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Abstract
This essay redefines semiotics through a “sensory input” framework, leveraging artificial intelligence 
(AI) to analyze individual and collective reactions to signs, transforming semiotics into a practical, 
data-driven discipline. By reframing signs as quantifiable perceptual entities—spanning human senses, 
animal behaviors, and technological inputs—this approach enhances the sender-message-receiver 
model with systems, chaos, and complexity theory, enabling applications in marketing, healthcare, 
education, construction, environmental monitoring, urban planning, virtual environments, and 
microbial research. The semiotic process, the interaction between sensory inputs and reactions, drives 
semiotic ergonomics, optimizing intuitive designs for products, services, and machines to enhance user 
satisfaction and efficiency. AI’s rapid analysis, visualized in Figures 1–3, reveals collective patterns, 
with Figure 3 showing how semiotic dimensions (encoding aim/intention, communication/anticipation, 
context creation), embedding the Price, Convenience, and Connection (PCC) framework, shape 
reactions ethically. Addressing ethical concerns like privacy and manipulation, market-driven 
transparency fosters win-win outcomes, outperforming bureaucratic regulations. Future research should
explore AI’s integration with complexity theory for cross-cultural and microbial advancements, 
positioning semiotics as an interdisciplinary field.

Keywords: Applied Semiotics, Sensory Input, AI-Driven Predictions, Semiotic Ergonomics, Semiotic 
Process, Semiotic Dimensions, PCC Framework, Complexity Theory, Systems Theory, Chaos Theory, 
Sender-Message-Receiver Model, Cross-Cultural Applications, Market-Driven Ethics 

1. Introduction
Semiotics, the study of signs and their interpretation, traces its roots to ancient Greece, yet its practical 
impact has often been limited by an emphasis on theoretical abstraction (Chandler, 2015). This essay 
argues that artificial intelligence (AI) revolutionizes semiotics by leveraging its unprecedented capacity
to analyze vast, dynamic datasets of individual and collective reactions in real time, enabling 
transformative applications across diverse domains, from marketing to microbial research. Central to 
this argument is a redefinition of signs as sensory inputs, a paradigm shift in semiotic scholarship that 
prioritizes practical applicability. Unlike Sebeok’s broad “stimuli,” which excels in non-human 
biosemiotics (e.g., bacterial quorum sensing or animal communication), “sensory input” emphasizes 
quantifiable perceptual responses, making it uniquely suited for human and animal semiotics on Earth 
(Sebeok, 2001; Deacon, 1997). In contrast to Eco’s sign-function, which focuses on cultural codes, 
“sensory input” targets perception, enabling AI-driven analysis across human senses—sight (e.g., a 
vibrant billboard), sound (e.g., a catchy melody), touch (e.g., a soft fabric), taste (e.g., a savory dish), 
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and smell (e.g., the scent of rain)—animal senses (e.g., bats’ echolocation, dogs’ pheromone detection),
and technological inputs like Geiger counters for radiation or ultrasound imaging (Eco, 1976; Kayser, 
2025a).

The semiotic process, defined as the interaction between sensory inputs and the reactions they elicit, 
optimizes not only traditional communication (e.g., advertisements) but also products, services, 
machines, and environments through semiotic ergonomics—an intuitive design approach that 
enhances how, how much, how long, how often, and with how much satisfaction humans interact 
with them (Norman, 2013). For example, in marketing, sensory inputs like verbal tactics (e.g., “limited 
time offer”), soothing background music, or aromatized air function as signs but can introduce 
polysemy, where multiple interpretations complicate perception (Lindstrom, 2005; Barthes, 1977). A 
store’s bright lighting may enhance focus for one shopper (positive reaction) but induce discomfort for 
another (negative reaction), shaped by individual cognitive biases or cultural contexts, such as 
preferences for bright vs. subdued lighting in different regions (Kahneman, 2011; Hall, 1976; Lotman, 
1990). The “sensory input” definition clarifies the critical link between signs and perception, as signs 
must be processed—consciously (e.g., responding to a jingle’s call to action) or subconsciously (e.g., 
mood shaped by ambient scents)—to elicit reactions. Beyond communication, semiotic ergonomics 
transforms product design, as seen in Apple’s intuitive iPhone interfaces or Tesla’s streamlined car 
controls, which contrast with complex premium car systems (e.g., BMW 7 Series, Mercedes S-Class) 
that require training due to poor intuitive design (Norman, 2013).

This approach extends to diverse fields, demonstrating semiotics’ interdisciplinary potential. In 
education, gamified sensory inputs, such as interactive learning apps with vibrant visuals, motivate 
efficient studying, countering smartphone overuse by channeling engagement into productive behaviors
(Selwyn, 2022; Csikszentmihalyi, 1990). In construction, intuitive controls for heavy machinery like 
excavators or cranes enhance operator alertness, reducing accidents and fatigue while fostering flow 
during long shifts (Norman, 2013; Csikszentmihalyi, 1990). In healthcare, calming sensory inputs, such
as soft lighting or gentle sounds, reduce patient stress, improving recovery outcomes (Topol, 2019). In 
environmental monitoring, AI analyzes wildlife reactions to sensory inputs (e.g., noise pollution) to 
inform conservation strategies (Kull, 2000; Karban, 2015). In urban planning, city aesthetics, such as 
green spaces or harmonious architecture, improve livability by eliciting positive resident reactions, 
varying by cultural context (e.g., preference for minimalist vs. ornate designs) (Batty, 2018; Hall, 
1976). In virtual environments, immersive graphics drive engagement in metaverse platforms, with AI 
optimizing sensory inputs for user satisfaction (Kayser, 2025a). In microbial semiotics, bacterial 
responses to chemical signals (e.g., quorum sensing) aid medical research into antibiotic resistance 
(Wheeler, 2006; Hoffmeyer, 2008). In retail, intuitive store layouts guide customer navigation, 
enhancing purchasing experiences (Batty, 2018).

Manipulating sensory inputs raises ethical concerns, such as privacy invasion or overuse (e.g., 
smartphone addiction). The Price, Convenience, and Connection (PCC) framework, embedded 
within the semiotic dimensions (e.g., encoding profit-driven intentions, establishing persuasive 
communication, creating hard to resist contexts), addresses these through market-driven transparency, 
fostering win-win scenarios that enhance profitability, user satisfaction, and societal well-being 
(Kayser, 2025b; Zuboff, 2019). Unlike bureaucratic regulations, which often stifle innovation, create 
inefficiencies and facilitate corruption, market solutions incentivize transparency and align offerings 
with human needs, reducing unethical practices like deceptive advertising or exploitative pricing 
through competitive pressures and consumer feedback (Pine & Gilmore, 1999; Kotler & Keller, 2016). 
However, regulated market approaches increase the risk of profit-driven biases, requiring careful 

2



design to ensure ethical outcomes, such as transparent data use in AI-driven personalization (Zuboff, 
2019).

Table 1 compares traditional sign theories with “sensory input,” highlighting its novelty and practical 
applicability:

Theory/
Definition

Key Concept Fortes Applicability 
Areas

Limitations 
Compared to 
“Sensory Input”

Novelty

Peirce’s Triad
(1931)

Representamen, 
interpretant, 
object.

Comprehensive
, flexible for 
icons, indices, 
symbols.

Philosophy, 
linguistics, 
cultural 
studies.

Abstract, less 
quantifiable for 
AI (Kayser, 
2025a).

Foundational 
but theoretical.

Saussure’s 
Dyad (1916)

Signifier and 
signified.

Foundational 
for 
structuralism.

Linguistics, 
literary 
analysis.

Limited to 
symbolic signs 
(Eco, 1976).

Language-
centric, less 
practical.

Eco’s Sign-
Function 
(1976)

Cultural codes. Inclusive of 
social contexts,
polysemy.

Cultural 
studies, media 
analysis.

Less perception-
focused (Nöth, 
1990).

Broad but not 
quantifiable.

Sebeok’s 
Stimuli 
(2001)

Stimuli in 
biosemiotics.

Universal, 
covers non-
human 
semiotics.

Zoosemiotics, 
biosemiotics.

Broad term 
confuses in 
human contexts 
(Kayser, 2025a).

Universal but 
less precise.

Sensory Input
(Kayser, 
2025a)

Perceived 
sensory inputs.

Perception-
centric, 
quantifiable, 
AI-integrated; 
enables 
semiotic 
ergonomics.

Marketing, 
healthcare, 
education, 
construction, 
environmental 
monitoring, 
microbial 
research, urban
planning, 
virtual 
environments.

Less applicable to
non-perceptual 
biosemiotics.

Novel for 
applied, AI-
driven 
semiotics.

Building on foundational theories (Peirce, 1931; Saussure, 1916; Eco, 1976; Sebeok, 2001; Shannon & 
Weaver, 1949), the “sensory input” definition reframes signs as quantifiable perceptual entities, 
complementing existing scholarship. The semiotic process, driven by systems, chaos, and complexity 
theory (Lorenz, 1963; Gleick, 1987; Strogatz, 2018; Luhmann, 1995; Bateson, 1972), quantifies 
reactions to reveal collective patterns, with AI enabling rapid analysis for precise predictions, as 
visualized in Figures 1, 2, and 3 (Goodfellow et al., 2016). The PCC framework, embedded within 
semiotic dimensions as a particular successful strategy for creating signs, guides ethical, market-driven 
applications, fostering intuitive designs and societal benefits through transparency (Kayser, 2025b; Pine
& Gilmore, 1999).
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2. The Individual Semiotic Process
A sign is any sensory input perceived through human senses—sight (e.g., a glowing traffic light), sound
(e.g., a piercing siren), touch (e.g., a cold metal surface), taste (e.g., bitter medicine), smell (e.g., fresh-
brewed coffee)—animal senses (e.g., dogs’ pheromone detection, bats’ echolocation), or technological 
aids like ultrasound imaging or infrared sensors (Kayser, 2025a). Unlike symbolic sign theories 
prioritizing linguistic or cultural symbols (Eco, 1976; Saussure, 1916), this approach posits that signs 
exist inherently, whether consciously noticed or not, and can be—and already are—utilized by 
technological entities like AI for optimization. For instance, a faint background hum in a room may 
subconsciously influence mood, functioning as a sign without explicit awareness, shaped by cognitive 
biases or cultural conditioning (Cobley & Semetsky, 2017; Kahneman, 2011; Lotman, 1990). This 
universality expands semiotics to encompass human communication, animal behaviors, and 
technological systems, addressing limitations in frameworks like Peirce’s triad, which focuses on 
interpretive relationships rather than quantifiable perception (Peirce, 1931; Sebeok, 2001; Deacon, 
1997).

The semiotic process, the interaction between a sensory input and the reaction to it, centers on the 
message/receiver dynamic, distinct yet related (Figure 3) to semiotic dimensions (sender/message 
functions, e.g., encoding aim/intention, communication/anticipation, context creation), which 
incorporate methodologies like PCC for reaching receivers (Kayser, 2025b; Jakobson, 1960). For 
example, a supermarket’s promotional signage (sender/message) or a politician’s candidacy 
announcement involves semiotic dimensions, while the receiver’s reaction (e.g., purchase intent) 
defines the semiotic process. Figure 3 illustrates this interplay, showing how semiotic dimensions 
enhance the sender-message-receiver model for practical applications through chaotic interactions 
(Jakobson, 1960; Strogatz, 2018). Reactions are highly individualized, as unique as fingerprints or 
DNA, shaped by instinct, emotion, rationality, biological factors (e.g., genetics, microbiomes), and 
cultural influences (e.g., regional norms, social values) (Nöth, 1990; Hoffmeyer, 2008; Hall, 1976). For
instance, a thunderstorm’s sound may prompt fear (negative reaction) in one individual or curiosity 
(positive reaction) in another, influenced by personal histories or cultural associations (e.g., storms 
symbolizing renewal in some cultures, danger in others) (Lotman, 1990).

Quantified as A-values on a Likert scale (-5 for strongly negative to +5 for strongly positive), 
individual reactions exhibit wide ranges (e.g., 2.5–3.2 for liking a song), driven by chaotic variability 
described in complexity theory (Lorenz, 1963; Strogatz, 2018; Bateson, 1972). Aggregating reactions 
across groups narrows these ranges, enabling predictability—a task AI performs rapidly, processing 
millions of data points in seconds using neural networks or clustering algorithms (Goodfellow et al., 
2016; Russell & Norvig, 2021). For example, analyzing a song’s sensory inputs (e.g., melody, rhythm) 
across 4 groups, measuring factors A (melody), B (rhythm), C (mood enhancement), and D (sing-along 
appeal), yields a summed average of A–D factors ranging from -3 to +5, with 60% of values between 2 
and 5, justifying percentages for small-sample trend analysis. Percentages highlight early patterns, such
as positive reception trends. After evaluating 389 groups, 90% of data falls within 3.9–4.2, reducing 
outlier impact (e.g., extreme negative reactions). After analyzing 859 groups, the range narrows to 
~3.9–4.1, converging to an average of 4, demonstrating AI’s efficiency in processing large datasets for 
near-certain predictions in seconds (Goodfellow et al., 2016). Starting with 4 groups for initial trends, 
scaling to 389 for broader patterns, and reaching 859 for high confidence, AI showcases rapid range 
narrowing.

For vast datasets, ranges become so narrowed that human users can focus on averages, as shown in 
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Figure 1: 24 A-values sum to 5, divided by 24, yielding an average of 0.2. In Figure 2, Group 1’s 
average of A–G factors is 0.6 (e.g., A=0.2, B=0.4, etc., summed to ~4.2, rounded, averaged over 7 
factors). The grand total (583 ÷ 729 ≈ 0.799, rounded to 0.8) reflects 729 groups’ averages, with all 
numbers rounded for simplification. This demonstrates how increased data narrows ranges, enabling 
entrepreneurial decisions, such as selecting a song for an advertisement or movie soundtrack to 
maximize audience appeal. AI personalizes experiences by substituting songs for outliers (e.g., negative
reactions) with alternatives, enhancing satisfaction (Russell & Norvig, 2021). This multi-factor 
approach, rooted in complexity theory’s emergent order, supports semiotic ergonomics, optimizing 
interactions with products, services, and machines (Strogatz, 2018; Norman, 2013). For example, song 
analysis optimizes music streaming interfaces (e.g., intuitive playlist navigation), enhancing user 
engagement and flow (Csikszentmihalyi, 1990). AI analyzes factors across cultures (e.g., rhythm 
preferences vary by region), optimizing global music platforms (Hall, 1976). Such predictions align 
songs with listener preferences, reducing manipulative marketing through transparency, fostering 
ethical outcomes (Zuboff, 2019). This approach applies to countless industries and areas, such as 
education (e.g., gamified visuals), healthcare (e.g., calming sounds), and retail (e.g., intuitive store 
layouts) (Selwyn, 2022; Topol, 2019; Batty, 2018).

Semiotic ergonomics enhances interactions across industries. In education, gamified sensory inputs in 
learning apps motivate efficient studying, countering smartphone overuse (Selwyn, 2022). In 
construction, intuitive excavator controls enhance operator alertness, reducing accidents (Norman, 
2013). In premium cars, Tesla’s intuitive interfaces outperform complex systems like BMW’s 7 Series, 
which require training (Kayser, 2025a). In augmented reality, seamless interfaces optimize user 
interaction, fostering immersion (Kayser, 2025a). AI calculates efficient semiotic designs, enhancing 
satisfaction and motivating positive behaviors, such as diligent studying or safe machine operation 
(Russell & Norvig, 2021). These reactions are shaped by semiotic dimensions, incorporating PCC 
methodologies (e.g., cost-driven intentions, accessible platforms, socially resonant contexts), 
advocating market-based solutions to ethical concerns like manipulation or privacy invasion (Kayser, 
2025b; Pine & Gilmore, 1999). This study counters critiques of profitability as greed-driven by 
showing that AI-driven semiotic ergonomics reduces entrepreneurial risk. For example, intuitive 
excavator controls lower production costs by minimizing design flaws, creating better products and 
ethical outcomes (Zuboff, 2019; Kotler & Keller, 2016).
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3. Collective Patterns in Semiotics
Individual reactions, exhibiting wide ranges (-5 to +5), interconnect to form collective patterns, termed 
a reactional total, visualized in Figure 1 (Kayser, 2025a). Driven by systems, chaos, and complexity 
theory, these patterns emerge from dynamic interactions where small variations—akin to the butterfly 
effect—yield unpredictable trends (Lorenz, 1963; Gleick, 1987; Strogatz, 2018; Luhmann, 1995; 
Bateson, 1972). For example, reactions to a viral advertisement (e.g., sharing or ignoring) aggregate 
into trends like increased brand engagement, reflecting self-organizing systems (Luhmann, 1995). 
These patterns are shaped by cognitive biases, cultural contexts, and social dynamics, making them 
chaotic yet emergent (Kahneman, 2011; Hall, 1976; Lotman, 1990). Figure 3 visualizes how semiotic 
dimensions (encoding aim/intention, communication/anticipation, context creation) shape these 
patterns, extending the sender-message-receiver model with complexity theory for practical 
applications like optimizing marketing campaigns or urban designs (Jakobson, 1960; Kayser, 2025a).

Figure 1: Individual vs. Collective Semiotic Process

Description: On the left, a simplified model illustrates the semiotic process, where a red circle (Sign: A 
sensory input in constant flux) interacts with a blue circle (Reaction: In constant flux), visualized as 
overlapping circles in a Venn diagram style. Both circles are surrounded by transparent extensions, 
like concentric halos, representing situational influences (e.g., culture, environment, cognitive biases). 
Three black double-sided arrows indicate flux in all directions: one over the red sign circle and its 
extension, one over the blue reaction circle and its extension, and one on top of the overlap of the 
circles and their extensions (semiotic process flux). On the right, a table arranges 24 of these 
processes, each assigned an A-value (-5 to +5 Likert scale). The total sum of all 24 is 5, while the 
individual A-values for this sample range from -3 to +4, reflecting chaotic interactions (Lorenz, 1963). 
For example, 24 people reacting to a song yield an average A=0.2 (sum divided by samples, so 5 
divided by 24), indicating slightly positive reception. 

The semiotic dimensions, embedding PCC methodologies (e.g., cost-driven intentions, accessible 
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platforms, socially resonant contexts), explain collective patterns by shaping reactions. For instance, a 
low-cost product on a user-friendly platform endorsed by a trusted community generates positive 
reactions, driving trends like sales spikes or social media engagement (Kayser, 2025b; Pine & Gilmore,
1999; Bennett & Segerberg, 2012). AI’s rapid analysis narrows ranges for large groups, enabling 
precise predictions across applications, from marketing to construction safety, rooted in emergent 
dynamics (Luhmann, 1995; Strogatz, 2018).

4. Challenges in Traditional Semiotic Research
Traditional semiotic research faces a scientific dilemma: isolating phenomena distorts the holistic 
interplay of sensory inputs, encompassing all signs and their dynamic reactions (Saussure, 1916; 
Shannon & Weaver, 1949). Reductionist approaches fragment this interplay, limiting validity and 
applicability (Cobley & Semetsky, 2017). For example, Peirce’s triad (representamen, interpretant, 
object) offers insight into interpretive processes but prioritizes abstraction over practical applications, 
struggling to quantify wide individual reaction ranges or narrower collective patterns (Peirce, 1931; 
Kayser, 2025a). Subfields like semiology or economic semiotics focus on generalized systems—
language, symbols, or market signals—often overlooking chaotic variability shaped by biology, 
psychology, or culture (Barthes, 1977; Danesi, 2018; Kahneman, 2011; Hall, 1976).

The expansive scope of semiotics, covering human communication, animal behaviors, technological 
systems, and microbial signaling, complicates systematic study (Sebeok, 2001; Hoffmeyer, 2008; 
Wheeler, 2006). Traditional methods, reliant on small-scale qualitative analyses, cannot handle vast, 
fluctuating datasets required to model the semiotic process across millions of reactions, where 
variability gives way to emergent order (Nöth, 1990; Strogatz, 2018). The semiotic dimensions, 
incorporating PCC methodologies, highlight these limitations, as traditional approaches cannot quantify
how for example cost, accessibility, or social resonance influence reactions (Kayser, 2025b; Pine & 
Gilmore, 1999). This study offers a model embracing complexity, utilizing AI to enable reliable 
forecasting, transcending traditional limitations (Luhmann, 1995; Goodfellow et al., 2016).

5. AI Applications in Semiotics
AI transforms semiotics by analyzing millions of semiotic processes in real time, delivering actionable 
insights (Kayser, 2025a). Machine learning models (e.g., neural networks, decision trees) leverage 
complexity theory’s emergent order for applications across consumer behavior, ecological monitoring, 
and more (Strogatz, 2018; Goodfellow et al., 2016; Russell & Norvig, 2021). 

Table 2 illustrates sensory input diversity:

Entity/System Sensory Input
Examples

How They Work Users Applications

Humans Words, sounds, 
written codes, 
body language, 
visuals, scents.

Perceived via 
senses; elicit 
conscious/subcons
cious reactions.

Individuals, AI 
systems.

Marketing, 
education, 
healthcare, 
construction, retail 
(Lindstrom, 2005; 
Norman, 2013).
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Mammals Sounds (e.g., 
barking), 
pheromones, visual
cues.

Sensory organs 
trigger behavioral 
responses.

Dogs, whales, 
primates.

Animal training, 
conservation 
(Sebeok, 2001; 
Kull, 2000).

Fish Chemicals, water 
vibrations, light 
patterns.

Lateral lines, 
chemoreceptors 
guide navigation, 
mating.

Salmon, tuna. Aquaculture, 
environmental 
monitoring 
(Hoffmeyer, 2008).

Birds Songs, visual 
displays, wind 
patterns.

Auditory/visual 
systems influence 
mating, defense.

Sparrows, parrots. Ornithology, 
conservation 
(Sebeok, 2001; 
Kull, 2000).

Bees Pheromones, 
waggle dance, 
ultraviolet light.

Antennae, eyes 
guide foraging, 
hive coordination.

Honeybees. Pollination studies,
AI-driven hive 
management 
(Hoffmeyer, 2008).

Ants Pheromones, 
tactile signals, 
chemicals.

Antennae 
coordinate colony 
tasks.

Ant colonies. Swarm 
intelligence, 
robotics (Strogatz, 
2018).

Plants Light, chemicals, 
mechanical touch 
(e.g., 
thigmotropism).

Photoreceptors, 
chemical sensors 
guide growth, 
defense.

Trees, vines. Agriculture, 
ecological 
monitoring 
(Karban, 2015).

Bacteria Chemical signals 
(e.g., quorum 
sensing).

Receptors trigger 
collective 
behaviors (e.g., 
biofilm formation).

Bacterial colonies. Microbiology, 
medical research 
(Hoffmeyer, 2008; 
Wheeler, 2006).

Quantum Particles Speculative 
quantum states.

Hypothetical; 
limited to quantum
information theory.

Theoretical 
systems.

Emerging quantum
semiotics (Brier, 
2008).

• Marketing: AI predicts sales trends from sensory input reactions, optimizing campaigns cross-
culturally by analyzing regional variations (e.g., packaging colors) (Hall, 1976; Russell & 
Norvig, 2021). 

• Healthcare: AI optimizes treatment plans by analyzing reactions to sensory inputs (e.g., 
calming lighting), reducing stress (Topol, 2019). 

• Education: Gamified sensory inputs enhance learning efficiency, countering smartphone 
overuse (Selwyn, 2022; Csikszentmihalyi, 1990). 

• Construction: Intuitive controls for excavators reduce accidents, optimizing operator flow 
(Norman, 2013). 
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• Environmental Monitoring: AI tracks wildlife reactions to noise pollution, informing 
conservation (Kull, 2000; Karban, 2015). 

• Urban Planning: AI assesses reactions to city aesthetics, optimizing livability (Batty, 2018). 
• Virtual Environments: AI predicts engagement in the metaverse, enhancing user experiences 

(Kayser, 2025a). 
• Microbial Semiotics: AI analyzes bacterial responses, aiding antibiotic research (Wheeler, 

2006). 
• Retail: AI optimizes store layouts for intuitive navigation, enhancing customer satisfaction 

(Batty, 2018). 

Figure 2: Averages, Multiple Averages, Groups

Description: On the left, the 24 semiotic processes from Figure 1 are repeated, alongside a similar 
arrangement with B-values. The average of all A-values is 0.2 (5 divided by 24), and of all B-values is 
0.4. To the right, a table lists A–G factor averages for Group 1 (e.g., housewives, 40–50, average 0.6, 
sum ~4.2, rounded, divided by 7) and Group 2 (e.g., employed men, 35–45, average 1.1). Indicating 
how AI can use this system to evaluate large data amounts to pinpoint outcomes, enabling AI to make 
predictions with increasing accuracy. While small data would require utilizing percentages (see 
chapter 2, p. 4) to yield half-way usable results, the example given in Figure 3 is 729 groups, a sample 
so big that it would take humans a lot of effort to calculate the results but enables AI within seconds to 
not only evaluate complex decision processes with stunning precision, leading to vastly improved 
corporate decision making. AI can further avoid catering the evaluated subject to those who disliked it 
(giving scores of -5 and -4), choosing a suitable substitution instead. 

Figure 2 illustrates the use of large data amounts, to result in a grand total average of 0.8 (583 ÷ 729 ≈ 
0.799, rounded), which AI would achieve in seconds. 
For example, evaluating ice cream involves A (taste), B (fruitiness), C (texture), D (color), E 
(packaging size), F (packaging color), G (pricing), adapting the song analysis from Section 2. AI 
analyzes factors across cultures (e.g., packaging color preferences), optimizing global R&D (Hall, 
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1976). This method applies to many industries, from online universities, hospitals, to retail, potentially 
enhancing both profitability and quality via semiotic ergonomics, thereby reducing the financial risk 
and its consequential resorting to unethical practices. AI applied semiotic measures allow for ethical 
business practices through transparency (Kayser, 2025a; Norman, 2013; Zuboff, 2019; Selwyn, 2022; 
Topol, 2019).

Figure 3: Semiotic Process and Semiotic Dimensions Interacting

Description: The red (sign) and blue (reaction) circles with their transparent extensions and flux-
arrows from Figure 1's Semiotic Process are now extensively overlapped by a transparent purple 
ellipse, larger than the circles, enveloping over 70% of their overlap, symbolizing the three Semiotic 
Dimensions (encoding aim/intention, establishing communication/anticipation, creating and improving
context) impacting both the sign and reaction significantly. The purple ellipse is in flux, indicated by a 
double-sided black arrow over the ellipse, representing non-directional flux in all directions. All 
arrows indicate flux in all directions, with angles irrelevant, reflecting chaotic interactions (Lorenz, 
1963; Strogatz, 2018). The interactions illustrate highly complex and unpredictable actions and 
reactions between components, including personal associations (e.g., cognitive biases, regional 
cultural norms, social influences), noises (e.g., environmental sounds), technical glitches (e.g., system 
errors), and many more (Kahneman, 2011; Hall, 1976). This model enhances the traditional sender-
message-receiver model for practical application, as AI’s rapid optimization of sign creation (human 
or AI-generated) vastly increases the speed of the semiotic process and dimensions, enabling 
applications like marketing (e.g., resonant ad messaging), healthcare (e.g., calming hospital contexts), 
and virtual environments (e.g., immersive feedback) (Jakobson, 1960; Bateson, 1972; Kayser, 2025a). 
AI’s analysis ensures transparency in encoding aim/intention, reducing manipulative practices for 
ethical outcomes (Zuboff, 2019; Goodfellow et al., 2016).

Semiotic ergonomics, enabled by AI, optimizes interactions, countering downsides like smartphone 
overuse by motivating positive behaviors (e.g., efficient studying, safe machinery operation). The 
semiotic dimensions, incorporating PCC methodologies, enhance predictive accuracy, aligning 
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products with consumer needs and reducing unethical practices through transparency, unlike 
bureaucratic regulations (Kayser, 2025b; Zuboff, 2019; Kotler & Keller, 2016; Pine & Gilmore, 1999).

6. Conclusion
The semiotic process, driven by individualized reactions to sensory inputs, forms collective patterns 
through systems, chaos, and complexity theory (Lorenz, 1963; Gleick, 1987; Strogatz, 2018; Luhmann,
1995; Bateson, 1972). Wide individual reaction ranges narrow with larger datasets, enabling AI’s 
precise predictions in real time, transforming semiotics into a practical, data-driven discipline (Kayser, 
2025a). The “sensory input” definition unifies human, animal, and technological semiotics, 
complementing traditional theories (Peirce, 1931; Saussure, 1916; Eco, 1976; Sebeok, 2001; Deacon, 
1997; Shannon & Weaver, 1949). Semiotic ergonomics optimizes products, services, and machines, 
fostering flow and satisfaction (Norman, 2013; Csikszentmihalyi, 1990). The semiotic dimensions, 
embedding PCC methodologies, guide market-driven solutions, reducing unethical practices through 
transparency (Kayser, 2025b; Zuboff, 2019; Pine & Gilmore, 1999). Future research should deepen 
AI’s integration with complexity theory, exploring real-time reaction shifts, cross-cultural variations, 
and microbial semiotics for advancements in work, life, and consumption (Hall, 1976; Hoffmeyer, 
2008; Wheeler, 2006; Strogatz, 2018).
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