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Both polygenicity1,2 (i.e. many small genetic effects) and confounding biases, such as 

cryptic relatedness and population stratification3, can yield inflated distributions of test 

statistics in genome-wide association studies (GWAS). However, current methods cannot 

distinguish between inflation from bias and true signal from polygenicity. We have 

developed an approach that quantifies the contributions of each by examining the 

relationship between test statistics and linkage disequilibrium (LD). We term this approach 

LD Score regression. LD Score regression provides an upper bound on the contribution of 

confounding bias to the observed inflation in test statistics and can be used to estimate a 

more powerful correction factor than genomic control4-14. We find strong evidence that 

polygenicity accounts for the majority of test statistic inflation in many GWAS of large 

sample size.  

 Variants in LD with a causal variant show elevated test statistics in association 

analysis proportional to the LD (measured by r2) with the causal variant1,15,16. The more 

genetic variation an index variant tags, the higher the probability that this index variant will 

tag a causal variant. Precisely, if we assume that effect sizes are drawn independently from 

distributions with variance proportional to 1/ !(1− !), where p is minor allele frequency 

(MAF), then the expected !!-statistic of variant j is  

! !!! = !!!!
! !! + !" + 1,  (1) 

where N is sample size; ℎ!! is the squared correlation (in the population) between phenotype 

and the best linear predictor that can be constructed from genotyped SNPs; M is the number 

of variants; !! ≔ 1+ !!"!!!!  is the LD Score of variant j, which measures the amount of 

genetic variation tagged by j  and a measures the contribution of confounding bias. The same 

relationship holds for ascertained studies of binary phenotypes if we replace ℎ!! with 

observed scale heritability (Supplementary Note). In contrast, inflation from cryptic 

relatedness within or between cohorts4,17,18 or population stratification from genetic drift will 

not correlate with LD Score. Consequently, if we regress !!-statistics from GWAS against 

LD Score (LD Score regression), the intercept from this regression will estimate the mean 

contribution of confounding bias to the inflation in the test statistics, and a statistically 

significant positive slope is evidence of real polygenic signal (Supplementary Note).  

We briefly summarize LD Score estimation and regression here, with a more 

thorough description in the Online Methods. We estimated LD Scores from the European 
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ancestry samples in the 1000 Genomes Project19 (EUR) using an unbiased estimator21 of r2 

with 1 centiMorgan (cM) windows, singletons excluded (MAF > 0.13%) and no r2 cutoff. 

Standard errors were estimated by jackknifing over samples, and we used these standard 

errors to correct for attenuation bias (i.e., the downward bias in the magnitude of the 

regression slope that results when the regressor is measured noisily) in LD Score regression. 

In addition, we excluded variants with EUR MAF < 1% from all regressions because the LD 

Score standard errors for these variants were very high (note: these variants were included in 

LD Score estimation. In general, it is important to distinguish between the set of variants 

included in the sum of r2’s and the set of variants included in the regression, since the latter 

will often be a subset of the former). 

Mismatch between LD Scores in a reference population used for LD Score 

estimation and a target population used for GWAS can bias the LD Score regression in two 

ways. First, if LD Scores in the reference population are noisy approximations to LD Scores 

in the target population, then our standard errors will underestimate the standard error of 

!!"#"!"$%" − !!"#$%!, which will bias the LD Score regression slope downwards and the 

intercept upwards. Second, if LD Scores in the reference population are systematically higher 

or lower than in the target population, this can bias the LD Score regression intercept 

downwards or upwards, respectively. In order to quantify the extent of intra-European 

differences in LD Score, we estimated LD Scores using each of the 1000 Genomes EUR 

subpopulations (Utah Residents with Northern and Western European Ancestry (CEU), 

British in England and Scotland (GBR), Toscani in Italia (TSI) and Finnish in Finland (FIN)) 

separately. The LD Scores from all four subpopulations were highly correlated, but mean 

LD Score increased with latitude, consistent with the observation that Southern European 

populations have gone through less severe bottlenecks than Northern European 

populations22. For example, the mean LD Score for FIN was 7% larger and the mean LD 

Score for TSI was 8% smaller than for EUR.  Nevertheless, the EUR reference panel is 

appropriate for studies in outbred populations of predominantly northern European 

ancestry, such as European American or UK populations. For other populations, a different 

reference panel should be used. 

We performed a variety of simulations to verify the relationship between linkage 

disequilibrium and !!-statistics under scenarios with population stratification, cryptic 

relatedness and polygenic architecture. To simulate population stratification on a continental 
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scale, we obtained un-imputed genotypes from Psychiatric Genomics Consortium (PGC) 

controls from seven European samples, all genotyped on the same array (Supplementary 

Table 1). For each pair of samples, we assigned case/control status based on sample 

membership, then computed association statistics using PLINK23 (Online Methods). To 

model population stratification on a national scale, we computed the top three principal 

components within each cohort, then computed association statistics using each of these 

principal components as phenotypes.  

To model a polygenic quantitative trait, we assigned effect sizes drawn from 

!(0, ! 1− ! ) to varying numbers of causal variants in an approximately unstructured 

sample of 1000 Swedes. Quantile-quantile (QQ) plots from simulations with population 

stratification and polygenicity show indistinguishable patterns of inflation (Fig. 1a,b). 

However, the LD Score regression intercept was consistently near the mean !! in 

simulations with pure stratification (Fig. 1c, Supplementary Tables 2-3) and near 1 in 

simulations with polygenicity (Fig. 1d, Supplementary Figures 1-5), demonstrating that LD 

Score regression can distinguish between the two. We note that if there are few causal 

variants, then the LD Score regression becomes unstable (Supplementary Figure 6). 

To simulate a more realistic scenario where both polygenicity and bias contribute 

simultaneously to test statistic inflation, we obtained genotypes from approximately 22,000 

individuals from throughout Europe from the Wellcome Trust Case-Control Consortium 

224. We simulated polygenic phenotypes with causal SNPs drawn from the first halves of 

chromosomes, leaving all SNPs on the second halves of chromosomes null. In addition, we 

included an environmental stratification component aligned with the first principal 

component of the genotype data, representing Northern vs. Southern European ancestry. In 

this setup, the mean !! among SNPs on the second halves of chromosomes measures the 

average contribution of stratification. We performed similar simulations with cryptic 

relatedness using data from the Framingham Heart Study25, which includes close relatives. 

Results from these simulations are summarized in Supplementary Table 4. In all simulation 

replicates the LD Score regression intercept was approximately equal to the mean �! among 

null SNPs, which demonstrates that LD Score regression can partition the inflation in test 

statistics even in the presence of both bias and polygenicity. Finally, we modeled studies of a 

polygenic binary phenotype with case ascertainment using a simulated genotypes and a 
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liability threshold model, and verified that LD Score regression is not noticeably biased by 

ascertainment (Supplementary Table 5). 

A potential limitation of LD Score regression is that effect sizes may be correlated 

with LD Score. For instance, this could occur if variance explained is correlated with MAF, 

because MAF is correlated with LD Score. To quantify the magnitude of the bias that this 

would introduce, we simulated a variety of frequency-dependent genetic architectures 

(Online Methods). Under genetic architectures where mean variance explained was highest 

among rare variants, the LD Score regression intercept was biased upwards, and vice versa 

when mean variance explained was highest for common variants. The magnitude of this 

effect was small for reasonable genetic architectures; for instance, under a genetic 

architecture with 0.25% of SNPs causal and variance explained proportional to 1/! 1− ! , 

the mean inflation in the LD Score regression intercept across 10 simulations was only 11% 

of the mean !!, and under a genetic architecture with variance explained proportional to 

! 1− ! , the mean LD Score regression intercept was 0.994 (Supplementary Figure 6, 

Supplementary Table 6). However, LD Score regression is not effective for extreme genetic 

architectures: if all causal variants are rare (MAF < 1%), then LD Score regression will often 

generate a negative slope, and the intercept will be exceed the mean!!!(Supplementary 

Figure 7). 

Next, we applied LD Score regression to summary statistics from GWAS 

representing more than 30 different phenotypes4-6,16-29 (Online Methods, Table 1, 

Supplementary Tables 8,10,11). For all studies, the slope of the LD Score regression was 

significantly greater than 0, and the LD Score regression intercept was significantly less than 

!!"  (mean difference 0.11), suggesting that polygenicity significantly contributes to the 

increase in mean !! and confirming that correcting test statistics by dividing by !!"  is 

unnecessarily conservative. As an example, Figure 2 displays the LD Score regression for the 

most recent schizophrenia GWAS, restricted to ~70,000 European individuals26. The low 

intercept of 1.066 and highly significant slope (p<10-300) indicate at most a small contribution 

of bias, and that the mean !! of 1.613 results mostly from polygenicity. 

Finally, we discuss application of the LD Score regression intercept as a correction 

factor for GWAS meta-analyses. Where possible, it is preferable to obtain all genotype data 

and correct for confounding biases directly27-31; however, if only summary data are available, 
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or if a conservative correction is desired, we propose that the LD Score regression intercept 

provides a more robust upper bound on the extent of inflation from confounding bias than 

!!"  (or intergenic !!" , Supplementary Table 9). Since !!" !increases with sample size even in 

the absence of confounding bias1, the gain in power obtained by correcting test statistics 

with the LD Score regression intercept instead of !!"  will become even more substantial for 

larger GWAS. Extending this method to non-European populations such as East Asians or 

West Africans is straightforward given appropriate reference panels, but extension to 

admixed populations is the subject of future research.   

In conclusion, we have developed LD Score regression, a method to distinguish 

between inflated test statistics from confounding bias and polygenicity. Application of LD 

Score regression to over 30 complex traits confirms that polygenicity accounts for the 

majority of test statistic inflation in GWAS results and this approach can be used to generate 

a correction factor for GWAS that is more powerful than !!" , especially at large sample 

sizes. We have made an R script for performing LD Score regression and a database of LD 

Scores suitable for European-ancestry samples available for download (URLs). Research in 

progress aims to apply this method to estimation of heritability and genetic correlation, as 

well as to the calibration of mixed model statistics.  

 

ONLINE METHODS 

 

Estimation o f  LD Score and Standard Error .  We estimated European LD Scores from 

378 phased European individuals (excluding one individual from a pair of cousins) from the 

1000 Genomes Project reference panel using the –ld-mean-rsq option implemented in the 

GCTA20 software package (with flags --ld-mean-rsq –ld-rsq-cutoff 0 –maf 0.00001; we 

implemented a 1centiMorgan (cM) window using the –ld-wind flag and modified .bim files 

with physical coordinates replaced with genetic coordinates as described in the next 

paragraph). The primary rationale for using a sequenced reference panel containing several 

hundred individuals for LD Score estimation rather than a genotyped GWAS control panel 

with several thousand individuals was that even after imputing off-chip genotypes, the 

variants available from a genotyping array only account for a subset of all variants. Using 

only a subset of all variants for estimating LD Score produces estimates that are biased 

downwards. 
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We used a window of radius 1cM around the index variant for the sum of r2’s (using 

the genetic map and phased genotypes from the IMPUTE2 website, see URLs), no r2 cutoff, 

and excluded singletons (MAF < 0.13%). The standard estimator of the Pearson correlation 

coefficient has upward bias of approximately 1 / N, where N is sample size, so we employed 

an approximately unbiased estimator of LD Score given by !!"#! ≔ !!! − !!!!
!!! ,!where !! 

denotes the standard, biased estimator of the squared Pearson correlation21. Note that it is 

possible to have !!"#! < 1, which is a mathematically necessary feature of any unbiased 

estimator of r2. Thus, some estimated LD Scores will be less than 1. In practice, almost all 

variants with estimated LD Score less than 1 were rare: only 0.01% of variants with MAF > 

5% had estimated LD Scores below 1.  

 We examined the effect of varying the window size on our estimates of LD Score, 

and found that our estimates of LD Score were robust to choice of window size. The mean 

difference in LD Scores estimated with a 1 cM window and a 2 cM window was less than 

1% of the mean LD Score (Supplementary Figure 8), and all LD Scores estimated with 

window sizes larger than 1 cM had squared correlations > 0.99 (Supplementary Table 7). 

This observation also addresses concerns about inflation in the LD Score from the intra-

European population structure in the 1000 Genomes reference panel. The mean inflation in 

the 1 cM LD Score from population structure can be approximately bounded by the mean 

difference between a 1 cM LD Score and a 2 cM LD Score. Since this difference is < 1% of 

the mean LD Score, we conclude that bias from population structure is not significantly 

inflating our estimates of LD Score.  

We estimated LD Score standard error via a delete-one jackknife over the 378 

phased individuals in the 1000 Genomes European reference panel. We found that the LD 

Score standard error was positively correlated with MAF and with LD Score itself. Jackknife 

estimates of LD Score standard error became extremely large for variants with MAF < 1%, 

so we excluded variants with 1000 Genomes European sample MAF < 1% from all LD 

Score regressions. 

  

Intra-European LD Score Dif f erences .  In order to quantify the magnitude of intra-

European differences in LD Score, we estimated LD Scores using each of the 1000 

Genomes European subpopulations: Utah Residents with Northern and Western European 
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Ancestry (CEU), British in England and Scotland (GBR), Toscani in Italia (TSI) and Finnish 

in Finland (FIN). The LD Scores from the four subpopulations were all highly correlated 

but the mean LD Score was not constant across populations. The mean LD Scores (MAF > 

1%) were EUR, 110; CEU, 109; GBR, 104; FIN, 117; TSI, 102. The observation that the 

mean LD Score in the Finnish (FIN) population was elevated is consistent with a recent 

bottleneck in the genetic history of Finland32, and the observation that the mean LD Score in 

the Southern European TSI population is lower is consistent with reports that Southern 

European populations have gone through less severe bottlenecks than Northern European 

populations22.  

 Intra-European differences in LD Score can be a source of bias in the LD Score 

regression intercept. For instance, if one attempts to perform LD Score regression using the 

1000 Genomes European LD Score on a GWAS with all samples from Finland, then the LD 

Score regression intercept may be biased upwards. Similarly, if one attempts to perform LD 

Score regression using the 1000 Genomes European LD Score on a GWAS with all samples 

from Italy, the LD Score regression intercept may be biased downwards. If we make the 

approximation that the intra-European differences in LD Score can be described by an 

additive term plus 5% noise (i.e., if we assume that the FIN LD Score equals the pan-

European LD Score plus seven, which is a worst-case scenario among linear relationships 

between the two LD Scores in terms of bias in the intercept), then the bias introduced into 

the LD Score regression intercept by using the pan-European LD Score to perform LD 

Score regression on a Finnish GWAS will be 7 multiplied by the slope of the LD Score 

regression plus 5% of 0.05(!! − 1)   (where 7 is the difference between the reference 

population LD Score and the GWAS population LD Score). Since all of the mean European 

subpopulation LD Scores that we have estimated are within ± 8 of the mean pan-European 

LD Score, we estimate that the bias in the LD Score regression intercept from intra-

European LD Score differences is at most ±10 times the LD Score regression slope. For the 

real GWAS analyzed in Table 1, this corresponds to a worst-case difference of 

approximately ±10% in the estimate of the proportion of the inflation in the mean !! that 

results from confounding bias, with a higher probability of upward bias (because the noise 

term in the relationship between target and reference LD Score always causes upward bias in 

the LD Score regression intercept, while systematic directional differences in target and 

reference LD Scores can bias the LD Score regression intercept in either direction). 
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LD Score Regress ion.  We prove in the Supplementary Note that confounding bias due to 

population stratification and polygenic genetic architecture contribute additively to inflation 

in !!-statistics. It is also true that cryptic relatedness and polygenic genetic architecture 

contribute additively to inflation in !!-statistics, which we demonstrate via simulation in this 

paper. Therefore, we can estimate the mean contribution of confounding to test statistic 

inflation by regressing !!-statistics against LD Score. This estimate will be unbiased if LD 

Score is uncorrelated with all sources of confounding bias, and if the assumption that the 

local LD Score is approximately equal in all populations from which GWAS samples were 

drawn. It is certainly the case that LD Score is uncorrelated with inflation due to cryptic 

relatedness, since inflation due to cryptic relatedness affects all SNPs equally. The inflation in 

the !!-statistic of a variant from population stratification that results from a two population 

mixture depends on the difference in mean phenotype and the difference in allele frequency 

between these two populations. Under genetic drift, the expected squared difference in allele 

frequency between two populations (which is proportional to the inflation in !!-statistics 

from stratification) is proportional to !!"!!"#(1− !!"#),33 where !!"# is allele frequency in 

the ancestral population. Note that LD Score does not appear in this expression. This 

quantity may be correlated with LD Score if !!"# is correlated with the LD Score in the 

ancestral population. However, the squared correlation between !(1− !) and LD Score in 

the 1000 Genomes Europeans is ~3.5%, so we expect that any correlation between LD 

Score and allele frequency differences due to drift will be small.  

If GWAS is confounded by genetic differences between populations that result from 

selection, then this source of confounding will likely be correlated with LD Score, because 

variants with higher LD Scores are more likely to be in LD with a variant under differential 

selection, and are therefore more likely to show an allele frequency difference as a result of 

hitchhiking and because background selection causes regions with low recombination rates 

to drift more rapidly. However, most allele frequency differences between human population 

are a result of drift, with only a small contribution from selection34,35, so we do not expect 

that correlation between allele frequency differences and LD Score at sites under selection 

will be a major source of upward bias in the LD Score regression slope.  
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Regress ion Weights .  To account for heteroskedasticity and correlations between !!-

statistics of variants in LD, we employed a weighting scheme that gives lower weight to 

variants with high LD Scores.  

 Let S denote the set of variants included in the LD Score regression, and for a 

variant j included in S let !!(!)≔ 1+ !!"!!∈! . Then variant j is over-counted in the 

regression by a factor of approximately !!(!). We estimate !!(!) for the set of variants S 

described in the section Application to Real Data using the same procedure we used to 

estimate the full 1000 Genomes LD Score. Since our estimates !!(!) can be negative or 

zero, and regression weights must be positive, we weight by 1/max!(!!(!),1) to correct for 

over-counting. 

 We observe in simulations that the variance of !!-statistics increases with LD Score. 

Thus our data are heteroskedastic, and we can improve the efficiency of our regression by 

giving less weight to variants with high LD Score. Precisely, account we for 

heteroskedasticity by weighting by 1/max!(2,2+ !!!), where 2 is the variance of a central 

!! distribution and c is a parameter that describes the increase in variance of !!-statistics 

with LD Score. We estimated c by binning all variants into 50 LD Score quantile bins, 

computing the variance of the !!-statistics in each bin, then regressing these variances 

against the mean LD Score of each bin. For this paper, we take c= 0.1 for application to real 

GWAS and c=0.085 for simulations with a sample size of less than 10,000. We could obtain 

better regression weights by estimating c more accurately. The correct value of c depends on 

sample size and higher moments of the effect size distribution, and estimating these 

moments is the subject of ongoing research. However, we note that choice of regression 

weights does not change the expectations of the regression parameters, only the variance. 

We verified that these regression weights improve the performance of the regression by 

computing the standard deviation of the weighted (with c = 0.085) and unweighted 

regression intercepts across 100 simulations with a polygenic genetic architecture with 1% of 

SNPs causal and no confounding bias, so that the expected value of the LD Score regression 

intercept is one. The standard deviation of the unweighted regression intercept was 0.062 

and the standard deviation of the weighted regression intercept was 0.015, which shows that 

this weighting scheme does improve the efficiency of the LD Score regression intercept as 

an estimator of the contribution of confounding bias to test statistic inflation. 
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Attenuat ion Bias .  Standard least-squares and weighted least-squares regression theory 

assumes that the explanatory variable (also referred to as the independent variable, or X) is 

measured without error. If the explanatory variable is measured with error, then the 

magnitude of the regression slope will be biased toward zero. This form of bias is known as 

attenuation bias. If the explanatory variable is measured with error, but the variance of this 

error is known, then it is possible to produce an unbiased regression slope by multiplying the 

slope by a disattenuation factor, which is equal to the squared weighted Pearson correlation 

between the noisy estimates of the explanatory variable and the true value of the explanatory 

variable. We provide an R script that can estimate this disattenuation factor given LD Scores 

and jackknife estimates of LD Score standard errors (see URLs). 

 

Regress ion Standard Errors .  The usual estimators of regression standard errors assume 

uncorrelated and homoscedastic error terms, and these assumptions are violated by the LD 

Score regression. To produce more robust standard errors, we estimated standard errors for 

the weighted, disattenuated LD Score regression slope and intercept using a block jackknife 

over blocks of consecutive variants. We verified that our standard errors were not sensitive 

to the choice of block size by estimating block jackknife standard errors using block sizes 

between 100 and 50,000 variants and observing that the standard errors did not depend on 

block size. The standard errors reported in Table 1 use a delete-1000 block jackknife. 

 

Simulat ions .  When performing simulations with polygenic genetic architectures using 

genotyped or imputed data, variants in the 1000 Genomes reference panel not included in 

the set of genotypes used for simulation cannot contribute to the simulated phenotypes, and 

so should not contribute to the LD Score used for simulations. Precisely, for the simulations 

with polygenicity and the simulations with polygenicity and bias, we used LD Scores where 

estimates of r2 were derived from the 1000 Genomes European reference panel, but the sum 

of r2’s was taken over only those SNPs included in the simulations. For the simulations with 

frequency-dependent genetic architecture, we estimated LD Scores from the same genotypes 

used for simulations, because we wanted to quantify the bias introduced by frequency-

dependent genetic architecture even when LD Scores are estimated with little noise. For the 

simulations with pure population stratification, we used an LD Score estimated from all 1000 
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Genomes variants, since there was no simulated polygenic architecture in these simulations.  

For simulations with pure population stratification, the details of the cohorts used are given 

in supplementary table 1. 

 It is difficult to use real genotypes to simulate ascertained studies of a binary 

phenotype with low population prevalence: to obtain 1000 cases with a simulated 1% 

phenotype, one would need to sample on expectation 100,000 genotypes, which is not 

feasible. We therefore generated simulated genotypes at 1.1 million SNPs with mean LD 

Score 110 and a simplified LD structure where r2 is either 0 or 1, and all variants had 50% 

minor allele frequency. We generated phenotypes under the liability threshold model with all 

per-normalized genotype effect sizes (i.e., effects on liability) drawn i.i.d. from a normal 

distribution, then sampled individuals at random from the simulated population until the 

desired number of cases and controls for the study had been reached. The R script that 

performs these simulations is available online (URLs). 

  

Applicat ion to Real Data.   The majority of the sets of summary statistics that we analyzed 

did not contain information about sample minor allele frequency or imputation quality. In 

order to restrict to a set of common, well-imputed variants, we retained only those SNPs in 

the HapMap 3 reference panel36 for the LD Score regression. To guard against 

underestimation of LD Score from summing only LD with variants within a 1cM window, 

we removed variants in regions with exceptionally long-range LD37 from the LD Score 

regression (NB LD with these variants were included in the estimation of LD Score). Lastly, 

we excluded pericentromeric regions (defined as ± 3 cM from a centromere) from the LD 

Score regression, because these regions are enriched for sequence gaps, which may lead to 

underestimation of LD Score, and depleted for genes, which may reduce the probability of 

association to phenotype38,39. The final set of variants retained for LD Score regression on 

real data consisted of approximately 1.1 million variants.  
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URLs 
 

1. 1000 Genomes genetic map and haplotypes: 
http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.ht
ml 

2. LD Score database:  
ftp://atguftp.mgh.harvard.edu/brendan/1k_eur_r2_hm3snps_se_weights.RDS  

3. Simulation and regression code: https://github.com/bulik/ld_score 
4. GIANT Consortium summary statistics: 

http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium
_data_files 

5. PGC and TAG Consortium summary statistics: 
https://pgc.unc.edu/Sharing.php#SharingOpp 

6. IIBDGC summary statistics (NB these summary statistics are meta-analyzed with 
immunochip data, which is not appropriate for LD Score regression): 
http://www.ibdgenetics.org/downloads.html 

7. CARDIoGRAM summary statistics: 
http://www.cardiogramplusc4d.org/downloads/ 

8. DIAGRAM summary statistics: http://diagram-consortium.org/downloads.html 
9. Rheumatoid Arthritis summary statistics: 

http://www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/Stahl_etal_2010NG/ 
10. Blood Pressure summary statistics: 

http://www.georgehretlab.org/icbp_088023401234-9812599.html 
11. MAGIC consortium summary statistics: 

http://www.magicinvestigators.org/downloads/ 
12. GEFOS consortium summary statistics: http://www.gefos.org/?q=content/data-

release 
13. SSGAC summary statistics: http://ssgac.org/Data.php 
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FIGURE LEGENDS 
 

Figure 1.  Results from selected simulations. (a) QQ plot with population stratification (!!"  
= 1.32, LD Score regression intercept = 1.30). (b) QQ plot with polygenic genetic 
architecture with 0.1% of SNPs causal (!!"  = 1.32, LD Score regression intercept = 1.02) 
(c) LD Score plot with population stratification. Each point represents an LD Score 
quantile, where the x-coordinate of the point is the mean LD Score of variants in that 
quantile and the y-coordinate is the mean !! of variants in that quantile. Colors correspond 
to regression weights, with red indicating large weight. The black line is the LD Score 
regression line, block jackknife p-value = 0.45 (d) As in panel c but LD Score plot with 
polygenic genetic architecture, block jackknife p-value = 1.6 x 10-69. 
   
Figure 2.  LD Score regression plot for the current schizophrenia meta-analysis26. Each 
point represents an LD Score quantile, where the x-coordinate of the point is the mean LD 
Score of variants in that quantile and the y-coordinate is the mean !! of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The 
black line is the LD Score regression line, block jackknife p-value < 10-300. 
 
Table 1.  LD Score regression results for all studies analyzed that either did not apply meta-
analysis level GC correction or listed !!"  in the relevant publication. The column labeled 
“GC” indicates how many rounds of GC correction were performed. For GWAS that 
applied meta-analysis level GC correction and listed !!" , we re-inflated all test statistics by 
the meta-analysis level !!" . Results after double GC correction are displayed in 
Supplementary Table 8. Standard errors and p-values are obtained via a block jackknife over 
blocks of ~2000 adjacent SNPs, which provides a robust estimate of standard error in the 
presence of correlated, heteroskedastic error terms. The column labeled “Type” indicates 
whether the study was a mega- (raw genotypes shared between studies) or meta-analysis 
(only summary statistics shared between all contributing studies).  
 
 
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 21, 2014. ; https://doi.org/10.1101/002931doi: bioRxiv preprint 

https://doi.org/10.1101/002931


FIGURES 
 
 

Figure 1a.  
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Figure 1b.   
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Figure 1c .  
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Figure 1d.  
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Figure 2.  
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Table 1.   
Phenotype Mean !! !!" Intercept Intercept SE Slope Slope SE Type GC P-Value Ref 
Inflammatory bowel 
disease 

1.247 1.164 1.086 0.006435 0.001545 8.47E-05 mega  0 1.34E-74 40 

Ulcerative Colitis 1.174 1.128 1.071 0.006242 0.0009801 7.86E-05 mega  0 5.47E-36 40 
Crohn’s 1.185 1.122 1.037 0.005237 0.001415 7.23E-05 mega  0 1.02E-85 40 
Schizophrenia 1.613 1.484 1.066 0.00563 0.005209 8.01E-05 mega  0 <1E-300 26 
ADHD 1.033 1.033 1.006 0.005363 0.0002144 6.65E-05 mega  0 

6.31E-04 
41 

Bipolar 1.154 1.135 1.028 0.005745 0.001220 7.27E-05 mega  0 1.36E-63 42 
PGC Cross-Disorder 1.205 1.187 1.013 0.005779 0.001869 7.56E-05 mega  0 2.78E-135 43 
Major Depression 1.063 1.063 1.005 0.005226 0.0005718 6.45E-05 mega  0 3.89E-19 44 
Rheumatoid Arthritis 1.063 1.033 0.9798 0.0007542 0.0007252 6.50E-05 mega  2 2.20E-31 8 
Coronary Artery Disease 1.125 1.096 1.027 0.005270 0.0009507 6.58E-05 meta  1 1.22E-47 11 
Type-2 Diabetes 1.116 1.097 1.021 0.005614 0.0008802 6.95E-05 meta  1 4.68E-37 45 
BMI-Adj. Fasting Insulin 1.088 1.072 1.009 0.005208 0.0007578 6.59E-05 meta  1 6.87E-31 12 
Fasting Insulin 1.079 1.067 1.019 0.005220 0.0005517 6.54E-05 meta  1 1.65E-17 12 
College  1.207 1.180 1.041 0.005484 0.001545 6.50E-05 meta  1 3.17E-125 13 
Years of Education 1.220 1.188 1.040 0.005666 0.001660 6.65E-05 meta  1 8.57E-138 13 
Cigarettes Per Day 1.047 1.047 0.9968 0.005554 0.0005349 7.02E-05 meta  1 1.29E-14 9 
Ever Smoked 1.097 1.083 0.9987 0.005201 0.0009647 6.48E-05 meta  1 1.70E-50 9 
Former Smoker 1.050 1.048 0.9953 0.005249 0.0005366 6.57E-05 meta  1 1.65E-16 9 
Age-Onset (Smoking) 1.025 1.030 0.9966 0.005212 0.0002668 6.56E-05 meta  1 2.39E-05 9 
FN-BMD 1.163 1.109 0.9934 0.001613 0.001450 7.15E-05 meta  2 5.49E-113 14 
LS-BMD 1.174 1.112 1.022 0.001444 0.001281 7.27E-05 meta  2 6.04E-88 14 
Waist-Hip Ratio 1.417 1.330 1.040 0.003633 0.002756 8.46E-05 meta  2 <1E-300 5 
Height 1.802 1.478 1.145 0.006229 0.004387 1.20E-04 meta  2 <1E-300 6 
Body-Mass Index 1.130 1.090 1.025 0.0009696 0.0008895 6.35E-05 meta  2 5.24E-53 7 
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