import hashlib import os.path import sys import warnings import pytest import numpy as np from numpy.exceptions import AxisError from numpy.linalg import LinAlgError from numpy.random import MT19937, Generator, RandomState, SeedSequence from numpy.testing import ( IS_WASM, assert_, assert_allclose, assert_array_almost_equal, assert_array_equal, assert_equal, assert_no_warnings, assert_raises, ) random = Generator(MT19937()) JUMP_TEST_DATA = [ { "seed": 0, "steps": 10, "initial": {"key_sha256": "bb1636883c2707b51c5b7fc26c6927af4430f2e0785a8c7bc886337f919f9edf", "pos": 9}, # noqa: E501 "jumped": {"key_sha256": "ff682ac12bb140f2d72fba8d3506cf4e46817a0db27aae1683867629031d8d55", "pos": 598}, # noqa: E501 }, { "seed": 384908324, "steps": 312, "initial": {"key_sha256": "16b791a1e04886ccbbb4d448d6ff791267dc458ae599475d08d5cced29d11614", "pos": 311}, # noqa: E501 "jumped": {"key_sha256": "a0110a2cf23b56be0feaed8f787a7fc84bef0cb5623003d75b26bdfa1c18002c", "pos": 276}, # noqa: E501 }, { "seed": [839438204, 980239840, 859048019, 821], "steps": 511, "initial": {"key_sha256": "d306cf01314d51bd37892d874308200951a35265ede54d200f1e065004c3e9ea", "pos": 510}, # noqa: E501 "jumped": {"key_sha256": "0e00ab449f01a5195a83b4aee0dfbc2ce8d46466a640b92e33977d2e42f777f8", "pos": 475}, # noqa: E501 }, ] @pytest.fixture(scope='module', params=[True, False]) def endpoint(request): return request.param class TestSeed: def test_scalar(self): s = Generator(MT19937(0)) assert_equal(s.integers(1000), 479) s = Generator(MT19937(4294967295)) assert_equal(s.integers(1000), 324) def test_array(self): s = Generator(MT19937(range(10))) assert_equal(s.integers(1000), 465) s = Generator(MT19937(np.arange(10))) assert_equal(s.integers(1000), 465) s = Generator(MT19937([0])) assert_equal(s.integers(1000), 479) s = Generator(MT19937([4294967295])) assert_equal(s.integers(1000), 324) def test_seedsequence(self): s = MT19937(SeedSequence(0)) assert_equal(s.random_raw(1), 2058676884) def test_invalid_scalar(self): # seed must be an unsigned 32 bit integer assert_raises(TypeError, MT19937, -0.5) assert_raises(ValueError, MT19937, -1) def test_invalid_array(self): # seed must be an unsigned integer assert_raises(TypeError, MT19937, [-0.5]) assert_raises(ValueError, MT19937, [-1]) assert_raises(ValueError, MT19937, [1, -2, 4294967296]) def test_noninstantized_bitgen(self): assert_raises(ValueError, Generator, MT19937) class TestBinomial: def test_n_zero(self): # Tests the corner case of n == 0 for the binomial distribution. # binomial(0, p) should be zero for any p in [0, 1]. # This test addresses issue #3480. zeros = np.zeros(2, dtype='int') for p in [0, .5, 1]: assert_(random.binomial(0, p) == 0) assert_array_equal(random.binomial(zeros, p), zeros) def test_p_is_nan(self): # Issue #4571. assert_raises(ValueError, random.binomial, 1, np.nan) class TestMultinomial: def test_basic(self): random.multinomial(100, [0.2, 0.8]) def test_zero_probability(self): random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0]) def test_int_negative_interval(self): assert_(-5 <= random.integers(-5, -1) < -1) x = random.integers(-5, -1, 5) assert_(np.all(-5 <= x)) assert_(np.all(x < -1)) def test_size(self): # gh-3173 p = [0.5, 0.5] assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(random.multinomial(1, p, [2, 2]).shape, (2, 2, 2)) assert_equal(random.multinomial(1, p, (2, 2)).shape, (2, 2, 2)) assert_equal(random.multinomial(1, p, np.array((2, 2))).shape, (2, 2, 2)) assert_raises(TypeError, random.multinomial, 1, p, float(1)) def test_invalid_prob(self): assert_raises(ValueError, random.multinomial, 100, [1.1, 0.2]) assert_raises(ValueError, random.multinomial, 100, [-.1, 0.9]) def test_invalid_n(self): assert_raises(ValueError, random.multinomial, -1, [0.8, 0.2]) assert_raises(ValueError, random.multinomial, [-1] * 10, [0.8, 0.2]) def test_p_non_contiguous(self): p = np.arange(15.) p /= np.sum(p[1::3]) pvals = p[1::3] random = Generator(MT19937(1432985819)) non_contig = random.multinomial(100, pvals=pvals) random = Generator(MT19937(1432985819)) contig = random.multinomial(100, pvals=np.ascontiguousarray(pvals)) assert_array_equal(non_contig, contig) def test_multinomial_pvals_float32(self): x = np.array([9.9e-01, 9.9e-01, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09], dtype=np.float32) pvals = x / x.sum() random = Generator(MT19937(1432985819)) match = r"[\w\s]*pvals array is cast to 64-bit floating" with pytest.raises(ValueError, match=match): random.multinomial(1, pvals) class TestMultivariateHypergeometric: def setup_method(self): self.seed = 8675309 def test_argument_validation(self): # Error cases... # `colors` must be a 1-d sequence assert_raises(ValueError, random.multivariate_hypergeometric, 10, 4) # Negative nsample assert_raises(ValueError, random.multivariate_hypergeometric, [2, 3, 4], -1) # Negative color assert_raises(ValueError, random.multivariate_hypergeometric, [-1, 2, 3], 2) # nsample exceeds sum(colors) assert_raises(ValueError, random.multivariate_hypergeometric, [2, 3, 4], 10) # nsample exceeds sum(colors) (edge case of empty colors) assert_raises(ValueError, random.multivariate_hypergeometric, [], 1) # Validation errors associated with very large values in colors. assert_raises(ValueError, random.multivariate_hypergeometric, [999999999, 101], 5, 1, 'marginals') int64_info = np.iinfo(np.int64) max_int64 = int64_info.max max_int64_index = max_int64 // int64_info.dtype.itemsize assert_raises(ValueError, random.multivariate_hypergeometric, [max_int64_index - 100, 101], 5, 1, 'count') @pytest.mark.parametrize('method', ['count', 'marginals']) def test_edge_cases(self, method): # Set the seed, but in fact, all the results in this test are # deterministic, so we don't really need this. random = Generator(MT19937(self.seed)) x = random.multivariate_hypergeometric([0, 0, 0], 0, method=method) assert_array_equal(x, [0, 0, 0]) x = random.multivariate_hypergeometric([], 0, method=method) assert_array_equal(x, []) x = random.multivariate_hypergeometric([], 0, size=1, method=method) assert_array_equal(x, np.empty((1, 0), dtype=np.int64)) x = random.multivariate_hypergeometric([1, 2, 3], 0, method=method) assert_array_equal(x, [0, 0, 0]) x = random.multivariate_hypergeometric([9, 0, 0], 3, method=method) assert_array_equal(x, [3, 0, 0]) colors = [1, 1, 0, 1, 1] x = random.multivariate_hypergeometric(colors, sum(colors), method=method) assert_array_equal(x, colors) x = random.multivariate_hypergeometric([3, 4, 5], 12, size=3, method=method) assert_array_equal(x, [[3, 4, 5]] * 3) # Cases for nsample: # nsample < 10 # 10 <= nsample < colors.sum()/2 # colors.sum()/2 < nsample < colors.sum() - 10 # colors.sum() - 10 < nsample < colors.sum() @pytest.mark.parametrize('nsample', [8, 25, 45, 55]) @pytest.mark.parametrize('method', ['count', 'marginals']) @pytest.mark.parametrize('size', [5, (2, 3), 150000]) def test_typical_cases(self, nsample, method, size): random = Generator(MT19937(self.seed)) colors = np.array([10, 5, 20, 25]) sample = random.multivariate_hypergeometric(colors, nsample, size, method=method) if isinstance(size, int): expected_shape = (size,) + colors.shape else: expected_shape = size + colors.shape assert_equal(sample.shape, expected_shape) assert_((sample >= 0).all()) assert_((sample <= colors).all()) assert_array_equal(sample.sum(axis=-1), np.full(size, fill_value=nsample, dtype=int)) if isinstance(size, int) and size >= 100000: # This sample is large enough to compare its mean to # the expected values. assert_allclose(sample.mean(axis=0), nsample * colors / colors.sum(), rtol=1e-3, atol=0.005) def test_repeatability1(self): random = Generator(MT19937(self.seed)) sample = random.multivariate_hypergeometric([3, 4, 5], 5, size=5, method='count') expected = np.array([[2, 1, 2], [2, 1, 2], [1, 1, 3], [2, 0, 3], [2, 1, 2]]) assert_array_equal(sample, expected) def test_repeatability2(self): random = Generator(MT19937(self.seed)) sample = random.multivariate_hypergeometric([20, 30, 50], 50, size=5, method='marginals') expected = np.array([[ 9, 17, 24], [ 7, 13, 30], [ 9, 15, 26], [ 9, 17, 24], [12, 14, 24]]) assert_array_equal(sample, expected) def test_repeatability3(self): random = Generator(MT19937(self.seed)) sample = random.multivariate_hypergeometric([20, 30, 50], 12, size=5, method='marginals') expected = np.array([[2, 3, 7], [5, 3, 4], [2, 5, 5], [5, 3, 4], [1, 5, 6]]) assert_array_equal(sample, expected) class TestSetState: def setup_method(self): self.seed = 1234567890 self.rg = Generator(MT19937(self.seed)) self.bit_generator = self.rg.bit_generator self.state = self.bit_generator.state self.legacy_state = (self.state['bit_generator'], self.state['state']['key'], self.state['state']['pos']) def test_gaussian_reset(self): # Make sure the cached every-other-Gaussian is reset. old = self.rg.standard_normal(size=3) self.bit_generator.state = self.state new = self.rg.standard_normal(size=3) assert_(np.all(old == new)) def test_gaussian_reset_in_media_res(self): # When the state is saved with a cached Gaussian, make sure the # cached Gaussian is restored. self.rg.standard_normal() state = self.bit_generator.state old = self.rg.standard_normal(size=3) self.bit_generator.state = state new = self.rg.standard_normal(size=3) assert_(np.all(old == new)) def test_negative_binomial(self): # Ensure that the negative binomial results take floating point # arguments without truncation. self.rg.negative_binomial(0.5, 0.5) class TestIntegers: rfunc = random.integers # valid integer/boolean types itype = [bool, np.int8, np.uint8, np.int16, np.uint16, np.int32, np.uint32, np.int64, np.uint64] def test_unsupported_type(self, endpoint): assert_raises(TypeError, self.rfunc, 1, endpoint=endpoint, dtype=float) def test_bounds_checking(self, endpoint): for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, ubnd, lbnd, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, 1, 0, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, [lbnd - 1], ubnd, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, [lbnd], [ubnd + 1], endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, [ubnd], [lbnd], endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, 1, [0], endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, [ubnd + 1], [ubnd], endpoint=endpoint, dtype=dt) def test_bounds_checking_array(self, endpoint): for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + (not endpoint) assert_raises(ValueError, self.rfunc, [lbnd - 1] * 2, [ubnd] * 2, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, [lbnd] * 2, [ubnd + 1] * 2, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, ubnd, [lbnd] * 2, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, [1] * 2, 0, endpoint=endpoint, dtype=dt) def test_rng_zero_and_extremes(self, endpoint): for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd is_open = not endpoint tgt = ubnd - 1 assert_equal(self.rfunc(tgt, tgt + is_open, size=1000, endpoint=endpoint, dtype=dt), tgt) assert_equal(self.rfunc([tgt], tgt + is_open, size=1000, endpoint=endpoint, dtype=dt), tgt) tgt = lbnd assert_equal(self.rfunc(tgt, tgt + is_open, size=1000, endpoint=endpoint, dtype=dt), tgt) assert_equal(self.rfunc(tgt, [tgt + is_open], size=1000, endpoint=endpoint, dtype=dt), tgt) tgt = (lbnd + ubnd) // 2 assert_equal(self.rfunc(tgt, tgt + is_open, size=1000, endpoint=endpoint, dtype=dt), tgt) assert_equal(self.rfunc([tgt], [tgt + is_open], size=1000, endpoint=endpoint, dtype=dt), tgt) def test_rng_zero_and_extremes_array(self, endpoint): size = 1000 for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd tgt = ubnd - 1 assert_equal(self.rfunc([tgt], [tgt + 1], size=size, dtype=dt), tgt) assert_equal(self.rfunc( [tgt] * size, [tgt + 1] * size, dtype=dt), tgt) assert_equal(self.rfunc( [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt) tgt = lbnd assert_equal(self.rfunc([tgt], [tgt + 1], size=size, dtype=dt), tgt) assert_equal(self.rfunc( [tgt] * size, [tgt + 1] * size, dtype=dt), tgt) assert_equal(self.rfunc( [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt) tgt = (lbnd + ubnd) // 2 assert_equal(self.rfunc([tgt], [tgt + 1], size=size, dtype=dt), tgt) assert_equal(self.rfunc( [tgt] * size, [tgt + 1] * size, dtype=dt), tgt) assert_equal(self.rfunc( [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt) def test_full_range(self, endpoint): # Test for ticket #1690 for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd try: self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt) except Exception as e: raise AssertionError("No error should have been raised, " "but one was with the following " "message:\n\n%s" % str(e)) def test_full_range_array(self, endpoint): # Test for ticket #1690 for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd try: self.rfunc([lbnd] * 2, [ubnd], endpoint=endpoint, dtype=dt) except Exception as e: raise AssertionError("No error should have been raised, " "but one was with the following " "message:\n\n%s" % str(e)) def test_in_bounds_fuzz(self, endpoint): # Don't use fixed seed random = Generator(MT19937()) for dt in self.itype[1:]: for ubnd in [4, 8, 16]: vals = self.rfunc(2, ubnd - endpoint, size=2 ** 16, endpoint=endpoint, dtype=dt) assert_(vals.max() < ubnd) assert_(vals.min() >= 2) vals = self.rfunc(0, 2 - endpoint, size=2 ** 16, endpoint=endpoint, dtype=bool) assert_(vals.max() < 2) assert_(vals.min() >= 0) def test_scalar_array_equiv(self, endpoint): for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd size = 1000 random = Generator(MT19937(1234)) scalar = random.integers(lbnd, ubnd, size=size, endpoint=endpoint, dtype=dt) random = Generator(MT19937(1234)) scalar_array = random.integers([lbnd], [ubnd], size=size, endpoint=endpoint, dtype=dt) random = Generator(MT19937(1234)) array = random.integers([lbnd] * size, [ubnd] * size, size=size, endpoint=endpoint, dtype=dt) assert_array_equal(scalar, scalar_array) assert_array_equal(scalar, array) def test_repeatability(self, endpoint): # We use a sha256 hash of generated sequences of 1000 samples # in the range [0, 6) for all but bool, where the range # is [0, 2). Hashes are for little endian numbers. tgt = {'bool': '053594a9b82d656f967c54869bc6970aa0358cf94ad469c81478459c6a90eee3', # noqa: E501 'int16': '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4', # noqa: E501 'int32': 'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b', # noqa: E501 'int64': '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1', # noqa: E501 'int8': '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1', # noqa: E501 'uint16': '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4', # noqa: E501 'uint32': 'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b', # noqa: E501 'uint64': '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1', # noqa: E501 'uint8': '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1'} # noqa: E501 for dt in self.itype[1:]: random = Generator(MT19937(1234)) # view as little endian for hash if sys.byteorder == 'little': val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint, dtype=dt) else: val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint, dtype=dt).byteswap() res = hashlib.sha256(val).hexdigest() assert_(tgt[np.dtype(dt).name] == res) # bools do not depend on endianness random = Generator(MT19937(1234)) val = random.integers(0, 2 - endpoint, size=1000, endpoint=endpoint, dtype=bool).view(np.int8) res = hashlib.sha256(val).hexdigest() assert_(tgt[np.dtype(bool).name] == res) def test_repeatability_broadcasting(self, endpoint): for dt in self.itype: lbnd = 0 if dt in (bool, np.bool) else np.iinfo(dt).min ubnd = 2 if dt in (bool, np.bool) else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd # view as little endian for hash random = Generator(MT19937(1234)) val = random.integers(lbnd, ubnd, size=1000, endpoint=endpoint, dtype=dt) random = Generator(MT19937(1234)) val_bc = random.integers([lbnd] * 1000, ubnd, endpoint=endpoint, dtype=dt) assert_array_equal(val, val_bc) random = Generator(MT19937(1234)) val_bc = random.integers([lbnd] * 1000, [ubnd] * 1000, endpoint=endpoint, dtype=dt) assert_array_equal(val, val_bc) @pytest.mark.parametrize( 'bound, expected', [(2**32 - 1, np.array([517043486, 1364798665, 1733884389, 1353720612, 3769704066, 1170797179, 4108474671])), (2**32, np.array([517043487, 1364798666, 1733884390, 1353720613, 3769704067, 1170797180, 4108474672])), (2**32 + 1, np.array([517043487, 1733884390, 3769704068, 4108474673, 1831631863, 1215661561, 3869512430]))] ) def test_repeatability_32bit_boundary(self, bound, expected): for size in [None, len(expected)]: random = Generator(MT19937(1234)) x = random.integers(bound, size=size) assert_equal(x, expected if size is not None else expected[0]) def test_repeatability_32bit_boundary_broadcasting(self): desired = np.array([[[1622936284, 3620788691, 1659384060], [1417365545, 760222891, 1909653332], [3788118662, 660249498, 4092002593]], [[3625610153, 2979601262, 3844162757], [ 685800658, 120261497, 2694012896], [1207779440, 1586594375, 3854335050]], [[3004074748, 2310761796, 3012642217], [2067714190, 2786677879, 1363865881], [ 791663441, 1867303284, 2169727960]], [[1939603804, 1250951100, 298950036], [1040128489, 3791912209, 3317053765], [3155528714, 61360675, 2305155588]], [[ 817688762, 1335621943, 3288952434], [1770890872, 1102951817, 1957607470], [3099996017, 798043451, 48334215]]]) for size in [None, (5, 3, 3)]: random = Generator(MT19937(12345)) x = random.integers([[-1], [0], [1]], [2**32 - 1, 2**32, 2**32 + 1], size=size) assert_array_equal(x, desired if size is not None else desired[0]) def test_int64_uint64_broadcast_exceptions(self, endpoint): configs = {np.uint64: ((0, 2**65), (-1, 2**62), (10, 9), (0, 0)), np.int64: ((0, 2**64), (-(2**64), 2**62), (10, 9), (0, 0), (-2**63 - 1, -2**63 - 1))} for dtype in configs: for config in configs[dtype]: low, high = config high = high - endpoint low_a = np.array([[low] * 10]) high_a = np.array([high] * 10) assert_raises(ValueError, random.integers, low, high, endpoint=endpoint, dtype=dtype) assert_raises(ValueError, random.integers, low_a, high, endpoint=endpoint, dtype=dtype) assert_raises(ValueError, random.integers, low, high_a, endpoint=endpoint, dtype=dtype) assert_raises(ValueError, random.integers, low_a, high_a, endpoint=endpoint, dtype=dtype) low_o = np.array([[low] * 10], dtype=object) high_o = np.array([high] * 10, dtype=object) assert_raises(ValueError, random.integers, low_o, high, endpoint=endpoint, dtype=dtype) assert_raises(ValueError, random.integers, low, high_o, endpoint=endpoint, dtype=dtype) assert_raises(ValueError, random.integers, low_o, high_o, endpoint=endpoint, dtype=dtype) def test_int64_uint64_corner_case(self, endpoint): # When stored in Numpy arrays, `lbnd` is casted # as np.int64, and `ubnd` is casted as np.uint64. # Checking whether `lbnd` >= `ubnd` used to be # done solely via direct comparison, which is incorrect # because when Numpy tries to compare both numbers, # it casts both to np.float64 because there is # no integer superset of np.int64 and np.uint64. However, # `ubnd` is too large to be represented in np.float64, # causing it be round down to np.iinfo(np.int64).max, # leading to a ValueError because `lbnd` now equals # the new `ubnd`. dt = np.int64 tgt = np.iinfo(np.int64).max lbnd = np.int64(np.iinfo(np.int64).max) ubnd = np.uint64(np.iinfo(np.int64).max + 1 - endpoint) # None of these function calls should # generate a ValueError now. actual = random.integers(lbnd, ubnd, endpoint=endpoint, dtype=dt) assert_equal(actual, tgt) def test_respect_dtype_singleton(self, endpoint): # See gh-7203 for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd dt = np.bool if dt is bool else dt sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt) assert_equal(sample.dtype, dt) for dt in (bool, int): lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd # gh-7284: Ensure that we get Python data types sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt) assert not hasattr(sample, 'dtype') assert_equal(type(sample), dt) def test_respect_dtype_array(self, endpoint): # See gh-7203 for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd dt = np.bool if dt is bool else dt sample = self.rfunc([lbnd], [ubnd], endpoint=endpoint, dtype=dt) assert_equal(sample.dtype, dt) sample = self.rfunc([lbnd] * 2, [ubnd] * 2, endpoint=endpoint, dtype=dt) assert_equal(sample.dtype, dt) def test_zero_size(self, endpoint): # See gh-7203 for dt in self.itype: sample = self.rfunc(0, 0, (3, 0, 4), endpoint=endpoint, dtype=dt) assert sample.shape == (3, 0, 4) assert sample.dtype == dt assert self.rfunc(0, -10, 0, endpoint=endpoint, dtype=dt).shape == (0,) assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape, (3, 0, 4)) assert_equal(random.integers(0, -10, size=0).shape, (0,)) assert_equal(random.integers(10, 10, size=0).shape, (0,)) def test_error_byteorder(self): other_byteord_dt = 'i4' with pytest.raises(ValueError): random.integers(0, 200, size=10, dtype=other_byteord_dt) # chi2max is the maximum acceptable chi-squared value. @pytest.mark.slow @pytest.mark.parametrize('sample_size,high,dtype,chi2max', [(5000000, 5, np.int8, 125.0), # p-value ~4.6e-25 (5000000, 7, np.uint8, 150.0), # p-value ~7.7e-30 (10000000, 2500, np.int16, 3300.0), # p-value ~3.0e-25 (50000000, 5000, np.uint16, 6500.0), # p-value ~3.5e-25 ]) def test_integers_small_dtype_chisquared(self, sample_size, high, dtype, chi2max): # Regression test for gh-14774. samples = random.integers(high, size=sample_size, dtype=dtype) values, counts = np.unique(samples, return_counts=True) expected = sample_size / high chi2 = ((counts - expected)**2 / expected).sum() assert chi2 < chi2max class TestRandomDist: # Make sure the random distribution returns the correct value for a # given seed def setup_method(self): self.seed = 1234567890 def test_integers(self): random = Generator(MT19937(self.seed)) actual = random.integers(-99, 99, size=(3, 2)) desired = np.array([[-80, -56], [41, 37], [-83, -16]]) assert_array_equal(actual, desired) def test_integers_masked(self): # Test masked rejection sampling algorithm to generate array of # uint32 in an interval. random = Generator(MT19937(self.seed)) actual = random.integers(0, 99, size=(3, 2), dtype=np.uint32) desired = np.array([[9, 21], [70, 68], [8, 41]], dtype=np.uint32) assert_array_equal(actual, desired) def test_integers_closed(self): random = Generator(MT19937(self.seed)) actual = random.integers(-99, 99, size=(3, 2), endpoint=True) desired = np.array([[-80, -56], [41, 38], [-83, -15]]) assert_array_equal(actual, desired) def test_integers_max_int(self): # Tests whether integers with closed=True can generate the # maximum allowed Python int that can be converted # into a C long. Previous implementations of this # method have thrown an OverflowError when attempting # to generate this integer. actual = random.integers(np.iinfo('l').max, np.iinfo('l').max, endpoint=True) desired = np.iinfo('l').max assert_equal(actual, desired) def test_random(self): random = Generator(MT19937(self.seed)) actual = random.random((3, 2)) desired = np.array([[0.096999199829214, 0.707517457682192], [0.084364834598269, 0.767731206553125], [0.665069021359413, 0.715487190596693]]) assert_array_almost_equal(actual, desired, decimal=15) random = Generator(MT19937(self.seed)) actual = random.random() assert_array_almost_equal(actual, desired[0, 0], decimal=15) def test_random_float(self): random = Generator(MT19937(self.seed)) actual = random.random((3, 2)) desired = np.array([[0.0969992 , 0.70751746], # noqa: E203 [0.08436483, 0.76773121], [0.66506902, 0.71548719]]) assert_array_almost_equal(actual, desired, decimal=7) def test_random_float_scalar(self): random = Generator(MT19937(self.seed)) actual = random.random(dtype=np.float32) desired = 0.0969992 assert_array_almost_equal(actual, desired, decimal=7) @pytest.mark.parametrize('dtype, uint_view_type', [(np.float32, np.uint32), (np.float64, np.uint64)]) def test_random_distribution_of_lsb(self, dtype, uint_view_type): random = Generator(MT19937(self.seed)) sample = random.random(100000, dtype=dtype) num_ones_in_lsb = np.count_nonzero(sample.view(uint_view_type) & 1) # The probability of a 1 in the least significant bit is 0.25. # With a sample size of 100000, the probability that num_ones_in_lsb # is outside the following range is less than 5e-11. assert 24100 < num_ones_in_lsb < 25900 def test_random_unsupported_type(self): assert_raises(TypeError, random.random, dtype='int32') def test_choice_uniform_replace(self): random = Generator(MT19937(self.seed)) actual = random.choice(4, 4) desired = np.array([0, 0, 2, 2], dtype=np.int64) assert_array_equal(actual, desired) def test_choice_nonuniform_replace(self): random = Generator(MT19937(self.seed)) actual = random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1]) desired = np.array([0, 1, 0, 1], dtype=np.int64) assert_array_equal(actual, desired) def test_choice_uniform_noreplace(self): random = Generator(MT19937(self.seed)) actual = random.choice(4, 3, replace=False) desired = np.array([2, 0, 3], dtype=np.int64) assert_array_equal(actual, desired) actual = random.choice(4, 4, replace=False, shuffle=False) desired = np.arange(4, dtype=np.int64) assert_array_equal(actual, desired) def test_choice_nonuniform_noreplace(self): random = Generator(MT19937(self.seed)) actual = random.choice(4, 3, replace=False, p=[0.1, 0.3, 0.5, 0.1]) desired = np.array([0, 2, 3], dtype=np.int64) assert_array_equal(actual, desired) def test_choice_noninteger(self): random = Generator(MT19937(self.seed)) actual = random.choice(['a', 'b', 'c', 'd'], 4) desired = np.array(['a', 'a', 'c', 'c']) assert_array_equal(actual, desired) def test_choice_multidimensional_default_axis(self): random = Generator(MT19937(self.seed)) actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 3) desired = np.array([[0, 1], [0, 1], [4, 5]]) assert_array_equal(actual, desired) def test_choice_multidimensional_custom_axis(self): random = Generator(MT19937(self.seed)) actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 1, axis=1) desired = np.array([[0], [2], [4], [6]]) assert_array_equal(actual, desired) def test_choice_exceptions(self): sample = random.choice assert_raises(ValueError, sample, -1, 3) assert_raises(ValueError, sample, 3., 3) assert_raises(ValueError, sample, [], 3) assert_raises(ValueError, sample, [1, 2, 3, 4], 3, p=[[0.25, 0.25], [0.25, 0.25]]) assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2]) assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1]) assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4]) assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False) # gh-13087 assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False) assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False) assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False) assert_raises(ValueError, sample, [1, 2, 3], 2, replace=False, p=[1, 0, 0]) def test_choice_return_shape(self): p = [0.1, 0.9] # Check scalar assert_(np.isscalar(random.choice(2, replace=True))) assert_(np.isscalar(random.choice(2, replace=False))) assert_(np.isscalar(random.choice(2, replace=True, p=p))) assert_(np.isscalar(random.choice(2, replace=False, p=p))) assert_(np.isscalar(random.choice([1, 2], replace=True))) assert_(random.choice([None], replace=True) is None) a = np.array([1, 2]) arr = np.empty(1, dtype=object) arr[0] = a assert_(random.choice(arr, replace=True) is a) # Check 0-d array s = () assert_(not np.isscalar(random.choice(2, s, replace=True))) assert_(not np.isscalar(random.choice(2, s, replace=False))) assert_(not np.isscalar(random.choice(2, s, replace=True, p=p))) assert_(not np.isscalar(random.choice(2, s, replace=False, p=p))) assert_(not np.isscalar(random.choice([1, 2], s, replace=True))) assert_(random.choice([None], s, replace=True).ndim == 0) a = np.array([1, 2]) arr = np.empty(1, dtype=object) arr[0] = a assert_(random.choice(arr, s, replace=True).item() is a) # Check multi dimensional array s = (2, 3) p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2] assert_equal(random.choice(6, s, replace=True).shape, s) assert_equal(random.choice(6, s, replace=False).shape, s) assert_equal(random.choice(6, s, replace=True, p=p).shape, s) assert_equal(random.choice(6, s, replace=False, p=p).shape, s) assert_equal(random.choice(np.arange(6), s, replace=True).shape, s) # Check zero-size assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape, (3, 0, 4)) assert_equal(random.integers(0, -10, size=0).shape, (0,)) assert_equal(random.integers(10, 10, size=0).shape, (0,)) assert_equal(random.choice(0, size=0).shape, (0,)) assert_equal(random.choice([], size=(0,)).shape, (0,)) assert_equal(random.choice(['a', 'b'], size=(3, 0, 4)).shape, (3, 0, 4)) assert_raises(ValueError, random.choice, [], 10) def test_choice_nan_probabilities(self): a = np.array([42, 1, 2]) p = [None, None, None] assert_raises(ValueError, random.choice, a, p=p) def test_choice_p_non_contiguous(self): p = np.ones(10) / 5 p[1::2] = 3.0 random = Generator(MT19937(self.seed)) non_contig = random.choice(5, 3, p=p[::2]) random = Generator(MT19937(self.seed)) contig = random.choice(5, 3, p=np.ascontiguousarray(p[::2])) assert_array_equal(non_contig, contig) def test_choice_return_type(self): # gh 9867 p = np.ones(4) / 4. actual = random.choice(4, 2) assert actual.dtype == np.int64 actual = random.choice(4, 2, replace=False) assert actual.dtype == np.int64 actual = random.choice(4, 2, p=p) assert actual.dtype == np.int64 actual = random.choice(4, 2, p=p, replace=False) assert actual.dtype == np.int64 def test_choice_large_sample(self): choice_hash = '4266599d12bfcfb815213303432341c06b4349f5455890446578877bb322e222' random = Generator(MT19937(self.seed)) actual = random.choice(10000, 5000, replace=False) if sys.byteorder != 'little': actual = actual.byteswap() res = hashlib.sha256(actual.view(np.int8)).hexdigest() assert_(choice_hash == res) def test_choice_array_size_empty_tuple(self): random = Generator(MT19937(self.seed)) assert_array_equal(random.choice([1, 2, 3], size=()), np.array(1), strict=True) assert_array_equal(random.choice([[1, 2, 3]], size=()), [1, 2, 3]) assert_array_equal(random.choice([[1]], size=()), [1], strict=True) assert_array_equal(random.choice([[1]], size=(), axis=1), [1], strict=True) def test_bytes(self): random = Generator(MT19937(self.seed)) actual = random.bytes(10) desired = b'\x86\xf0\xd4\x18\xe1\x81\t8%\xdd' assert_equal(actual, desired) def test_shuffle(self): # Test lists, arrays (of various dtypes), and multidimensional versions # of both, c-contiguous or not: for conv in [lambda x: np.array([]), lambda x: x, lambda x: np.asarray(x).astype(np.int8), lambda x: np.asarray(x).astype(np.float32), lambda x: np.asarray(x).astype(np.complex64), lambda x: np.asarray(x).astype(object), lambda x: [(i, i) for i in x], lambda x: np.asarray([[i, i] for i in x]), lambda x: np.vstack([x, x]).T, # gh-11442 lambda x: (np.asarray([(i, i) for i in x], [("a", int), ("b", int)]) .view(np.recarray)), # gh-4270 lambda x: np.asarray([(i, i) for i in x], [("a", object, (1,)), ("b", np.int32, (1,))])]: random = Generator(MT19937(self.seed)) alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) random.shuffle(alist) actual = alist desired = conv([4, 1, 9, 8, 0, 5, 3, 6, 2, 7]) assert_array_equal(actual, desired) def test_shuffle_custom_axis(self): random = Generator(MT19937(self.seed)) actual = np.arange(16).reshape((4, 4)) random.shuffle(actual, axis=1) desired = np.array([[ 0, 3, 1, 2], [ 4, 7, 5, 6], [ 8, 11, 9, 10], [12, 15, 13, 14]]) assert_array_equal(actual, desired) random = Generator(MT19937(self.seed)) actual = np.arange(16).reshape((4, 4)) random.shuffle(actual, axis=-1) assert_array_equal(actual, desired) def test_shuffle_custom_axis_empty(self): random = Generator(MT19937(self.seed)) desired = np.array([]).reshape((0, 6)) for axis in (0, 1): actual = np.array([]).reshape((0, 6)) random.shuffle(actual, axis=axis) assert_array_equal(actual, desired) def test_shuffle_axis_nonsquare(self): y1 = np.arange(20).reshape(2, 10) y2 = y1.copy() random = Generator(MT19937(self.seed)) random.shuffle(y1, axis=1) random = Generator(MT19937(self.seed)) random.shuffle(y2.T) assert_array_equal(y1, y2) def test_shuffle_masked(self): # gh-3263 a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1) b = np.ma.masked_values(np.arange(20) % 3 - 1, -1) a_orig = a.copy() b_orig = b.copy() for i in range(50): random.shuffle(a) assert_equal( sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask])) random.shuffle(b) assert_equal( sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask])) def test_shuffle_exceptions(self): random = Generator(MT19937(self.seed)) arr = np.arange(10) assert_raises(AxisError, random.shuffle, arr, 1) arr = np.arange(9).reshape((3, 3)) assert_raises(AxisError, random.shuffle, arr, 3) assert_raises(TypeError, random.shuffle, arr, slice(1, 2, None)) arr = [[1, 2, 3], [4, 5, 6]] assert_raises(NotImplementedError, random.shuffle, arr, 1) arr = np.array(3) assert_raises(TypeError, random.shuffle, arr) arr = np.ones((3, 2)) assert_raises(AxisError, random.shuffle, arr, 2) def test_shuffle_not_writeable(self): random = Generator(MT19937(self.seed)) a = np.zeros(5) a.flags.writeable = False with pytest.raises(ValueError, match='read-only'): random.shuffle(a) def test_permutation(self): random = Generator(MT19937(self.seed)) alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0] actual = random.permutation(alist) desired = [4, 1, 9, 8, 0, 5, 3, 6, 2, 7] assert_array_equal(actual, desired) random = Generator(MT19937(self.seed)) arr_2d = np.atleast_2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]).T actual = random.permutation(arr_2d) assert_array_equal(actual, np.atleast_2d(desired).T) bad_x_str = "abcd" assert_raises(AxisError, random.permutation, bad_x_str) bad_x_float = 1.2 assert_raises(AxisError, random.permutation, bad_x_float) random = Generator(MT19937(self.seed)) integer_val = 10 desired = [3, 0, 8, 7, 9, 4, 2, 5, 1, 6] actual = random.permutation(integer_val) assert_array_equal(actual, desired) def test_permutation_custom_axis(self): a = np.arange(16).reshape((4, 4)) desired = np.array([[ 0, 3, 1, 2], [ 4, 7, 5, 6], [ 8, 11, 9, 10], [12, 15, 13, 14]]) random = Generator(MT19937(self.seed)) actual = random.permutation(a, axis=1) assert_array_equal(actual, desired) random = Generator(MT19937(self.seed)) actual = random.permutation(a, axis=-1) assert_array_equal(actual, desired) def test_permutation_exceptions(self): random = Generator(MT19937(self.seed)) arr = np.arange(10) assert_raises(AxisError, random.permutation, arr, 1) arr = np.arange(9).reshape((3, 3)) assert_raises(AxisError, random.permutation, arr, 3) assert_raises(TypeError, random.permutation, arr, slice(1, 2, None)) @pytest.mark.parametrize("dtype", [int, object]) @pytest.mark.parametrize("axis, expected", [(None, np.array([[3, 7, 0, 9, 10, 11], [8, 4, 2, 5, 1, 6]])), (0, np.array([[6, 1, 2, 9, 10, 11], [0, 7, 8, 3, 4, 5]])), (1, np.array([[ 5, 3, 4, 0, 2, 1], [11, 9, 10, 6, 8, 7]]))]) def test_permuted(self, dtype, axis, expected): random = Generator(MT19937(self.seed)) x = np.arange(12).reshape(2, 6).astype(dtype) random.permuted(x, axis=axis, out=x) assert_array_equal(x, expected) random = Generator(MT19937(self.seed)) x = np.arange(12).reshape(2, 6).astype(dtype) y = random.permuted(x, axis=axis) assert y.dtype == dtype assert_array_equal(y, expected) def test_permuted_with_strides(self): random = Generator(MT19937(self.seed)) x0 = np.arange(22).reshape(2, 11) x1 = x0.copy() x = x0[:, ::3] y = random.permuted(x, axis=1, out=x) expected = np.array([[0, 9, 3, 6], [14, 20, 11, 17]]) assert_array_equal(y, expected) x1[:, ::3] = expected # Verify that the original x0 was modified in-place as expected. assert_array_equal(x1, x0) def test_permuted_empty(self): y = random.permuted([]) assert_array_equal(y, []) @pytest.mark.parametrize('outshape', [(2, 3), 5]) def test_permuted_out_with_wrong_shape(self, outshape): a = np.array([1, 2, 3]) out = np.zeros(outshape, dtype=a.dtype) with pytest.raises(ValueError, match='same shape'): random.permuted(a, out=out) def test_permuted_out_with_wrong_type(self): out = np.zeros((3, 5), dtype=np.int32) x = np.ones((3, 5)) with pytest.raises(TypeError, match='Cannot cast'): random.permuted(x, axis=1, out=out) def test_permuted_not_writeable(self): x = np.zeros((2, 5)) x.flags.writeable = False with pytest.raises(ValueError, match='read-only'): random.permuted(x, axis=1, out=x) def test_beta(self): random = Generator(MT19937(self.seed)) actual = random.beta(.1, .9, size=(3, 2)) desired = np.array( [[1.083029353267698e-10, 2.449965303168024e-11], [2.397085162969853e-02, 3.590779671820755e-08], [2.830254190078299e-04, 1.744709918330393e-01]]) assert_array_almost_equal(actual, desired, decimal=15) def test_binomial(self): random = Generator(MT19937(self.seed)) actual = random.binomial(100.123, .456, size=(3, 2)) desired = np.array([[42, 41], [42, 48], [44, 50]]) assert_array_equal(actual, desired) random = Generator(MT19937(self.seed)) actual = random.binomial(100.123, .456) desired = 42 assert_array_equal(actual, desired) def test_chisquare(self): random = Generator(MT19937(self.seed)) actual = random.chisquare(50, size=(3, 2)) desired = np.array([[32.9850547060149, 39.0219480493301], [56.2006134779419, 57.3474165711485], [55.4243733880198, 55.4209797925213]]) assert_array_almost_equal(actual, desired, decimal=13) def test_dirichlet(self): random = Generator(MT19937(self.seed)) alpha = np.array([51.72840233779265162, 39.74494232180943953]) actual = random.dirichlet(alpha, size=(3, 2)) desired = np.array([[[0.5439892869558927, 0.45601071304410745], [0.5588917345860708, 0.4411082654139292 ]], # noqa: E202 [[0.5632074165063435, 0.43679258349365657], [0.54862581112627, 0.45137418887373015]], [[0.49961831357047226, 0.5003816864295278 ], # noqa: E202 [0.52374806183482, 0.47625193816517997]]]) assert_array_almost_equal(actual, desired, decimal=15) bad_alpha = np.array([5.4e-01, -1.0e-16]) assert_raises(ValueError, random.dirichlet, bad_alpha) random = Generator(MT19937(self.seed)) alpha = np.array([51.72840233779265162, 39.74494232180943953]) actual = random.dirichlet(alpha) assert_array_almost_equal(actual, desired[0, 0], decimal=15) def test_dirichlet_size(self): # gh-3173 p = np.array([51.72840233779265162, 39.74494232180943953]) assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) assert_equal(random.dirichlet(p, [2, 2]).shape, (2, 2, 2)) assert_equal(random.dirichlet(p, (2, 2)).shape, (2, 2, 2)) assert_equal(random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2)) assert_raises(TypeError, random.dirichlet, p, float(1)) def test_dirichlet_bad_alpha(self): # gh-2089 alpha = np.array([5.4e-01, -1.0e-16]) assert_raises(ValueError, random.dirichlet, alpha) # gh-15876 assert_raises(ValueError, random.dirichlet, [[5, 1]]) assert_raises(ValueError, random.dirichlet, [[5], [1]]) assert_raises(ValueError, random.dirichlet, [[[5], [1]], [[1], [5]]]) assert_raises(ValueError, random.dirichlet, np.array([[5, 1], [1, 5]])) def test_dirichlet_alpha_non_contiguous(self): a = np.array([51.72840233779265162, -1.0, 39.74494232180943953]) alpha = a[::2] random = Generator(MT19937(self.seed)) non_contig = random.dirichlet(alpha, size=(3, 2)) random = Generator(MT19937(self.seed)) contig = random.dirichlet(np.ascontiguousarray(alpha), size=(3, 2)) assert_array_almost_equal(non_contig, contig) def test_dirichlet_small_alpha(self): eps = 1.0e-9 # 1.0e-10 -> runtime x 10; 1e-11 -> runtime x 200, etc. alpha = eps * np.array([1., 1.0e-3]) random = Generator(MT19937(self.seed)) actual = random.dirichlet(alpha, size=(3, 2)) expected = np.array([ [[1., 0.], [1., 0.]], [[1., 0.], [1., 0.]], [[1., 0.], [1., 0.]] ]) assert_array_almost_equal(actual, expected, decimal=15) @pytest.mark.slow def test_dirichlet_moderately_small_alpha(self): # Use alpha.max() < 0.1 to trigger stick breaking code path alpha = np.array([0.02, 0.04, 0.03]) exact_mean = alpha / alpha.sum() random = Generator(MT19937(self.seed)) sample = random.dirichlet(alpha, size=20000000) sample_mean = sample.mean(axis=0) assert_allclose(sample_mean, exact_mean, rtol=1e-3) # This set of parameters includes inputs with alpha.max() >= 0.1 and # alpha.max() < 0.1 to exercise both generation methods within the # dirichlet code. @pytest.mark.parametrize( 'alpha', [[5, 9, 0, 8], [0.5, 0, 0, 0], [1, 5, 0, 0, 1.5, 0, 0, 0], [0.01, 0.03, 0, 0.005], [1e-5, 0, 0, 0], [0.002, 0.015, 0, 0, 0.04, 0, 0, 0], [0.0], [0, 0, 0]], ) def test_dirichlet_multiple_zeros_in_alpha(self, alpha): alpha = np.array(alpha) y = random.dirichlet(alpha) assert_equal(y[alpha == 0], 0.0) def test_exponential(self): random = Generator(MT19937(self.seed)) actual = random.exponential(1.1234, size=(3, 2)) desired = np.array([[0.098845481066258, 1.560752510746964], [0.075730916041636, 1.769098974710777], [1.488602544592235, 2.49684815275751 ]]) # noqa: E202 assert_array_almost_equal(actual, desired, decimal=15) def test_exponential_0(self): assert_equal(random.exponential(scale=0), 0) assert_raises(ValueError, random.exponential, scale=-0.) def test_f(self): random = Generator(MT19937(self.seed)) actual = random.f(12, 77, size=(3, 2)) desired = np.array([[0.461720027077085, 1.100441958872451], [1.100337455217484, 0.91421736740018 ], # noqa: E202 [0.500811891303113, 0.826802454552058]]) assert_array_almost_equal(actual, desired, decimal=15) def test_gamma(self): random = Generator(MT19937(self.seed)) actual = random.gamma(5, 3, size=(3, 2)) desired = np.array([[ 5.03850858902096, 7.9228656732049 ], # noqa: E202 [18.73983605132985, 19.57961681699238], [18.17897755150825, 18.17653912505234]]) assert_array_almost_equal(actual, desired, decimal=14) def test_gamma_0(self): assert_equal(random.gamma(shape=0, scale=0), 0) assert_raises(ValueError, random.gamma, shape=-0., scale=-0.) def test_geometric(self): random = Generator(MT19937(self.seed)) actual = random.geometric(.123456789, size=(3, 2)) desired = np.array([[1, 11], [1, 12], [11, 17]]) assert_array_equal(actual, desired) def test_geometric_exceptions(self): assert_raises(ValueError, random.geometric, 1.1) assert_raises(ValueError, random.geometric, [1.1] * 10) assert_raises(ValueError, random.geometric, -0.1) assert_raises(ValueError, random.geometric, [-0.1] * 10) with np.errstate(invalid='ignore'): assert_raises(ValueError, random.geometric, np.nan) assert_raises(ValueError, random.geometric, [np.nan] * 10) def test_gumbel(self): random = Generator(MT19937(self.seed)) actual = random.gumbel(loc=.123456789, scale=2.0, size=(3, 2)) desired = np.array([[ 4.688397515056245, -0.289514845417841], [ 4.981176042584683, -0.633224272589149], [-0.055915275687488, -0.333962478257953]]) assert_array_almost_equal(actual, desired, decimal=15) def test_gumbel_0(self): assert_equal(random.gumbel(scale=0), 0) assert_raises(ValueError, random.gumbel, scale=-0.) def test_hypergeometric(self): random = Generator(MT19937(self.seed)) actual = random.hypergeometric(10.1, 5.5, 14, size=(3, 2)) desired = np.array([[ 9, 9], [ 9, 9], [10, 9]]) assert_array_equal(actual, desired) # Test nbad = 0 actual = random.hypergeometric(5, 0, 3, size=4) desired = np.array([3, 3, 3, 3]) assert_array_equal(actual, desired) actual = random.hypergeometric(15, 0, 12, size=4) desired = np.array([12, 12, 12, 12]) assert_array_equal(actual, desired) # Test ngood = 0 actual = random.hypergeometric(0, 5, 3, size=4) desired = np.array([0, 0, 0, 0]) assert_array_equal(actual, desired) actual = random.hypergeometric(0, 15, 12, size=4) desired = np.array([0, 0, 0, 0]) assert_array_equal(actual, desired) def test_laplace(self): random = Generator(MT19937(self.seed)) actual = random.laplace(loc=.123456789, scale=2.0, size=(3, 2)) desired = np.array([[-3.156353949272393, 1.195863024830054], [-3.435458081645966, 1.656882398925444], [ 0.924824032467446, 1.251116432209336]]) assert_array_almost_equal(actual, desired, decimal=15) def test_laplace_0(self): assert_equal(random.laplace(scale=0), 0) assert_raises(ValueError, random.laplace, scale=-0.) def test_logistic(self): random = Generator(MT19937(self.seed)) actual = random.logistic(loc=.123456789, scale=2.0, size=(3, 2)) desired = np.array([[-4.338584631510999, 1.890171436749954], [-4.64547787337966 , 2.514545562919217], # noqa: E203 [ 1.495389489198666, 1.967827627577474]]) assert_array_almost_equal(actual, desired, decimal=15) def test_lognormal(self): random = Generator(MT19937(self.seed)) actual = random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2)) desired = np.array([[ 0.0268252166335, 13.9534486483053], [ 0.1204014788936, 2.2422077497792], [ 4.2484199496128, 12.0093343977523]]) assert_array_almost_equal(actual, desired, decimal=13) def test_lognormal_0(self): assert_equal(random.lognormal(sigma=0), 1) assert_raises(ValueError, random.lognormal, sigma=-0.) def test_logseries(self): random = Generator(MT19937(self.seed)) actual = random.logseries(p=.923456789, size=(3, 2)) desired = np.array([[14, 17], [3, 18], [5, 1]]) assert_array_equal(actual, desired) def test_logseries_zero(self): random = Generator(MT19937(self.seed)) assert random.logseries(0) == 1 @pytest.mark.parametrize("value", [np.nextafter(0., -1), 1., np.nan, 5.]) def test_logseries_exceptions(self, value): random = Generator(MT19937(self.seed)) with np.errstate(invalid="ignore"): with pytest.raises(ValueError): random.logseries(value) with pytest.raises(ValueError): # contiguous path: random.logseries(np.array([value] * 10)) with pytest.raises(ValueError): # non-contiguous path: random.logseries(np.array([value] * 10)[::2]) def test_multinomial(self): random = Generator(MT19937(self.seed)) actual = random.multinomial(20, [1 / 6.] * 6, size=(3, 2)) desired = np.array([[[1, 5, 1, 6, 4, 3], [4, 2, 6, 2, 4, 2]], [[5, 3, 2, 6, 3, 1], [4, 4, 0, 2, 3, 7]], [[6, 3, 1, 5, 3, 2], [5, 5, 3, 1, 2, 4]]]) assert_array_equal(actual, desired) @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"]) def test_multivariate_normal(self, method): random = Generator(MT19937(self.seed)) mean = (.123456789, 10) cov = [[1, 0], [0, 1]] size = (3, 2) actual = random.multivariate_normal(mean, cov, size, method=method) desired = np.array([[[-1.747478062846581, 11.25613495182354 ], # noqa: E202 [-0.9967333370066214, 10.342002097029821]], [[ 0.7850019631242964, 11.181113712443013], [ 0.8901349653255224, 8.873825399642492]], [[ 0.7130260107430003, 9.551628690083056], [ 0.7127098726541128, 11.991709234143173]]]) assert_array_almost_equal(actual, desired, decimal=15) # Check for default size, was raising deprecation warning actual = random.multivariate_normal(mean, cov, method=method) desired = np.array([0.233278563284287, 9.424140804347195]) assert_array_almost_equal(actual, desired, decimal=15) # Check that non symmetric covariance input raises exception when # check_valid='raises' if using default svd method. mean = [0, 0] cov = [[1, 2], [1, 2]] assert_raises(ValueError, random.multivariate_normal, mean, cov, check_valid='raise') # Check that non positive-semidefinite covariance warns with # RuntimeWarning cov = [[1, 2], [2, 1]] pytest.warns(RuntimeWarning, random.multivariate_normal, mean, cov) pytest.warns(RuntimeWarning, random.multivariate_normal, mean, cov, method='eigh') assert_raises(LinAlgError, random.multivariate_normal, mean, cov, method='cholesky') # and that it doesn't warn with RuntimeWarning check_valid='ignore' assert_no_warnings(random.multivariate_normal, mean, cov, check_valid='ignore') # and that it raises with RuntimeWarning check_valid='raises' assert_raises(ValueError, random.multivariate_normal, mean, cov, check_valid='raise') assert_raises(ValueError, random.multivariate_normal, mean, cov, check_valid='raise', method='eigh') # check degenerate samples from singular covariance matrix cov = [[1, 1], [1, 1]] if method in ('svd', 'eigh'): samples = random.multivariate_normal(mean, cov, size=(3, 2), method=method) assert_array_almost_equal(samples[..., 0], samples[..., 1], decimal=6) else: assert_raises(LinAlgError, random.multivariate_normal, mean, cov, method='cholesky') cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32) with warnings.catch_warnings(): warnings.simplefilter("error") random.multivariate_normal(mean, cov, method=method) mu = np.zeros(2) cov = np.eye(2) assert_raises(ValueError, random.multivariate_normal, mean, cov, check_valid='other') assert_raises(ValueError, random.multivariate_normal, np.zeros((2, 1, 1)), cov) assert_raises(ValueError, random.multivariate_normal, mu, np.empty((3, 2))) assert_raises(ValueError, random.multivariate_normal, mu, np.eye(3)) @pytest.mark.parametrize('mean, cov', [([0], [[1 + 1j]]), ([0j], [[1]])]) def test_multivariate_normal_disallow_complex(self, mean, cov): random = Generator(MT19937(self.seed)) with pytest.raises(TypeError, match="must not be complex"): random.multivariate_normal(mean, cov) @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"]) def test_multivariate_normal_basic_stats(self, method): random = Generator(MT19937(self.seed)) n_s = 1000 mean = np.array([1, 2]) cov = np.array([[2, 1], [1, 2]]) s = random.multivariate_normal(mean, cov, size=(n_s,), method=method) s_center = s - mean cov_emp = (s_center.T @ s_center) / (n_s - 1) # these are pretty loose and are only designed to detect major errors assert np.all(np.abs(s_center.mean(-2)) < 0.1) assert np.all(np.abs(cov_emp - cov) < 0.2) def test_negative_binomial(self): random = Generator(MT19937(self.seed)) actual = random.negative_binomial(n=100, p=.12345, size=(3, 2)) desired = np.array([[543, 727], [775, 760], [600, 674]]) assert_array_equal(actual, desired) def test_negative_binomial_exceptions(self): with np.errstate(invalid='ignore'): assert_raises(ValueError, random.negative_binomial, 100, np.nan) assert_raises(ValueError, random.negative_binomial, 100, [np.nan] * 10) def test_negative_binomial_p0_exception(self): # Verify that p=0 raises an exception. with assert_raises(ValueError): x = random.negative_binomial(1, 0) def test_negative_binomial_invalid_p_n_combination(self): # Verify that values of p and n that would result in an overflow # or infinite loop raise an exception. with np.errstate(invalid='ignore'): assert_raises(ValueError, random.negative_binomial, 2**62, 0.1) assert_raises(ValueError, random.negative_binomial, [2**62], [0.1]) def test_noncentral_chisquare(self): random = Generator(MT19937(self.seed)) actual = random.noncentral_chisquare(df=5, nonc=5, size=(3, 2)) desired = np.array([[ 1.70561552362133, 15.97378184942111], [13.71483425173724, 20.17859633310629], [11.3615477156643 , 3.67891108738029]]) # noqa: E203 assert_array_almost_equal(actual, desired, decimal=14) actual = random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2)) desired = np.array([[9.41427665607629e-04, 1.70473157518850e-04], [1.14554372041263e+00, 1.38187755933435e-03], [1.90659181905387e+00, 1.21772577941822e+00]]) assert_array_almost_equal(actual, desired, decimal=14) random = Generator(MT19937(self.seed)) actual = random.noncentral_chisquare(df=5, nonc=0, size=(3, 2)) desired = np.array([[0.82947954590419, 1.80139670767078], [6.58720057417794, 7.00491463609814], [6.31101879073157, 6.30982307753005]]) assert_array_almost_equal(actual, desired, decimal=14) def test_noncentral_f(self): random = Generator(MT19937(self.seed)) actual = random.noncentral_f(dfnum=5, dfden=2, nonc=1, size=(3, 2)) desired = np.array([[0.060310671139 , 0.23866058175939], # noqa: E203 [0.86860246709073, 0.2668510459738 ], # noqa: E202 [0.23375780078364, 1.88922102885943]]) assert_array_almost_equal(actual, desired, decimal=14) def test_noncentral_f_nan(self): random = Generator(MT19937(self.seed)) actual = random.noncentral_f(dfnum=5, dfden=2, nonc=np.nan) assert np.isnan(actual) def test_normal(self): random = Generator(MT19937(self.seed)) actual = random.normal(loc=.123456789, scale=2.0, size=(3, 2)) desired = np.array([[-3.618412914693162, 2.635726692647081], [-2.116923463013243, 0.807460983059643], [ 1.446547137248593, 2.485684213886024]]) assert_array_almost_equal(actual, desired, decimal=15) def test_normal_0(self): assert_equal(random.normal(scale=0), 0) assert_raises(ValueError, random.normal, scale=-0.) def test_pareto(self): random = Generator(MT19937(self.seed)) actual = random.pareto(a=.123456789, size=(3, 2)) desired = np.array([[1.0394926776069018e+00, 7.7142534343505773e+04], [7.2640150889064703e-01, 3.4650454783825594e+05], [4.5852344481994740e+04, 6.5851383009539105e+07]]) # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this # matrix differs by 24 nulps. Discussion: # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html # Consensus is that this is probably some gcc quirk that affects # rounding but not in any important way, so we just use a looser # tolerance on this test: np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30) def test_poisson(self): random = Generator(MT19937(self.seed)) actual = random.poisson(lam=.123456789, size=(3, 2)) desired = np.array([[0, 0], [0, 0], [0, 0]]) assert_array_equal(actual, desired) def test_poisson_exceptions(self): lambig = np.iinfo('int64').max lamneg = -1 assert_raises(ValueError, random.poisson, lamneg) assert_raises(ValueError, random.poisson, [lamneg] * 10) assert_raises(ValueError, random.poisson, lambig) assert_raises(ValueError, random.poisson, [lambig] * 10) with np.errstate(invalid='ignore'): assert_raises(ValueError, random.poisson, np.nan) assert_raises(ValueError, random.poisson, [np.nan] * 10) def test_power(self): random = Generator(MT19937(self.seed)) actual = random.power(a=.123456789, size=(3, 2)) desired = np.array([[1.977857368842754e-09, 9.806792196620341e-02], [2.482442984543471e-10, 1.527108843266079e-01], [8.188283434244285e-02, 3.950547209346948e-01]]) assert_array_almost_equal(actual, desired, decimal=15) def test_rayleigh(self): random = Generator(MT19937(self.seed)) actual = random.rayleigh(scale=10, size=(3, 2)) desired = np.array([[4.19494429102666, 16.66920198906598], [3.67184544902662, 17.74695521962917], [16.27935397855501, 21.08355560691792]]) assert_array_almost_equal(actual, desired, decimal=14) def test_rayleigh_0(self): assert_equal(random.rayleigh(scale=0), 0) assert_raises(ValueError, random.rayleigh, scale=-0.) def test_standard_cauchy(self): random = Generator(MT19937(self.seed)) actual = random.standard_cauchy(size=(3, 2)) desired = np.array([[-1.489437778266206, -3.275389641569784], [ 0.560102864910406, -0.680780916282552], [-1.314912905226277, 0.295852965660225]]) assert_array_almost_equal(actual, desired, decimal=15) def test_standard_exponential(self): random = Generator(MT19937(self.seed)) actual = random.standard_exponential(size=(3, 2), method='inv') desired = np.array([[0.102031839440643, 1.229350298474972], [0.088137284693098, 1.459859985522667], [1.093830802293668, 1.256977002164613]]) assert_array_almost_equal(actual, desired, decimal=15) def test_standard_expoential_type_error(self): assert_raises(TypeError, random.standard_exponential, dtype=np.int32) def test_standard_gamma(self): random = Generator(MT19937(self.seed)) actual = random.standard_gamma(shape=3, size=(3, 2)) desired = np.array([[0.62970724056362, 1.22379851271008], [3.899412530884 , 4.12479964250139], # noqa: E203 [3.74994102464584, 3.74929307690815]]) assert_array_almost_equal(actual, desired, decimal=14) def test_standard_gammma_scalar_float(self): random = Generator(MT19937(self.seed)) actual = random.standard_gamma(3, dtype=np.float32) desired = 2.9242148399353027 assert_array_almost_equal(actual, desired, decimal=6) def test_standard_gamma_float(self): random = Generator(MT19937(self.seed)) actual = random.standard_gamma(shape=3, size=(3, 2)) desired = np.array([[0.62971, 1.2238], [3.89941, 4.1248], [3.74994, 3.74929]]) assert_array_almost_equal(actual, desired, decimal=5) def test_standard_gammma_float_out(self): actual = np.zeros((3, 2), dtype=np.float32) random = Generator(MT19937(self.seed)) random.standard_gamma(10.0, out=actual, dtype=np.float32) desired = np.array([[10.14987, 7.87012], [ 9.46284, 12.56832], [13.82495, 7.81533]], dtype=np.float32) assert_array_almost_equal(actual, desired, decimal=5) random = Generator(MT19937(self.seed)) random.standard_gamma(10.0, out=actual, size=(3, 2), dtype=np.float32) assert_array_almost_equal(actual, desired, decimal=5) def test_standard_gamma_unknown_type(self): assert_raises(TypeError, random.standard_gamma, 1., dtype='int32') def test_out_size_mismatch(self): out = np.zeros(10) assert_raises(ValueError, random.standard_gamma, 10.0, size=20, out=out) assert_raises(ValueError, random.standard_gamma, 10.0, size=(10, 1), out=out) def test_standard_gamma_0(self): assert_equal(random.standard_gamma(shape=0), 0) assert_raises(ValueError, random.standard_gamma, shape=-0.) def test_standard_normal(self): random = Generator(MT19937(self.seed)) actual = random.standard_normal(size=(3, 2)) desired = np.array([[-1.870934851846581, 1.25613495182354 ], # noqa: E202 [-1.120190126006621, 0.342002097029821], [ 0.661545174124296, 1.181113712443012]]) assert_array_almost_equal(actual, desired, decimal=15) def test_standard_normal_unsupported_type(self): assert_raises(TypeError, random.standard_normal, dtype=np.int32) def test_standard_t(self): random = Generator(MT19937(self.seed)) actual = random.standard_t(df=10, size=(3, 2)) desired = np.array([[-1.484666193042647, 0.30597891831161], [ 1.056684299648085, -0.407312602088507], [ 0.130704414281157, -2.038053410490321]]) assert_array_almost_equal(actual, desired, decimal=15) def test_triangular(self): random = Generator(MT19937(self.seed)) actual = random.triangular(left=5.12, mode=10.23, right=20.34, size=(3, 2)) desired = np.array([[ 7.86664070590917, 13.6313848513185 ], # noqa: E202 [ 7.68152445215983, 14.36169131136546], [13.16105603911429, 13.72341621856971]]) assert_array_almost_equal(actual, desired, decimal=14) def test_uniform(self): random = Generator(MT19937(self.seed)) actual = random.uniform(low=1.23, high=10.54, size=(3, 2)) desired = np.array([[2.13306255040998 , 7.816987531021207], # noqa: E203 [2.015436610109887, 8.377577533009589], [7.421792588856135, 7.891185744455209]]) assert_array_almost_equal(actual, desired, decimal=15) def test_uniform_range_bounds(self): fmin = np.finfo('float').min fmax = np.finfo('float').max func = random.uniform assert_raises(OverflowError, func, -np.inf, 0) assert_raises(OverflowError, func, 0, np.inf) assert_raises(OverflowError, func, fmin, fmax) assert_raises(OverflowError, func, [-np.inf], [0]) assert_raises(OverflowError, func, [0], [np.inf]) # (fmax / 1e17) - fmin is within range, so this should not throw # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX > # DBL_MAX by increasing fmin a bit random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17) def test_uniform_zero_range(self): func = random.uniform result = func(1.5, 1.5) assert_allclose(result, 1.5) result = func([0.0, np.pi], [0.0, np.pi]) assert_allclose(result, [0.0, np.pi]) result = func([[2145.12], [2145.12]], [2145.12, 2145.12]) assert_allclose(result, 2145.12 + np.zeros((2, 2))) def test_uniform_neg_range(self): func = random.uniform assert_raises(ValueError, func, 2, 1) assert_raises(ValueError, func, [1, 2], [1, 1]) assert_raises(ValueError, func, [[0, 1], [2, 3]], 2) def test_scalar_exception_propagation(self): # Tests that exceptions are correctly propagated in distributions # when called with objects that throw exceptions when converted to # scalars. # # Regression test for gh: 8865 class ThrowingFloat(np.ndarray): def __float__(self): raise TypeError throwing_float = np.array(1.0).view(ThrowingFloat) assert_raises(TypeError, random.uniform, throwing_float, throwing_float) class ThrowingInteger(np.ndarray): def __int__(self): raise TypeError throwing_int = np.array(1).view(ThrowingInteger) assert_raises(TypeError, random.hypergeometric, throwing_int, 1, 1) def test_vonmises(self): random = Generator(MT19937(self.seed)) actual = random.vonmises(mu=1.23, kappa=1.54, size=(3, 2)) desired = np.array([[ 1.107972248690106, 2.841536476232361], [ 1.832602376042457, 1.945511926976032], [-0.260147475776542, 2.058047492231698]]) assert_array_almost_equal(actual, desired, decimal=15) def test_vonmises_small(self): # check infinite loop, gh-4720 random = Generator(MT19937(self.seed)) r = random.vonmises(mu=0., kappa=1.1e-8, size=10**6) assert_(np.isfinite(r).all()) def test_vonmises_nan(self): random = Generator(MT19937(self.seed)) r = random.vonmises(mu=0., kappa=np.nan) assert_(np.isnan(r)) @pytest.mark.parametrize("kappa", [1e4, 1e15]) def test_vonmises_large_kappa(self, kappa): random = Generator(MT19937(self.seed)) rs = RandomState(random.bit_generator) state = random.bit_generator.state random_state_vals = rs.vonmises(0, kappa, size=10) random.bit_generator.state = state gen_vals = random.vonmises(0, kappa, size=10) if kappa < 1e6: assert_allclose(random_state_vals, gen_vals) else: assert np.all(random_state_vals != gen_vals) @pytest.mark.parametrize("mu", [-7., -np.pi, -3.1, np.pi, 3.2]) @pytest.mark.parametrize("kappa", [1e-9, 1e-6, 1, 1e3, 1e15]) def test_vonmises_large_kappa_range(self, mu, kappa): random = Generator(MT19937(self.seed)) r = random.vonmises(mu, kappa, 50) assert_(np.all(r > -np.pi) and np.all(r <= np.pi)) def test_wald(self): random = Generator(MT19937(self.seed)) actual = random.wald(mean=1.23, scale=1.54, size=(3, 2)) desired = np.array([[0.26871721804551, 3.2233942732115 ], # noqa: E202 [2.20328374987066, 2.40958405189353], [2.07093587449261, 0.73073890064369]]) assert_array_almost_equal(actual, desired, decimal=14) def test_weibull(self): random = Generator(MT19937(self.seed)) actual = random.weibull(a=1.23, size=(3, 2)) desired = np.array([[0.138613914769468, 1.306463419753191], [0.111623365934763, 1.446570494646721], [1.257145775276011, 1.914247725027957]]) assert_array_almost_equal(actual, desired, decimal=15) def test_weibull_0(self): random = Generator(MT19937(self.seed)) assert_equal(random.weibull(a=0, size=12), np.zeros(12)) assert_raises(ValueError, random.weibull, a=-0.) def test_zipf(self): random = Generator(MT19937(self.seed)) actual = random.zipf(a=1.23, size=(3, 2)) desired = np.array([[ 1, 1], [ 10, 867], [354, 2]]) assert_array_equal(actual, desired) class TestBroadcast: # tests that functions that broadcast behave # correctly when presented with non-scalar arguments def setup_method(self): self.seed = 123456789 def test_uniform(self): random = Generator(MT19937(self.seed)) low = [0] high = [1] uniform = random.uniform desired = np.array([0.16693771389729, 0.19635129550675, 0.75563050964095]) random = Generator(MT19937(self.seed)) actual = random.uniform(low * 3, high) assert_array_almost_equal(actual, desired, decimal=14) random = Generator(MT19937(self.seed)) actual = random.uniform(low, high * 3) assert_array_almost_equal(actual, desired, decimal=14) def test_normal(self): loc = [0] scale = [1] bad_scale = [-1] random = Generator(MT19937(self.seed)) desired = np.array([-0.38736406738527, 0.79594375042255, 0.0197076236097]) random = Generator(MT19937(self.seed)) actual = random.normal(loc * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.normal, loc * 3, bad_scale) random = Generator(MT19937(self.seed)) normal = random.normal actual = normal(loc, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, normal, loc, bad_scale * 3) def test_beta(self): a = [1] b = [2] bad_a = [-1] bad_b = [-2] desired = np.array([0.18719338682602, 0.73234824491364, 0.17928615186455]) random = Generator(MT19937(self.seed)) beta = random.beta actual = beta(a * 3, b) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, beta, bad_a * 3, b) assert_raises(ValueError, beta, a * 3, bad_b) random = Generator(MT19937(self.seed)) actual = random.beta(a, b * 3) assert_array_almost_equal(actual, desired, decimal=14) def test_exponential(self): scale = [1] bad_scale = [-1] desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629]) random = Generator(MT19937(self.seed)) actual = random.exponential(scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.exponential, bad_scale * 3) def test_standard_gamma(self): shape = [1] bad_shape = [-1] desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629]) random = Generator(MT19937(self.seed)) std_gamma = random.standard_gamma actual = std_gamma(shape * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, std_gamma, bad_shape * 3) def test_gamma(self): shape = [1] scale = [2] bad_shape = [-1] bad_scale = [-2] desired = np.array([1.34491986425611, 0.42760990636187, 1.4355697857258]) random = Generator(MT19937(self.seed)) gamma = random.gamma actual = gamma(shape * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, gamma, bad_shape * 3, scale) assert_raises(ValueError, gamma, shape * 3, bad_scale) random = Generator(MT19937(self.seed)) gamma = random.gamma actual = gamma(shape, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, gamma, bad_shape, scale * 3) assert_raises(ValueError, gamma, shape, bad_scale * 3) def test_f(self): dfnum = [1] dfden = [2] bad_dfnum = [-1] bad_dfden = [-2] desired = np.array([0.07765056244107, 7.72951397913186, 0.05786093891763]) random = Generator(MT19937(self.seed)) f = random.f actual = f(dfnum * 3, dfden) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, f, bad_dfnum * 3, dfden) assert_raises(ValueError, f, dfnum * 3, bad_dfden) random = Generator(MT19937(self.seed)) f = random.f actual = f(dfnum, dfden * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, f, bad_dfnum, dfden * 3) assert_raises(ValueError, f, dfnum, bad_dfden * 3) def test_noncentral_f(self): dfnum = [2] dfden = [3] nonc = [4] bad_dfnum = [0] bad_dfden = [-1] bad_nonc = [-2] desired = np.array([2.02434240411421, 12.91838601070124, 1.24395160354629]) random = Generator(MT19937(self.seed)) nonc_f = random.noncentral_f actual = nonc_f(dfnum * 3, dfden, nonc) assert_array_almost_equal(actual, desired, decimal=14) assert np.all(np.isnan(nonc_f(dfnum, dfden, [np.nan] * 3))) assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc) assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc) assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc) random = Generator(MT19937(self.seed)) nonc_f = random.noncentral_f actual = nonc_f(dfnum, dfden * 3, nonc) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc) assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc) assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc) random = Generator(MT19937(self.seed)) nonc_f = random.noncentral_f actual = nonc_f(dfnum, dfden, nonc * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3) assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3) assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3) def test_noncentral_f_small_df(self): random = Generator(MT19937(self.seed)) desired = np.array([0.04714867120827, 0.1239390327694]) actual = random.noncentral_f(0.9, 0.9, 2, size=2) assert_array_almost_equal(actual, desired, decimal=14) def test_chisquare(self): df = [1] bad_df = [-1] desired = np.array([0.05573640064251, 1.47220224353539, 2.9469379318589]) random = Generator(MT19937(self.seed)) actual = random.chisquare(df * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.chisquare, bad_df * 3) def test_noncentral_chisquare(self): df = [1] nonc = [2] bad_df = [-1] bad_nonc = [-2] desired = np.array([0.07710766249436, 5.27829115110304, 0.630732147399]) random = Generator(MT19937(self.seed)) nonc_chi = random.noncentral_chisquare actual = nonc_chi(df * 3, nonc) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, nonc_chi, bad_df * 3, nonc) assert_raises(ValueError, nonc_chi, df * 3, bad_nonc) random = Generator(MT19937(self.seed)) nonc_chi = random.noncentral_chisquare actual = nonc_chi(df, nonc * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, nonc_chi, bad_df, nonc * 3) assert_raises(ValueError, nonc_chi, df, bad_nonc * 3) def test_standard_t(self): df = [1] bad_df = [-1] desired = np.array([-1.39498829447098, -1.23058658835223, 0.17207021065983]) random = Generator(MT19937(self.seed)) actual = random.standard_t(df * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.standard_t, bad_df * 3) def test_vonmises(self): mu = [2] kappa = [1] bad_kappa = [-1] desired = np.array([2.25935584988528, 2.23326261461399, -2.84152146503326]) random = Generator(MT19937(self.seed)) actual = random.vonmises(mu * 3, kappa) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.vonmises, mu * 3, bad_kappa) random = Generator(MT19937(self.seed)) actual = random.vonmises(mu, kappa * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.vonmises, mu, bad_kappa * 3) def test_pareto(self): a = [1] bad_a = [-1] desired = np.array([0.95905052946317, 0.2383810889437, 1.04988745750013]) random = Generator(MT19937(self.seed)) actual = random.pareto(a * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.pareto, bad_a * 3) def test_weibull(self): a = [1] bad_a = [-1] desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629]) random = Generator(MT19937(self.seed)) actual = random.weibull(a * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.weibull, bad_a * 3) def test_power(self): a = [1] bad_a = [-1] desired = np.array([0.48954864361052, 0.19249412888486, 0.51216834058807]) random = Generator(MT19937(self.seed)) actual = random.power(a * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.power, bad_a * 3) def test_laplace(self): loc = [0] scale = [1] bad_scale = [-1] desired = np.array([-1.09698732625119, -0.93470271947368, 0.71592671378202]) random = Generator(MT19937(self.seed)) laplace = random.laplace actual = laplace(loc * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, laplace, loc * 3, bad_scale) random = Generator(MT19937(self.seed)) laplace = random.laplace actual = laplace(loc, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, laplace, loc, bad_scale * 3) def test_gumbel(self): loc = [0] scale = [1] bad_scale = [-1] desired = np.array([1.70020068231762, 1.52054354273631, -0.34293267607081]) random = Generator(MT19937(self.seed)) gumbel = random.gumbel actual = gumbel(loc * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, gumbel, loc * 3, bad_scale) random = Generator(MT19937(self.seed)) gumbel = random.gumbel actual = gumbel(loc, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, gumbel, loc, bad_scale * 3) def test_logistic(self): loc = [0] scale = [1] bad_scale = [-1] desired = np.array([-1.607487640433, -1.40925686003678, 1.12887112820397]) random = Generator(MT19937(self.seed)) actual = random.logistic(loc * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.logistic, loc * 3, bad_scale) random = Generator(MT19937(self.seed)) actual = random.logistic(loc, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.logistic, loc, bad_scale * 3) assert_equal(random.logistic(1.0, 0.0), 1.0) def test_lognormal(self): mean = [0] sigma = [1] bad_sigma = [-1] desired = np.array([0.67884390500697, 2.21653186290321, 1.01990310084276]) random = Generator(MT19937(self.seed)) lognormal = random.lognormal actual = lognormal(mean * 3, sigma) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, lognormal, mean * 3, bad_sigma) random = Generator(MT19937(self.seed)) actual = random.lognormal(mean, sigma * 3) assert_raises(ValueError, random.lognormal, mean, bad_sigma * 3) def test_rayleigh(self): scale = [1] bad_scale = [-1] desired = np.array( [1.1597068009872629, 0.6539188836253857, 1.1981526554349398] ) random = Generator(MT19937(self.seed)) actual = random.rayleigh(scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.rayleigh, bad_scale * 3) def test_wald(self): mean = [0.5] scale = [1] bad_mean = [0] bad_scale = [-2] desired = np.array([0.38052407392905, 0.50701641508592, 0.484935249864]) random = Generator(MT19937(self.seed)) actual = random.wald(mean * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.wald, bad_mean * 3, scale) assert_raises(ValueError, random.wald, mean * 3, bad_scale) random = Generator(MT19937(self.seed)) actual = random.wald(mean, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.wald, bad_mean, scale * 3) assert_raises(ValueError, random.wald, mean, bad_scale * 3) def test_triangular(self): left = [1] right = [3] mode = [2] bad_left_one = [3] bad_mode_one = [4] bad_left_two, bad_mode_two = right * 2 desired = np.array([1.57781954604754, 1.62665986867957, 2.30090130831326]) random = Generator(MT19937(self.seed)) triangular = random.triangular actual = triangular(left * 3, mode, right) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, triangular, bad_left_one * 3, mode, right) assert_raises(ValueError, triangular, left * 3, bad_mode_one, right) assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two, right) random = Generator(MT19937(self.seed)) triangular = random.triangular actual = triangular(left, mode * 3, right) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, triangular, bad_left_one, mode * 3, right) assert_raises(ValueError, triangular, left, bad_mode_one * 3, right) assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3, right) random = Generator(MT19937(self.seed)) triangular = random.triangular actual = triangular(left, mode, right * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, triangular, bad_left_one, mode, right * 3) assert_raises(ValueError, triangular, left, bad_mode_one, right * 3) assert_raises(ValueError, triangular, bad_left_two, bad_mode_two, right * 3) assert_raises(ValueError, triangular, 10., 0., 20.) assert_raises(ValueError, triangular, 10., 25., 20.) assert_raises(ValueError, triangular, 10., 10., 10.) def test_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] desired = np.array([0, 0, 1]) random = Generator(MT19937(self.seed)) binom = random.binomial actual = binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n * 3, p) assert_raises(ValueError, binom, n * 3, bad_p_one) assert_raises(ValueError, binom, n * 3, bad_p_two) random = Generator(MT19937(self.seed)) actual = random.binomial(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n, p * 3) assert_raises(ValueError, binom, n, bad_p_one * 3) assert_raises(ValueError, binom, n, bad_p_two * 3) def test_negative_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] desired = np.array([0, 2, 1], dtype=np.int64) random = Generator(MT19937(self.seed)) neg_binom = random.negative_binomial actual = neg_binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, neg_binom, bad_n * 3, p) assert_raises(ValueError, neg_binom, n * 3, bad_p_one) assert_raises(ValueError, neg_binom, n * 3, bad_p_two) random = Generator(MT19937(self.seed)) neg_binom = random.negative_binomial actual = neg_binom(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, neg_binom, bad_n, p * 3) assert_raises(ValueError, neg_binom, n, bad_p_one * 3) assert_raises(ValueError, neg_binom, n, bad_p_two * 3) def test_poisson(self): lam = [1] bad_lam_one = [-1] desired = np.array([0, 0, 3]) random = Generator(MT19937(self.seed)) max_lam = random._poisson_lam_max bad_lam_two = [max_lam * 2] poisson = random.poisson actual = poisson(lam * 3) assert_array_equal(actual, desired) assert_raises(ValueError, poisson, bad_lam_one * 3) assert_raises(ValueError, poisson, bad_lam_two * 3) def test_zipf(self): a = [2] bad_a = [0] desired = np.array([1, 8, 1]) random = Generator(MT19937(self.seed)) zipf = random.zipf actual = zipf(a * 3) assert_array_equal(actual, desired) assert_raises(ValueError, zipf, bad_a * 3) with np.errstate(invalid='ignore'): assert_raises(ValueError, zipf, np.nan) assert_raises(ValueError, zipf, [0, 0, np.nan]) def test_geometric(self): p = [0.5] bad_p_one = [-1] bad_p_two = [1.5] desired = np.array([1, 1, 3]) random = Generator(MT19937(self.seed)) geometric = random.geometric actual = geometric(p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, geometric, bad_p_one * 3) assert_raises(ValueError, geometric, bad_p_two * 3) def test_hypergeometric(self): ngood = [1] nbad = [2] nsample = [2] bad_ngood = [-1] bad_nbad = [-2] bad_nsample_one = [-1] bad_nsample_two = [4] desired = np.array([0, 0, 1]) random = Generator(MT19937(self.seed)) actual = random.hypergeometric(ngood * 3, nbad, nsample) assert_array_equal(actual, desired) assert_raises(ValueError, random.hypergeometric, bad_ngood * 3, nbad, nsample) assert_raises(ValueError, random.hypergeometric, ngood * 3, bad_nbad, nsample) assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_one) # noqa: E501 assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_two) # noqa: E501 random = Generator(MT19937(self.seed)) actual = random.hypergeometric(ngood, nbad * 3, nsample) assert_array_equal(actual, desired) assert_raises(ValueError, random.hypergeometric, bad_ngood, nbad * 3, nsample) assert_raises(ValueError, random.hypergeometric, ngood, bad_nbad * 3, nsample) assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_one) # noqa: E501 assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_two) # noqa: E501 random = Generator(MT19937(self.seed)) hypergeom = random.hypergeometric actual = hypergeom(ngood, nbad, nsample * 3) assert_array_equal(actual, desired) assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3) assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3) assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3) assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3) assert_raises(ValueError, hypergeom, -1, 10, 20) assert_raises(ValueError, hypergeom, 10, -1, 20) assert_raises(ValueError, hypergeom, 10, 10, -1) assert_raises(ValueError, hypergeom, 10, 10, 25) # ValueError for arguments that are too big. assert_raises(ValueError, hypergeom, 2**30, 10, 20) assert_raises(ValueError, hypergeom, 999, 2**31, 50) assert_raises(ValueError, hypergeom, 999, [2**29, 2**30], 1000) def test_logseries(self): p = [0.5] bad_p_one = [2] bad_p_two = [-1] desired = np.array([1, 1, 1]) random = Generator(MT19937(self.seed)) logseries = random.logseries actual = logseries(p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, logseries, bad_p_one * 3) assert_raises(ValueError, logseries, bad_p_two * 3) def test_multinomial(self): random = Generator(MT19937(self.seed)) actual = random.multinomial([5, 20], [1 / 6.] * 6, size=(3, 2)) desired = np.array([[[0, 0, 2, 1, 2, 0], [2, 3, 6, 4, 2, 3]], [[1, 0, 1, 0, 2, 1], [7, 2, 2, 1, 4, 4]], [[0, 2, 0, 1, 2, 0], [3, 2, 3, 3, 4, 5]]], dtype=np.int64) assert_array_equal(actual, desired) random = Generator(MT19937(self.seed)) actual = random.multinomial([5, 20], [1 / 6.] * 6) desired = np.array([[0, 0, 2, 1, 2, 0], [2, 3, 6, 4, 2, 3]], dtype=np.int64) assert_array_equal(actual, desired) random = Generator(MT19937(self.seed)) actual = random.multinomial([5, 20], [[1 / 6.] * 6] * 2) desired = np.array([[0, 0, 2, 1, 2, 0], [2, 3, 6, 4, 2, 3]], dtype=np.int64) assert_array_equal(actual, desired) random = Generator(MT19937(self.seed)) actual = random.multinomial([[5], [20]], [[1 / 6.] * 6] * 2) desired = np.array([[[0, 0, 2, 1, 2, 0], [0, 0, 2, 1, 1, 1]], [[4, 2, 3, 3, 5, 3], [7, 2, 2, 1, 4, 4]]], dtype=np.int64) assert_array_equal(actual, desired) @pytest.mark.parametrize("n", [10, np.array([10, 10]), np.array([[[10]], [[10]]]) ] ) def test_multinomial_pval_broadcast(self, n): random = Generator(MT19937(self.seed)) pvals = np.array([1 / 4] * 4) actual = random.multinomial(n, pvals) n_shape = () if isinstance(n, int) else n.shape expected_shape = n_shape + (4,) assert actual.shape == expected_shape pvals = np.vstack([pvals, pvals]) actual = random.multinomial(n, pvals) expected_shape = np.broadcast_shapes(n_shape, pvals.shape[:-1]) + (4,) assert actual.shape == expected_shape pvals = np.vstack([[pvals], [pvals]]) actual = random.multinomial(n, pvals) expected_shape = np.broadcast_shapes(n_shape, pvals.shape[:-1]) assert actual.shape == expected_shape + (4,) actual = random.multinomial(n, pvals, size=(3, 2) + expected_shape) assert actual.shape == (3, 2) + expected_shape + (4,) with pytest.raises(ValueError): # Ensure that size is not broadcast actual = random.multinomial(n, pvals, size=(1,) * 6) def test_invalid_pvals_broadcast(self): random = Generator(MT19937(self.seed)) pvals = [[1 / 6] * 6, [1 / 4] * 6] assert_raises(ValueError, random.multinomial, 1, pvals) assert_raises(ValueError, random.multinomial, 6, 0.5) def test_empty_outputs(self): random = Generator(MT19937(self.seed)) actual = random.multinomial(np.empty((10, 0, 6), "i8"), [1 / 6] * 6) assert actual.shape == (10, 0, 6, 6) actual = random.multinomial(12, np.empty((10, 0, 10))) assert actual.shape == (10, 0, 10) actual = random.multinomial(np.empty((3, 0, 7), "i8"), np.empty((3, 0, 7, 4))) assert actual.shape == (3, 0, 7, 4) @pytest.mark.skipif(IS_WASM, reason="can't start thread") class TestThread: # make sure each state produces the same sequence even in threads def setup_method(self): self.seeds = range(4) def check_function(self, function, sz): from threading import Thread out1 = np.empty((len(self.seeds),) + sz) out2 = np.empty((len(self.seeds),) + sz) # threaded generation t = [Thread(target=function, args=(Generator(MT19937(s)), o)) for s, o in zip(self.seeds, out1)] [x.start() for x in t] [x.join() for x in t] # the same serial for s, o in zip(self.seeds, out2): function(Generator(MT19937(s)), o) # these platforms change x87 fpu precision mode in threads if np.intp().dtype.itemsize == 4 and sys.platform == "win32": assert_array_almost_equal(out1, out2) else: assert_array_equal(out1, out2) def test_normal(self): def gen_random(state, out): out[...] = state.normal(size=10000) self.check_function(gen_random, sz=(10000,)) def test_exp(self): def gen_random(state, out): out[...] = state.exponential(scale=np.ones((100, 1000))) self.check_function(gen_random, sz=(100, 1000)) def test_multinomial(self): def gen_random(state, out): out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000) self.check_function(gen_random, sz=(10000, 6)) # See Issue #4263 class TestSingleEltArrayInput: def setup_method(self): self.argOne = np.array([2]) self.argTwo = np.array([3]) self.argThree = np.array([4]) self.tgtShape = (1,) def test_one_arg_funcs(self): funcs = (random.exponential, random.standard_gamma, random.chisquare, random.standard_t, random.pareto, random.weibull, random.power, random.rayleigh, random.poisson, random.zipf, random.geometric, random.logseries) probfuncs = (random.geometric, random.logseries) for func in funcs: if func in probfuncs: # p < 1.0 out = func(np.array([0.5])) else: out = func(self.argOne) assert_equal(out.shape, self.tgtShape) def test_two_arg_funcs(self): funcs = (random.uniform, random.normal, random.beta, random.gamma, random.f, random.noncentral_chisquare, random.vonmises, random.laplace, random.gumbel, random.logistic, random.lognormal, random.wald, random.binomial, random.negative_binomial) probfuncs = (random.binomial, random.negative_binomial) for func in funcs: if func in probfuncs: # p <= 1 argTwo = np.array([0.5]) else: argTwo = self.argTwo out = func(self.argOne, argTwo) assert_equal(out.shape, self.tgtShape) out = func(self.argOne[0], argTwo) assert_equal(out.shape, self.tgtShape) out = func(self.argOne, argTwo[0]) assert_equal(out.shape, self.tgtShape) def test_integers(self, endpoint): itype = [np.bool, np.int8, np.uint8, np.int16, np.uint16, np.int32, np.uint32, np.int64, np.uint64] func = random.integers high = np.array([1]) low = np.array([0]) for dt in itype: out = func(low, high, endpoint=endpoint, dtype=dt) assert_equal(out.shape, self.tgtShape) out = func(low[0], high, endpoint=endpoint, dtype=dt) assert_equal(out.shape, self.tgtShape) out = func(low, high[0], endpoint=endpoint, dtype=dt) assert_equal(out.shape, self.tgtShape) def test_three_arg_funcs(self): funcs = [random.noncentral_f, random.triangular, random.hypergeometric] for func in funcs: out = func(self.argOne, self.argTwo, self.argThree) assert_equal(out.shape, self.tgtShape) out = func(self.argOne[0], self.argTwo, self.argThree) assert_equal(out.shape, self.tgtShape) out = func(self.argOne, self.argTwo[0], self.argThree) assert_equal(out.shape, self.tgtShape) @pytest.mark.parametrize("config", JUMP_TEST_DATA) def test_jumped(config): # Each config contains the initial seed, a number of raw steps # the sha256 hashes of the initial and the final states' keys and # the position of the initial and the final state. # These were produced using the original C implementation. seed = config["seed"] steps = config["steps"] mt19937 = MT19937(seed) # Burn step mt19937.random_raw(steps) key = mt19937.state["state"]["key"] if sys.byteorder == 'big': key = key.byteswap() sha256 = hashlib.sha256(key) assert mt19937.state["state"]["pos"] == config["initial"]["pos"] assert sha256.hexdigest() == config["initial"]["key_sha256"] jumped = mt19937.jumped() key = jumped.state["state"]["key"] if sys.byteorder == 'big': key = key.byteswap() sha256 = hashlib.sha256(key) assert jumped.state["state"]["pos"] == config["jumped"]["pos"] assert sha256.hexdigest() == config["jumped"]["key_sha256"] def test_broadcast_size_error(): mu = np.ones(3) sigma = np.ones((4, 3)) size = (10, 4, 2) assert random.normal(mu, sigma, size=(5, 4, 3)).shape == (5, 4, 3) with pytest.raises(ValueError): random.normal(mu, sigma, size=size) with pytest.raises(ValueError): random.normal(mu, sigma, size=(1, 3)) with pytest.raises(ValueError): random.normal(mu, sigma, size=(4, 1, 1)) # 1 arg shape = np.ones((4, 3)) with pytest.raises(ValueError): random.standard_gamma(shape, size=size) with pytest.raises(ValueError): random.standard_gamma(shape, size=(3,)) with pytest.raises(ValueError): random.standard_gamma(shape, size=3) # Check out out = np.empty(size) with pytest.raises(ValueError): random.standard_gamma(shape, out=out) # 2 arg with pytest.raises(ValueError): random.binomial(1, [0.3, 0.7], size=(2, 1)) with pytest.raises(ValueError): random.binomial([1, 2], 0.3, size=(2, 1)) with pytest.raises(ValueError): random.binomial([1, 2], [0.3, 0.7], size=(2, 1)) with pytest.raises(ValueError): random.multinomial([2, 2], [.3, .7], size=(2, 1)) # 3 arg a = random.chisquare(5, size=3) b = random.chisquare(5, size=(4, 3)) c = random.chisquare(5, size=(5, 4, 3)) assert random.noncentral_f(a, b, c).shape == (5, 4, 3) with pytest.raises(ValueError, match=r"Output size \(6, 5, 1, 1\) is"): random.noncentral_f(a, b, c, size=(6, 5, 1, 1)) def test_broadcast_size_scalar(): mu = np.ones(3) sigma = np.ones(3) random.normal(mu, sigma, size=3) with pytest.raises(ValueError): random.normal(mu, sigma, size=2) def test_ragged_shuffle(): # GH 18142 seq = [[], [], 1] gen = Generator(MT19937(0)) assert_no_warnings(gen.shuffle, seq) assert seq == [1, [], []] @pytest.mark.parametrize("high", [-2, [-2]]) @pytest.mark.parametrize("endpoint", [True, False]) def test_single_arg_integer_exception(high, endpoint): # GH 14333 gen = Generator(MT19937(0)) msg = 'high < 0' if endpoint else 'high <= 0' with pytest.raises(ValueError, match=msg): gen.integers(high, endpoint=endpoint) msg = 'low > high' if endpoint else 'low >= high' with pytest.raises(ValueError, match=msg): gen.integers(-1, high, endpoint=endpoint) with pytest.raises(ValueError, match=msg): gen.integers([-1], high, endpoint=endpoint) @pytest.mark.parametrize("dtype", ["f4", "f8"]) def test_c_contig_req_out(dtype): # GH 18704 out = np.empty((2, 3), order="F", dtype=dtype) shape = [1, 2, 3] with pytest.raises(ValueError, match="Supplied output array"): random.standard_gamma(shape, out=out, dtype=dtype) with pytest.raises(ValueError, match="Supplied output array"): random.standard_gamma(shape, out=out, size=out.shape, dtype=dtype) @pytest.mark.parametrize("dtype", ["f4", "f8"]) @pytest.mark.parametrize("order", ["F", "C"]) @pytest.mark.parametrize("dist", [random.standard_normal, random.random]) def test_contig_req_out(dist, order, dtype): # GH 18704 out = np.empty((2, 3), dtype=dtype, order=order) variates = dist(out=out, dtype=dtype) assert variates is out variates = dist(out=out, dtype=dtype, size=out.shape) assert variates is out def test_generator_ctor_old_style_pickle(): rg = np.random.Generator(np.random.PCG64DXSM(0)) rg.standard_normal(1) # Directly call reduce which is used in pickling ctor, (bit_gen, ), _ = rg.__reduce__() # Simulate unpickling an old pickle that only has the name assert bit_gen.__class__.__name__ == "PCG64DXSM" print(ctor) b = ctor(*("PCG64DXSM",)) print(b) b.bit_generator.state = bit_gen.state state_b = b.bit_generator.state assert bit_gen.state == state_b def test_pickle_preserves_seed_sequence(): # GH 26234 # Add explicit test that bit generators preserve seed sequences import pickle rg = np.random.Generator(np.random.PCG64DXSM(20240411)) ss = rg.bit_generator.seed_seq rg_plk = pickle.loads(pickle.dumps(rg)) ss_plk = rg_plk.bit_generator.seed_seq assert_equal(ss.state, ss_plk.state) assert_equal(ss.pool, ss_plk.pool) rg.bit_generator.seed_seq.spawn(10) rg_plk = pickle.loads(pickle.dumps(rg)) ss_plk = rg_plk.bit_generator.seed_seq assert_equal(ss.state, ss_plk.state) @pytest.mark.parametrize("version", [121, 126]) def test_legacy_pickle(version): # Pickling format was changes in 1.22.x and in 2.0.x import gzip import pickle base_path = os.path.split(os.path.abspath(__file__))[0] pkl_file = os.path.join( base_path, "data", f"generator_pcg64_np{version}.pkl.gz" ) with gzip.open(pkl_file) as gz: rg = pickle.load(gz) state = rg.bit_generator.state['state'] assert isinstance(rg, Generator) assert isinstance(rg.bit_generator, np.random.PCG64) assert state['state'] == 35399562948360463058890781895381311971 assert state['inc'] == 87136372517582989555478159403783844777