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Abstract

The study of neural responses to musical stimuli offers valuable insights into how the brain
encodes complex auditory information. This paper compares spectral amplitude modulations from
various EEG electrodes, time-locked to attended music, to explore potential correlations. Instead
of using traditional 2D TF plots, we utilized a 3D time-frequency-amplitude (TFA) fabric over a
500 ms window, synchronized with the audio of the song. This approach was applied to five songs,
examining the TFA fabric across different electrodes. The TFA fabric refers to the continuous
manifold created by the frequency-amplitude (FA) curve over time. This manifold, or fabric, is
characterized by its inherent smoothness and contiguity across frequency, time, amplitude, and
brain location (an inherent result of using complex Morlet wavelet convolution with fine temporal
and frequency resolution).

Both excitation and inhibition contribute to pulling the FA curve away from an approximately
1/f baseline, effectively causing perturbations that determine its complex modulation. In partic-
ular, bursts (and sometimes dips) in beta/gamma power (amplitude here) often seem to correlate
with transients in music, especially at electrode Fz. Also, by visual inspection only, songs with
greater rhythmic emphasis appeared to show stronger driving of Fz activity (the song “Smoke” by
PVRIS showed greatest correlation).

1 Introduction

Understanding how the brain processes and encodes time-critical stimuli, such as music, is crucial
for unraveling the temporal aspect of the binding problem. Music, with its multistream transients
structure, provides a unique opportunity to explore metastable locking to mostly one transient stream
after another (shifting locking from vocal transients to drum transients to piano transients). A slight
variation of amplitude- or power-modulation of a band is the well-documented and nearly ubiquitous
frequency-modulation response shown by many neurons to stimuli: greater tactile stimulation results
in increased firing rate of afferent neurons, and strong muscle activation is driven by increased firing
rate of efferent neurons[1]. Even the pedunculopontine nucleus (PPN) shows bursting for flexion of the
foot[2]. In a more complex adaptation of frequency modulation, work by Mark Churchland et al. [3] has
shown that populations of motor cortex neurons in monkeys can pass around the maximum frequency
like a batton, to keep track of the phase of muscle sequences. Notwithstanding these contributions,
the use of a time-frequency-amplitude (TFA) fabric of the local field potential (LFP, as recorded by
EEG electrodes) to look for the switching of attention remains largely unexplored.

In this study, we focus on potential correlations between audio features and features of the TFA
fabric recorded from various cortical locations via EEG (see Figure 1 for an overview of the TFA fabric
terminology). We also noted ‘pit points’-recurring places in the fabric where a particular frequency
dipped to near-zero amplitude for roughly 1 ms (0.1 Hz x 1 ms ‘point’). These pit points were also
seen to occur in analysis of the downsampled audio signal itself, although in a more frequent, aligned,
and apparently rythmic or consistent manner (see Figure 2 to see the pit points in both audio and
brain signals). The pit points are another result of using complex Morlet wavelet convolution, in that
if one envisions phase as a complex plane (x and y), amplitude ( power) as radius in that plane, and
frequency as the z axis; then as you progress through time, the helix representing phase-frequency-
amplitude will sometimes cross the z axis, usually for an infinitesimal time and infinitesimal frequency.
Such helices are depicted in Figure 12. Although many brain regions were explored, Fz stood out
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as apparently most correlated with events in the music, and Fp1/Fp2 stood out as apparently most
correlated with events in conscious agency/speaking. Further, Fp1/Fp2 showed a remarkable degree
of waveform synchrony much of the time.

Figure 1: TFA fabric terminology.

Figure 2: Comparing audio (left) and brain signals at Fp1 (right), at the same time window in the song
“Reeling in the Years” by Steely Dan. Audio was first downsampled from 48 kHz to 2 kHz, whereas
brain signal from electrode Fp1 was upsampled from 125 Hz to 1 kHz.
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We analyzed EEG data collected from a participant while they listened to five distinct musical
pieces spanning different genres and tempos. The songs chosen for this study were:

• “Use Me” by PVRIS, electrode O1: S1 (all 16 electrodes simultaneously: S6).

• “Smoke” by PVRIS, electrode Fz: S2.

• “Reeling in the Years” by Steely Dan, electrode Fp1: S3. (S7 for audio to brain signal comparison
of TFA fabrics of entire song).

• “Crystal Ball” by Styx, electrode T5: S4.

• “Aja” by Steely Dan, electrode Fz: S5.

These songs were selected for their complex and varied auditory features, providing a rich dataset
for examining potential correlations between TFA fabric features and musical features for various brain
regions. The analysis focused on time-aligning audio and brain signals (as visualized as TFA fabric)
in video format whereby potential correlations could be seen. Occasionally, a brief lead or lag was
allowed (up to +/- 33 ms) if it appeared to align the features in the TFA fabric with the features in
the audio of the song. In general, frontal cortex (Fp1/2, F7/3/4/8) TFA fabric features appeared most
aligned with audio features if given a 0-33 ms lead relative to the audio (as though predictive), whereas
occipital cortex (O1/2) TFA fabric features appeared most aligned with audio features if given a 33
ms lag relative to the audio (still slightly predictive, but closer to the time that audio signals would
be expected to arrive to the cortex).

Itoh et. al. [4] said, “A major generator of the human P1, which peaks around 50 ms after sound
onset, is located in the primary auditory area[5]. Considering that single neurons in the human auditory
core fire as early as 10–20 ms in latency following auditory stimulus[6][7], the delayed latency of P1
at approximately 50 ms provides evidence of the first stages of neuronal processing in the neocortical
circuit.” Hillyard et. al. [8] also examine timing of auditory signals.

2 Methods

• Participant: Male, 41 years old, familiar with all the chosen songs.

• Materials: OpenBCI 16-channel EEG cap with sintered Ag/AgCl electrodes, Cyton + Daisy
Biosensing Board (125 Hz sampling rate) transmitting wirelessly to a MacBook Pro, Fender
Acoustasonic amp playing songs from iPhone YouTube Music app using aux input, Canon 5D
Mark IV DSLR camera to record and align timestamps on OpenBCI software running on Mac-
Book Pro during the session with the timing of the music.

• Procedure: The EEG cap was fitted, and the electrodes were filled with conductive gel.
Impedances were reduced to ≤ 5-10 kΩ. During the recording, the participant remained as
still as possible, with eyes mostly closed, and focused on the music. After the session, times-
tamps marking the onset of silence and the start of the audio for each song were recorded as
precisely as possible for subsequent use in Matlab time-frequency fabric videos. The clean au-
dio was then synchronized with the Matlab-generated time-frequency fabric videos using Adobe
Premiere Pro, with an expected alignment precision of ±10 ms relative to the voltage level time
points. For the video of electrode O1, the audio was deliberately offset by 33 ms (equivalent to
2 frames in a 60 Hz video) to better highlight the correlation between the SDC modulations and
the musical rhythms and vocals. The test was performed on 9/17/24.

• Data Analysis: OpenBCI voltage values from each electrode were timestamped and were ex-
pected to be spaced evenly at 8 ms intervals (125 Hz). However, it was observed that while the
samples averaged 8 ms apart, they varied from 5 ms to 11 ms. To address this, timestamps were
used to plot points accurately in time, a spline was fitted, and voltage levels were interpolated
at precise intervals. The data points were then upsampled to 1000 Hz, meaning interpolation
values were read 1 ms apart. Once the interpolated voltages were obtained in Matlab, 371 com-
plex Morlet wavelets, spaced from 3 Hz to 40 Hz in 0.1 Hz steps, were used to convolve the EEG
data, yielding highly precise frequency information as an array of complex numbers at each 1
ms time point. According to Cohen [9], the convolution of EEG data with Morlet wavelets is a
powerful method for analyzing time-frequency characteristics.
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Mathematical Formulation of Complex Morlet Wavelets

1. Sine Wave Component

The sine wave component of the Morlet wavelet is expressed as:

ψsine(t, f) = ei·2πft (1)

where ψsine(t, f) is the sine wave at time t and frequency f .

2. Gaussian Window

The Gaussian window that modulates the sine wave is given by:

G(t, f) = e−
t2

2s2 (2)

where s is the standard deviation of the Gaussian, related to the frequency by s = 5
2πf .

3. Complex Morlet Wavelet

The final Complex Morlet Wavelet is the product of the sine wave and the Gaussian window:

ψCMW(t, f) = ψsine(t, f) ·G(t, f) = ei·2πft · e−
t2

2s2 (3)

where ψCMW(t, f) is the Complex Morlet Wavelet at time t and frequency f .

Convolution Process

1. Fourier Transform of EEG Data

The EEG data x(t) is transformed into the frequency domain using the Fast Fourier Transform
(FFT):

X(f) = FFT{x(t)} (4)

where X(f) is the Fourier-transformed EEG data.

2. Fourier Transform of Morlet Wavelets

For each frequency fi, the Morlet wavelet ψCMW(t, fi) is transformed into the frequency domain:

Ψ(fi) =
FFT{ψCMW(t, fi)}

max(|FFT{ψCMW(t, fi)}|)
(5)

where Ψ(fi) is the normalized Fourier-transformed Morlet wavelet for frequency fi.

3. Convolution in the Frequency Domain

The convolution of the EEG data with the Morlet wavelet is performed in the frequency domain
by multiplying the transformed EEG data with the transformed wavelet:

Y (fi) = X(f) ·Ψ(fi) (6)

where Y (fi) is the result of the convolution in the frequency domain for frequency fi.
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4. Inverse Fourier Transform to Time Domain

The result of the convolution is transformed back to the time domain using the Inverse Fast
Fourier Transform (IFFT):

y(t, fi) = IFFT{Y (fi)} (7)

where y(t, fi) is the convolved EEG signal at time t for frequency fi.

5. Truncation of Edge Artifacts

Finally, the resulting time-domain signal is truncated to remove edge artifacts introduced by the
convolution process:

ytruncated(t, fi) = y(t, fi)[k + 1 : (n− k)] (8)

where k represents the half-length of the kernel (Morlet wavelet), and n is the total length of the
signal.

Frequency-Amplitude (FA) Curve

Finally, the frequency-amplitude (FA) curve is calculated as:

A(f) =
√
real(f)2 + imag(f)2 (9)

where A(f) is the amplitude of the FA curve at frequency f .

3 Results

3.1 Are These FA Curve Modulations Merely Artifacts?

While interpreting the significance of FA curve modulations, it is crucial to consider the possibility of
artifacts. However, several factors suggest that the observed modulations are not artifacts. First, the
features of the TFA fabric for O1/2 appear to align best with features in the audio when lagged by 33
ms (invariant to frequency), which is not typical of common EEG artifacts, such as muscle movements
or electrical noise. Moreover, the participant remained still during the recordings, minimizing the
likelihood of muscle artifacts. Additionally, certain noises and signals were notably absent, possibly
when the participant was not attending to them. Features in a song (with which features in the TFA
fabric appear to align or possibly correlate) seem to include pitch shifts, such as the bending of a
guitar note upwards. Crests that align with and may correlate with drum hits occasionally show a
lag relative to other crests; such that not all crests could be amplitude artifacts from the audio itself.
Finally, by visual inspection, electrode Fz showed much greater correlation with musical events; an
artifact would seemingly not localize to one electrode only.

3.2 TFA Fabric Uncovers Hidden Details in Traditional TF Plots

Traditional time-frequency (TF) plots, while useful, often display ‘black holes,’ especially in the low-
frequency range, that correspond to the ‘pit points,’ albeit with much lower resolution and visibility.
Figure 3 demonstrates this phenomenon. TFA fabric visualization offers a valuable method for ex-
amining spectral data over time and may represent a somewhat novel approach in the field, although
Pielemeier et. al. [10] also considered a 3D plot of the volume under a time-frequency-amplitude sur-
face to be useful in musical signal analysis. The idea is, instead of using color/luminosity to represent
the strength or weakness of a frequency at any given time, the TFA fabric approach uses displacement
in 3D depth to make amplitude fluctuations more apparent.
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Figure 3: Traditional TF plot showing low-resolution ‘black holes’ (circled) corresponding to pit points.

3.3 Pit Point Spectral Density

Analysis across all electrodes revealed an average pit point density of 40 points per second (in the 3-40
Hz range), except for electrode Fz, which showed a significantly higher density of 80 points per second
(Fz was used to replace T6, which did not reach an acceptable impedance during initialization); this
is probably the result of the twice as frequent modulation of beta/gamma power relative to other
electrodes. The spectral distribution of these points is shown in Figures 4 and 5. These densities
are not perfectly reflective of conic shaped pit point densities, as lines of several local minima were
sometimes captured.

3.4 Spectral Downshifting

Humans hear in the 20–20,000 Hz range, but neurons typically fire between 2–200 Hz — a big mismatch.
This implies the brain downshifts incoming audio into slower modulations, perhaps even into ultra-
low frequency touchpoints ( 2-20 Hz) - which could explain why musical elements seem to map to
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Figure 4: 3D plot of pit point spectral density across electrodes, highlighting the increased density at
electrode Fz, over entire 3.5-minute song ‘Use Me’ by PVRIS.

Figure 5: 2D plot of pit point spectral density across electrodes, highlighting the increased density at
electrode Fz, over entire 3.5-minute song ‘Use Me’ by PVRIS.

beta/gamma power crests. The brain may mark key touchpoints in a song at ultra-low frequencies (2–20
Hz, possibly the beta/gamma power crests), then reconstruct the feel of complex pitch structures from
these slow anchoring signals - essentially reifying high-frequency content from a low-frequency scaffold.
The touchpoints then would sometimes have nothing to do with pitch, and everything to do with
beginnings/endings/changes/loud-transients in the auditory landscape. Notwithstanding, frequency
of crests could still be used as a nod to pitch at times.
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3.5 Correlation Between Spectral Fabric Morphology and Musical Ele-
ments

This section presents the main finding of our study: the morphology of the spectral fabric at Fz often
appears to correlate with elements within the music. Two follow-up studies showed similar effects
(again mostly restricted to Fz) in another subject (but using a higher gamma band for modulation:
40-60 Hz), and in the same subject listening to the song again (but with much less activity in the
second, later session).

Interestingly, for ‘Use Me,’ the effect might have been prominent over the occipital cortex electrodes
(O1/2), although strong correlations with the music were also observed at Fz, which might play a
somewhat predictive role (or examining the intersection of predition and incoming stimuli). For the
song ‘Use Me,’ Fz aligned best with the music when placed 0-33 ms ahead of it, whereas O1 aligned
best when placed 33 ms behind the music. In other songs, the timing of the chosen electrode (T5, Fz)
seemed to align fine with zero offset. In general, the beta/gamma crests, having some width, could be
placed at a slight lag and still show correlation; this might be more realistic with axonal delays.

Several electrodes, including Fp1/2, F3/7/8/4, C3/4, and P3/4, exhibited less sensitivity to the
musical stimuli. Interestingly, the spectral fabric at Fz exhibited approximately twice as many folds
compared to other electrodes, perhaps pointing to a heightened level of engagement with the musical
stimuli, as shown in Figure 6.

Electrodes Fp1 and Fp2 exhibited strong morphological coupling (of raw EEG waveforms, and
therefore also of TFA fabric, PFA helix, or whatever means of visualizing the data), with minimal
average lag. In the frontal cortex (F7, F3, F4, F8), a somewhat similar morphology (to Fp1/Fp2) is
often observed, though with a consistent phase lag relative to Fp1/Fp2 (approximately 4 ms across
all frequencies). This results in a spectrum of phase lags (less for lower frequencies like 2 Hz, more
for higher frequencies like 40 Hz). This suggests that the TFA fabric morphology at Fp1/2 is possibly
being ‘telegraphed’ to F7/3/4/8 with a slight delay, implying that Fp1/2 may act as the generators
(or at least upstream source) of this waveform. Interestingly, Fz, though fairly close to F7, F3, F4,
F8, does not exhibit this coupling with Fp1/Fp2.

Figures 7, 8, 9, 10, and 11 illustrate examples of a possible correlation between the crests of the
TFA fabric (/troughs) and transients in the music.

Figure 6: Ongoing FA Curve Modulation at 16 Electrodes While Participant Listened to ‘Use Me’ by
PVRIS
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(a) Flam, 11:42 in
S1.

(b) ‘Think’ cut
short, 12:19 in S1.

(c) Percussive plo-
sive, 12:31 in S1.

(d) Sigh sound,
15:33 in S1.

(e) Texture of vi-
olins/strings, 23:13
in S1.

(f) Melodic plucked
tones, 23:16 in S1.

Figure 7: ‘Use Me’ by PVRIS (electrode O1, lagged an estimated 33 ms [+/- 10 ms] relative to audio)-
Instances where features of music might correlate with FA curve modulation: (a) Flam; (b) ‘Think’
cut short; (c) Percussive plosive (letter ‘b’); (d) Sigh exhalation; (e) Texture of violins/strings; (f)
Melodic plucked tones.

4 Discussion

4.1 Excitation/Inhibition Balance

A study by Eisen et al. [11] explores how propofol anesthesia disrupts the brain’s dynamic stability, a
balance between excitability and controllability that is critical for consciousness. Using a novel method
called Delayed Linear Analysis for Stability Estimation (DeLASE), the researchers quantified changes
in dynamic stability within macaque cortex local field potentials (LFPs). Their findings revealed that
neural dynamics become more unstable during unconsciousness, with cortical trajectories reflecting
patterns consistent with destabilized systems. By increasing inhibitory tone in simulated neural net-
works, they observed similar destabilization, suggesting that anesthesia-induced unconsciousness is
linked to disrupted stability mechanisms within the brain. This supports the idea that generating
coherent beta/gamma bursts may rely on a delicate balance of excitation and well-timed inhibitory
’punch-back’ — a coordination that collapses under anesthesia-induced instability. In fact, the in-
hibitory lulls in beta/gamma sometimes appear to align with musical transient themselves.

4.2 Morphology Coupling and Lag

As mentioned, Fp1 and Fp2 exhibit a high degree of coupling in the morphology of the fabric, with
little to no average lag. There is less coupling or telegraphing of morphology to F7/3/4/8, which shows
a 4 ms lag. Coupling with posterior cortical sites occurs even less stable, less precise, and more latency,
possibly ranging from 33 to 66 ms to reach O1/O2.

Again, Fp1 and Fp2 showed strong visual coupling of phase-frequency-amplitude helical ramp
fabric, both in terms of morphology and phase of fabric; Fp1 and Fz showed little visual coupling (see
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(a) Cymbals linger, 3:17 in S2. (b) Loud guitar enters, 3:18 in S2. (c) Echo of ‘now,’ 4:17 in S2.

(d) Snare hit, 4:39 in S2. (e) ‘Can’t,’ 4:53 in S2. (f) ‘Killin,’ 23:16 in S2.

Figure 8: ‘Smoke’ by PVRIS (electrode Fz, no lag)-Instances where features of music might correlate
with FA curve modulation: (a) Cymbals linger; (b) Loud guitar enters; (c) Echo of the word ‘now,’
while not loud, is useful to humans, and possibly correlates with a crest in TFA fabric; (d) Snare hit
possibly correlates with the inversion of the FA curve waveform; (e) The word ‘can’t,’ while not loud,
is useful to humans, and possibly correlates with a crest in TFA fabric; (f) The word ‘killin,’ while not
loud, is useful to humans, and possibly correlates with a crest in TFA fabric. Note also that electrode
Fz here modulates the amplitude of 20-40 Hz at a much faster rate than other electrodes.

(a) Vibrato guitar, 4:42 in S3 (b) Flat guitar, 8:29 in S3. (c) Grungy guitar, 9:58 in S3.

Figure 9: ‘Reeling in the Years’ by Steely Dan (electrode Fp1, no lag)-Instances where features of
music might correlate with FA curve modulation: (a) Vibrato of guitar; (b) Flat distorted guitar
timbre seems encoded by flatness in SDC; (c) Guitar gets briefly grungy.

Figure 12). Supplemental video S8 shows phase-frequency diagrams for a short portion of music for
Fp1 (red) vs Fp2 (blue); and Supplemental video S9 shows downsampled phase-frequency diagrams
for an entire song for Fp1 (red) vs Fz (blue in this video). Supplemental video S10 shows an entire
song with second-order TFA fabric (amplitudes were summed and normalized across all frequencies, at
each time point, and a second operation of complex Morlet wavelets were run to see the TFA fabric).
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(a) Steady tone, 4:40 in S4 (b) Distorted guitar, 12:35 in S4. (c) Note bend, 12:48 in S4.

Figure 10: ‘Crystal Ball’ by Styx (electrode T5, no lag)-Instances where features of music might
correlate with FA curve modulation: (a) Steady/repeated tone; (b) Distored guitar; (c) Note bend in
guitar solo.

(a) ‘Don’t,’ 8:42 in S5. (b) ‘Care,’ 8:44 in S5. (c) Descending keys, 8:47 in S5.

(d) Bass and cymbal, 8:50 in S5. (e) ‘Aja,’ 9:43 in S5. (f) Loud cymbal, 22:05 in S5.

Figure 11: ‘Aja’ by Steely Dan (electrode Fz, no lag)-Instances where features of music might correlate
with FA curve modulation: (a) Vocal ‘don’t;’ (b) Vocal ‘care;’ (c) Descending notes on keyboard; (d)
Bass note goes up and down in addition to a cymbal hit; (e) Vocal ‘Aja;’ (f) Loud cymbal. Note also
that electrode Fz here modulates the amplitude of 20-40 Hz at a much faster rate than other electrodes,
making the fabric appear thinner; as at each millisecond, the new line covers a greater distance on
average.

4.3 High Vs Low Frequency Modulation of the FA Curve

Fz was found to modulate the FA curve at roughly twice (or higher) the rate of other electrodes.
Further investigation is needed to confirm that this finding is fairly consistent across subjects and
trials. If this region of the cortex does indeed behave differently from the rest, it warrants further
study. As observed, other brain regions appear to be limited in their ability to modulate the SDC,
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Figure 12: Phase-Frequency-Amplitude helical ramp fabrics for Fp1(red)/Fp2(blue) and
Fp1(red)/Fz(green), at the same time point (2.5 seconds in) of the song “Reeling in the Years” by
Steely Dan. Note the strong coupling (left) vs. weak coupling (right).

operating at a relatively low rate (sometimes as low as 10 Hz power crests) in the seemingly critical
20-40+ Hz range of the curve.

5 Further Study

5.1 Examining at Micro/Meso Scale, Across Subjects/Trials

To further investigate this phenomenon, intracranial LFP and single-unit activity recordings are pro-
posed, time-aligned to musical stimuli, to enable examination across a wider range of brain regions.
Perception appears to fluctuate between attending to one voice/stream or another—not just within
the auditory stream, but across all modalities, including thought, emotion, visual changes, somatic
input, and motor output (e.g., saccades, head turns, muscle initiations). Metastable time-locking to
salient transients of a single stream may reveal a form of neural multiplexing: time-division access to
a single voice at a time, akin to vintage keyboards that only voiced the first note(s) struck in a chord.
Switching between attended voices may thus manifest in the brain as a shift in which voice’s transients
exhibit precise time-locking.

5.2 Conclusion

The possible correlation of features in the modulation of the FA curve with features in audio has been
explored and documented. Further study with statistical methods is encouraged.

Author declares no competing interest.
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