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A universal molecular mechanism driving aging
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Extended Data Figure 1. G4 qPCR enrichment against library content for human BMSCs.
qPCR amplification results with the G4 primer and Illumina P7 primer from the BG4 CUT&Tag

libraries of hBMSCs are shown.
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Extended Data Figure 2. Distribution of G3/G counts in each mouse ATAC peak. The blue

columns are the peaks with >3 G3/G repeats.
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Extended Data Figure 3. Top enriched motif associated with age-associated chromatin
opening.

(a) Top enriched motif in the C. elegans development ATAC dataset. (b) Top enriched motif in the
D. melanogaster embryonic development scATAC dataset. (¢) Top enriched motif in the D. rerio

neural crest development scATAC dataset.



Human BRCA cells

Ciock : Age increase :
1.0 1 pGQS |
G4 , :
£ | !
QD 051 | CNV- breast CNV+ breast :
2 : epithelial cell cancer cell :
5 ' :
3 ! :

o 0.0 F-Noofhodo A\ y

£ |
(@)] | 1
05 \ :
1 I
1 1
-30% TSS TES +10%

Relative position of gene

Extended Data Figure 4. Aging coefficient profiles of genes in human breast cancer cells. The
genes were classified as (1) harboring ClockDML in the TSS; (2) harboring pGQS in the TSS; (3)
harboring the G4-ChIP-seq signal in the TSS; (4) harboring both ClockDML and the G4-ChIP-

signal; or (5) not harboring any of the above.
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Extended Data Figure 5. Enrichment of TF-ChIP-seq peaks at pGQS loci in the mouse and
human genomes.

(a) (left) Enrichment (Y-axis) vs rank (X-axis) of TF ChIP-seq peaks in pGQS in the mouse
genome. The top 10% of enriched TFs are highlighted in red and labeled. (right) Enrichment (Y-
axis) of the top enriched TFs. Individual ChIP-seq peak sets of the same TF are shown as dots and
filled with log P-value denoting enrichment significance. (b) (left) Enrichment (Y-axis) vs rank
(X-axis) of TF ChIP-seq peaks in pGQS in the human genome. The top 10% of enriched TFs are
highlighted in red and labeled. (right) Enrichment (Y-axis) of the top enriched TFs. Individual
ChIP-seq peak sets of the same TF are shown as dots and filled with log P-value denoting

enrichment significance.
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Extended Data Figure 6. Pioneering pluripotency factors that bind to pGQS but not regulate
pGQS chromatin opening.

(a) ChIP-seq signal profiles of FKBP-Oct4 and FKBP-Nanog on the pGQSneg, pGQSpos, and
pGQSpos aging genes. Drug-induced degradation of Oct4 and Nanog was performed for the
indicated time length (denoted by color) for each sample. The control state is 0 hours. (b) ATAC-
seq signal profiles of FKBP-Oct4, FKBP-Nanog and FKBP-Sox2 cells for the pGQSneg,
pGQSpos, and pGQSpos aging genes. Drug-induced degradation of Oct4, Nanog and Sox2 was
performed for the indicated time length (denoted by color) for each sample. The control state is 0

hours.
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Extended Data Figure 7. Enrichment of G4, Zbtb7a binding, RNApol2 SerSp, nascent DNA
TRI, and G4-responsive DNA replication in aging genes in the mouse genome. The G4 ChIP-
seq track was obtained from mESCs. The Zbtb ChIP-seq track was obtained from Ch12 cells. The

pMEF and pAST ATAC results are also shown for comparison.
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Extended Data Figure 8. Zbtb7a regulates G4 locus chromatin.
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(a) ChIP-seq signal profiles of Zbtb7a on pGQSpos genes in mouse Ch12 cells. Inset: overlaps

between Zbtb7a ChIP-seq peaks and pGQS loci (P=0.019 according to the permutation test). (b)

ATAC-seq profiles of pGQSpos genes in control and Zbtb7a KO Ch12 cells. (¢) RNA-seq profiles

of pGQSpos genes in control and Zbtb7a KO Ch12 cells. (d) ChIP-seq signal profiles of G4s of

the pGQSpos gene in mouse mESCs. Inset: overlaps between Zbtb7a and G4-ChIP-seq peaks

(P=0.019 according to the permutation test). () ATAC-seq profiles of pGQSneg genes in control

and Zbtb7a KO Chl2 cells. (f) RNAseq profiles of pGQSneg genes in control and Zbtb7a KO

Ch12 cells.
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Extended Data Figure 9. RNApol2 SerSp ChlIP-seq profile of the pGQSneg, pGQSpos and
pGQSpos aging genes in mouse B cells. Black: pGQSneg; orange: pGQSpos; and red: pGQSpos

aging genes.
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Extended Data Figure 10. TRI influences the aging coefficient of loci.

(a) Smoothened aging coefficient of pGQSpos genes with codirectional TRI. Genes were further
classified according to their length. (b) Smoothened aging coefficient of pGQSneg genes with
codirectional TRI. Genes were further classified according to their length. (¢) Minimal distance
between the pGQS locus and the replication initiation zone (IZ) in the codirectional or convergent
TRI class of genes. (d) Smoothened aging coefficient of pGQSpos genes with convergent TRI.

Genes were further classified according to their length. (e) Smoothened aging coefficient of
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pGQSneg genes with convergent TRI. Genes were further classified according to their length. (f)

Aging coefficient of pGQS loci in the codirectional or convergent-TRI class of genes.
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Extended Data Figure 11. G4 impairs DNA methylation maintenance in human embryonic

stem cells.
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(a) DNA methylation level (Y-axis) of each class of CpG in wild-type HUES64 cells pulsed with
BrdU and chased with thymidine for the indicated times (X-axis). (b) DNA methylation level (Y-
axis) of each class of CpG in DNMT3A/3B double knockout (DKO) HUES64 cells pulsed with
BrdU and chased with thymidine for the indicated times (X-axis). (¢) DNA methylation
maintenance level (Y-axis), defined as the normalized (min-max) methylation level, of each class
of CpG in wild-type HUES64 cells pulsed with BrdU and chased with thymidine for the indicated
times (X-axis). (b) DNA methylation maintenance level (Y-axis) of each class of CpG in
DNMT3A/3B DKO HUES64 cells pulsed with BrdU and chased with thymidine for the indicated

times (X-axis).
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Extended Data Figure 12. G4 DNA hypomethylation in vivo during aging.

(a) Real (X-axis) and G4 DNAm-predicted age (scAge, Y-axis) of human PBMC samples
sequenced by G4AMP. The 95% confidence intervals of the predicted biological age are also
shown. (b) Mean DNA methylation level of age-associated CpGs in the vicinity of G4s in mouse
pMEFs. (¢) SHARE-seq scATAC data showing the transcription factor activities (color) of Zfp148,
Z1p263, and KIf15 with respect to single-cell age (X-axis) in pMEFs. The inferred transcription
factor activities are shown as Z-scaled normalized values. (d) Mean DNA methylation of G4 loci

bound by Z{p148, Zfp263, and KIf15 in the same batch of pMEFs of different ages. (¢) Mean DNA
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methylation of G4 loci in primary mouse tail fibroblast samples of different ages. (f) The
distribution of correlation coefficients between the mean DNA methylation level at the TF-bound
G4 locus and sample age in the mouse tail fibroblast dataset. (g) Mean DNA methylation of Stat2-
bound and Irfl1-bound G4 loci in primary mouse tail fibroblast samples of different ages. (h) Mean
DNA methylation of G4 loci in human PBMC samples of different ages from healthy donors. (i)
The distribution of correlation coefficients between the mean DNA methylation level of TF-bound
G4 loci and sample age in the human PBMC dataset. (j) Mean DNA methylation of the STAT1-

bound and FOXD2-bound G4 loci in the human PBMC dataset.
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Extended Data Figure 13. H3K27me3 recovery during the cell cycle in the pGQSpos and
pGQSneg genes in mouse mESCs.

(a) Percentage of genes that initiate replication (showing the lowest H3K27me3 signal) in the
indicated cell cycle phase. (b) Percentage of genes that reached the maximal H3K27me3 signal in
the indicated cell cycle phase. (¢) Percentage of genes that required the indicated time (number of

cell cycle phases, GI/ES/MS/LS/G2) to reach the maximal H3K27me3 value from the replication

initiation phase.
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Extended Data Figure 14. H3K27me3 at the G4 locus is reduced during human BRCA cell

aging
(a) UMAP plot of human BRCA cells from the scChIP-seq experiment, labeled by the capecitabine

resistance state of each sample. (b) UMAP plot of human BRCA cells from the scChIP-seq
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experiment, labeled by sample name. (¢) UMAP projection of human BRCA cells from the scChIP-
seq experiment, labeled by scChIP-seq profile-based single-cell clusters. (d) Mean H3K27me3

reads on each pGQS locus in the non-resistant or the derived drug-resistant cells, as in (a).
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Patient ID Mutation Mutation class
P1 1902755| 10 |ERCC8 Exon 4 rearrangement/ Exon 4 rearrangement Hypomorph |
P2 1902750| 8 |[ERCCB8 Exon 4 rearrangement/c.394 398delTTACA Hypomorph |
P3 [1902752| 7 |[ERCC8 Exon 4 rearrangement/I1VS2+5delG Hypomorph |
P4 1902751| 6 |ERCCS8 Exon 4 rearrangement/Exon 4 rearrangement Hypomorph |
P5 11902753| 13 |ERCCS8 Exon 4 rearrangement/Deep intronic mutation Hypomorph Il
P6 [1902749| 14 [ERCC8 Exon 4 rearrangement/ Complex Hypomorph II
P7 [1902756| 9 |[ERCCS8 Exon 4 rearrangement/Large fragment deletion Null
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Extended Data Figure 15. Details of the progeroid patients.
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(a) Genetic mutation details of each CSB patient. (b) Mean pGQS CpG DNAm of age-matched
control (CTRL) or progeroid patients. (¢) Mean pGQS CpG DNAm of ERCC8 mutant patients.

(d) Relationship between age and the mean pGQS CpG DNAm in control or progeroid patients.
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Extended Data Tables S1-S2

Extended Data Table 1. Public datasets used in this study.

Accession.Code / URL Annotation

GSE131098 Hammerseq

GSESg2045 Repli-BS-seq

https://github.com/CL-CHEN-

LaE/Olg-Seq OK-seq

GSE165128 Ch12 cells (Zbtb7a KO ATAC-seq, Zbtb7a KO RNA-seq)
GSE209527 Sox2 Oct4 Nanog ChIP/ATAC

GSE178668 G4 ligand-treated TT-seq

GSES52285 WRN KO ChIP-seq

GSE161410 TRIPn-seq and RNAPol2 Ser5p ChIP-seq

GSE137764 High resolution Repli-seq

GSE126477 SNS-Seq

GSE118581 Yeast aging ATAC

GSE114494 C.elegans aging ATAC

GSE190149 Drosophila embryonic development scATAC
GSE178969 Zebrafish neural crest development scATAC
GSE74912 Human blood cell ATAC

GSE188461 Human chemically induced pluripotent stem cell scATAC
GSE198639 Human breast cancer scATAC

GSE152216 Human breast cancer G4 ChIP-seq

GSE173103 mESC G4 CUT&Tag

GSE187007 G4Access

GSE117309 Human breast cancer single-cell ChIP-seq (H3K27me3)
GSM803473 Human ZBTB7A ChIP-seq

GSE122937 Mouse Zbtb7a ChIP-seq

GSE209818 Mouse mESC H3K27me3 CUT&Flow
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Extended Data Table S2. Patient information.

Patient ID Age \ Mutation Mutation class
RO oo | x| EACO e mmneenntl | o1
ERI()Z?,C8- 1902752 7 f\I]{SCz(ii(]lEe)I(gn 4 rearrangement / Hypomorph I
RO | owrss |13 | BB et | pomor 1
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