use crate::{ bundle_state::StorageRevertsIter, providers::{database::metrics, static_file::StaticFileWriter, StaticFileProvider}, to_range, traits::{ AccountExtReader, BlockSource, ChangeSetReader, ReceiptProvider, StageCheckpointWriter, }, writer::UnifiedStorageWriter, AccountReader, BlockExecutionReader, BlockExecutionWriter, BlockHashReader, BlockNumReader, BlockReader, BlockWriter, BundleStateInit, EvmEnvProvider, FinalizedBlockReader, FinalizedBlockWriter, HashingWriter, HeaderProvider, HeaderSyncGap, HeaderSyncGapProvider, HistoricalStateProvider, HistoryWriter, LatestStateProvider, OriginalValuesKnown, ProviderError, PruneCheckpointReader, PruneCheckpointWriter, RequestsProvider, RevertsInit, StageCheckpointReader, StateChangeWriter, StateProviderBox, StateWriter, StatsReader, StorageReader, StorageTrieWriter, TransactionVariant, TransactionsProvider, TransactionsProviderExt, TrieWriter, WithdrawalsProvider, }; use itertools::{izip, Itertools}; use rayon::slice::ParallelSliceMut; use reth_chainspec::{ChainInfo, ChainSpec, EthereumHardforks}; use reth_db::{ cursor::DbDupCursorRW, tables, BlockNumberList, PlainAccountState, PlainStorageState, }; use reth_db_api::{ common::KeyValue, cursor::{DbCursorRO, DbCursorRW, DbDupCursorRO, RangeWalker}, database::Database, models::{ sharded_key, storage_sharded_key::StorageShardedKey, AccountBeforeTx, BlockNumberAddress, ShardedKey, StoredBlockBodyIndices, StoredBlockOmmers, StoredBlockWithdrawals, }, table::{Table, TableRow}, transaction::{DbTx, DbTxMut}, DatabaseError, }; use reth_evm::ConfigureEvmEnv; use reth_execution_types::{Chain, ExecutionOutcome}; use reth_network_p2p::headers::downloader::SyncTarget; use reth_primitives::{ keccak256, Account, Address, Block, BlockHash, BlockHashOrNumber, BlockNumber, BlockWithSenders, Bytecode, GotExpected, Header, Receipt, Requests, SealedBlock, SealedBlockWithSenders, SealedHeader, StaticFileSegment, StorageEntry, TransactionMeta, TransactionSigned, TransactionSignedEcRecovered, TransactionSignedNoHash, TxHash, TxNumber, Withdrawal, Withdrawals, B256, U256, }; use reth_prune_types::{PruneCheckpoint, PruneLimiter, PruneModes, PruneSegment}; use reth_stages_types::{StageCheckpoint, StageId}; use reth_storage_errors::provider::{ProviderResult, RootMismatch}; use reth_trie::{ prefix_set::{PrefixSet, PrefixSetMut, TriePrefixSets}, updates::{StorageTrieUpdates, TrieUpdates}, HashedPostStateSorted, Nibbles, StateRoot, StoredNibbles, }; use reth_trie_db::{DatabaseStateRoot, DatabaseStorageTrieCursor}; use revm::{ db::states::{PlainStateReverts, PlainStorageChangeset, PlainStorageRevert, StateChangeset}, primitives::{BlockEnv, CfgEnvWithHandlerCfg}, }; use std::{ cmp::Ordering, collections::{hash_map, BTreeMap, BTreeSet, HashMap, HashSet}, fmt::Debug, ops::{Bound, Deref, DerefMut, Range, RangeBounds, RangeInclusive}, sync::{mpsc, Arc}, time::{Duration, Instant}, }; use tokio::sync::watch; use tracing::{debug, error, warn}; /// A [`DatabaseProvider`] that holds a read-only database transaction. pub type DatabaseProviderRO = DatabaseProvider<::TX>; /// A [`DatabaseProvider`] that holds a read-write database transaction. /// /// Ideally this would be an alias type. However, there's some weird compiler error (), that forces us to wrap this in a struct instead. /// Once that issue is solved, we can probably revert back to being an alias type. #[derive(Debug)] pub struct DatabaseProviderRW(pub DatabaseProvider<::TXMut>); impl Deref for DatabaseProviderRW { type Target = DatabaseProvider<::TXMut>; fn deref(&self) -> &Self::Target { &self.0 } } impl DerefMut for DatabaseProviderRW { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 } } impl DatabaseProviderRW { /// Commit database transaction and static file if it exists. pub fn commit(self) -> ProviderResult { self.0.commit() } /// Consume `DbTx` or `DbTxMut`. pub fn into_tx(self) -> ::TXMut { self.0.into_tx() } } /// A provider struct that fetches data from the database. /// Wrapper around [`DbTx`] and [`DbTxMut`]. Example: [`HeaderProvider`] [`BlockHashReader`] #[derive(Debug)] pub struct DatabaseProvider { /// Database transaction. tx: TX, /// Chain spec chain_spec: Arc, /// Static File provider static_file_provider: StaticFileProvider, /// Pruning configuration prune_modes: PruneModes, } impl DatabaseProvider { /// Returns a static file provider pub const fn static_file_provider(&self) -> &StaticFileProvider { &self.static_file_provider } /// Returns reference to prune modes. pub const fn prune_modes_ref(&self) -> &PruneModes { &self.prune_modes } } impl DatabaseProvider { /// Creates a provider with an inner read-write transaction. pub const fn new_rw( tx: TX, chain_spec: Arc, static_file_provider: StaticFileProvider, prune_modes: PruneModes, ) -> Self { Self { tx, chain_spec, static_file_provider, prune_modes } } } impl DatabaseProvider { /// Storage provider for state at that given block pub fn state_provider_by_block_number( self, mut block_number: BlockNumber, ) -> ProviderResult { if block_number == self.best_block_number().unwrap_or_default() && block_number == self.last_block_number().unwrap_or_default() { return Ok(Box::new(LatestStateProvider::new(self.tx, self.static_file_provider))) } // +1 as the changeset that we want is the one that was applied after this block. block_number += 1; let account_history_prune_checkpoint = self.get_prune_checkpoint(PruneSegment::AccountHistory)?; let storage_history_prune_checkpoint = self.get_prune_checkpoint(PruneSegment::StorageHistory)?; let mut state_provider = HistoricalStateProvider::new(self.tx, block_number, self.static_file_provider); // If we pruned account or storage history, we can't return state on every historical block. // Instead, we should cap it at the latest prune checkpoint for corresponding prune segment. if let Some(prune_checkpoint_block_number) = account_history_prune_checkpoint.and_then(|checkpoint| checkpoint.block_number) { state_provider = state_provider.with_lowest_available_account_history_block_number( prune_checkpoint_block_number + 1, ); } if let Some(prune_checkpoint_block_number) = storage_history_prune_checkpoint.and_then(|checkpoint| checkpoint.block_number) { state_provider = state_provider.with_lowest_available_storage_history_block_number( prune_checkpoint_block_number + 1, ); } Ok(Box::new(state_provider)) } } impl DatabaseProviderRW { // TODO: uncomment below, once `reth debug_cmd` has been feature gated with dev. // #[cfg(any(test, feature = "test-utils"))] /// Inserts an historical block. **Used for setting up test environments** pub fn insert_historical_block( &self, block: SealedBlockWithSenders, ) -> ProviderResult { let ttd = if block.number == 0 { block.difficulty } else { let parent_block_number = block.number - 1; let parent_ttd = self.header_td_by_number(parent_block_number)?.unwrap_or_default(); parent_ttd + block.difficulty }; let mut writer = self.static_file_provider.latest_writer(StaticFileSegment::Headers)?; // Backfill: some tests start at a forward block number, but static files require no gaps. let segment_header = writer.user_header(); if segment_header.block_end().is_none() && segment_header.expected_block_start() == 0 { for block_number in 0..block.number { let mut prev = block.header.clone().unseal(); prev.number = block_number; writer.append_header(&prev, U256::ZERO, &B256::ZERO)?; } } writer.append_header(block.header.as_ref(), ttd, &block.hash())?; self.insert_block(block) } } /// For a given key, unwind all history shards that are below the given block number. /// /// S - Sharded key subtype. /// T - Table to walk over. /// C - Cursor implementation. /// /// This function walks the entries from the given start key and deletes all shards that belong to /// the key and are below the given block number. /// /// The boundary shard (the shard is split by the block number) is removed from the database. Any /// indices that are above the block number are filtered out. The boundary shard is returned for /// reinsertion (if it's not empty). fn unwind_history_shards( cursor: &mut C, start_key: T::Key, block_number: BlockNumber, mut shard_belongs_to_key: impl FnMut(&T::Key) -> bool, ) -> ProviderResult> where T: Table, T::Key: AsRef>, C: DbCursorRO + DbCursorRW, { let mut item = cursor.seek_exact(start_key)?; while let Some((sharded_key, list)) = item { // If the shard does not belong to the key, break. if !shard_belongs_to_key(&sharded_key) { break } cursor.delete_current()?; // Check the first item. // If it is greater or eq to the block number, delete it. let first = list.iter().next().expect("List can't be empty"); if first >= block_number { item = cursor.prev()?; continue } else if block_number <= sharded_key.as_ref().highest_block_number { // Filter out all elements greater than block number. return Ok(list.iter().take_while(|i| *i < block_number).collect::>()) } else { return Ok(list.iter().collect::>()) } } Ok(Vec::new()) } impl DatabaseProvider { /// Creates a provider with an inner read-only transaction. pub const fn new( tx: TX, chain_spec: Arc, static_file_provider: StaticFileProvider, prune_modes: PruneModes, ) -> Self { Self { tx, chain_spec, static_file_provider, prune_modes } } /// Consume `DbTx` or `DbTxMut`. pub fn into_tx(self) -> TX { self.tx } /// Pass `DbTx` or `DbTxMut` mutable reference. pub fn tx_mut(&mut self) -> &mut TX { &mut self.tx } /// Pass `DbTx` or `DbTxMut` immutable reference. pub const fn tx_ref(&self) -> &TX { &self.tx } /// Returns a reference to the [`ChainSpec`]. pub fn chain_spec(&self) -> &ChainSpec { &self.chain_spec } /// Disables long-lived read transaction safety guarantees for leaks prevention and /// observability improvements. /// /// CAUTION: In most of the cases, you want the safety guarantees for long read transactions /// enabled. Use this only if you're sure that no write transaction is open in parallel, meaning /// that Reth as a node is offline and not progressing. pub fn disable_long_read_transaction_safety(mut self) -> Self { self.tx.disable_long_read_transaction_safety(); self } /// Return full table as Vec pub fn table(&self) -> Result>, DatabaseError> where T::Key: Default + Ord, { self.tx .cursor_read::()? .walk(Some(T::Key::default()))? .collect::, DatabaseError>>() } /// Return a list of entries from the table, based on the given range. #[inline] pub fn get( &self, range: impl RangeBounds, ) -> Result>, DatabaseError> { self.tx.cursor_read::()?.walk_range(range)?.collect::, _>>() } /// Iterates over read only values in the given table and collects them into a vector. /// /// Early-returns if the range is empty, without opening a cursor transaction. fn cursor_read_collect>( &self, range: impl RangeBounds, ) -> ProviderResult> { let capacity = match range_size_hint(&range) { Some(0) | None => return Ok(Vec::new()), Some(capacity) => capacity, }; let mut cursor = self.tx.cursor_read::()?; self.cursor_collect_with_capacity(&mut cursor, range, capacity) } /// Iterates over read only values in the given table and collects them into a vector. fn cursor_collect>( &self, cursor: &mut impl DbCursorRO, range: impl RangeBounds, ) -> ProviderResult> { let capacity = range_size_hint(&range).unwrap_or(0); self.cursor_collect_with_capacity(cursor, range, capacity) } fn cursor_collect_with_capacity>( &self, cursor: &mut impl DbCursorRO, range: impl RangeBounds, capacity: usize, ) -> ProviderResult> { let mut items = Vec::with_capacity(capacity); for entry in cursor.walk_range(range)? { items.push(entry?.1); } Ok(items) } fn transactions_by_tx_range_with_cursor( &self, range: impl RangeBounds, cursor: &mut C, ) -> ProviderResult> where C: DbCursorRO, { self.static_file_provider.get_range_with_static_file_or_database( StaticFileSegment::Transactions, to_range(range), |static_file, range, _| static_file.transactions_by_tx_range(range), |range, _| self.cursor_collect(cursor, range), |_| true, ) } fn block_with_senders( &self, id: BlockHashOrNumber, transaction_kind: TransactionVariant, header_by_number: HF, construct_block: BF, ) -> ProviderResult> where H: AsRef
, HF: FnOnce(BlockNumber) -> ProviderResult>, BF: FnOnce( H, Vec, Vec
, Vec
, Option, Option, ) -> ProviderResult>, { let Some(block_number) = self.convert_hash_or_number(id)? else { return Ok(None) }; let Some(header) = header_by_number(block_number)? else { return Ok(None) }; let ommers = self.ommers(block_number.into())?.unwrap_or_default(); let withdrawals = self.withdrawals_by_block(block_number.into(), header.as_ref().timestamp)?; let requests = self.requests_by_block(block_number.into(), header.as_ref().timestamp)?; // Get the block body // // If the body indices are not found, this means that the transactions either do not exist // in the database yet, or they do exit but are not indexed. If they exist but are not // indexed, we don't have enough information to return the block anyways, so we return // `None`. let Some(body) = self.block_body_indices(block_number)? else { return Ok(None) }; let tx_range = body.tx_num_range(); let (transactions, senders) = if tx_range.is_empty() { (vec![], vec![]) } else { (self.transactions_by_tx_range(tx_range.clone())?, self.senders_by_tx_range(tx_range)?) }; let body = transactions .into_iter() .map(|tx| match transaction_kind { TransactionVariant::NoHash => TransactionSigned { // Caller explicitly asked for no hash, so we don't calculate it hash: B256::ZERO, signature: tx.signature, transaction: tx.transaction, }, TransactionVariant::WithHash => tx.with_hash(), }) .collect(); construct_block(header, body, senders, ommers, withdrawals, requests) } /// Returns a range of blocks from the database. /// /// Uses the provided `headers_range` to get the headers for the range, and `assemble_block` to /// construct blocks from the following inputs: /// – Header /// - Range of transaction numbers /// – Ommers /// – Withdrawals /// – Requests /// – Senders fn block_range( &self, range: RangeInclusive, headers_range: HF, mut assemble_block: F, ) -> ProviderResult> where H: AsRef
, HF: FnOnce(RangeInclusive) -> ProviderResult>, F: FnMut( H, Range, Vec
, Option, Option, ) -> ProviderResult, { if range.is_empty() { return Ok(Vec::new()) } let len = range.end().saturating_sub(*range.start()) as usize; let mut blocks = Vec::with_capacity(len); let headers = headers_range(range)?; let mut ommers_cursor = self.tx.cursor_read::()?; let mut withdrawals_cursor = self.tx.cursor_read::()?; let mut requests_cursor = self.tx.cursor_read::()?; let mut block_body_cursor = self.tx.cursor_read::()?; for header in headers { let header_ref = header.as_ref(); // If the body indices are not found, this means that the transactions either do // not exist in the database yet, or they do exit but are // not indexed. If they exist but are not indexed, we don't // have enough information to return the block anyways, so // we skip the block. if let Some((_, block_body_indices)) = block_body_cursor.seek_exact(header_ref.number)? { let tx_range = block_body_indices.tx_num_range(); // If we are past shanghai, then all blocks should have a withdrawal list, // even if empty let withdrawals = if self.chain_spec.is_shanghai_active_at_timestamp(header_ref.timestamp) { Some( withdrawals_cursor .seek_exact(header_ref.number)? .map(|(_, w)| w.withdrawals) .unwrap_or_default(), ) } else { None }; let requests = if self.chain_spec.is_prague_active_at_timestamp(header_ref.timestamp) { Some(requests_cursor.seek_exact(header_ref.number)?.unwrap_or_default().1) } else { None }; let ommers = if self.chain_spec.final_paris_total_difficulty(header_ref.number).is_some() { Vec::new() } else { ommers_cursor .seek_exact(header_ref.number)? .map(|(_, o)| o.ommers) .unwrap_or_default() }; if let Ok(b) = assemble_block(header, tx_range, ommers, withdrawals, requests) { blocks.push(b); } } } Ok(blocks) } /// Returns a range of blocks from the database, along with the senders of each /// transaction in the blocks. /// /// Uses the provided `headers_range` to get the headers for the range, and `assemble_block` to /// construct blocks from the following inputs: /// – Header /// - Transactions /// – Ommers /// – Withdrawals /// – Requests /// – Senders fn block_with_senders_range( &self, range: RangeInclusive, headers_range: HF, assemble_block: BF, ) -> ProviderResult> where H: AsRef
, HF: Fn(RangeInclusive) -> ProviderResult>, BF: Fn( H, Vec, Vec
, Option, Option, Vec
, ) -> ProviderResult, { let mut tx_cursor = self.tx.cursor_read::()?; let mut senders_cursor = self.tx.cursor_read::()?; self.block_range(range, headers_range, |header, tx_range, ommers, withdrawals, requests| { let (body, senders) = if tx_range.is_empty() { (Vec::new(), Vec::new()) } else { let body = self .transactions_by_tx_range_with_cursor(tx_range.clone(), &mut tx_cursor)? .into_iter() .map(Into::into) .collect::>(); // fetch senders from the senders table let known_senders = senders_cursor .walk_range(tx_range.clone())? .collect::, _>>()?; let mut senders = Vec::with_capacity(body.len()); for (tx_num, tx) in tx_range.zip(body.iter()) { match known_senders.get(&tx_num) { None => { // recover the sender from the transaction if not found let sender = tx .recover_signer_unchecked() .ok_or_else(|| ProviderError::SenderRecoveryError)?; senders.push(sender); } Some(sender) => senders.push(*sender), } } (body, senders) }; assemble_block(header, body, ommers, withdrawals, requests, senders) }) } /// Get requested blocks transaction with senders pub(crate) fn get_block_transaction_range( &self, range: impl RangeBounds + Clone, ) -> ProviderResult)>> { // Raad range of block bodies to get all transactions id's of this range. let block_bodies = self.get::(range)?; if block_bodies.is_empty() { return Ok(Vec::new()) } // Compute the first and last tx ID in the range let first_transaction = block_bodies.first().expect("If we have headers").1.first_tx_num(); let last_transaction = block_bodies.last().expect("Not empty").1.last_tx_num(); // If this is the case then all of the blocks in the range are empty if last_transaction < first_transaction { return Ok(block_bodies.into_iter().map(|(n, _)| (n, Vec::new())).collect()) } // Get transactions and senders let transactions = self .get::(first_transaction..=last_transaction)? .into_iter() .map(|(id, tx)| (id, tx.into())) .collect::>(); let mut senders = self.get::(first_transaction..=last_transaction)?; recover_block_senders(&mut senders, &transactions, first_transaction, last_transaction)?; // Merge transaction into blocks let mut block_tx = Vec::with_capacity(block_bodies.len()); let mut senders = senders.into_iter(); let mut transactions = transactions.into_iter(); for (block_number, block_body) in block_bodies { let mut one_block_tx = Vec::with_capacity(block_body.tx_count as usize); for _ in block_body.tx_num_range() { let tx = transactions.next(); let sender = senders.next(); let recovered = match (tx, sender) { (Some((tx_id, tx)), Some((sender_tx_id, sender))) => { if tx_id != sender_tx_id { Err(ProviderError::MismatchOfTransactionAndSenderId { tx_id }) } else { Ok(TransactionSignedEcRecovered::from_signed_transaction(tx, sender)) } } (Some((tx_id, _)), _) | (_, Some((tx_id, _))) => { Err(ProviderError::MismatchOfTransactionAndSenderId { tx_id }) } (None, None) => Err(ProviderError::BlockBodyTransactionCount), }?; one_block_tx.push(recovered) } block_tx.push((block_number, one_block_tx)); } Ok(block_tx) } /// Get the given range of blocks. pub fn get_block_range( &self, range: impl RangeBounds + Clone, ) -> ProviderResult> { // For blocks we need: // // - Headers // - Bodies (transactions) // - Uncles/ommers // - Withdrawals // - Requests // - Signers let block_headers = self.get::(range.clone())?; if block_headers.is_empty() { return Ok(Vec::new()) } let block_header_hashes = self.get::(range.clone())?; let block_ommers = self.get::(range.clone())?; let block_withdrawals = self.get::(range.clone())?; let block_requests = self.get::(range.clone())?; let block_tx = self.get_block_transaction_range(range)?; // merge all into block let block_header_iter = block_headers.into_iter(); let block_header_hashes_iter = block_header_hashes.into_iter(); let block_tx_iter = block_tx.into_iter(); // Ommers can be empty for some blocks let mut block_ommers_iter = block_ommers.into_iter(); let mut block_withdrawals_iter = block_withdrawals.into_iter(); let mut block_requests_iter = block_requests.into_iter(); let mut block_ommers = block_ommers_iter.next(); let mut block_withdrawals = block_withdrawals_iter.next(); let mut block_requests = block_requests_iter.next(); let mut blocks = Vec::new(); for ((main_block_number, header), (_, header_hash), (_, tx)) in izip!(block_header_iter.into_iter(), block_header_hashes_iter, block_tx_iter) { let header = header.seal(header_hash); let (body, senders) = tx.into_iter().map(|tx| tx.to_components()).unzip(); // Ommers can be missing let mut ommers = Vec::new(); if let Some((block_number, _)) = block_ommers.as_ref() { if *block_number == main_block_number { ommers = block_ommers.take().unwrap().1.ommers; block_ommers = block_ommers_iter.next(); } }; // withdrawal can be missing let shanghai_is_active = self.chain_spec.is_shanghai_active_at_timestamp(header.timestamp); let mut withdrawals = Some(Withdrawals::default()); if shanghai_is_active { if let Some((block_number, _)) = block_withdrawals.as_ref() { if *block_number == main_block_number { withdrawals = Some(block_withdrawals.take().unwrap().1.withdrawals); block_withdrawals = block_withdrawals_iter.next(); } } } else { withdrawals = None } // requests can be missing let prague_is_active = self.chain_spec.is_prague_active_at_timestamp(header.timestamp); let mut requests = Some(Requests::default()); if prague_is_active { if let Some((block_number, _)) = block_requests.as_ref() { if *block_number == main_block_number { requests = Some(block_requests.take().unwrap().1); block_requests = block_requests_iter.next(); } } } else { requests = None; } blocks.push(SealedBlockWithSenders { block: SealedBlock { header, body, ommers, withdrawals, requests }, senders, }) } Ok(blocks) } /// Return the last N blocks of state, recreating the [`ExecutionOutcome`]. /// /// 1. Iterate over the [`BlockBodyIndices`][tables::BlockBodyIndices] table to get all the /// transaction ids. /// 2. Iterate over the [`StorageChangeSets`][tables::StorageChangeSets] table and the /// [`AccountChangeSets`][tables::AccountChangeSets] tables in reverse order to reconstruct /// the changesets. /// - In order to have both the old and new values in the changesets, we also access the /// plain state tables. /// 3. While iterating over the changeset tables, if we encounter a new account or storage slot, /// we: /// 1. Take the old value from the changeset /// 2. Take the new value from the plain state /// 3. Save the old value to the local state /// 4. While iterating over the changeset tables, if we encounter an account/storage slot we /// have seen before we: /// 1. Take the old value from the changeset /// 2. Take the new value from the local state /// 3. Set the local state to the value in the changeset pub fn get_state( &self, range: RangeInclusive, ) -> ProviderResult { if range.is_empty() { return Ok(ExecutionOutcome::default()) } let start_block_number = *range.start(); // We are not removing block meta as it is used to get block changesets. let block_bodies = self.get::(range.clone())?; // get transaction receipts let from_transaction_num = block_bodies.first().expect("already checked if there are blocks").1.first_tx_num(); let to_transaction_num = block_bodies.last().expect("already checked if there are blocks").1.last_tx_num(); let storage_range = BlockNumberAddress::range(range.clone()); let storage_changeset = self.get::(storage_range)?; let account_changeset = self.get::(range)?; // This is not working for blocks that are not at tip. as plain state is not the last // state of end range. We should rename the functions or add support to access // History state. Accessing history state can be tricky but we are not gaining // anything. let mut plain_accounts_cursor = self.tx.cursor_read::()?; let mut plain_storage_cursor = self.tx.cursor_dup_read::()?; let (state, reverts) = self.populate_bundle_state( account_changeset, storage_changeset, &mut plain_accounts_cursor, &mut plain_storage_cursor, )?; // iterate over block body and create ExecutionResult let mut receipt_iter = self.get::(from_transaction_num..=to_transaction_num)?.into_iter(); let mut receipts = Vec::new(); // loop break if we are at the end of the blocks. for (_, block_body) in block_bodies { let mut block_receipts = Vec::with_capacity(block_body.tx_count as usize); for _ in block_body.tx_num_range() { if let Some((_, receipt)) = receipt_iter.next() { block_receipts.push(Some(receipt)); } } receipts.push(block_receipts); } Ok(ExecutionOutcome::new_init( state, reverts, Vec::new(), receipts.into(), start_block_number, Vec::new(), )) } /// Populate a [`BundleStateInit`] and [`RevertsInit`] using cursors over the /// [`PlainAccountState`] and [`PlainStorageState`] tables, based on the given storage and /// account changesets. fn populate_bundle_state( &self, account_changeset: Vec<(u64, AccountBeforeTx)>, storage_changeset: Vec<(BlockNumberAddress, StorageEntry)>, plain_accounts_cursor: &mut A, plain_storage_cursor: &mut S, ) -> ProviderResult<(BundleStateInit, RevertsInit)> where A: DbCursorRO, S: DbDupCursorRO, { // iterate previous value and get plain state value to create changeset // Double option around Account represent if Account state is know (first option) and // account is removed (Second Option) let mut state: BundleStateInit = HashMap::new(); // This is not working for blocks that are not at tip. as plain state is not the last // state of end range. We should rename the functions or add support to access // History state. Accessing history state can be tricky but we are not gaining // anything. let mut reverts: RevertsInit = HashMap::new(); // add account changeset changes for (block_number, account_before) in account_changeset.into_iter().rev() { let AccountBeforeTx { info: old_info, address } = account_before; match state.entry(address) { hash_map::Entry::Vacant(entry) => { let new_info = plain_accounts_cursor.seek_exact(address)?.map(|kv| kv.1); entry.insert((old_info, new_info, HashMap::new())); } hash_map::Entry::Occupied(mut entry) => { // overwrite old account state. entry.get_mut().0 = old_info; } } // insert old info into reverts. reverts.entry(block_number).or_default().entry(address).or_default().0 = Some(old_info); } // add storage changeset changes for (block_and_address, old_storage) in storage_changeset.into_iter().rev() { let BlockNumberAddress((block_number, address)) = block_and_address; // get account state or insert from plain state. let account_state = match state.entry(address) { hash_map::Entry::Vacant(entry) => { let present_info = plain_accounts_cursor.seek_exact(address)?.map(|kv| kv.1); entry.insert((present_info, present_info, HashMap::new())) } hash_map::Entry::Occupied(entry) => entry.into_mut(), }; // match storage. match account_state.2.entry(old_storage.key) { hash_map::Entry::Vacant(entry) => { let new_storage = plain_storage_cursor .seek_by_key_subkey(address, old_storage.key)? .filter(|storage| storage.key == old_storage.key) .unwrap_or_default(); entry.insert((old_storage.value, new_storage.value)); } hash_map::Entry::Occupied(mut entry) => { entry.get_mut().0 = old_storage.value; } }; reverts .entry(block_number) .or_default() .entry(address) .or_default() .1 .push(old_storage); } Ok((state, reverts)) } } impl DatabaseProvider { /// Commit database transaction. pub fn commit(self) -> ProviderResult { Ok(self.tx.commit()?) } /// Remove the last N blocks of state. /// /// The latest state will be unwound /// /// 1. Iterate over the [`BlockBodyIndices`][tables::BlockBodyIndices] table to get all the /// transaction ids. /// 2. Iterate over the [`StorageChangeSets`][tables::StorageChangeSets] table and the /// [`AccountChangeSets`][tables::AccountChangeSets] tables in reverse order to reconstruct /// the changesets. /// - In order to have both the old and new values in the changesets, we also access the /// plain state tables. /// 3. While iterating over the changeset tables, if we encounter a new account or storage slot, /// we: /// 1. Take the old value from the changeset /// 2. Take the new value from the plain state /// 3. Save the old value to the local state /// 4. While iterating over the changeset tables, if we encounter an account/storage slot we /// have seen before we: /// 1. Take the old value from the changeset /// 2. Take the new value from the local state /// 3. Set the local state to the value in the changeset pub fn remove_state(&self, range: RangeInclusive) -> ProviderResult<()> { if range.is_empty() { return Ok(()) } // We are not removing block meta as it is used to get block changesets. let block_bodies = self.get::(range.clone())?; // get transaction receipts let from_transaction_num = block_bodies.first().expect("already checked if there are blocks").1.first_tx_num(); let to_transaction_num = block_bodies.last().expect("already checked if there are blocks").1.last_tx_num(); let storage_range = BlockNumberAddress::range(range.clone()); let storage_changeset = self.take::(storage_range)?; let account_changeset = self.take::(range)?; // This is not working for blocks that are not at tip. as plain state is not the last // state of end range. We should rename the functions or add support to access // History state. Accessing history state can be tricky but we are not gaining // anything. let mut plain_accounts_cursor = self.tx.cursor_write::()?; let mut plain_storage_cursor = self.tx.cursor_dup_write::()?; let (state, _) = self.populate_bundle_state( account_changeset, storage_changeset, &mut plain_accounts_cursor, &mut plain_storage_cursor, )?; // iterate over local plain state remove all account and all storages. for (address, (old_account, new_account, storage)) in &state { // revert account if needed. if old_account != new_account { let existing_entry = plain_accounts_cursor.seek_exact(*address)?; if let Some(account) = old_account { plain_accounts_cursor.upsert(*address, *account)?; } else if existing_entry.is_some() { plain_accounts_cursor.delete_current()?; } } // revert storages for (storage_key, (old_storage_value, _new_storage_value)) in storage { let storage_entry = StorageEntry { key: *storage_key, value: *old_storage_value }; // delete previous value // TODO: This does not use dupsort features if plain_storage_cursor .seek_by_key_subkey(*address, *storage_key)? .filter(|s| s.key == *storage_key) .is_some() { plain_storage_cursor.delete_current()? } // insert value if needed if !old_storage_value.is_zero() { plain_storage_cursor.upsert(*address, storage_entry)?; } } } // iterate over block body and remove receipts self.remove::(from_transaction_num..=to_transaction_num)?; Ok(()) } /// Take the last N blocks of state, recreating the [`ExecutionOutcome`]. /// /// The latest state will be unwound and returned back with all the blocks /// /// 1. Iterate over the [`BlockBodyIndices`][tables::BlockBodyIndices] table to get all the /// transaction ids. /// 2. Iterate over the [`StorageChangeSets`][tables::StorageChangeSets] table and the /// [`AccountChangeSets`][tables::AccountChangeSets] tables in reverse order to reconstruct /// the changesets. /// - In order to have both the old and new values in the changesets, we also access the /// plain state tables. /// 3. While iterating over the changeset tables, if we encounter a new account or storage slot, /// we: /// 1. Take the old value from the changeset /// 2. Take the new value from the plain state /// 3. Save the old value to the local state /// 4. While iterating over the changeset tables, if we encounter an account/storage slot we /// have seen before we: /// 1. Take the old value from the changeset /// 2. Take the new value from the local state /// 3. Set the local state to the value in the changeset pub fn take_state( &self, range: RangeInclusive, ) -> ProviderResult { if range.is_empty() { return Ok(ExecutionOutcome::default()) } let start_block_number = *range.start(); // We are not removing block meta as it is used to get block changesets. let block_bodies = self.get::(range.clone())?; // get transaction receipts let from_transaction_num = block_bodies.first().expect("already checked if there are blocks").1.first_tx_num(); let to_transaction_num = block_bodies.last().expect("already checked if there are blocks").1.last_tx_num(); let storage_range = BlockNumberAddress::range(range.clone()); let storage_changeset = self.take::(storage_range)?; let account_changeset = self.take::(range)?; // This is not working for blocks that are not at tip. as plain state is not the last // state of end range. We should rename the functions or add support to access // History state. Accessing history state can be tricky but we are not gaining // anything. let mut plain_accounts_cursor = self.tx.cursor_write::()?; let mut plain_storage_cursor = self.tx.cursor_dup_write::()?; // populate bundle state and reverts from changesets / state cursors, to iterate over, // remove, and return later let (state, reverts) = self.populate_bundle_state( account_changeset, storage_changeset, &mut plain_accounts_cursor, &mut plain_storage_cursor, )?; // iterate over local plain state remove all account and all storages. for (address, (old_account, new_account, storage)) in &state { // revert account if needed. if old_account != new_account { let existing_entry = plain_accounts_cursor.seek_exact(*address)?; if let Some(account) = old_account { plain_accounts_cursor.upsert(*address, *account)?; } else if existing_entry.is_some() { plain_accounts_cursor.delete_current()?; } } // revert storages for (storage_key, (old_storage_value, _new_storage_value)) in storage { let storage_entry = StorageEntry { key: *storage_key, value: *old_storage_value }; // delete previous value // TODO: This does not use dupsort features if plain_storage_cursor .seek_by_key_subkey(*address, *storage_key)? .filter(|s| s.key == *storage_key) .is_some() { plain_storage_cursor.delete_current()? } // insert value if needed if !old_storage_value.is_zero() { plain_storage_cursor.upsert(*address, storage_entry)?; } } } // iterate over block body and create ExecutionResult let mut receipt_iter = self.take::(from_transaction_num..=to_transaction_num)?.into_iter(); let mut receipts = Vec::new(); // loop break if we are at the end of the blocks. for (_, block_body) in block_bodies { let mut block_receipts = Vec::with_capacity(block_body.tx_count as usize); for _ in block_body.tx_num_range() { if let Some((_, receipt)) = receipt_iter.next() { block_receipts.push(Some(receipt)); } } receipts.push(block_receipts); } Ok(ExecutionOutcome::new_init( state, reverts, Vec::new(), receipts.into(), start_block_number, Vec::new(), )) } /// Remove list of entries from the table. Returns the number of entries removed. #[inline] pub fn remove( &self, range: impl RangeBounds, ) -> Result { let mut entries = 0; let mut cursor_write = self.tx.cursor_write::()?; let mut walker = cursor_write.walk_range(range)?; while walker.next().transpose()?.is_some() { walker.delete_current()?; entries += 1; } Ok(entries) } /// Return a list of entries from the table, and remove them, based on the given range. #[inline] pub fn take( &self, range: impl RangeBounds, ) -> Result>, DatabaseError> { let mut cursor_write = self.tx.cursor_write::()?; let mut walker = cursor_write.walk_range(range)?; let mut items = Vec::new(); while let Some(i) = walker.next().transpose()? { walker.delete_current()?; items.push(i) } Ok(items) } /// Remove requested block transactions, without returning them. /// /// This will remove block data for the given range from the following tables: /// * [`BlockBodyIndices`](tables::BlockBodyIndices) /// * [`Transactions`](tables::Transactions) /// * [`TransactionSenders`](tables::TransactionSenders) /// * [`TransactionHashNumbers`](tables::TransactionHashNumbers) /// * [`TransactionBlocks`](tables::TransactionBlocks) pub fn remove_block_transaction_range( &self, range: impl RangeBounds + Clone, ) -> ProviderResult<()> { // Raad range of block bodies to get all transactions id's of this range. let block_bodies = self.take::(range)?; if block_bodies.is_empty() { return Ok(()) } // Compute the first and last tx ID in the range let first_transaction = block_bodies.first().expect("If we have headers").1.first_tx_num(); let last_transaction = block_bodies.last().expect("Not empty").1.last_tx_num(); // If this is the case then all of the blocks in the range are empty if last_transaction < first_transaction { return Ok(()) } // Get transactions so we can then remove let transactions = self .take::(first_transaction..=last_transaction)? .into_iter() .map(|(id, tx)| (id, tx.into())) .collect::>(); // remove senders self.remove::(first_transaction..=last_transaction)?; // Remove TransactionHashNumbers let mut tx_hash_cursor = self.tx.cursor_write::()?; for (_, tx) in &transactions { if tx_hash_cursor.seek_exact(tx.hash())?.is_some() { tx_hash_cursor.delete_current()?; } } // Remove TransactionBlocks index if there are transaction present if !transactions.is_empty() { let tx_id_range = transactions.first().unwrap().0..=transactions.last().unwrap().0; self.remove::(tx_id_range)?; } Ok(()) } /// Get requested blocks transaction with senders, also removing them from the database /// /// This will remove block data for the given range from the following tables: /// * [`BlockBodyIndices`](tables::BlockBodyIndices) /// * [`Transactions`](tables::Transactions) /// * [`TransactionSenders`](tables::TransactionSenders) /// * [`TransactionHashNumbers`](tables::TransactionHashNumbers) /// * [`TransactionBlocks`](tables::TransactionBlocks) pub fn take_block_transaction_range( &self, range: impl RangeBounds + Clone, ) -> ProviderResult)>> { // Raad range of block bodies to get all transactions id's of this range. let block_bodies = self.get::(range)?; if block_bodies.is_empty() { return Ok(Vec::new()) } // Compute the first and last tx ID in the range let first_transaction = block_bodies.first().expect("If we have headers").1.first_tx_num(); let last_transaction = block_bodies.last().expect("Not empty").1.last_tx_num(); // If this is the case then all of the blocks in the range are empty if last_transaction < first_transaction { return Ok(block_bodies.into_iter().map(|(n, _)| (n, Vec::new())).collect()) } // Get transactions and senders let transactions = self .take::(first_transaction..=last_transaction)? .into_iter() .map(|(id, tx)| (id, tx.into())) .collect::>(); let mut senders = self.take::(first_transaction..=last_transaction)?; recover_block_senders(&mut senders, &transactions, first_transaction, last_transaction)?; // Remove TransactionHashNumbers let mut tx_hash_cursor = self.tx.cursor_write::()?; for (_, tx) in &transactions { if tx_hash_cursor.seek_exact(tx.hash())?.is_some() { tx_hash_cursor.delete_current()?; } } // Remove TransactionBlocks index if there are transaction present if !transactions.is_empty() { let tx_id_range = transactions.first().unwrap().0..=transactions.last().unwrap().0; self.remove::(tx_id_range)?; } // Merge transaction into blocks let mut block_tx = Vec::with_capacity(block_bodies.len()); let mut senders = senders.into_iter(); let mut transactions = transactions.into_iter(); for (block_number, block_body) in block_bodies { let mut one_block_tx = Vec::with_capacity(block_body.tx_count as usize); for _ in block_body.tx_num_range() { let tx = transactions.next(); let sender = senders.next(); let recovered = match (tx, sender) { (Some((tx_id, tx)), Some((sender_tx_id, sender))) => { if tx_id != sender_tx_id { Err(ProviderError::MismatchOfTransactionAndSenderId { tx_id }) } else { Ok(TransactionSignedEcRecovered::from_signed_transaction(tx, sender)) } } (Some((tx_id, _)), _) | (_, Some((tx_id, _))) => { Err(ProviderError::MismatchOfTransactionAndSenderId { tx_id }) } (None, None) => Err(ProviderError::BlockBodyTransactionCount), }?; one_block_tx.push(recovered) } block_tx.push((block_number, one_block_tx)); } Ok(block_tx) } /// Remove the given range of blocks, without returning any of the blocks. /// /// This will remove block data for the given range from the following tables: /// * [`HeaderNumbers`](tables::HeaderNumbers) /// * [`CanonicalHeaders`](tables::CanonicalHeaders) /// * [`BlockOmmers`](tables::BlockOmmers) /// * [`BlockWithdrawals`](tables::BlockWithdrawals) /// * [`BlockRequests`](tables::BlockRequests) /// * [`HeaderTerminalDifficulties`](tables::HeaderTerminalDifficulties) /// /// This will also remove transaction data according to /// [`remove_block_transaction_range`](Self::remove_block_transaction_range). pub fn remove_block_range( &self, range: impl RangeBounds + Clone, ) -> ProviderResult<()> { let block_headers = self.remove::(range.clone())?; if block_headers == 0 { return Ok(()) } self.unwind_table_by_walker::( range.clone(), )?; self.remove::(range.clone())?; self.remove::(range.clone())?; self.remove::(range.clone())?; self.remove::(range.clone())?; self.remove_block_transaction_range(range.clone())?; self.remove::(range)?; Ok(()) } /// Remove the given range of blocks, and return them. /// /// This will remove block data for the given range from the following tables: /// * [`HeaderNumbers`](tables::HeaderNumbers) /// * [`CanonicalHeaders`](tables::CanonicalHeaders) /// * [`BlockOmmers`](tables::BlockOmmers) /// * [`BlockWithdrawals`](tables::BlockWithdrawals) /// * [`BlockRequests`](tables::BlockRequests) /// * [`HeaderTerminalDifficulties`](tables::HeaderTerminalDifficulties) /// /// This will also remove transaction data according to /// [`take_block_transaction_range`](Self::take_block_transaction_range). pub fn take_block_range( &self, range: impl RangeBounds + Clone, ) -> ProviderResult> { // For blocks we need: // // - Headers // - Bodies (transactions) // - Uncles/ommers // - Withdrawals // - Requests // - Signers let block_headers = self.take::(range.clone())?; if block_headers.is_empty() { return Ok(Vec::new()) } self.unwind_table_by_walker::( range.clone(), )?; let block_header_hashes = self.take::(range.clone())?; let block_ommers = self.take::(range.clone())?; let block_withdrawals = self.take::(range.clone())?; let block_requests = self.take::(range.clone())?; let block_tx = self.take_block_transaction_range(range.clone())?; // rm HeaderTerminalDifficulties self.remove::(range)?; // merge all into block let block_header_iter = block_headers.into_iter(); let block_header_hashes_iter = block_header_hashes.into_iter(); let block_tx_iter = block_tx.into_iter(); // Ommers can be empty for some blocks let mut block_ommers_iter = block_ommers.into_iter(); let mut block_withdrawals_iter = block_withdrawals.into_iter(); let mut block_requests_iter = block_requests.into_iter(); let mut block_ommers = block_ommers_iter.next(); let mut block_withdrawals = block_withdrawals_iter.next(); let mut block_requests = block_requests_iter.next(); let mut blocks = Vec::new(); for ((main_block_number, header), (_, header_hash), (_, tx)) in izip!(block_header_iter.into_iter(), block_header_hashes_iter, block_tx_iter) { let header = header.seal(header_hash); let (body, senders) = tx.into_iter().map(|tx| tx.to_components()).unzip(); // Ommers can be missing let mut ommers = Vec::new(); if let Some((block_number, _)) = block_ommers.as_ref() { if *block_number == main_block_number { ommers = block_ommers.take().unwrap().1.ommers; block_ommers = block_ommers_iter.next(); } }; // withdrawal can be missing let shanghai_is_active = self.chain_spec.is_shanghai_active_at_timestamp(header.timestamp); let mut withdrawals = Some(Withdrawals::default()); if shanghai_is_active { if let Some((block_number, _)) = block_withdrawals.as_ref() { if *block_number == main_block_number { withdrawals = Some(block_withdrawals.take().unwrap().1.withdrawals); block_withdrawals = block_withdrawals_iter.next(); } } } else { withdrawals = None } // requests can be missing let prague_is_active = self.chain_spec.is_prague_active_at_timestamp(header.timestamp); let mut requests = Some(Requests::default()); if prague_is_active { if let Some((block_number, _)) = block_requests.as_ref() { if *block_number == main_block_number { requests = Some(block_requests.take().unwrap().1); block_requests = block_requests_iter.next(); } } } else { requests = None; } blocks.push(SealedBlockWithSenders { block: SealedBlock { header, body, ommers, withdrawals, requests }, senders, }) } Ok(blocks) } /// Unwind table by some number key. /// Returns number of rows unwound. /// /// Note: Key is not inclusive and specified key would stay in db. #[inline] pub fn unwind_table_by_num(&self, num: u64) -> Result where T: Table, { self.unwind_table::(num, |key| key) } /// Unwind the table to a provided number key. /// Returns number of rows unwound. /// /// Note: Key is not inclusive and specified key would stay in db. pub(crate) fn unwind_table( &self, key: u64, mut selector: F, ) -> Result where T: Table, F: FnMut(T::Key) -> u64, { let mut cursor = self.tx.cursor_write::()?; let mut reverse_walker = cursor.walk_back(None)?; let mut deleted = 0; while let Some(Ok((entry_key, _))) = reverse_walker.next() { if selector(entry_key.clone()) <= key { break } reverse_walker.delete_current()?; deleted += 1; } Ok(deleted) } /// Unwind a table forward by a [`Walker`][reth_db_api::cursor::Walker] on another table pub fn unwind_table_by_walker( &self, range: impl RangeBounds, ) -> Result<(), DatabaseError> where T1: Table, T2: Table, { let mut cursor = self.tx.cursor_write::()?; let mut walker = cursor.walk_range(range)?; while let Some((_, value)) = walker.next().transpose()? { self.tx.delete::(value, None)?; } Ok(()) } /// Prune the table for the specified pre-sorted key iterator. /// /// Returns number of rows pruned. pub fn prune_table_with_iterator( &self, keys: impl IntoIterator, limiter: &mut PruneLimiter, mut delete_callback: impl FnMut(TableRow), ) -> Result<(usize, bool), DatabaseError> { let mut cursor = self.tx.cursor_write::()?; let mut keys = keys.into_iter(); let mut deleted_entries = 0; for key in &mut keys { if limiter.is_limit_reached() { debug!( target: "providers::db", ?limiter, deleted_entries_limit = %limiter.is_deleted_entries_limit_reached(), time_limit = %limiter.is_time_limit_reached(), table = %T::NAME, "Pruning limit reached" ); break } let row = cursor.seek_exact(key)?; if let Some(row) = row { cursor.delete_current()?; limiter.increment_deleted_entries_count(); deleted_entries += 1; delete_callback(row); } } let done = keys.next().is_none(); Ok((deleted_entries, done)) } /// Prune the table for the specified key range. /// /// Returns number of rows pruned. pub fn prune_table_with_range( &self, keys: impl RangeBounds + Clone + Debug, limiter: &mut PruneLimiter, mut skip_filter: impl FnMut(&TableRow) -> bool, mut delete_callback: impl FnMut(TableRow), ) -> Result<(usize, bool), DatabaseError> { let mut cursor = self.tx.cursor_write::()?; let mut walker = cursor.walk_range(keys)?; let mut deleted_entries = 0; let done = loop { // check for time out must be done in this scope since it's not done in // `prune_table_with_range_step` if limiter.is_limit_reached() { debug!( target: "providers::db", ?limiter, deleted_entries_limit = %limiter.is_deleted_entries_limit_reached(), time_limit = %limiter.is_time_limit_reached(), table = %T::NAME, "Pruning limit reached" ); break false } let done = self.prune_table_with_range_step( &mut walker, limiter, &mut skip_filter, &mut delete_callback, )?; if done { break true } else { deleted_entries += 1; } }; Ok((deleted_entries, done)) } /// Steps once with the given walker and prunes the entry in the table. /// /// Returns `true` if the walker is finished, `false` if it may have more data to prune. /// /// CAUTION: Pruner limits are not checked. This allows for a clean exit of a prune run that's /// pruning different tables concurrently, by letting them step to the same height before /// timing out. pub fn prune_table_with_range_step( &self, walker: &mut RangeWalker<'_, T, ::CursorMut>, limiter: &mut PruneLimiter, skip_filter: &mut impl FnMut(&TableRow) -> bool, delete_callback: &mut impl FnMut(TableRow), ) -> Result { let Some(res) = walker.next() else { return Ok(true) }; let row = res?; if !skip_filter(&row) { walker.delete_current()?; limiter.increment_deleted_entries_count(); delete_callback(row); } Ok(false) } /// Load shard and remove it. If list is empty, last shard was full or /// there are no shards at all. fn take_shard(&self, key: T::Key) -> ProviderResult> where T: Table, { let mut cursor = self.tx.cursor_read::()?; let shard = cursor.seek_exact(key)?; if let Some((shard_key, list)) = shard { // delete old shard so new one can be inserted. self.tx.delete::(shard_key, None)?; let list = list.iter().collect::>(); return Ok(list) } Ok(Vec::new()) } /// Insert history index to the database. /// /// For each updated partial key, this function removes the last shard from /// the database (if any), appends the new indices to it, chunks the resulting integer list and /// inserts the new shards back into the database. /// /// This function is used by history indexing stages. fn append_history_index( &self, index_updates: BTreeMap>, mut sharded_key_factory: impl FnMut(P, BlockNumber) -> T::Key, ) -> ProviderResult<()> where P: Copy, T: Table, { for (partial_key, indices) in index_updates { let last_shard = self.take_shard::(sharded_key_factory(partial_key, u64::MAX))?; // chunk indices and insert them in shards of N size. let indices = last_shard.iter().chain(indices.iter()); let chunks = indices .chunks(sharded_key::NUM_OF_INDICES_IN_SHARD) .into_iter() .map(|chunks| chunks.copied().collect()) .collect::>>(); let mut chunks = chunks.into_iter().peekable(); while let Some(list) = chunks.next() { let highest_block_number = if chunks.peek().is_some() { *list.last().expect("`chunks` does not return empty list") } else { // Insert last list with u64::MAX u64::MAX }; self.tx.put::( sharded_key_factory(partial_key, highest_block_number), BlockNumberList::new_pre_sorted(list), )?; } } Ok(()) } } impl AccountReader for DatabaseProvider { fn basic_account(&self, address: Address) -> ProviderResult> { Ok(self.tx.get::(address)?) } } impl AccountExtReader for DatabaseProvider { fn changed_accounts_with_range( &self, range: impl RangeBounds, ) -> ProviderResult> { self.tx .cursor_read::()? .walk_range(range)? .map(|entry| { entry.map(|(_, account_before)| account_before.address).map_err(Into::into) }) .collect() } fn basic_accounts( &self, iter: impl IntoIterator, ) -> ProviderResult)>> { let mut plain_accounts = self.tx.cursor_read::()?; Ok(iter .into_iter() .map(|address| plain_accounts.seek_exact(address).map(|a| (address, a.map(|(_, v)| v)))) .collect::, _>>()?) } fn changed_accounts_and_blocks_with_range( &self, range: RangeInclusive, ) -> ProviderResult>> { let mut changeset_cursor = self.tx.cursor_read::()?; let account_transitions = changeset_cursor.walk_range(range)?.try_fold( BTreeMap::new(), |mut accounts: BTreeMap>, entry| -> ProviderResult<_> { let (index, account) = entry?; accounts.entry(account.address).or_default().push(index); Ok(accounts) }, )?; Ok(account_transitions) } } impl ChangeSetReader for DatabaseProvider { fn account_block_changeset( &self, block_number: BlockNumber, ) -> ProviderResult> { let range = block_number..=block_number; self.tx .cursor_read::()? .walk_range(range)? .map(|result| -> ProviderResult<_> { let (_, account_before) = result?; Ok(account_before) }) .collect() } } impl HeaderSyncGapProvider for DatabaseProvider { fn sync_gap( &self, tip: watch::Receiver, highest_uninterrupted_block: BlockNumber, ) -> ProviderResult { let static_file_provider = self.static_file_provider(); // Make sure Headers static file is at the same height. If it's further, this // input execution was interrupted previously and we need to unwind the static file. let next_static_file_block_num = static_file_provider .get_highest_static_file_block(StaticFileSegment::Headers) .map(|id| id + 1) .unwrap_or_default(); let next_block = highest_uninterrupted_block + 1; match next_static_file_block_num.cmp(&next_block) { // The node shutdown between an executed static file commit and before the database // commit, so we need to unwind the static files. Ordering::Greater => { let mut static_file_producer = static_file_provider.latest_writer(StaticFileSegment::Headers)?; static_file_producer.prune_headers(next_static_file_block_num - next_block)?; // Since this is a database <-> static file inconsistency, we commit the change // straight away. static_file_producer.commit()? } Ordering::Less => { // There's either missing or corrupted files. return Err(ProviderError::HeaderNotFound(next_static_file_block_num.into())) } Ordering::Equal => {} } let local_head = static_file_provider .sealed_header(highest_uninterrupted_block)? .ok_or_else(|| ProviderError::HeaderNotFound(highest_uninterrupted_block.into()))?; let target = SyncTarget::Tip(*tip.borrow()); Ok(HeaderSyncGap { local_head, target }) } } impl HeaderProvider for DatabaseProvider { fn header(&self, block_hash: &BlockHash) -> ProviderResult> { if let Some(num) = self.block_number(*block_hash)? { Ok(self.header_by_number(num)?) } else { Ok(None) } } fn header_by_number(&self, num: BlockNumber) -> ProviderResult> { self.static_file_provider.get_with_static_file_or_database( StaticFileSegment::Headers, num, |static_file| static_file.header_by_number(num), || Ok(self.tx.get::(num)?), ) } fn header_td(&self, block_hash: &BlockHash) -> ProviderResult> { if let Some(num) = self.block_number(*block_hash)? { self.header_td_by_number(num) } else { Ok(None) } } fn header_td_by_number(&self, number: BlockNumber) -> ProviderResult> { if let Some(td) = self.chain_spec.final_paris_total_difficulty(number) { // if this block is higher than the final paris(merge) block, return the final paris // difficulty return Ok(Some(td)) } self.static_file_provider.get_with_static_file_or_database( StaticFileSegment::Headers, number, |static_file| static_file.header_td_by_number(number), || Ok(self.tx.get::(number)?.map(|td| td.0)), ) } fn headers_range(&self, range: impl RangeBounds) -> ProviderResult> { self.static_file_provider.get_range_with_static_file_or_database( StaticFileSegment::Headers, to_range(range), |static_file, range, _| static_file.headers_range(range), |range, _| self.cursor_read_collect::(range).map_err(Into::into), |_| true, ) } fn sealed_header(&self, number: BlockNumber) -> ProviderResult> { self.static_file_provider.get_with_static_file_or_database( StaticFileSegment::Headers, number, |static_file| static_file.sealed_header(number), || { if let Some(header) = self.header_by_number(number)? { let hash = self .block_hash(number)? .ok_or_else(|| ProviderError::HeaderNotFound(number.into()))?; Ok(Some(header.seal(hash))) } else { Ok(None) } }, ) } fn sealed_headers_while( &self, range: impl RangeBounds, predicate: impl FnMut(&SealedHeader) -> bool, ) -> ProviderResult> { self.static_file_provider.get_range_with_static_file_or_database( StaticFileSegment::Headers, to_range(range), |static_file, range, predicate| static_file.sealed_headers_while(range, predicate), |range, mut predicate| { let mut headers = vec![]; for entry in self.tx.cursor_read::()?.walk_range(range)? { let (number, header) = entry?; let hash = self .block_hash(number)? .ok_or_else(|| ProviderError::HeaderNotFound(number.into()))?; let sealed = header.seal(hash); if !predicate(&sealed) { break } headers.push(sealed); } Ok(headers) }, predicate, ) } } impl BlockHashReader for DatabaseProvider { fn block_hash(&self, number: u64) -> ProviderResult> { self.static_file_provider.get_with_static_file_or_database( StaticFileSegment::Headers, number, |static_file| static_file.block_hash(number), || Ok(self.tx.get::(number)?), ) } fn canonical_hashes_range( &self, start: BlockNumber, end: BlockNumber, ) -> ProviderResult> { self.static_file_provider.get_range_with_static_file_or_database( StaticFileSegment::Headers, start..end, |static_file, range, _| static_file.canonical_hashes_range(range.start, range.end), |range, _| { self.cursor_read_collect::(range).map_err(Into::into) }, |_| true, ) } } impl BlockNumReader for DatabaseProvider { fn chain_info(&self) -> ProviderResult { let best_number = self.best_block_number()?; let best_hash = self.block_hash(best_number)?.unwrap_or_default(); Ok(ChainInfo { best_hash, best_number }) } fn best_block_number(&self) -> ProviderResult { Ok(self .get_stage_checkpoint(StageId::Finish)? .map(|checkpoint| checkpoint.block_number) .unwrap_or_default()) } fn last_block_number(&self) -> ProviderResult { Ok(self .tx .cursor_read::()? .last()? .map(|(num, _)| num) .max( self.static_file_provider.get_highest_static_file_block(StaticFileSegment::Headers), ) .unwrap_or_default()) } fn block_number(&self, hash: B256) -> ProviderResult> { Ok(self.tx.get::(hash)?) } } impl BlockReader for DatabaseProvider { fn find_block_by_hash(&self, hash: B256, source: BlockSource) -> ProviderResult> { if source.is_canonical() { self.block(hash.into()) } else { Ok(None) } } /// Returns the block with matching number from database. /// /// If the header for this block is not found, this returns `None`. /// If the header is found, but the transactions either do not exist, or are not indexed, this /// will return None. fn block(&self, id: BlockHashOrNumber) -> ProviderResult> { if let Some(number) = self.convert_hash_or_number(id)? { if let Some(header) = self.header_by_number(number)? { let withdrawals = self.withdrawals_by_block(number.into(), header.timestamp)?; let ommers = self.ommers(number.into())?.unwrap_or_default(); let requests = self.requests_by_block(number.into(), header.timestamp)?; // If the body indices are not found, this means that the transactions either do not // exist in the database yet, or they do exit but are not indexed. // If they exist but are not indexed, we don't have enough // information to return the block anyways, so we return `None`. let transactions = match self.transactions_by_block(number.into())? { Some(transactions) => transactions, None => return Ok(None), }; return Ok(Some(Block { header, body: transactions, ommers, withdrawals, requests })) } } Ok(None) } fn pending_block(&self) -> ProviderResult> { Ok(None) } fn pending_block_with_senders(&self) -> ProviderResult> { Ok(None) } fn pending_block_and_receipts(&self) -> ProviderResult)>> { Ok(None) } fn ommers(&self, id: BlockHashOrNumber) -> ProviderResult>> { if let Some(number) = self.convert_hash_or_number(id)? { // If the Paris (Merge) hardfork block is known and block is after it, return empty // ommers. if self.chain_spec.final_paris_total_difficulty(number).is_some() { return Ok(Some(Vec::new())) } let ommers = self.tx.get::(number)?.map(|o| o.ommers); return Ok(ommers) } Ok(None) } fn block_body_indices(&self, num: u64) -> ProviderResult> { Ok(self.tx.get::(num)?) } /// Returns the block with senders with matching number or hash from database. /// /// **NOTE: The transactions have invalid hashes, since they would need to be calculated on the /// spot, and we want fast querying.** /// /// If the header for this block is not found, this returns `None`. /// If the header is found, but the transactions either do not exist, or are not indexed, this /// will return None. fn block_with_senders( &self, id: BlockHashOrNumber, transaction_kind: TransactionVariant, ) -> ProviderResult> { self.block_with_senders( id, transaction_kind, |block_number| self.header_by_number(block_number), |header, body, senders, ommers, withdrawals, requests| { Block { header, body, ommers, withdrawals, requests } // Note: we're using unchecked here because we know the block contains valid txs // wrt to its height and can ignore the s value check so pre // EIP-2 txs are allowed .try_with_senders_unchecked(senders) .map(Some) .map_err(|_| ProviderError::SenderRecoveryError) }, ) } fn sealed_block_with_senders( &self, id: BlockHashOrNumber, transaction_kind: TransactionVariant, ) -> ProviderResult> { self.block_with_senders( id, transaction_kind, |block_number| self.sealed_header(block_number), |header, body, senders, ommers, withdrawals, requests| { SealedBlock { header, body, ommers, withdrawals, requests } // Note: we're using unchecked here because we know the block contains valid txs // wrt to its height and can ignore the s value check so pre // EIP-2 txs are allowed .try_with_senders_unchecked(senders) .map(Some) .map_err(|_| ProviderError::SenderRecoveryError) }, ) } fn block_range(&self, range: RangeInclusive) -> ProviderResult> { let mut tx_cursor = self.tx.cursor_read::()?; self.block_range( range, |range| self.headers_range(range), |header, tx_range, ommers, withdrawals, requests| { let body = if tx_range.is_empty() { Vec::new() } else { self.transactions_by_tx_range_with_cursor(tx_range, &mut tx_cursor)? .into_iter() .map(Into::into) .collect() }; Ok(Block { header, body, ommers, withdrawals, requests }) }, ) } fn block_with_senders_range( &self, range: RangeInclusive, ) -> ProviderResult> { self.block_with_senders_range( range, |range| self.headers_range(range), |header, body, ommers, withdrawals, requests, senders| { Block { header, body, ommers, withdrawals, requests } .try_with_senders_unchecked(senders) .map_err(|_| ProviderError::SenderRecoveryError) }, ) } fn sealed_block_with_senders_range( &self, range: RangeInclusive, ) -> ProviderResult> { self.block_with_senders_range( range, |range| self.sealed_headers_range(range), |header, body, ommers, withdrawals, requests, senders| { SealedBlockWithSenders::new( SealedBlock { header, body, ommers, withdrawals, requests }, senders, ) .ok_or(ProviderError::SenderRecoveryError) }, ) } } impl TransactionsProviderExt for DatabaseProvider { /// Recovers transaction hashes by walking through `Transactions` table and /// calculating them in a parallel manner. Returned unsorted. fn transaction_hashes_by_range( &self, tx_range: Range, ) -> ProviderResult> { self.static_file_provider.get_range_with_static_file_or_database( StaticFileSegment::Transactions, tx_range, |static_file, range, _| static_file.transaction_hashes_by_range(range), |tx_range, _| { let mut tx_cursor = self.tx.cursor_read::()?; let tx_range_size = tx_range.clone().count(); let tx_walker = tx_cursor.walk_range(tx_range)?; let chunk_size = (tx_range_size / rayon::current_num_threads()).max(1); let mut channels = Vec::with_capacity(chunk_size); let mut transaction_count = 0; #[inline] fn calculate_hash( entry: Result<(TxNumber, TransactionSignedNoHash), DatabaseError>, rlp_buf: &mut Vec, ) -> Result<(B256, TxNumber), Box> { let (tx_id, tx) = entry.map_err(|e| Box::new(e.into()))?; tx.transaction.encode_with_signature(&tx.signature, rlp_buf, false); Ok((keccak256(rlp_buf), tx_id)) } for chunk in &tx_walker.chunks(chunk_size) { let (tx, rx) = mpsc::channel(); channels.push(rx); // Note: Unfortunate side-effect of how chunk is designed in itertools (it is // not Send) let chunk: Vec<_> = chunk.collect(); transaction_count += chunk.len(); // Spawn the task onto the global rayon pool // This task will send the results through the channel after it has calculated // the hash. rayon::spawn(move || { let mut rlp_buf = Vec::with_capacity(128); for entry in chunk { rlp_buf.clear(); let _ = tx.send(calculate_hash(entry, &mut rlp_buf)); } }); } let mut tx_list = Vec::with_capacity(transaction_count); // Iterate over channels and append the tx hashes unsorted for channel in channels { while let Ok(tx) = channel.recv() { let (tx_hash, tx_id) = tx.map_err(|boxed| *boxed)?; tx_list.push((tx_hash, tx_id)); } } Ok(tx_list) }, |_| true, ) } } // Calculates the hash of the given transaction impl TransactionsProvider for DatabaseProvider { fn transaction_id(&self, tx_hash: TxHash) -> ProviderResult> { Ok(self.tx.get::(tx_hash)?) } fn transaction_by_id(&self, id: TxNumber) -> ProviderResult> { self.static_file_provider.get_with_static_file_or_database( StaticFileSegment::Transactions, id, |static_file| static_file.transaction_by_id(id), || Ok(self.tx.get::(id)?.map(Into::into)), ) } fn transaction_by_id_no_hash( &self, id: TxNumber, ) -> ProviderResult> { self.static_file_provider.get_with_static_file_or_database( StaticFileSegment::Transactions, id, |static_file| static_file.transaction_by_id_no_hash(id), || Ok(self.tx.get::(id)?), ) } fn transaction_by_hash(&self, hash: TxHash) -> ProviderResult> { if let Some(id) = self.transaction_id(hash)? { Ok(self.transaction_by_id_no_hash(id)?.map(|tx| TransactionSigned { hash, signature: tx.signature, transaction: tx.transaction, })) } else { Ok(None) } .map(|tx| tx.map(Into::into)) } fn transaction_by_hash_with_meta( &self, tx_hash: TxHash, ) -> ProviderResult> { let mut transaction_cursor = self.tx.cursor_read::()?; if let Some(transaction_id) = self.transaction_id(tx_hash)? { if let Some(tx) = self.transaction_by_id_no_hash(transaction_id)? { let transaction = TransactionSigned { hash: tx_hash, signature: tx.signature, transaction: tx.transaction, }; if let Some(block_number) = transaction_cursor.seek(transaction_id).map(|b| b.map(|(_, bn)| bn))? { if let Some(sealed_header) = self.sealed_header(block_number)? { let (header, block_hash) = sealed_header.split(); if let Some(block_body) = self.block_body_indices(block_number)? { // the index of the tx in the block is the offset: // len([start..tx_id]) // NOTE: `transaction_id` is always `>=` the block's first // index let index = transaction_id - block_body.first_tx_num(); let meta = TransactionMeta { tx_hash, index, block_hash, block_number, base_fee: header.base_fee_per_gas, excess_blob_gas: header.excess_blob_gas, timestamp: header.timestamp, }; return Ok(Some((transaction, meta))) } } } } } Ok(None) } fn transaction_block(&self, id: TxNumber) -> ProviderResult> { let mut cursor = self.tx.cursor_read::()?; Ok(cursor.seek(id)?.map(|(_, bn)| bn)) } fn transactions_by_block( &self, id: BlockHashOrNumber, ) -> ProviderResult>> { let mut tx_cursor = self.tx.cursor_read::()?; if let Some(block_number) = self.convert_hash_or_number(id)? { if let Some(body) = self.block_body_indices(block_number)? { let tx_range = body.tx_num_range(); return if tx_range.is_empty() { Ok(Some(Vec::new())) } else { Ok(Some( self.transactions_by_tx_range_with_cursor(tx_range, &mut tx_cursor)? .into_iter() .map(Into::into) .collect(), )) } } } Ok(None) } fn transactions_by_block_range( &self, range: impl RangeBounds, ) -> ProviderResult>> { let mut tx_cursor = self.tx.cursor_read::()?; let mut results = Vec::new(); let mut body_cursor = self.tx.cursor_read::()?; for entry in body_cursor.walk_range(range)? { let (_, body) = entry?; let tx_num_range = body.tx_num_range(); if tx_num_range.is_empty() { results.push(Vec::new()); } else { results.push( self.transactions_by_tx_range_with_cursor(tx_num_range, &mut tx_cursor)? .into_iter() .map(Into::into) .collect(), ); } } Ok(results) } fn transactions_by_tx_range( &self, range: impl RangeBounds, ) -> ProviderResult> { self.transactions_by_tx_range_with_cursor( range, &mut self.tx.cursor_read::()?, ) } fn senders_by_tx_range( &self, range: impl RangeBounds, ) -> ProviderResult> { self.cursor_read_collect::(range).map_err(Into::into) } fn transaction_sender(&self, id: TxNumber) -> ProviderResult> { Ok(self.tx.get::(id)?) } } impl ReceiptProvider for DatabaseProvider { fn receipt(&self, id: TxNumber) -> ProviderResult> { self.static_file_provider.get_with_static_file_or_database( StaticFileSegment::Receipts, id, |static_file| static_file.receipt(id), || Ok(self.tx.get::(id)?), ) } fn receipt_by_hash(&self, hash: TxHash) -> ProviderResult> { if let Some(id) = self.transaction_id(hash)? { self.receipt(id) } else { Ok(None) } } fn receipts_by_block(&self, block: BlockHashOrNumber) -> ProviderResult>> { if let Some(number) = self.convert_hash_or_number(block)? { if let Some(body) = self.block_body_indices(number)? { let tx_range = body.tx_num_range(); return if tx_range.is_empty() { Ok(Some(Vec::new())) } else { self.receipts_by_tx_range(tx_range).map(Some) } } } Ok(None) } fn receipts_by_tx_range( &self, range: impl RangeBounds, ) -> ProviderResult> { self.static_file_provider.get_range_with_static_file_or_database( StaticFileSegment::Receipts, to_range(range), |static_file, range, _| static_file.receipts_by_tx_range(range), |range, _| self.cursor_read_collect::(range).map_err(Into::into), |_| true, ) } } impl WithdrawalsProvider for DatabaseProvider { fn withdrawals_by_block( &self, id: BlockHashOrNumber, timestamp: u64, ) -> ProviderResult> { if self.chain_spec.is_shanghai_active_at_timestamp(timestamp) { if let Some(number) = self.convert_hash_or_number(id)? { // If we are past shanghai, then all blocks should have a withdrawal list, even if // empty let withdrawals = self .tx .get::(number) .map(|w| w.map(|w| w.withdrawals))? .unwrap_or_default(); return Ok(Some(withdrawals)) } } Ok(None) } fn latest_withdrawal(&self) -> ProviderResult> { let latest_block_withdrawal = self.tx.cursor_read::()?.last()?; Ok(latest_block_withdrawal .and_then(|(_, mut block_withdrawal)| block_withdrawal.withdrawals.pop())) } } impl RequestsProvider for DatabaseProvider { fn requests_by_block( &self, id: BlockHashOrNumber, timestamp: u64, ) -> ProviderResult> { if self.chain_spec.is_prague_active_at_timestamp(timestamp) { if let Some(number) = self.convert_hash_or_number(id)? { // If we are past Prague, then all blocks should have a requests list, even if // empty let requests = self.tx.get::(number)?.unwrap_or_default(); return Ok(Some(requests)) } } Ok(None) } } impl EvmEnvProvider for DatabaseProvider { fn fill_env_at( &self, cfg: &mut CfgEnvWithHandlerCfg, block_env: &mut BlockEnv, at: BlockHashOrNumber, evm_config: EvmConfig, ) -> ProviderResult<()> where EvmConfig: ConfigureEvmEnv, { let hash = self.convert_number(at)?.ok_or(ProviderError::HeaderNotFound(at))?; let header = self.header(&hash)?.ok_or(ProviderError::HeaderNotFound(at))?; self.fill_env_with_header(cfg, block_env, &header, evm_config) } fn fill_env_with_header( &self, cfg: &mut CfgEnvWithHandlerCfg, block_env: &mut BlockEnv, header: &Header, evm_config: EvmConfig, ) -> ProviderResult<()> where EvmConfig: ConfigureEvmEnv, { let total_difficulty = self .header_td_by_number(header.number)? .ok_or_else(|| ProviderError::HeaderNotFound(header.number.into()))?; evm_config.fill_cfg_and_block_env( cfg, block_env, &self.chain_spec, header, total_difficulty, ); Ok(()) } fn fill_cfg_env_at( &self, cfg: &mut CfgEnvWithHandlerCfg, at: BlockHashOrNumber, evm_config: EvmConfig, ) -> ProviderResult<()> where EvmConfig: ConfigureEvmEnv, { let hash = self.convert_number(at)?.ok_or(ProviderError::HeaderNotFound(at))?; let header = self.header(&hash)?.ok_or(ProviderError::HeaderNotFound(at))?; self.fill_cfg_env_with_header(cfg, &header, evm_config) } fn fill_cfg_env_with_header( &self, cfg: &mut CfgEnvWithHandlerCfg, header: &Header, evm_config: EvmConfig, ) -> ProviderResult<()> where EvmConfig: ConfigureEvmEnv, { let total_difficulty = self .header_td_by_number(header.number)? .ok_or_else(|| ProviderError::HeaderNotFound(header.number.into()))?; evm_config.fill_cfg_env(cfg, &self.chain_spec, header, total_difficulty); Ok(()) } } impl StageCheckpointReader for DatabaseProvider { fn get_stage_checkpoint(&self, id: StageId) -> ProviderResult> { Ok(self.tx.get::(id.to_string())?) } fn get_all_checkpoints(&self) -> ProviderResult> { self.tx .cursor_read::()? .walk(None)? .collect::, _>>() .map_err(ProviderError::Database) } /// Get stage checkpoint progress. fn get_stage_checkpoint_progress(&self, id: StageId) -> ProviderResult>> { Ok(self.tx.get::(id.to_string())?) } } impl StageCheckpointWriter for DatabaseProvider { /// Save stage checkpoint. fn save_stage_checkpoint( &self, id: StageId, checkpoint: StageCheckpoint, ) -> ProviderResult<()> { Ok(self.tx.put::(id.to_string(), checkpoint)?) } /// Save stage checkpoint progress. fn save_stage_checkpoint_progress( &self, id: StageId, checkpoint: Vec, ) -> ProviderResult<()> { Ok(self.tx.put::(id.to_string(), checkpoint)?) } fn update_pipeline_stages( &self, block_number: BlockNumber, drop_stage_checkpoint: bool, ) -> ProviderResult<()> { // iterate over all existing stages in the table and update its progress. let mut cursor = self.tx.cursor_write::()?; for stage_id in StageId::ALL { let (_, checkpoint) = cursor.seek_exact(stage_id.to_string())?.unwrap_or_default(); cursor.upsert( stage_id.to_string(), StageCheckpoint { block_number, ..if drop_stage_checkpoint { Default::default() } else { checkpoint } }, )?; } Ok(()) } } impl StorageReader for DatabaseProvider { fn plain_state_storages( &self, addresses_with_keys: impl IntoIterator)>, ) -> ProviderResult)>> { let mut plain_storage = self.tx.cursor_dup_read::()?; addresses_with_keys .into_iter() .map(|(address, storage)| { storage .into_iter() .map(|key| -> ProviderResult<_> { Ok(plain_storage .seek_by_key_subkey(address, key)? .filter(|v| v.key == key) .unwrap_or_else(|| StorageEntry { key, value: Default::default() })) }) .collect::>>() .map(|storage| (address, storage)) }) .collect::>>() } fn changed_storages_with_range( &self, range: RangeInclusive, ) -> ProviderResult>> { self.tx .cursor_read::()? .walk_range(BlockNumberAddress::range(range))? // fold all storages and save its old state so we can remove it from HashedStorage // it is needed as it is dup table. .try_fold(BTreeMap::new(), |mut accounts: BTreeMap>, entry| { let (BlockNumberAddress((_, address)), storage_entry) = entry?; accounts.entry(address).or_default().insert(storage_entry.key); Ok(accounts) }) } fn changed_storages_and_blocks_with_range( &self, range: RangeInclusive, ) -> ProviderResult>> { let mut changeset_cursor = self.tx.cursor_read::()?; let storage_changeset_lists = changeset_cursor.walk_range(BlockNumberAddress::range(range))?.try_fold( BTreeMap::new(), |mut storages: BTreeMap<(Address, B256), Vec>, entry| -> ProviderResult<_> { let (index, storage) = entry?; storages .entry((index.address(), storage.key)) .or_default() .push(index.block_number()); Ok(storages) }, )?; Ok(storage_changeset_lists) } } impl StateChangeWriter for DatabaseProvider { fn write_state_reverts( &self, reverts: PlainStateReverts, first_block: BlockNumber, ) -> ProviderResult<()> { // Write storage changes tracing::trace!("Writing storage changes"); let mut storages_cursor = self.tx_ref().cursor_dup_write::()?; let mut storage_changeset_cursor = self.tx_ref().cursor_dup_write::()?; for (block_index, mut storage_changes) in reverts.storage.into_iter().enumerate() { let block_number = first_block + block_index as BlockNumber; tracing::trace!(block_number, "Writing block change"); // sort changes by address. storage_changes.par_sort_unstable_by_key(|a| a.address); for PlainStorageRevert { address, wiped, storage_revert } in storage_changes { let storage_id = BlockNumberAddress((block_number, address)); let mut storage = storage_revert .into_iter() .map(|(k, v)| (B256::new(k.to_be_bytes()), v)) .collect::>(); // sort storage slots by key. storage.par_sort_unstable_by_key(|a| a.0); // If we are writing the primary storage wipe transition, the pre-existing plain // storage state has to be taken from the database and written to storage history. // See [StorageWipe::Primary] for more details. let mut wiped_storage = Vec::new(); if wiped { tracing::trace!(?address, "Wiping storage"); if let Some((_, entry)) = storages_cursor.seek_exact(address)? { wiped_storage.push((entry.key, entry.value)); while let Some(entry) = storages_cursor.next_dup_val()? { wiped_storage.push((entry.key, entry.value)) } } } tracing::trace!(?address, ?storage, "Writing storage reverts"); for (key, value) in StorageRevertsIter::new(storage, wiped_storage) { storage_changeset_cursor.append_dup(storage_id, StorageEntry { key, value })?; } } } // Write account changes tracing::trace!("Writing account changes"); let mut account_changeset_cursor = self.tx_ref().cursor_dup_write::()?; for (block_index, mut account_block_reverts) in reverts.accounts.into_iter().enumerate() { let block_number = first_block + block_index as BlockNumber; // Sort accounts by address. account_block_reverts.par_sort_by_key(|a| a.0); for (address, info) in account_block_reverts { account_changeset_cursor.append_dup( block_number, AccountBeforeTx { address, info: info.map(Into::into) }, )?; } } Ok(()) } fn write_state_changes(&self, mut changes: StateChangeset) -> ProviderResult<()> { // sort all entries so they can be written to database in more performant way. // and take smaller memory footprint. changes.accounts.par_sort_by_key(|a| a.0); changes.storage.par_sort_by_key(|a| a.address); changes.contracts.par_sort_by_key(|a| a.0); // Write new account state tracing::trace!(len = changes.accounts.len(), "Writing new account state"); let mut accounts_cursor = self.tx_ref().cursor_write::()?; // write account to database. for (address, account) in changes.accounts { if let Some(account) = account { tracing::trace!(?address, "Updating plain state account"); accounts_cursor.upsert(address, account.into())?; } else if accounts_cursor.seek_exact(address)?.is_some() { tracing::trace!(?address, "Deleting plain state account"); accounts_cursor.delete_current()?; } } // Write bytecode tracing::trace!(len = changes.contracts.len(), "Writing bytecodes"); let mut bytecodes_cursor = self.tx_ref().cursor_write::()?; for (hash, bytecode) in changes.contracts { bytecodes_cursor.upsert(hash, Bytecode(bytecode))?; } // Write new storage state and wipe storage if needed. tracing::trace!(len = changes.storage.len(), "Writing new storage state"); let mut storages_cursor = self.tx_ref().cursor_dup_write::()?; for PlainStorageChangeset { address, wipe_storage, storage } in changes.storage { // Wiping of storage. if wipe_storage && storages_cursor.seek_exact(address)?.is_some() { storages_cursor.delete_current_duplicates()?; } // cast storages to B256. let mut storage = storage .into_iter() .map(|(k, value)| StorageEntry { key: k.into(), value }) .collect::>(); // sort storage slots by key. storage.par_sort_unstable_by_key(|a| a.key); for entry in storage { tracing::trace!(?address, ?entry.key, "Updating plain state storage"); if let Some(db_entry) = storages_cursor.seek_by_key_subkey(address, entry.key)? { if db_entry.key == entry.key { storages_cursor.delete_current()?; } } if !entry.value.is_zero() { storages_cursor.upsert(address, entry)?; } } } Ok(()) } fn write_hashed_state(&self, hashed_state: &HashedPostStateSorted) -> ProviderResult<()> { // Write hashed account updates. let mut hashed_accounts_cursor = self.tx_ref().cursor_write::()?; for (hashed_address, account) in hashed_state.accounts().accounts_sorted() { if let Some(account) = account { hashed_accounts_cursor.upsert(hashed_address, account)?; } else if hashed_accounts_cursor.seek_exact(hashed_address)?.is_some() { hashed_accounts_cursor.delete_current()?; } } // Write hashed storage changes. let sorted_storages = hashed_state.account_storages().iter().sorted_by_key(|(key, _)| *key); let mut hashed_storage_cursor = self.tx_ref().cursor_dup_write::()?; for (hashed_address, storage) in sorted_storages { if storage.is_wiped() && hashed_storage_cursor.seek_exact(*hashed_address)?.is_some() { hashed_storage_cursor.delete_current_duplicates()?; } for (hashed_slot, value) in storage.storage_slots_sorted() { let entry = StorageEntry { key: hashed_slot, value }; if let Some(db_entry) = hashed_storage_cursor.seek_by_key_subkey(*hashed_address, entry.key)? { if db_entry.key == entry.key { hashed_storage_cursor.delete_current()?; } } if !entry.value.is_zero() { hashed_storage_cursor.upsert(*hashed_address, entry)?; } } } Ok(()) } } impl TrieWriter for DatabaseProvider { /// Writes trie updates. Returns the number of entries modified. fn write_trie_updates(&self, trie_updates: &TrieUpdates) -> ProviderResult { if trie_updates.is_empty() { return Ok(0) } // Track the number of inserted entries. let mut num_entries = 0; // Merge updated and removed nodes. Updated nodes must take precedence. let mut account_updates = trie_updates .removed_nodes_ref() .iter() .filter_map(|n| { (!trie_updates.account_nodes_ref().contains_key(n)).then_some((n, None)) }) .collect::>(); account_updates.extend( trie_updates.account_nodes_ref().iter().map(|(nibbles, node)| (nibbles, Some(node))), ); // Sort trie node updates. account_updates.sort_unstable_by(|a, b| a.0.cmp(b.0)); let tx = self.tx_ref(); let mut account_trie_cursor = tx.cursor_write::()?; for (key, updated_node) in account_updates { let nibbles = StoredNibbles(key.clone()); match updated_node { Some(node) => { if !nibbles.0.is_empty() { num_entries += 1; account_trie_cursor.upsert(nibbles, node.clone())?; } } None => { num_entries += 1; if account_trie_cursor.seek_exact(nibbles)?.is_some() { account_trie_cursor.delete_current()?; } } } } num_entries += self.write_storage_trie_updates(trie_updates.storage_tries_ref())?; Ok(num_entries) } } impl StorageTrieWriter for DatabaseProvider { /// Writes storage trie updates from the given storage trie map. First sorts the storage trie /// updates by the hashed address, writing in sorted order. fn write_storage_trie_updates( &self, storage_tries: &HashMap, ) -> ProviderResult { let mut num_entries = 0; let mut storage_tries = Vec::from_iter(storage_tries); storage_tries.sort_unstable_by(|a, b| a.0.cmp(b.0)); let mut cursor = self.tx_ref().cursor_dup_write::()?; for (hashed_address, storage_trie_updates) in storage_tries { let mut db_storage_trie_cursor = DatabaseStorageTrieCursor::new(cursor, *hashed_address); num_entries += db_storage_trie_cursor.write_storage_trie_updates(storage_trie_updates)?; cursor = db_storage_trie_cursor.cursor; } Ok(num_entries) } fn write_individual_storage_trie_updates( &self, hashed_address: B256, updates: &StorageTrieUpdates, ) -> ProviderResult { if updates.is_empty() { return Ok(0) } let cursor = self.tx_ref().cursor_dup_write::()?; let mut trie_db_cursor = DatabaseStorageTrieCursor::new(cursor, hashed_address); Ok(trie_db_cursor.write_storage_trie_updates(updates)?) } } impl HashingWriter for DatabaseProvider { fn unwind_account_hashing( &self, range: RangeInclusive, ) -> ProviderResult>> { // Aggregate all block changesets and make a list of accounts that have been changed. // Note that collecting and then reversing the order is necessary to ensure that the // changes are applied in the correct order. let hashed_accounts = self .tx .cursor_read::()? .walk_range(range)? .map(|entry| entry.map(|(_, e)| (keccak256(e.address), e.info))) .collect::, _>>()? .into_iter() .rev() .collect::>(); // Apply values to HashedState, and remove the account if it's None. let mut hashed_accounts_cursor = self.tx.cursor_write::()?; for (hashed_address, account) in &hashed_accounts { if let Some(account) = account { hashed_accounts_cursor.upsert(*hashed_address, *account)?; } else if hashed_accounts_cursor.seek_exact(*hashed_address)?.is_some() { hashed_accounts_cursor.delete_current()?; } } Ok(hashed_accounts) } fn insert_account_for_hashing( &self, accounts: impl IntoIterator)>, ) -> ProviderResult>> { let mut hashed_accounts_cursor = self.tx.cursor_write::()?; let hashed_accounts = accounts.into_iter().map(|(ad, ac)| (keccak256(ad), ac)).collect::>(); for (hashed_address, account) in &hashed_accounts { if let Some(account) = account { hashed_accounts_cursor.upsert(*hashed_address, *account)?; } else if hashed_accounts_cursor.seek_exact(*hashed_address)?.is_some() { hashed_accounts_cursor.delete_current()?; } } Ok(hashed_accounts) } fn unwind_storage_hashing( &self, range: Range, ) -> ProviderResult>> { // Aggregate all block changesets and make list of accounts that have been changed. let mut changesets = self.tx.cursor_read::()?; let mut hashed_storages = changesets .walk_range(range)? .map(|entry| { entry.map(|(BlockNumberAddress((_, address)), storage_entry)| { (keccak256(address), keccak256(storage_entry.key), storage_entry.value) }) }) .collect::, _>>()?; hashed_storages.sort_by_key(|(ha, hk, _)| (*ha, *hk)); // Apply values to HashedState, and remove the account if it's None. let mut hashed_storage_keys: HashMap> = HashMap::new(); let mut hashed_storage = self.tx.cursor_dup_write::()?; for (hashed_address, key, value) in hashed_storages.into_iter().rev() { hashed_storage_keys.entry(hashed_address).or_default().insert(key); if hashed_storage .seek_by_key_subkey(hashed_address, key)? .filter(|entry| entry.key == key) .is_some() { hashed_storage.delete_current()?; } if !value.is_zero() { hashed_storage.upsert(hashed_address, StorageEntry { key, value })?; } } Ok(hashed_storage_keys) } fn insert_storage_for_hashing( &self, storages: impl IntoIterator)>, ) -> ProviderResult>> { // hash values let hashed_storages = storages.into_iter().fold(BTreeMap::new(), |mut map, (address, storage)| { let storage = storage.into_iter().fold(BTreeMap::new(), |mut map, entry| { map.insert(keccak256(entry.key), entry.value); map }); map.insert(keccak256(address), storage); map }); let hashed_storage_keys = HashMap::from_iter(hashed_storages.iter().map(|(hashed_address, entries)| { (*hashed_address, BTreeSet::from_iter(entries.keys().copied())) })); let mut hashed_storage_cursor = self.tx.cursor_dup_write::()?; // Hash the address and key and apply them to HashedStorage (if Storage is None // just remove it); hashed_storages.into_iter().try_for_each(|(hashed_address, storage)| { storage.into_iter().try_for_each(|(key, value)| -> ProviderResult<()> { if hashed_storage_cursor .seek_by_key_subkey(hashed_address, key)? .filter(|entry| entry.key == key) .is_some() { hashed_storage_cursor.delete_current()?; } if !value.is_zero() { hashed_storage_cursor.upsert(hashed_address, StorageEntry { key, value })?; } Ok(()) }) })?; Ok(hashed_storage_keys) } fn insert_hashes( &self, range: RangeInclusive, end_block_hash: B256, expected_state_root: B256, ) -> ProviderResult<()> { // Initialize prefix sets. let mut account_prefix_set = PrefixSetMut::default(); let mut storage_prefix_sets: HashMap = HashMap::default(); let mut destroyed_accounts = HashSet::default(); let mut durations_recorder = metrics::DurationsRecorder::default(); // storage hashing stage { let lists = self.changed_storages_with_range(range.clone())?; let storages = self.plain_state_storages(lists)?; let storage_entries = self.insert_storage_for_hashing(storages)?; for (hashed_address, hashed_slots) in storage_entries { account_prefix_set.insert(Nibbles::unpack(hashed_address)); for slot in hashed_slots { storage_prefix_sets .entry(hashed_address) .or_default() .insert(Nibbles::unpack(slot)); } } } durations_recorder.record_relative(metrics::Action::InsertStorageHashing); // account hashing stage { let lists = self.changed_accounts_with_range(range.clone())?; let accounts = self.basic_accounts(lists)?; let hashed_addresses = self.insert_account_for_hashing(accounts)?; for (hashed_address, account) in hashed_addresses { account_prefix_set.insert(Nibbles::unpack(hashed_address)); if account.is_none() { destroyed_accounts.insert(hashed_address); } } } durations_recorder.record_relative(metrics::Action::InsertAccountHashing); // merkle tree { // This is the same as `StateRoot::incremental_root_with_updates`, only the prefix sets // are pre-loaded. let prefix_sets = TriePrefixSets { account_prefix_set: account_prefix_set.freeze(), storage_prefix_sets: storage_prefix_sets .into_iter() .map(|(k, v)| (k, v.freeze())) .collect(), destroyed_accounts, }; let (state_root, trie_updates) = StateRoot::from_tx(&self.tx) .with_prefix_sets(prefix_sets) .root_with_updates() .map_err(Into::::into)?; if state_root != expected_state_root { return Err(ProviderError::StateRootMismatch(Box::new(RootMismatch { root: GotExpected { got: state_root, expected: expected_state_root }, block_number: *range.end(), block_hash: end_block_hash, }))) } self.write_trie_updates(&trie_updates)?; } durations_recorder.record_relative(metrics::Action::InsertMerkleTree); debug!(target: "providers::db", ?range, actions = ?durations_recorder.actions, "Inserted hashes"); Ok(()) } } impl HistoryWriter for DatabaseProvider { fn unwind_account_history_indices( &self, range: RangeInclusive, ) -> ProviderResult { let mut last_indices = self .tx .cursor_read::()? .walk_range(range)? .map(|entry| entry.map(|(index, account)| (account.address, index))) .collect::, _>>()?; last_indices.sort_by_key(|(a, _)| *a); // Unwind the account history index. let mut cursor = self.tx.cursor_write::()?; for &(address, rem_index) in &last_indices { let partial_shard = unwind_history_shards::<_, tables::AccountsHistory, _>( &mut cursor, ShardedKey::last(address), rem_index, |sharded_key| sharded_key.key == address, )?; // Check the last returned partial shard. // If it's not empty, the shard needs to be reinserted. if !partial_shard.is_empty() { cursor.insert( ShardedKey::last(address), BlockNumberList::new_pre_sorted(partial_shard), )?; } } let changesets = last_indices.len(); Ok(changesets) } fn insert_account_history_index( &self, account_transitions: BTreeMap>, ) -> ProviderResult<()> { self.append_history_index::<_, tables::AccountsHistory>( account_transitions, ShardedKey::new, ) } fn unwind_storage_history_indices( &self, range: Range, ) -> ProviderResult { let mut storage_changesets = self .tx .cursor_read::()? .walk_range(range)? .map(|entry| { entry.map(|(BlockNumberAddress((bn, address)), storage)| (address, storage.key, bn)) }) .collect::, _>>()?; storage_changesets.sort_by_key(|(address, key, _)| (*address, *key)); let mut cursor = self.tx.cursor_write::()?; for &(address, storage_key, rem_index) in &storage_changesets { let partial_shard = unwind_history_shards::<_, tables::StoragesHistory, _>( &mut cursor, StorageShardedKey::last(address, storage_key), rem_index, |storage_sharded_key| { storage_sharded_key.address == address && storage_sharded_key.sharded_key.key == storage_key }, )?; // Check the last returned partial shard. // If it's not empty, the shard needs to be reinserted. if !partial_shard.is_empty() { cursor.insert( StorageShardedKey::last(address, storage_key), BlockNumberList::new_pre_sorted(partial_shard), )?; } } let changesets = storage_changesets.len(); Ok(changesets) } fn insert_storage_history_index( &self, storage_transitions: BTreeMap<(Address, B256), Vec>, ) -> ProviderResult<()> { self.append_history_index::<_, tables::StoragesHistory>( storage_transitions, |(address, storage_key), highest_block_number| { StorageShardedKey::new(address, storage_key, highest_block_number) }, ) } fn update_history_indices(&self, range: RangeInclusive) -> ProviderResult<()> { // account history stage { let indices = self.changed_accounts_and_blocks_with_range(range.clone())?; self.insert_account_history_index(indices)?; } // storage history stage { let indices = self.changed_storages_and_blocks_with_range(range)?; self.insert_storage_history_index(indices)?; } Ok(()) } } impl BlockExecutionReader for DatabaseProvider { fn get_block_and_execution_range( &self, range: RangeInclusive, ) -> ProviderResult { // get blocks let blocks = self.get_block_range(range.clone())?; // get execution res let execution_state = self.get_state(range)?; Ok(Chain::new(blocks, execution_state, None)) } } impl BlockExecutionWriter for DatabaseProvider { fn take_block_and_execution_range( &self, range: RangeInclusive, ) -> ProviderResult { let storage_range = BlockNumberAddress::range(range.clone()); // Unwind account hashes. Add changed accounts to account prefix set. let hashed_addresses = self.unwind_account_hashing(range.clone())?; let mut account_prefix_set = PrefixSetMut::with_capacity(hashed_addresses.len()); let mut destroyed_accounts = HashSet::default(); for (hashed_address, account) in hashed_addresses { account_prefix_set.insert(Nibbles::unpack(hashed_address)); if account.is_none() { destroyed_accounts.insert(hashed_address); } } // Unwind account history indices. self.unwind_account_history_indices(range.clone())?; // Unwind storage hashes. Add changed account and storage keys to corresponding prefix // sets. let mut storage_prefix_sets = HashMap::::default(); let storage_entries = self.unwind_storage_hashing(storage_range.clone())?; for (hashed_address, hashed_slots) in storage_entries { account_prefix_set.insert(Nibbles::unpack(hashed_address)); let mut storage_prefix_set = PrefixSetMut::with_capacity(hashed_slots.len()); for slot in hashed_slots { storage_prefix_set.insert(Nibbles::unpack(slot)); } storage_prefix_sets.insert(hashed_address, storage_prefix_set.freeze()); } // Unwind storage history indices. self.unwind_storage_history_indices(storage_range)?; // Calculate the reverted merkle root. // This is the same as `StateRoot::incremental_root_with_updates`, only the prefix sets // are pre-loaded. let prefix_sets = TriePrefixSets { account_prefix_set: account_prefix_set.freeze(), storage_prefix_sets, destroyed_accounts, }; let (new_state_root, trie_updates) = StateRoot::from_tx(&self.tx) .with_prefix_sets(prefix_sets) .root_with_updates() .map_err(Into::::into)?; let parent_number = range.start().saturating_sub(1); let parent_state_root = self .header_by_number(parent_number)? .ok_or_else(|| ProviderError::HeaderNotFound(parent_number.into()))? .state_root; // state root should be always correct as we are reverting state. // but for sake of double verification we will check it again. if new_state_root != parent_state_root { let parent_hash = self .block_hash(parent_number)? .ok_or_else(|| ProviderError::HeaderNotFound(parent_number.into()))?; return Err(ProviderError::UnwindStateRootMismatch(Box::new(RootMismatch { root: GotExpected { got: new_state_root, expected: parent_state_root }, block_number: parent_number, block_hash: parent_hash, }))) } self.write_trie_updates(&trie_updates)?; // get blocks let blocks = self.take_block_range(range.clone())?; let unwind_to = blocks.first().map(|b| b.number.saturating_sub(1)); // get execution res let execution_state = self.take_state(range.clone())?; // remove block bodies it is needed for both get block range and get block execution results // that is why it is deleted afterwards. self.remove::(range)?; // Update pipeline progress if let Some(fork_number) = unwind_to { self.update_pipeline_stages(fork_number, true)?; } Ok(Chain::new(blocks, execution_state, None)) } fn remove_block_and_execution_range( &self, range: RangeInclusive, ) -> ProviderResult<()> { let storage_range = BlockNumberAddress::range(range.clone()); // Unwind account hashes. Add changed accounts to account prefix set. let hashed_addresses = self.unwind_account_hashing(range.clone())?; let mut account_prefix_set = PrefixSetMut::with_capacity(hashed_addresses.len()); let mut destroyed_accounts = HashSet::default(); for (hashed_address, account) in hashed_addresses { account_prefix_set.insert(Nibbles::unpack(hashed_address)); if account.is_none() { destroyed_accounts.insert(hashed_address); } } // Unwind account history indices. self.unwind_account_history_indices(range.clone())?; // Unwind storage hashes. Add changed account and storage keys to corresponding prefix // sets. let mut storage_prefix_sets = HashMap::::default(); let storage_entries = self.unwind_storage_hashing(storage_range.clone())?; for (hashed_address, hashed_slots) in storage_entries { account_prefix_set.insert(Nibbles::unpack(hashed_address)); let mut storage_prefix_set = PrefixSetMut::with_capacity(hashed_slots.len()); for slot in hashed_slots { storage_prefix_set.insert(Nibbles::unpack(slot)); } storage_prefix_sets.insert(hashed_address, storage_prefix_set.freeze()); } // Unwind storage history indices. self.unwind_storage_history_indices(storage_range)?; // Calculate the reverted merkle root. // This is the same as `StateRoot::incremental_root_with_updates`, only the prefix sets // are pre-loaded. let prefix_sets = TriePrefixSets { account_prefix_set: account_prefix_set.freeze(), storage_prefix_sets, destroyed_accounts, }; let (new_state_root, trie_updates) = StateRoot::from_tx(&self.tx) .with_prefix_sets(prefix_sets) .root_with_updates() .map_err(Into::::into)?; let parent_number = range.start().saturating_sub(1); let parent_state_root = self .header_by_number(parent_number)? .ok_or_else(|| ProviderError::HeaderNotFound(parent_number.into()))? .state_root; // state root should be always correct as we are reverting state. // but for sake of double verification we will check it again. if new_state_root != parent_state_root { let parent_hash = self .block_hash(parent_number)? .ok_or_else(|| ProviderError::HeaderNotFound(parent_number.into()))?; return Err(ProviderError::UnwindStateRootMismatch(Box::new(RootMismatch { root: GotExpected { got: new_state_root, expected: parent_state_root }, block_number: parent_number, block_hash: parent_hash, }))) } self.write_trie_updates(&trie_updates)?; // get blocks let blocks = self.take_block_range(range.clone())?; let unwind_to = blocks.first().map(|b| b.number.saturating_sub(1)); // remove execution res self.remove_state(range.clone())?; // remove block bodies it is needed for both get block range and get block execution results // that is why it is deleted afterwards. self.remove::(range)?; // Update pipeline progress if let Some(block_number) = unwind_to { self.update_pipeline_stages(block_number, true)?; } Ok(()) } } impl BlockWriter for DatabaseProvider { /// Inserts the block into the database, always modifying the following tables: /// * [`CanonicalHeaders`](tables::CanonicalHeaders) /// * [`Headers`](tables::Headers) /// * [`HeaderNumbers`](tables::HeaderNumbers) /// * [`HeaderTerminalDifficulties`](tables::HeaderTerminalDifficulties) /// * [`BlockBodyIndices`](tables::BlockBodyIndices) /// /// If there are transactions in the block, the following tables will be modified: /// * [`Transactions`](tables::Transactions) /// * [`TransactionBlocks`](tables::TransactionBlocks) /// /// If ommers are not empty, this will modify [`BlockOmmers`](tables::BlockOmmers). /// If withdrawals are not empty, this will modify /// [`BlockWithdrawals`](tables::BlockWithdrawals). /// If requests are not empty, this will modify [`BlockRequests`](tables::BlockRequests). /// /// If the provider has __not__ configured full sender pruning, this will modify /// [`TransactionSenders`](tables::TransactionSenders). /// /// If the provider has __not__ configured full transaction lookup pruning, this will modify /// [`TransactionHashNumbers`](tables::TransactionHashNumbers). fn insert_block( &self, block: SealedBlockWithSenders, ) -> ProviderResult { let block_number = block.number; let mut durations_recorder = metrics::DurationsRecorder::default(); self.tx.put::(block_number, block.hash())?; durations_recorder.record_relative(metrics::Action::InsertCanonicalHeaders); // Put header with canonical hashes. self.tx.put::(block_number, block.header.as_ref().clone())?; durations_recorder.record_relative(metrics::Action::InsertHeaders); self.tx.put::(block.hash(), block_number)?; durations_recorder.record_relative(metrics::Action::InsertHeaderNumbers); // total difficulty let ttd = if block_number == 0 { block.difficulty } else { let parent_block_number = block_number - 1; let parent_ttd = self.header_td_by_number(parent_block_number)?.unwrap_or_default(); durations_recorder.record_relative(metrics::Action::GetParentTD); parent_ttd + block.difficulty }; self.tx.put::(block_number, ttd.into())?; durations_recorder.record_relative(metrics::Action::InsertHeaderTerminalDifficulties); // insert body ommers data if !block.ommers.is_empty() { self.tx.put::( block_number, StoredBlockOmmers { ommers: block.block.ommers }, )?; durations_recorder.record_relative(metrics::Action::InsertBlockOmmers); } let mut next_tx_num = self .tx .cursor_read::()? .last()? .map(|(n, _)| n + 1) .unwrap_or_default(); durations_recorder.record_relative(metrics::Action::GetNextTxNum); let first_tx_num = next_tx_num; let tx_count = block.block.body.len() as u64; // Ensures we have all the senders for the block's transactions. let mut tx_senders_elapsed = Duration::default(); let mut transactions_elapsed = Duration::default(); let mut tx_hash_numbers_elapsed = Duration::default(); for (transaction, sender) in block.block.body.into_iter().zip(block.senders.iter()) { let hash = transaction.hash(); if self .prune_modes .sender_recovery .as_ref() .filter(|prune_mode| prune_mode.is_full()) .is_none() { let start = Instant::now(); self.tx.put::(next_tx_num, *sender)?; tx_senders_elapsed += start.elapsed(); } let start = Instant::now(); self.tx.put::(next_tx_num, transaction.into())?; let elapsed = start.elapsed(); if elapsed > Duration::from_secs(1) { warn!( target: "providers::db", ?block_number, tx_num = %next_tx_num, hash = %hash, ?elapsed, "Transaction insertion took too long" ); } transactions_elapsed += elapsed; if self .prune_modes .transaction_lookup .filter(|prune_mode| prune_mode.is_full()) .is_none() { let start = Instant::now(); self.tx.put::(hash, next_tx_num)?; tx_hash_numbers_elapsed += start.elapsed(); } next_tx_num += 1; } durations_recorder .record_duration(metrics::Action::InsertTransactionSenders, tx_senders_elapsed); durations_recorder .record_duration(metrics::Action::InsertTransactions, transactions_elapsed); durations_recorder.record_duration( metrics::Action::InsertTransactionHashNumbers, tx_hash_numbers_elapsed, ); if let Some(withdrawals) = block.block.withdrawals { if !withdrawals.is_empty() { self.tx.put::( block_number, StoredBlockWithdrawals { withdrawals }, )?; durations_recorder.record_relative(metrics::Action::InsertBlockWithdrawals); } } if let Some(requests) = block.block.requests { if !requests.0.is_empty() { self.tx.put::(block_number, requests)?; durations_recorder.record_relative(metrics::Action::InsertBlockRequests); } } let block_indices = StoredBlockBodyIndices { first_tx_num, tx_count }; self.tx.put::(block_number, block_indices.clone())?; durations_recorder.record_relative(metrics::Action::InsertBlockBodyIndices); if !block_indices.is_empty() { self.tx.put::(block_indices.last_tx_num(), block_number)?; durations_recorder.record_relative(metrics::Action::InsertTransactionBlocks); } debug!( target: "providers::db", ?block_number, actions = ?durations_recorder.actions, "Inserted block" ); Ok(block_indices) } /// TODO(joshie): this fn should be moved to `UnifiedStorageWriter` eventually fn append_blocks_with_state( &self, blocks: Vec, execution_outcome: ExecutionOutcome, hashed_state: HashedPostStateSorted, trie_updates: TrieUpdates, ) -> ProviderResult<()> { if blocks.is_empty() { debug!(target: "providers::db", "Attempted to append empty block range"); return Ok(()) } let first_number = blocks.first().unwrap().number; let last = blocks.last().unwrap(); let last_block_number = last.number; let mut durations_recorder = metrics::DurationsRecorder::default(); // Insert the blocks for block in blocks { self.insert_block(block)?; durations_recorder.record_relative(metrics::Action::InsertBlock); } // Write state and changesets to the database. // Must be written after blocks because of the receipt lookup. // TODO: should _these_ be moved to storagewriter? seems like storagewriter should be // _above_ db provider let mut storage_writer = UnifiedStorageWriter::from_database(self); storage_writer.write_to_storage(execution_outcome, OriginalValuesKnown::No)?; durations_recorder.record_relative(metrics::Action::InsertState); // insert hashes and intermediate merkle nodes self.write_hashed_state(&hashed_state)?; self.write_trie_updates(&trie_updates)?; durations_recorder.record_relative(metrics::Action::InsertHashes); self.update_history_indices(first_number..=last_block_number)?; durations_recorder.record_relative(metrics::Action::InsertHistoryIndices); // Update pipeline progress self.update_pipeline_stages(last_block_number, false)?; durations_recorder.record_relative(metrics::Action::UpdatePipelineStages); debug!(target: "providers::db", range = ?first_number..=last_block_number, actions = ?durations_recorder.actions, "Appended blocks"); Ok(()) } } impl PruneCheckpointReader for DatabaseProvider { fn get_prune_checkpoint( &self, segment: PruneSegment, ) -> ProviderResult> { Ok(self.tx.get::(segment)?) } fn get_prune_checkpoints(&self) -> ProviderResult> { Ok(self .tx .cursor_read::()? .walk(None)? .collect::>()?) } } impl PruneCheckpointWriter for DatabaseProvider { fn save_prune_checkpoint( &self, segment: PruneSegment, checkpoint: PruneCheckpoint, ) -> ProviderResult<()> { Ok(self.tx.put::(segment, checkpoint)?) } } impl StatsReader for DatabaseProvider { fn count_entries(&self) -> ProviderResult { let db_entries = self.tx.entries::()?; let static_file_entries = match self.static_file_provider.count_entries::() { Ok(entries) => entries, Err(ProviderError::UnsupportedProvider) => 0, Err(err) => return Err(err), }; Ok(db_entries + static_file_entries) } } impl FinalizedBlockReader for DatabaseProvider { fn last_finalized_block_number(&self) -> ProviderResult> { let mut finalized_blocks = self .tx .cursor_read::()? .walk(Some(tables::ChainStateKey::LastFinalizedBlock))? .take(1) .collect::, _>>()?; let last_finalized_block_number = finalized_blocks.pop_first().map(|pair| pair.1); Ok(last_finalized_block_number) } } impl FinalizedBlockWriter for DatabaseProvider { fn save_finalized_block_number(&self, block_number: BlockNumber) -> ProviderResult<()> { Ok(self .tx .put::(tables::ChainStateKey::LastFinalizedBlock, block_number)?) } } /// Helper method to recover senders for any blocks in the db which do not have senders. This /// compares the length of the input senders [`Vec`], with the length of given transactions [`Vec`], /// and will add to the input senders vec if there are more transactions. /// /// NOTE: This will modify the input senders list, which is why a mutable reference is required. fn recover_block_senders( senders: &mut Vec<(u64, Address)>, transactions: &[(u64, TransactionSigned)], first_transaction: u64, last_transaction: u64, ) -> ProviderResult<()> { // Recover senders manually if not found in db // NOTE: Transactions are always guaranteed to be in the database whereas // senders might be pruned. if senders.len() != transactions.len() { if senders.len() > transactions.len() { error!(target: "providers::db", senders=%senders.len(), transactions=%transactions.len(), first_tx=%first_transaction, last_tx=%last_transaction, "unexpected senders and transactions mismatch"); } let missing = transactions.len().saturating_sub(senders.len()); senders.reserve(missing); // Find all missing senders, their corresponding tx numbers and indexes to the original // `senders` vector at which the recovered senders will be inserted. let mut missing_senders = Vec::with_capacity(missing); { let mut senders = senders.iter().peekable(); // `transactions` contain all entries. `senders` contain _some_ of the senders for // these transactions. Both are sorted and indexed by `TxNumber`. // // The general idea is to iterate on both `transactions` and `senders`, and advance // the `senders` iteration only if it matches the current `transactions` entry's // `TxNumber`. Otherwise, add the transaction to the list of missing senders. for (i, (tx_number, transaction)) in transactions.iter().enumerate() { if let Some((sender_tx_number, _)) = senders.peek() { if sender_tx_number == tx_number { // If current sender's `TxNumber` matches current transaction's // `TxNumber`, advance the senders iterator. senders.next(); } else { // If current sender's `TxNumber` doesn't match current transaction's // `TxNumber`, add it to missing senders. missing_senders.push((i, tx_number, transaction)); } } else { // If there's no more senders left, but we're still iterating over // transactions, add them to missing senders missing_senders.push((i, tx_number, transaction)); } } } // Recover senders let recovered_senders = TransactionSigned::recover_signers( missing_senders.iter().map(|(_, _, tx)| *tx).collect::>(), missing_senders.len(), ) .ok_or(ProviderError::SenderRecoveryError)?; // Insert recovered senders along with tx numbers at the corresponding indexes to the // original `senders` vector for ((i, tx_number, _), sender) in missing_senders.into_iter().zip(recovered_senders) { // Insert will put recovered senders at necessary positions and shift the rest senders.insert(i, (*tx_number, sender)); } // Debug assertions which are triggered during the test to ensure that all senders are // present and sorted debug_assert_eq!(senders.len(), transactions.len(), "missing one or more senders"); debug_assert!(senders.iter().tuple_windows().all(|(a, b)| a.0 < b.0), "senders not sorted"); } Ok(()) } fn range_size_hint(range: &impl RangeBounds) -> Option { let start = match range.start_bound().cloned() { Bound::Included(start) => start, Bound::Excluded(start) => start.checked_add(1)?, Bound::Unbounded => 0, }; let end = match range.end_bound().cloned() { Bound::Included(end) => end.saturating_add(1), Bound::Excluded(end) => end, Bound::Unbounded => return None, }; end.checked_sub(start).map(|x| x as _) }