model: class_path: watch.tasks.fusion.methods.HeterogeneousModel init_args: token_width: 6 token_dim: 64 position_encoder: class_path: watch.tasks.fusion.methods.heterogeneous.MipNerfPositionalEncoder init_args: in_dims: 3 max_freq: 3 num_freqs: 16 backbone: class_path: watch.tasks.fusion.architectures.transformer.TransformerEncoderDecoder init_args: encoder_depth: 6 decoder_depth: 1 dim: 160 queries_dim: 96 logits_dim: 64 latent_dim_head: 256 spatial_scale_base: 1.0 temporal_scale_base: 1.0 global_change_weight: 0.0 global_class_weight: 1.0 global_saliency_weight: 0.5 class_loss: dicefocal saliency_loss: focal decoder: simple_conv trainer: callbacks: # - class_path: watch.utils.lightning_ext.callbacks.AutoResumer # - class_path: pytorch_lightning.callbacks.ModelCheckpoint # init_args: # monitor: val_class_f1_macro # mode: max # save_top_k: 5 # auto_insert_metric_name: true - class_path: pytorch_lightning.callbacks.ModelCheckpoint init_args: monitor: val_loss mode: min save_top_k: 5 auto_insert_metric_name: true