from typing import TypeAlias, TypeVar import numpy as np import numpy.typing as npt from numpy._typing import _AnyShape _ScalarT = TypeVar("_ScalarT", bound=np.generic) MaskedArray: TypeAlias = np.ma.MaskedArray[_AnyShape, np.dtype[_ScalarT]] MAR_1d_f8: np.ma.MaskedArray[tuple[int], np.dtype[np.float64]] MAR_b: MaskedArray[np.bool] MAR_c: MaskedArray[np.complex128] MAR_td64: MaskedArray[np.timedelta64] AR_b: npt.NDArray[np.bool] MAR_1d_f8.shape = (3, 1) # type: ignore[assignment] MAR_1d_f8.dtype = np.bool # type: ignore[assignment] np.ma.min(MAR_1d_f8, axis=1.0) # type: ignore[call-overload] np.ma.min(MAR_1d_f8, keepdims=1.0) # type: ignore[call-overload] np.ma.min(MAR_1d_f8, out=1.0) # type: ignore[call-overload] np.ma.min(MAR_1d_f8, fill_value=lambda x: 27) # type: ignore[call-overload] MAR_1d_f8.min(axis=1.0) # type: ignore[call-overload] MAR_1d_f8.min(keepdims=1.0) # type: ignore[call-overload] MAR_1d_f8.min(out=1.0) # type: ignore[call-overload] MAR_1d_f8.min(fill_value=lambda x: 27) # type: ignore[call-overload] np.ma.max(MAR_1d_f8, axis=1.0) # type: ignore[call-overload] np.ma.max(MAR_1d_f8, keepdims=1.0) # type: ignore[call-overload] np.ma.max(MAR_1d_f8, out=1.0) # type: ignore[call-overload] np.ma.max(MAR_1d_f8, fill_value=lambda x: 27) # type: ignore[call-overload] MAR_1d_f8.max(axis=1.0) # type: ignore[call-overload] MAR_1d_f8.max(keepdims=1.0) # type: ignore[call-overload] MAR_1d_f8.max(out=1.0) # type: ignore[call-overload] MAR_1d_f8.max(fill_value=lambda x: 27) # type: ignore[call-overload] np.ma.ptp(MAR_1d_f8, axis=1.0) # type: ignore[call-overload] np.ma.ptp(MAR_1d_f8, keepdims=1.0) # type: ignore[call-overload] np.ma.ptp(MAR_1d_f8, out=1.0) # type: ignore[call-overload] np.ma.ptp(MAR_1d_f8, fill_value=lambda x: 27) # type: ignore[call-overload] MAR_1d_f8.ptp(axis=1.0) # type: ignore[call-overload] MAR_1d_f8.ptp(keepdims=1.0) # type: ignore[call-overload] MAR_1d_f8.ptp(out=1.0) # type: ignore[call-overload] MAR_1d_f8.ptp(fill_value=lambda x: 27) # type: ignore[call-overload] MAR_1d_f8.argmin(axis=1.0) # type: ignore[call-overload] MAR_1d_f8.argmin(keepdims=1.0) # type: ignore[call-overload] MAR_1d_f8.argmin(out=1.0) # type: ignore[call-overload] MAR_1d_f8.argmin(fill_value=lambda x: 27) # type: ignore[call-overload] np.ma.argmin(MAR_1d_f8, axis=1.0) # type: ignore[call-overload] np.ma.argmin(MAR_1d_f8, axis=(1,)) # type: ignore[call-overload] np.ma.argmin(MAR_1d_f8, keepdims=1.0) # type: ignore[call-overload] np.ma.argmin(MAR_1d_f8, out=1.0) # type: ignore[call-overload] np.ma.argmin(MAR_1d_f8, fill_value=lambda x: 27) # type: ignore[call-overload] MAR_1d_f8.argmax(axis=1.0) # type: ignore[call-overload] MAR_1d_f8.argmax(keepdims=1.0) # type: ignore[call-overload] MAR_1d_f8.argmax(out=1.0) # type: ignore[call-overload] MAR_1d_f8.argmax(fill_value=lambda x: 27) # type: ignore[call-overload] np.ma.argmax(MAR_1d_f8, axis=1.0) # type: ignore[call-overload] np.ma.argmax(MAR_1d_f8, axis=(0,)) # type: ignore[call-overload] np.ma.argmax(MAR_1d_f8, keepdims=1.0) # type: ignore[call-overload] np.ma.argmax(MAR_1d_f8, out=1.0) # type: ignore[call-overload] np.ma.argmax(MAR_1d_f8, fill_value=lambda x: 27) # type: ignore[call-overload] MAR_1d_f8.all(axis=1.0) # type: ignore[call-overload] MAR_1d_f8.all(keepdims=1.0) # type: ignore[call-overload] MAR_1d_f8.all(out=1.0) # type: ignore[call-overload] MAR_1d_f8.any(axis=1.0) # type: ignore[call-overload] MAR_1d_f8.any(keepdims=1.0) # type: ignore[call-overload] MAR_1d_f8.any(out=1.0) # type: ignore[call-overload] MAR_1d_f8.sort(axis=(0,1)) # type: ignore[arg-type] MAR_1d_f8.sort(axis=None) # type: ignore[arg-type] MAR_1d_f8.sort(kind='cabbage') # type: ignore[arg-type] MAR_1d_f8.sort(order=lambda: 'cabbage') # type: ignore[arg-type] MAR_1d_f8.sort(endwith='cabbage') # type: ignore[arg-type] MAR_1d_f8.sort(fill_value=lambda: 'cabbage') # type: ignore[arg-type] MAR_1d_f8.sort(stable='cabbage') # type: ignore[arg-type] MAR_1d_f8.sort(stable=True) # type: ignore[arg-type] MAR_1d_f8.take(axis=1.0) # type: ignore[call-overload] MAR_1d_f8.take(out=1) # type: ignore[call-overload] MAR_1d_f8.take(mode="bob") # type: ignore[call-overload] np.ma.take(None) # type: ignore[call-overload] np.ma.take(axis=1.0) # type: ignore[call-overload] np.ma.take(out=1) # type: ignore[call-overload] np.ma.take(mode="bob") # type: ignore[call-overload] MAR_1d_f8.partition(['cabbage']) # type: ignore[arg-type] MAR_1d_f8.partition(axis=(0,1)) # type: ignore[arg-type, call-arg] MAR_1d_f8.partition(kind='cabbage') # type: ignore[arg-type, call-arg] MAR_1d_f8.partition(order=lambda: 'cabbage') # type: ignore[arg-type, call-arg] MAR_1d_f8.partition(AR_b) # type: ignore[arg-type] MAR_1d_f8.argpartition(['cabbage']) # type: ignore[arg-type] MAR_1d_f8.argpartition(axis=(0,1)) # type: ignore[arg-type, call-arg] MAR_1d_f8.argpartition(kind='cabbage') # type: ignore[arg-type, call-arg] MAR_1d_f8.argpartition(order=lambda: 'cabbage') # type: ignore[arg-type, call-arg] MAR_1d_f8.argpartition(AR_b) # type: ignore[arg-type] np.ma.ndim(lambda: 'lambda') # type: ignore[arg-type] np.ma.size(AR_b, axis='0') # type: ignore[arg-type] MAR_1d_f8 >= (lambda x: 'mango') # type: ignore[operator] MAR_1d_f8 > (lambda x: 'mango') # type: ignore[operator] MAR_1d_f8 <= (lambda x: 'mango') # type: ignore[operator] MAR_1d_f8 < (lambda x: 'mango') # type: ignore[operator] MAR_1d_f8.count(axis=0.) # type: ignore[call-overload] np.ma.count(MAR_1d_f8, axis=0.) # type: ignore[call-overload] MAR_1d_f8.put(4, 999, mode='flip') # type: ignore[arg-type] np.ma.put(MAR_1d_f8, 4, 999, mode='flip') # type: ignore[arg-type] np.ma.put([1,1,3], 0, 999) # type: ignore[arg-type] np.ma.compressed(lambda: 'compress me') # type: ignore[call-overload] np.ma.allequal(MAR_1d_f8, [1,2,3], fill_value=1.5) # type: ignore[arg-type] np.ma.allclose(MAR_1d_f8, [1,2,3], masked_equal=4.5) # type: ignore[arg-type] np.ma.allclose(MAR_1d_f8, [1,2,3], rtol='.4') # type: ignore[arg-type] np.ma.allclose(MAR_1d_f8, [1,2,3], atol='.5') # type: ignore[arg-type] MAR_1d_f8.__setmask__('mask') # type: ignore[arg-type] MAR_b *= 2 # type: ignore[arg-type] MAR_c //= 2 # type: ignore[misc] MAR_td64 **= 2 # type: ignore[misc] MAR_1d_f8.swapaxes(axis1=1, axis2=0) # type: ignore[call-arg]