average Treatment Cost (USD)	3685	49877	117	49994	25092.73	237.469		
Recovery Rate (%)	3685	49	50	99	74.34	.236		
DALYs	3685	4999	1	5000	2485.69	23.651		
Improvement in 5 Years (%)	3685	10	0	10	5.12	.047		
Per Capita Income (USD)	3685	99493	503	99996	50778.51	469.340		
Education Index	3685	1	0	1	.65	.002		
Urbanization Rate (%)	3685	70	20	90	54.57	.331		
Valid N (listwise)	3685							

Visualization

Bar Chart

Bar chart represents data in qualitative variables . We select some categorical variable to be represented in Bar Chart .

Commands

Graphs>Legacy dialog>Barchart

	Statistics									
							Availability of			
			Disease			Treatment	Vaccines/Treat			
		Disease Name	Category	Age Group	Gender	Туре	ment			
N	Valid	3685	3685	3685	3685	3685	3685			
	Missing	0	0	0	0	0	0			

Pie Chart

Pie chart is another method of representing qualitative data . Let's represent our data in pie chart using previous variables .

Commands

Graphs>Legacy Dialog>pie chart

	Statistics									
							Availability of			
			Disease			Treatment	Vaccines/Treat			
		Disease Name	Category	Age Group	Gender	Туре	ment			
N	Valid	3685	3685	3685	3685	3685	3685			
	Missing	0	0	0	0	0	0			

Histogram

histogram is one of the most reliable way of representing quantitative data . We have here only 3 quantitative variables .So we represent each of them in histogram . There are two ways for making a histogram in SPSS. We will discuss both .

Commands

- ➤ Graph>Legacy Dialog> Histogram
- ➤ Analyze>Descriptive Statistics>Explore (Here we select histogram in plots)

		Prevalence Rate (%)	Incidence Rate (%)	Mortality Rate (%)	Population Affected	Healthcare Access (%)
N	Valid	3685	3685	3685		3685
	Missing	0	0	0	0	0

Box Plot

Box plot is usually termed as Box and Whisker plot . We use it to assess normality of the data . It's Box and Whiskers help us to detect normality of data. In SPSS ,Box and Whisker Plot ,can be drawn by two ways .

Commands

- ➤ Graph>Legacy Dialog> Boxplot
- ➤ Analyze>Descriptive Statistics>Explore (Here we select Box and whisker in plots)

Case Processing Summary

			ses			
	Va	lid	Mis	sing	То	tal
	N	Percent	N	Percent	N	Percent
Prevalence Rate (%)	3685	100.0%	0	0.0%	3685	100.0%
Incidence Rate (%)	3685	100.0%	0	0.0%	3685	100.0%
Mortality Rate (%)	3685	100.0%	0	0.0%	3685	100.0%
Population Affected	3685	100.0%	0	0.0%	3685	100.0%
Healthcare Access (%)	3685	100.0%	0	0.0%	3685	100.0%
Doctors per 1000	3685	100.0%	0	0.0%	3685	100.0%
Hospital Beds per 1000	3685	100.0%	0	0.0%	3685	100.0%
Average Treatment Cost	3685	100.0%	0	0.0%	3685	100.0%
(USD)						
Recovery Rate (%)	3685	100.0%	0	0.0%	3685	100.0%
DALYs	3685	100.0%	0	0.0%	3685	100.0%
Improvement in 5 Years	3685	100.0%	0	0.0%	3685	100.0%
(%)						
Per Capita Income (USD)	3685	100.0%	0	0.0%	3685	100.0%
Education Index	3685	100.0%	0	0.0%	3685	100.0%
Urbanization Rate (%)	3685	100.0%	0	0.0%	3685	100.0%

Prevalence Rate (%)

Normality Assessment

normality assessments are basically tests that show either data is normal or not. For assessing normality of data we perform Kolmogorov Smirnov and Shapiro Wilk tests

Commands

Analyze>Descriptive Statistics>Explore(in option check normality)

		Prevalence Rate (%)	Incidence Rate (%)	Mortality Rate (%)	Population Affected	Healthcare Access (%)
N	Valid	3685	,	, , ,	3685	
	Missing	0	0	0	0	0

Hypothesis Testing

Parametric Tests (Assume data is normal)

One Sample T-test

In one sample t test we use one specific data with a test value to compare it with mean of the data. In this test we test a claim that a company or person makes for the product or about anything. In our this dataset we don't have such a variable that makes any claim or which have specific value that is to be tested. So, we assume **amount** variable as claiming variable and use it in our One Sample T-test.

> Commands

Analyze>Compare means >One sample t test

One-Sample Statistics								
				Std. Error				
	N	Mean	Std. Deviation	Mean				
Prevalence Rate (%)	3685	10.07	5.699	.094				

One-Sample Test

	Test Value = 0							
					90% Confidence Interval of th			
				Mean	Difference			
	t	df	Sig. (2-tailed)	Difference	Lower	Upper		
Prevalence Rate (%)	107.230	3684	.000	10.067	9.91	10.22		

Interpretation:

The sample prevalence rate (%) is significantly greater than 0 (p<.001p < .001p < .001p<.001). The observed mean prevalence rate is 10.067%, and the confidence interval confirms this is a reliable estimate. This finding strongly supports the conclusion that the prevalence rate in the population is greater than 0.

Paired Sample T-Test

Our data don't meet the assumptions of the paired sample t-test i.e we don't have pairing variables.

Independent Sample T-test

- Assumptions
- a. Independent sample t-test takes two variables in which one is categorical and the other one is numeric .

Data should follow normal distribution

Commands

Analyze > Compare Means > independent sample t test

Group Statistics

]				Std. Error
	Gender	N	Mean	Std. Deviation	Mean
Recovery Rate (%)	Fema	1190	75.04	14.498	.420
	Male	1284	74.45	13.875	.387

Independent Samples Test								
		Levene's Test	for Equality of					
		Varia	inces					
		F	Sig.	t	df			
Recovery Rate (%)	Equal variances assumed	4.010	.045	1.037	2472			
	Equal variances not assumed			1.036	2436.998			

Interpretation:

The t-test shows no significant difference in recovery rates between groups (p=.300p=.300p=.300); the small mean difference (.592%) is within a 90% confidence interval including 0.

One Way ANOVA

One way ANOVA is extension of one sample t-test. We are going to use two variables in one way ANOVA.

Commands

Analyze>compare means > one Way ANOVA

ANOVA

Prevalence Rate (%)

	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	179.639	10	17.964	.552	.853
Within Groups	119477.416	3674	32.520		
Total	119657.055	3684			

Interpretation:

The one-way ANOVA does not find significant differences in prevalence rates (%) among the 11 groups (F=0.552,p=0.853F=0.552,p=0.853F=0.552,p=0.853). The observed variation in prevalence rates is likely due to random chance rather than actual differences between group means.

Two Way ANOVA

In two way ANOVA we use 2 categorical and one continues variable. In our data set we are going to create a two way ANOVA for variables defaulted, purpose and amount .We don't have any continuous

variable so we compute a new variable **Commands**

• :- Analyze>general linear model> univariate

post-hoc tests (e.g., LSD, Tukey's etc)

Multiple Comparisons

Dependent Variable: Prevalence Rate (%)

	_		Mean			95% Confid
	(I) Disease Category	(J) Disease Category	Difference (I-J)	Std. Error	Sig.	Lower Bound
Ba	Autoimmune	Bacterial	051	.428	1.000	-1.4
		Cardiovascu	209	.441	1.000	-1.6
		Chronic	370	.422	.999	-1.7
		Genetic	.206	.445	1.000	-1.23
		Infectious	140	.439	1.000	-1.5
		Metabolic	.024	.429	1.000	-1.3
		Neurologica	258	.419	1.000	-1.6
		Parasitic	.033	.432	1.000	-1.30
		Respiratory	108	.441	1.000	-1.5
		Viral	662	.435	.913	-2.0
	Bacterial	Autoimmune	.051	.428	1.000	-1.3
		Cardiovascu	158	.446	1.000	-1.6
		Chronic	319	.428	1.000	-1.7
		Genetic	.257	.451	1.000	-1.1
		Infectious	089	.444	1.000	-1.5
		Metabolic	.075	.435	1.000	-1.3
		Neurologica	207	.425	1.000	-1.5
		Parasitic	.084	.437	1.000	-1.3
		Respiratory	057	.447	1.000	-1.5
		Viral	611	.441	.952	-2.0
	Cardiovascu	Autoimmune	.209	.441	1.000	-1.2
		Bacterial	.158	.446	1.000	-1.2
		Chronic	161	.441	1.000	-1.5
		Genetic	.415	.463	.998	-1.0
		Infectious	.069	.457	1.000	-1.4
		Metabolic	.233	.447	1.000	-1.2
		Neurologica	048	.438	1.000	-1.4
		Parasitic	.242	.450	1.000	-1.2
		Respiratory	.101	.459	1.000	-1.3

	Viral	453	.453	.996	-1.91
Chronic	Autoimmune	.370	.422	.999	99
	Bacterial	.319	.428	1.000	-1.06
	Cardiovascu	.161	.441	1.000	-1.26
	Genetic	.577	.445	.970	86
	Infectious	.230	.438	1.000	-1.18
	Metabolic	.394	.429	.998	99
	Neurologica	.113	.419	1.000	-1.24
	Parasitic	.404	.432	.998	99
	Respiratory	.262	.441	1.000	-1.16
	Viral	291	.435	1.000	-1.69
Genetic	Autoimmune	206	.445	1.000	-1.64
	Bacterial	257	.451	1.000	-1.71
	Cardiovascu	415	.463	.998	-1.91
	Chronic	577	.445	.970	-2.01
	Infectious	346	.461	1.000	-1.83
	Metabolic	183	.452	1.000	-1.64
	Neurologica	464	.442	.994	-1.89
	Parasitic	173	.454	1.000	-1.64
	Respiratory	315	.463	1.000	-1.81
	Viral	868	.457	.719	-2.34
Infectious	Autoimmune	.140	.439	1.000	-1.27
	Bacterial	.089	.444	1.000	-1.34
	Cardiovascu	069	.457	1.000	-1.54
	Chronic	230	.438	1.000	-1.64
	Genetic	.346	.461	1.000	-1.14
	Metabolic	.164	.445	1.000	-1.27
	Neurologica	117	.436	1.000	-1.52
	Parasitic	.173	.448	1.000	-1.27
	Respiratory	.032	.457	1.000	-1.44
	Viral	522	.451	.987	-1.97
Metabolic	Autoimmune	024	.429	1.000	-1.40
	Bacterial	075	.435	1.000	-1.47
	Cardiovascu	233	.447	1.000	-1.67
	Chronic	394	.429	.998	-1.77
	Genetic	.183	.452	1.000	-1.27
	Infectious	164	.445	1.000	-1.60
	Neurologica	281	.426	1.000	-1.65

_					
	Parasitic	.010	.438	1.000	-1.40
	Respiratory	132	.448	1.000	-1.57
	Viral	685	.441	.902	-2.11
Neurologica	Autoimmune	.258	.419	1.000	-1.09
	Bacterial	.207	.425	1.000	-1.16
	Cardiovascu	.048	.438	1.000	-1.36
	Chronic	113	.419	1.000	-1.46
	Genetic	.464	.442	.994	96
	Infectious	.117	.436	1.000	-1.29
	Metabolic	.281	.426	1.000	-1.09
	Parasitic	.291	.429	1.000	-1.09
	Respiratory	.149	.438	1.000	-1.26
	Viral	404	.432	.998	-1.80
Parasitic	Autoimmune	033	.432	1.000	-1.42
	Bacterial	084	.437	1.000	-1.49
	Cardiovascu	242	.450	1.000	-1.69
	Chronic	404	.432	.998	-1.79
	Genetic	.173	.454	1.000	-1.29
	Infectious	173	.448	1.000	-1.62
	Metabolic	010	.438	1.000	-1.42
	Neurologica	291	.429	1.000	-1.67
	Respiratory	142	.450	1.000	-1.59
	Viral	695	.444	.897	-2.13
Respiratory	Autoimmune	.108	.441	1.000	-1.31
	Bacterial	.057	.447	1.000	-1.38
	Cardiovascu	101	.459	1.000	-1.58
	Chronic	262	.441	1.000	-1.68
	Genetic	.315	.463	1.000	-1.18
	Infectious	032	.457	1.000	-1.50
	Metabolic	.132	.448	1.000	-1.31
	Neurologica	149	.438	1.000	-1.56
	Parasitic	.142	.450	1.000	-1.31
	Viral	553	.453	.980	-2.01
Viral	Autoimmune	.662	.435	.913	74
	Bacterial	.611	.441	.952	81
	Cardiovascu	.453	.453	.996	-1.01
	Chronic	.291	.435	1.000	-1.11
	Genetic	.868	.457	.719	61

		Infectious	.522	.451	.987	9:
		Metabolic	.685	.441	.902	74
		Neurologica	.404	.432	.998	99
		Parasitic	.695	.444	.897	74
		Respiratory	.553	.453	.980	9
LSD	Autoimmune	Bacterial	051	.428	.905	89
		Cardiovascu	209	.441	.635	-1.0
		Chronic	370	.422	.380	-1.20
		Genetic	.206	.445	.643	67
		Infectious	140	.439	.749	-1.00
		Metabolic	.024	.429	.956	82
		Neurologica	258	.419	.539	-1.08
		Parasitic	.033	.432	.939	8´
		Respiratory	108	.441	.806	97
		Viral	662	.435	.128	-1.5
	Bacterial	Autoimmune	.051	.428	.905	79
		Cardiovascu	158	.446	.723	-1.03
		Chronic	319	.428	.455	-1.16
		Genetic	.257	.451	.568	63
		Infectious	089	.444	.841	96
		Metabolic	.075	.435	.863	78
		Neurologica	207	.425	.627	-1.04
		Parasitic	.084	.437	.847	77
		Respiratory	057	.447	.898	93
		Viral	611	.441	.166	-1.47
	Cardiovascu	Autoimmune	.209	.441	.635	66
		Bacterial	.158	.446	.723	72
		Chronic	161	.441	.714	-1.02
		Genetic	.415	.463	.370	49
		Infectious	.069	.457	.880	83
	Metabolic	.233	.447	.603	64	
	Neurologica	048	.438	.912	91	
	Parasitic	.242	.450	.590	64	
	Respiratory	.101	.459	.826	80	
		Viral	453	.453	.318	-1.34
	Chronic	Autoimmune	.370	.422	.380	46
		Bacterial	.319	.428	.455	52
		Cardiovascu	.161	.441	.714	70

	Genetic	.577	.445	.195	30
	Infectious	.230	.438	.599	63
	Metabolic	.394	.429	.358	45
	Neurologica	.113	.419	.788	71
	Parasitic	.404	.432	.350	44
	Respiratory	.262	.441	.552	60
	Viral	291	.435	.503	-1.14
Genetic	Autoimmune	206	.445	.643	-1.08
	Bacterial	257	.451	.568	-1.14
	Cardiovascu	415	.463	.370	-1.32
	Chronic	577	.445	.195	-1.45
	Infectious	346	.461	.452	-1.25
	Metabolic	183	.452	.686	-1.07
	Neurologica	464	.442	.294	-1.33
	Parasitic	173	.454	.703	-1.06
	Respiratory	315	.463	.497	-1.22
	Viral	868	.457	.058	-1.76
Infectious	Autoimmune	.140	.439	.749	72
	Bacterial	.089	.444	.841	78
	Cardiovascu	069	.457	.880	96
	Chronic	230	.438	.599	-1.09
	Genetic	.346	.461	.452	56
	Metabolic	.164	.445	.713	71
	Neurologica	117	.436	.787	97
	Parasitic	.173	.448	.699	70
	Respiratory	.032	.457	.945	86
	Viral	522	.451	.247	-1.41
Metabolic	Autoimmune	024	.429	.956	86
	Bacterial	075	.435	.863	93
	Cardiovascu	233	.447	.603	-1.11
	Chronic	394	.429	.358	-1.23
	Genetic	.183	.452	.686	70
	Infectious	164	.445	.713	-1.04
	Neurologica	281	.426	.509	-1.12
	Parasitic	.010	.438	.983	85
	Respiratory	132	.448	.768	-1.01
	Viral	685	.441	.121	-1.55
Neurologica	Autoimmune	.258	.419	.539	56

	Bacterial	.207	.425	.627	63
	Cardiovascu	.048	.438	.912	81
	Chronic	113	.419	.788	93
	Genetic	.464	.442	.294	40
	Infectious	.117	.436	.787	74
	Metabolic	.281	.426	.509	55
	Parasitic	.291	.429	.498	55
	Respiratory	.149	.438	.733	71
	Viral	404	.432	.350	-1.25
Parasitic	Autoimmune	033	.432	.939	88
	Bacterial	084	.437	.847	94
	Cardiovascu	242	.450	.590	-1.12
	Chronic	404	.432	.350	-1.25
	Genetic	.173	.454	.703	72
	Infectious	173	.448	.699	-1.05
	Metabolic	010	.438	.983	87
	Neurologica	291	.429	.498	-1.13
	Respiratory	142	.450	.753	-1.02
	Viral	695	.444	.118	-1.57
Respiratory	Autoimmune	.108	.441	.806	76
	Bacterial	.057	.447	.898	82
	Cardiovascu	101	.459	.826	-1.00
	Chronic	262	.441	.552	-1.13
	Genetic	.315	.463	.497	59
	Infectious	032	.457	.945	93
	Metabolic	.132	.448	.768	75
	Neurologica	149	.438	.733	-1.01
	Parasitic	.142	.450	.753	74
	Viral	553	.453	.222	-1.44
Viral	Autoimmune	.662	.435	.128	19
	Bacterial	.611	.441	.166	25
	Cardiovascu	.453	.453	.318	44
	Chronic	.291	.435	.503	56
	Genetic	.868	.457	.058	03
	Infectious	.522	.451	.247	36
	Metabolic	.685	.441	.121	18
	Neurologica	.404	.432	.350	44
	Parasitic	.695	.444	.118	18

	Respiratory	.553	.453	.222	34

Homogeneous Subsets:

Prevalence Rate (%)

Frevalence Nate (%)					
			Subset for		
	_		alpha = 0.05		
	Disease Category	N	1		
Tukey HSD ^{a,b}	Genetic	298	9.72		
	Parasitic	334	9.89		
	Metabolic	343	9.90		
	Autoimmune	365	9.92		
	Bacterial	346	9.98		
	Respiratory	308	10.03		
	Infectious	315	10.06		
	Cardiovascu	309	10.13		
	Neurologica	376	10.18		
	Chronic	366	10.29		
	Viral	325	10.59		
	Sig.		.674		

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 333.117.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed. Non parametric test:

Sign test:

Univariate Analysis of Variance

Between-Subjects Factors

		Value Label	N
Gender	1	Fema	1190
	2	Male	1284
	3	Othe	1211

Tests of Between-Subjects Effects

Dependent Variable: Average Treatment Cost (USD)

	Type III Sum of				
Source	Squares	df	Mean Square	F	Sig.

Corrected Model	139965566.42 1ª	2	69982783.211	.337	.714
Intercept	231895716689 7.716	1	231895716689 7.716	11155.395	.000
Gender_1	139965566.42 1	2	69982783.211	.337	.714
Error	765405431241 .422	3682	207877629.34		
Total	308578828616 8.000	3685			
Corrected Total	765545396807 .843	3684			

a. R Squared = .000 (Adjusted R Squared = .000)

Mann-Whitney Test

Ranks

	Gender	N	Mean Rank	Sum of Ranks
Average Treatment Cost	Fema	1190	1248.67	1485913.50
(USD)	Male	1284	1227.15	1575661.50
	Total	2474		

Test Statistics^a

Average

Treatment

Cost (USD)

Mann-Whitney U	750691.500
Wilcoxon W	1575661.500
Z	749
Asymp. Sig. (2-tailed)	.454

a. Grouping Variable: Gender

Interpretation:

The Mann-Whitney U test shows no significant difference in average treatment costs between genders (p=0.454p=0.454p=0.454), indicating similar costs for males and females.

Kruskal-Wallis Test

Ranks

	Treatment Type	N	Mean Rank
Average Treatment Cost	Medication	899	1877.27

(USD)	Surgery	910	1839.79
	Therapy	946	1796.29
	Vaccinatio	930	1860.52
	Total	3685	

Test Statistics^{a,b}

Average

Treatment

Cost (USD)

Kruskal-Wallis H	3.017
df	3
Asymp. Sig.	.389

a. Kruskal Wallis Test

b. Grouping Variable: Treatment

Type

Interpretation:

The Kruskal-Wallis H test shows no significant difference in **Average Treatment Cost (USD)** among the different **Treatment Types** (p=0.389p=0.389p=0.389), suggesting that treatment costs are similar across the treatment types in this dataset.

Measure of Association

☐ Chi-Square Test

Case Processing Summary

Cases

	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Gender * Treatment Type	3685	100.0%	0	0.0%	3685	100.0%

Gender * Treatment Type Crosstabulation

Count

		Medication	Surgery	Therapy	Vaccinatio	Total
Gender	Fema	271	302	314	303	1190
	Male	315	296	331	342	1284
	Othe	313	312	301	285	1211

Total	899	910	946	930	3685
10001	0,,	, , ,	, , ,	, , ,	0000

Chi-Square Tests

			Asymptotic Significance (2
	Value	df	-sided)
Pearson Chi-Square	7.493 ^a	6	.278
Likelihood Ratio	7.540	6	.274
Linear-by-Linear	3.478	1	.062
Association			
N of Valid Cases	3685		

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 290.31.

Interpretation:

The Chi-Square test shows no significant association between **Gender** and **Treatment Type** (p=0.278p=0.278p=0.278p=0.278), with a weak trend observed in the linear association (p=0.062p=0.062p=0.062), but it is not statistically significant.

Additional Measures:

Kendall's Tau-b

Correlations

			Healthcare	Recovery Rate
			Access (%)	(%)
Kendall's tau_b	Healthcare Access (%)	Correlation Coefficient	1.000	.008
		Sig. (2-tailed)		.469
		N	3685	3685
	Recovery Rate (%)	Correlation Coefficient	.008	1.000
		Sig. (2-tailed)	.469	
		N	3685	3685

Interpretation:

The correlation between **Healthcare Access (%)** and **Recovery Rate (%)** is very weak ($\tau b=0.008 tau_b=0.008 tb=0.008$) and not statistically significant (p=0.469p=0.469p=0.469), indicating no meaningful relationship between the two variables.

Gamma:

Case Processing Summary

Cases

	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Treatment Type * Gender	3685	100.0%	0	0.0%	3685	100.0%

Treatment Type * Gender Crosstabulation

Count

		Fema	Male	Othe	Total
Treatment Type	Medication	271	315	313	899
	Surgery	302	296	312	910
	Therapy	314	331	301	946
	Vaccinatio	303	342	285	930
Total		1190	1284	1211	3685

Symmetric Measures

			Asymptotic Standard	Approximate	Approximate
		Value	Error ^a	T ^b	Significance
Ordinal by Ordinal	Gamma	037	.020	-1.875	.061
N of Valid Cases		3685			

a. Not assuming the null hypothesis.

Interpretation

The Gamma correlation between the ordinal variables is -0.037-0.037-0.037, with a p-value of 0.0610.0610.061, indicating a very weak and marginally non-significant negative association.

Somer's D:

Case Processing Summary

	Cases						
	Valid		Missing		Total		
	N	Percent	N	Percent	N	Percent	
Treatment Type * Gender	3685	100.0%	0	0.0%	3685	100.0%	

Treatment Type * Gender Crosstabulation

b. Using the asymptotic standard error assuming the null hypothesis.

Count

		Fema	Male	Othe	Total
Treatment Type	Medication	271	315	313	899
	Surgery	302	296	312	910
	Therapy	314	331	301	946
	Vaccinatio	303	342	285	930
Total		1190	1284	1211	3685

Interpretation:

The crosstabulation shows a relatively even distribution of treatment types across genders, with males slightly preferring vaccination and therapy, while females and others are more evenly distributed across all treatment types.

Tau-c

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Treatment Type * Gender	3685	100.0%	0	0.0%	3685	100.0%

Treatment Type * Gender Crosstabulation

Count

Count	Gender				
		Fema	Male	Othe	Total
Treatment Type	Medication	271	315	313	899
	Surgery	302	296	312	910
	Therapy	314	331	301	946
	Vaccinatio	303	342	285	930
Total		1190	1284	1211	3685

Symmetric Measures

		·	Asymptotic Standard	Approximate	Approximate
		Value	Error ^a	T ^b	Significance
Ordinal by Ordinal	Kendall's tau-c	028	.015	-1.875	.061
N of Valid Cases		3685			

- a. Not assuming the null hypothesis.
- b. Using the asymptotic standard error assuming the null hypothesis.

Interpretation:

Kendall's tau-c is -0.028-0.028-0.028 with a p-value of 0.0610.0610.061, indicating a very weak and marginally non-significant negative association between the ordinal variables

Yate's corrected Chisquare:

Case Processing Summary

Cases

	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Treatment Type * Gender	3685	100.0%	0	0.0%	3685	100.0%

Treatment Type * Gender Crosstabulation

Count

	Gender				
		Fema	Male	Othe	Total
Treatment Type	Medication	271	315	313	899
	Surgery	302	296	312	910
	Therapy	314	331	301	946
	Vaccinatio	303	342	285	930
Total		1190	1284	1211	3685

Directional Measures

				Asymptotic	
			Value	Standard Error ^a	Approx
Nominal by Nominal	Lambda	Symmetric	.008	.008	
		Treatment Type Dependent	.008	.013	
		Gender Dependent	.007	.010	
	Goodman and Kruskal tau	Treatment Type Dependent	.001	.000	
		Gender Dependent	.001	.001	
	Uncertainty Coefficient	Symmetric	.001	.001	
		Treatment Type Dependent	.001	.001	
		Gender Dependent	.001	.001	

- a. Not assuming the null hypothesis.
- b. Using the asymptotic standard error assuming the null hypothesis.

- c. Based on chi-square approximation
- d. Likelihood ratio chi-square probability.

Symmetric Measures

			Approximate
		Value	Significance
Nominal by Nominal	Phi	.045	.278
	Cramer's V	.032	.278
	Contingency Coefficient	.045	.278
N of Valid Cases		3685	

Interpretation:

The Phi, Cramer's V, and Contingency Coefficient values are all very small (0.0450.0450.045 and 0.0320.0320.032) with a p-value of 0.2780.2780.278, indicating no significant association between the nominal variables.

Bowker's Test & McNemar Test

We can't use these two rest in our dataset because data don't meet assumptions of data i.e Data don't consist of any paired variables

Risk Measurement: Odds Ratio Risk Ratios

Risk Estimate

	Value
Odds Ratio for Treatment	a
Type (Medication /	
Surgery)	

a. Risk Estimate statistics cannot be computed. They are only computed for a 2*2 table without empty cells.

Interpretation:

The odds ratio for **Medication** vs. **Surgery** cannot be computed due to the need for a 2x2 table without empty cells.

Regression Analysis Linearity

Linear Regression:

Variables Entered/Removed^a

	Variables	Variables	
Model	Entered	Removed	Method
1	Gender ^b		Enter

- a. Dependent Variable: Healthcare Access (%)
- b. All requested variables entered.

Model Summary

			Adjusted R	Std. Error of
Model	R	R Square	Square	the Estimate
1	.008ª	.000	.000	14.534

a. Predictors: (Constant), Gender

ANOVA^a

		Sum of				
Model		Squares	df	Mean Square	F	Sig.
1	Regression	52.386	1	52.386	.248	.619 ^b
	Residual	778014.599	3683	211.245		

Total	778066.985	3684		

a. Dependent Variable: Healthcare Access (%)

b. Predictors: (Constant), Gender

Coefficients^a

				Standardized		
		Unstandardized Coefficients		Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	74.741	.641		116.544	.000
	Gender	.148	.297	.008	.498	.619

a. Dependent Variable: Healthcare Access (%)

Interpretation:

The model with **Gender** as the predictor explains none of the variance in the dependent variable, as indicated by an R^2 of 0.000 and a very weak correlation (R = 0.008). The model does not fit the data well.

40 mini

Logistic Regression:

Case Processing Summary

Unweighted Case	N	Percent	
Selected Cases	Included in Analysis	3685	100.0
	Missing Cases	0	.0
	Total	3685	100.0
Unselected Cases	0	.0	
Total		3685	100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
No	0
Ye	1

Block 0: Beginning Block

Classification Table^{a,b}

		Predicted				
		Availal	oility of			
	V			Vaccines/Treatment		
	Observed		No	Ye	Correct	
Step 0	Availability of	No	1878	0	100.0	
	Vaccines/Treatment	Ye	1807	0	.0	
	Overall Percentage				51.0	

- a. Constant is included in the model.
- b. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 0	Constant	039	.033	1.368	1	.242	.962

Variables not in the Equation

			Score	df	Sig.
Step 0	Variables	Healthcare Access (%)	.940	1	.332
	Overall Stat	tistics	.940	1	.332

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	.940	1	.332
	Block	.940	1	.332
	Model	.940	1	.332

Model Summary

	-2 Log	Cox & Snell R	Nagelkerke R
Step	likelihood	Square	Square
1	5106.187ª	.000	.000

a. Estimation terminated at iteration number 2 because parameter estimates changed by less than .001.

Classification Table^a

	Predicted					
	Vaccines/Treatment				Percentage	
	Observed		No	Ye	Correct	
Step 1	Availability of	No	1592	286	84.8	
	Vaccines/Treatment	Ye	1511	296	16.4	
	Overall Percentage				51.2	

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	Healthcare Access (%)	002	.002	.940	1	.332	.998
	Constant	.126	.173	.532	1	.466	1.135

a. Variable(s) entered on step 1: Healthcare Access (%).

Interpretation:

The model shows a Cox & Snell R² and Nagelkerke R² of 0.000, indicating that the predictors explain none of the variance in the dependent variable. The -2 Log Likelihood value of 5106.187 suggests a poor model fit.

Exploratory Factor Analysis (EFA)

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measur	.491	
Bartlett's Test of	Approx. Chi-Square	4.085
Sphericity	df	3
	Sig.	.252

Anti-image Matrices

		Healthcare	Doctors per	Hospital Beds
		Access (%)	1000	per 1000
Anti-image Covariance	Healthcare Access (%)	.999	.021	020
	Doctors per 1000	.021	.999	017
	Hospital Beds per 1000	020	017	.999
Anti-image Correlation	Healthcare Access (%)	.492ª	.021	020

Doctors per 1000	.021	.490ª	017
Hospital Beds per 1000	020	017	.490ª

a. Measures of Sampling Adequacy(MSA)

Communalities

	Initial
Healthcare Access (%)	1.000
Doctors per 1000	1.000
Hospital Beds per 1000	1.000

Extraction Method: Principal

Component Analysis.

Total Variance Explained

Initial Eigenvalues

Component	Total	% of Variance	Cumulative %
1	1.022	34.054	34.054
2	1.016	33.882	67.937
3	.962	32.063	100.000

Extraction Method: Principal Component Analysis.

Component Matrix^a

a. 2 components extracted.

Interpretation:

The Principal Component Analysis (PCA) shows three components explaining the total variance. The first two components explain 34.05% and 33.88% of the variance, respectively, with the third component explaining 32.06%, cumulatively accounting for 100% of the variance.

In Minitab

Outliers:

Outlier Test: 1, 2, 8, 471007, 58, 3, 8_1, 21064, 92, 4493, 2_1, 16886, 1_1, 86

Method

Null hypothesis All data values come from the same normal population

Alternative hypothesis Smallest or largest data value is an outlier

Significance level $\alpha = 0.05$

Grubbs' Test

Variable	N	Mean	StDev	Min	Max	G	Р
1	3684	10.078	5.709	0.0000	20.000	1.77	1.000
2	3684	7.5057	4.3165	0.0000	15.0000	1.74	1.000
8	3684	5.0109	2.8747	0.0000	10.0000	1.74	1.000
471007	3684	498840	288033	1372	999955	1.74	1.000
58	3684	75.050	14.540	50.000	100.000	1.72	1.000
3	3684	2.7693	1.3223	1.0000	5.0000	1.69	1.000
8_1	3684	5.2153	2.7068	1.0000	10.0000	1.77	1.000
21064	3684	25094	14417	117	49994	1.73	1.000
92	3684	74.343	14.304	50.000	99.000	1.72	1.000
4493	3684	2485.1	1435.6	1.0	5000.0	1.75	1.000
2_1	3684	5.1306	2.9145	0.0000	10.0000	1.76	1.000
16886	3684	50788	28489	503	99996	1.77	1.000
1_1	3684	0.81189	0.39085	0.00000	1.00000	2.08	1.000
86	3684	54.564	20.077	20.000	90.000	1.77	1.000

TO check Normality

Bar charts

Piechart:

Histogram:

Box plot

One way ANOVA: Method

equal

Alternative Not all means are

hypothesis equal Significance level $\alpha = 0.1$

Equal variances were assumed for the analysis.

Factor Information

Factor	Levels Values
Male	3 Fema, Male,
	Othe

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Male	2	27.5	13.732	1.66	0.190
Error	3681	30408.1	8.261		
Total	3683	30435.6			

Model Summary

S R-sq R-sq(adj) R-sq(pred) 2.87417 0.09% 0.04% 0.00%

Means

Male	N	Mean	StDev	90% CI
Fema	1190	5.0529	2.8397	(4.9159, 5.1900)
Male	1283	4.8948	2.9213	(4.7628, 5.0268)
Othe	1211	5.0925	2.8574	(4.9566, 5.2284)

Pooled StDev = 2.87417

Tukey Pairwise Comparisons

Grouping Information Using the Tukey Method and 95% Confidence

Male N Mean Grouping

Othe 1211 5.0925 A Fema 1190 5.0529 A Male 1283 4.8948 A

Means that do not share a letter are significantly different.

Fisher Pairwise Comparisons

Grouping Information Using the Fisher LSD Method and 95% Confidence

Male N Mean Grouping

Othe 1211 5.0925 A Fema 1190 5.0529 A Male 1283 4.8948 A

Means that do not share a letter are significantly different.

Dunnett Multiple Comparisons with a Control

Grouping Information Using the Dunnett Method and 95% Confidence

Male	N Mean Grouping
Fema	1190 5.0529 A
(control)	
Othe	1211 5.0925 A
Male	1283 4.8948 A

Means not labeled with the letter A are significantly different from the control level mean.

General linear model:

General Linear Model: 471007 versus 2, 4493, Medication

Method

Factor coding (-1, 0, +1)

Factor Information

Factor	Туре	Levels Values
Medication	Fixed	4 Medication, Surgery, Therapy, Vaccinatio

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
2	1	23781276272	23781276272	0.29	0.592
4493	1	59277738258	59277738258	0.72	0.398
	3	6.49274E+11	2.16425E+11	2.61	0.050
Medication	1				
Error	3678	3.04818E+14	82875913693		
Lack-of-	3658	3.02958E+14	82820605621	0.89	0.683
Fit					
Pure	20	1.85984E+12	92991760071		
Error					
Total	3683	3.05553E+14			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
287882	0.24%	0.10%	0.00%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	501198	12640	39.65	0.000	
2	589	1099	0.54	0.592	1.00
4493	-2.80	3.30	-0.85	0.398	1.00
Medication					
Medication	-14987	8286	-1.81	0.071	1.51
Surgery	-6566	8250	-0.80	0.426	1.51
Therapy	605	8143	0.07	0.941	1.50

Regression Equation

Medication

Medication 471007 = 486210 + 589 2 - 2.80 4493

Surgery 471007 = 494632 + 589 2 - 2.80 4493

Therapy 471007 = 501803 + 589 2 - 2.80 4493

Vaccinatio 471007 = 522146 + 589 2 - 2.80 4493

Non parametric test

Sign CI: 471007, 4493

Method

η: median of 471007, 4493

Descriptive Statistics

Sample	N	Median
471007	3684	500263
4493	3684	2499

90% Confidence Interval for η

Sample Cl for n Confidence Position 471007 (488321, 511445) 89.71% (1793, 1892) (488259, 511531) 90.00% Interpolation (488170, 511655) 90.39% (1792, 1893) 4493 (2429, 2571) 89.71% (1793, 1892) (2428.18, 2571.41) 90.00% Interpolation (2427, 2572) 90.39% (1792, 1893)

Wilcoxon Signed Rank CI: 471007, 4493

Method

η: median of 471007, 4493

Descriptive Statistics

				Achieved
Sample	N	Median	CI for η	Confidence
471007	3684	498810	(490861, 506651)	90.00%
4493	3684	2485	(2445.5, 2524.5)	90.00%

Mann-Whitney: 471007, 4493

Method

 η_1 : median of 471007 η_2 : median of 4493 Difference: $\eta_1 - \eta_2$

Descriptive Statistics

 Sample
 N Median

 471007 3684
 500263

 4493 3684
 2499

Estimation for Difference

Achieved Difference CI for Difference Confidence 497865 (488277, 507157) 90.00%

Test

Null hypothesis $H_0: \eta_1 - \eta_2 = 0$ Alternative hypothesis $H_1: \eta_1 - \eta_2 \neq 0$

 Method
 W-Value
 P-Value

 Not adjusted for ties
 20350850.00
 0.000

 Adjusted for ties
 20350850.00
 0.000

Kruskal-Wallis Test: 471007 versus Medication

Descriptive Statistics

Medication	N	Median	Mean Rank	Z-Value
Medication	898	482497	1786.4	-1.82
Surgery	910	496694	1817.8	-0.81
Therapy	946	492924	1844.0	0.05
Vaccinatio	930	530168	1919.2	2.54
Overall	3684		1842.5	

Test

Null hypothesis H_0 : All medians are equal

Alternative hypothesis H1: At least one median is different

Method	DF	H-Value	P-Value
Not adjusted for ties	3	7.83	0.050
Adjusted for ties	3	7.83	0.050