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4Tübingen AI Center, Tübingen, Germany
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Abstract

The number of publications in biomedicine and life sciences has rapidly grown over the last decades, with over 1.5
million papers now being published every year. This makes it difficult to keep track of new scientific works and to
have an overview of the evolution of the field as a whole. Here we present a 2D map of the entire corpus of biomedical
literature, and argue that it provides a unique and useful overview of the life sciences research. We based our atlas
on the abstract texts of 21 million English articles from the PubMed database. To embed the abstracts into 2D, we
used the large language model PubMedBERT, combined with t-SNE tailored to handle samples of our size. We used
our atlas to study the emergence of the Covid-19 literature, the evolution of the neuroscience discipline, the uptake of
machine learning, the distribution of gender imbalance in academic authorship, and the distribution of retracted paper
mill articles. Furthermore, we present an interactive web version of our atlas that allows easy exploration and will
enable further insights and facilitate future research.

1 Introduction

The rate of scientific publishing has been increasing con-
stantly over the past century (Larsen and von Ins, 2010;
Bornmann and Mutz, 2015), with over one million articles
being currently published every year in biomedicine and
life sciences alone. Information about academic publica-
tions in these fields is collected in the PubMed database,
maintained by the United States National Library of
Medicine (pubmed.ncbi.nlm.nih.gov). It now contains
over 33 million scientific papers from the last 50 years.

This rapid growth of the biomedical literature makes
it difficult to track the evolution of biomedical publish-
ing as a whole. Search engines like PubMed and Google
Scholar allow researchers to find specific papers given suit-
able keywords and to follow the citation networks that
these papers are embedded in, yet none of them allows
exploration of the biomedical literature ‘landscape’ from
a global perspective. This makes it hard to see how re-
search topics evolve over time, how different fields are re-
lated to each other, or how new methods and techniques
are adopted in different fields. What is needed to answer
such questions, is a bird’s-eye view on the biomedical lit-
erature.

In this work we develop an approach that enables all of
the above: a global two-dimensional atlas of the biomed-
ical and life science literature which is based on the ab-

stracts of all 21 million English language articles con-
tained in the PubMed database. To create the map, we
embedded the abstracts into two dimensions using the
transformer-based large language model PubMedBERT
(Gu et al., 2021) combined with the neighbor embed-
ding method t-SNE (van der Maaten and Hinton, 2008).
Adapting this pipeline to handle sample sizes on the scale
of this entire corpus of biomedical literature, our approach
allowed us to create a map with the level of detail exceed-
ing previous work by three orders of magnitude (Boyack
et al., 2020; Börner et al., 2012).

We argue that our visualization facilitates exploration
of the biomedical literature and can reveal aspects of the
data that would not be easily noticed with other analysis
methods. We showcase the power of our approach in five
examples: we studied (1) the emergence of the Covid-
19 literature, (2) the evolution of different subfields of
neuroscience, (3) the uptake of machine learning in the life
sciences, (4) the distribution of gender imbalance across
biomedical fields, and (5) the distribution of retracted
paper mill articles. In all cases, we used the embedding
to formulate specific hypotheses about the data that were
later confirmed by a dedicated statistical analysis of the
original high-dimensional dataset.

The resulting map of the biomedical research land-
scape is publicly available as an interactive web version at
https://static.nomic.ai/pubmed.html, developed us-
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Figure 1: 2D embedding of the PubMed dataset. Paper abstracts (n = 21 M) were transformed into 768-dimensional
vectors with PubMedBERT (Gu et al., 2021) and then embedded in 2D with t-SNE (van der Maaten and Hinton, 2008).
(a) Coloured using labels based on journal titles. Unlabeled papers are shown in gray and are displayed in the background.
(b) Coloured by publication year (dark: 1970 and earlier; light: 2021).

Table 1: Quality metrics for the embeddings. Acc.:
kNN accuracy (k = 10) of label prediction. RMSE: root-mean-
squared error of kNN prediction of publication year. Recall:
overlap between k nearest neighbours in the 2D embedding
and in the high-dimensional space. See Methods for details.

Data Dim. Acc. RMSE Recall

PubMedBERT 768 69.7% 8.4 –
TF-IDF 4,679,130 65.2% 8.8 –
t-SNE(BERT) 2 62.6% 10.2 6.2%
t-SNE(TF-IDF) 2 50.6% 11.2 0.7%

Chance – 4.3% 12.4 0.0%

ing the deepscatter library (Nomic AI, 2022). It allows
users to navigate the atlas, zoom, and search by article
title and journal name, while loading individual scatter
points on demand. We envisage that the interactive em-
bedding will allow further insights into the biomedical
literature, beyond the ones we present in this work.

2 Results

2.1 Two-dimensional atlas allows to ex-
plore the PubMed database

We downloaded the complete PubMed database and,
after initial filtering (see Methods), were left with
20,687,150 papers with valid English abstracts, the ma-
jority of which (99.8%) were published in 1970–2021 (Fig-
ure S1). Our goal was to generate a 2D embedding of the
abstract texts to facilitate exploration of the data. All

our embeddings were based on the abstract texts alone,
and did not use any further metadata or information on
citations or references.

To annotate our atlas, we chose a set of 38 labels cov-
ering basic life science fields such as ‘virology’ and ‘bio-
chemistry’, and medical specialties such as ‘radiology’ and
‘ophthalmology’. We assigned each label to the papers
published in journals with the corresponding word in jour-
nal titles. For example, all papers published in Annals of
Surgery were labeled ‘surgery’. As a result, 34.4% of all
papers received a label, while the rest remained unlabeled.

To generate a two-dimensonal map of the entire
PubMed database, we first obtained a 768-dimensional
numerical representation of each abstract using PubMed-
BERT (Gu et al., 2021), which is a Transformer-based
(Vaswani et al., 2017) language model trained on PubMed
abstracts and full-text articles from PubMed Central.
We then reduced the dimensionality to two using t-SNE
(van der Maaten and Hinton, 2008).

For the initial step of computing a numerical represen-
tation of the abstracts, we evaluated several text process-
ing methods, including bag-of-words representations such
as TF-IDF (Jones, 1972) and several other BERT-derived
models, including the original BERT (Devlin et al., 2019),
SBERT (Reimers and Gurevych, 2019), SciBERT (Belt-
agy et al., 2019), BioBERT (Lee et al., 2020), SPECTER
(Cohan et al., 2020), SimCSE (Gao et al., 2021), and
SciNCL (Ostendorff et al., 2022). We chose PubMed-
BERT because it best grouped papers together in terms of
their label, quantified by the k-nearest-neighbour (kNN)
classification accuracy when each label is predicted based
on the most frequent label of its 10 nearest neighbors
(Table 3). For the PubMedBERT representation, this
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prediction was correct 69.7% of the time (Table 1). For
comparison, TF-IDF, which is simpler and faster to com-
pute, yielded lower kNN accuracy (65.2%).

For the second step, we used t-SNE with several modi-
fications that allowed us to run it effectively on very large
datasets. These modifications included uniform affinities
to reduce memory consumption and extended optimiza-
tion to ensure better convergence (see Methods). With
these modifications, t-SNE performs better than other
neighbour embedding methods such as UMAP (McInnes
et al., 2018) in terms of kNN accuracy and memory re-
quirements (González-Márquez et al., 2022). The result-
ing embedding showed good label separation, with kNN
accuracy in 2D of 62.6%, not much worse than in the
4,679,130-dimensional TF-IDF representation.

We interpret the resulting embedding as the map of
the biomedical literature (Figure 1). It showed sensi-
ble global organization, with natural sciences mainly lo-
cated on the left side and medical specialties gathered
on the right side; physics- and engineering-related works
occupied the bottom-left part (Figures S2, S3). Related
disciplines were located next to each other: for exam-
ple, the biochemistry region was overlapping with chem-
istry, whereas psychology was merging into psychiatry. A
t-SNE embedding based on the TF-IDF representation
had similar large-scale structure but worse kNN accuracy
(50.6%; Figure S4).

In addition to this global structure, the map revealed
rich and detailed fine structure and was fragmented into
small clusters containing hundreds to thousands of pa-
pers each (Figure S5a). Even though immediate neigh-
borhoods were distorted compared to the 768-dimensional
PubMedBERT representation (only 6.2% of the nearest
neighbors in R2 were nearest neighbors in R768; we call
this metric kNN recall), manual inspection of the clusters
suggested that they consisted of papers on clearly-defined
narrow topics.

Moreover, the map had rich temporal structure, with
papers of the same age tending to be grouped together
(Figure 1b). While this structure may be influenced by
changes in writing style and common vocabulary, it is
likely primarily caused by research topics evolving over
time and becoming more or less fashionable. The most
striking example of this effect is a cluster of very recent
papers published in 2020–21 that is very visible in the
middle of the map (bright yellow in Figure 1b). We will
use this island as our first example of how the map can be
used to guide understanding of the publishing landscape
and how it allows to form hypotheses about the structure
and temporal evolution of biomedical research. We will
show that these hypotheses can be rigorously confirmed
in the high-dimensional embedding space.

2.2 The Covid-19 literature is uniquely
isolated

The bright yellow island we identified above comprised
works related to Covid-19 (Figure 1b). Our dataset
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Figure 2: Covid-19 region of the map. Colours are as-
signed using labels based on paper titles. Unlabeled Covid
papers are shown in the background in gray. This region in
the embedding also contained some non-Covid papers (∼15%)
about other respiratory epidemics; they are not shown.

included 132,802 Covid-related papers (based on terms
such as COVID-19, SARS-CoV-2, etc., present in their
abstracts; see Methods), which constituted 5.2% of all
PubMed papers published in 2020–2022. As the pandemic
and its effects were studied by many different biomedi-
cal fields, one might have expected the Covid papers to
be distributed across the embedding in their correspond-
ing disciplines. Instead, we found that 59.3% out of all
Covid-related papers were grouped together in one clus-
ter (Figure 1b), while the rest were sparsely distributed
across the map (Figure S6a).

The main Covid cluster was surrounded by articles on
other epidemics, public health issues, and respiratory dis-
eases. When we zoomed in, we found rich inner struc-
ture within the Covid cluster itself, with multiple Covid-
related topics separated from each other (Figure 2). Pa-
pers on mental health and societal impact, on public
health and epidemiological control, on immunology and
vaccines, on clinical symptoms and treatment — were
all largely non-overlapping, and were further divided into
even narrower subfields. This suggests that our map can
be useful for navigating the literature on the scale of nar-
row and focused scientific topics.

Seeing that the Covid papers prominently stood out in
the map (Figure 1b), we hypothesized that the Covid lit-
erature was more isolated from the rest of the biomedical
literature, compared to other similar fields. To test this,
we selected several comparable sets of papers, such as pa-

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2023. ; https://doi.org/10.1101/2023.04.10.536208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.10.536208
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2: Isolatedness metric for several sets of papers.
Fraction of k-nearest-neighbors of papers from each corpus
that also belong to the same corpus (see Methods). The first
four rows show corpora selected based on the abstract text;
the last two — based on the journal name.

n BERT TF-IDF

Covid-19 132,802 80.6% 76.2%
HIV/AIDS 308,077 63.9% 62.3%
Influenza 90,575 57.9% 64.1%
Meta-analysis 145,358 52.6% 38.5%
Virology 112,807 47.7% 39.1%
Ophthalmology 144,411 47.7% 43.6%

pers on HIV/AIDS or influenza, or all papers published
in virology or ophthalmology journals (two labels that ap-
peared particularly compact in Figure 1a). We measured
the isolatedness of each corpus in the high-dimensional
space by the fraction of their kNNs that belonged to
the same corpus. We found that indeed, Covid litera-
ture had the highest isolatedness, in both BERT (80.6%)
and TF-IDF (76.2%) representations (Table 2). This sug-
gests that the Covid-19 pandemic had an unprecedented
effect on the scientific literature, creating a separate and
uniquely detached field of study in only two years.

In the TF-IDF version of the embedding (Figure S4b),
the Covid cluster appeared even more separated from the
rest of the embedding, and included a larger fraction of
Covid papers (86.7%), compared to the BERT-based em-
bedding. We observed the same effect with several other
paper subsets. For example, in the TF-IDF-based em-
bedding, meta-analysis papers as well as papers on HIV
were grouped together and isolated stronger than in the
BERT-based embedding (Figure S6b). This suggests that
TF-IDF representation is more sensitive to the presence
of specific keywords, whereas the BERT representation is
more faithful to semantic similarity between fields (e.g.
between Covid papers and the literature on other respi-
ratory diseases).

2.3 Changing focus within neuroscience

As we have seen in the extreme example of the Covid lit-
erature, the atlas can be used to study composition and
temporal trends across disciplines. We next show how it
can also provide insights into shifting topics and trends in-
side a discipline. We demonstrate this using the example
of neuroscience. Neuroscience papers (n = 240, 135) in
the map were divided into two main clusters (Figure 3a).
The upper one contained papers on molecular and cellu-
lar neuroscience, while the lower one consisted of studies
on behavioral and cognitive neuroscience. Several smaller
clusters comprised papers on neurodegenerative diseases
and sensory systems.

Colouring this part of the embedding by publication
year indicated that the cellular/molecular region on aver-
age had older papers than the cognitive/behavioural re-

gion (Figure 3b). This suggests that the relative publi-
cation volume in different subfields of neuroscience has
changed with time. To test this hypothesis directly, we
devised a metric measuring the overlap between neuro-
science and any given related discipline across time. We
defined kNN overlap as the fraction of kNNs of neuro-
science papers that belonged to a given discipline in the
high-dimensional space. We found that the overlap of
neuroscience with physiology and pharmacology has de-
creased since the 1970s, while its overlap with psychiatry,
psychology, and computation has increased, in particular
after 1990s (Figure 3c). Indeed, neuroscience originated
as a study of the nervous system within physiology, but
gradually broadened its scope to include cognitive neuro-
science, related to psychology, as well as computational
neuroscience, related to computer science and machine
learning.

2.4 The uptake of machine learning

We next used visual exploration of the map to form hy-
potheses about the uptake of new techniques across differ-
ent biomedical domains. In recent years, computational
methods such as machine learning have increasingly found
use in various biomedical disciplines. To explore the use
of machine learning (ML), we identified 342,070 papers
(1.7%) mentioning some of the most popular ML and
statistical methods in their abstracts (Figure 4a). We
found that the medical part of the embedding was domi-
nated by classical linear methods such as linear regression
and factor analysis, whereas more modern nonlinear and
nonparametric methods were mostly used in non-medical
research.

Papers claiming to use machine learning (n = 38, 446
papers containing the phrase ‘machine learning’ in their
abstracts) were also rare in the medical part of the
PubMed corpus. In the embedding, they were grouped
into several clusters, covering topics ranging from com-
putational biology to healthcare data management (Fig-
ure 4b). We selected and manually labeled 12 promi-
nent ML-heavy regions of the embedding (Figure 4b), and
computed the fraction of papers within each region men-
tioning specific ML and statistical methods (Table S1).We
found that the usage of ML techniques varied strongly
across disciplines. Deep learning and convolutional net-
works were prominent in the image segmentation region
(with applications e.g. in microscopy). Clustering was of-
ten used in analyzing sequencing data. Neural networks
and support vector machines were actively used in struc-
tural biology. Principal component analysis was impor-
tant for data analysis in mass spectrometry. Overall, Fig-
ures 4a–b provide a bird’s eye view on the usage of ML
across biomedical fields.

Within the medical part of the corpus, ML papers were
concentrated in several regions, such as e.g. analysis of
tumor imaging. This suggests that different medical disci-
plines have not been equally quick to adopt ML methods.
We confirmed this by computing the fraction of ML pa-
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Figure 3: Neuroscience literature. (a) Articles published in neuroscience journals, coloured by presence of specific words
in paper titles. (b) The same articles coloured by the publication year (dark: 1970 and earlier; light: 2021). (c) Fraction of
the high-dimensional kNNs of neuroscience papers that belonged to a given discipline (biochemistry, computation, neurology,
pharmacology, physiology, psychiatry, psychology). Points: yearly averages. Smooth curves and 95% confidence intervals were
obtained with generalized additive models (see Methods).

pers within different disciplines across time (Figure 4c).
We found that radiology was the first to show increase
in ML adoption, shortly after 2015, followed by psychi-
atry and neurology. In oncology, ML adoption started
later but showed accelerated rise over the last five years.
This is in contrast with specialties like dermatology and
gynecology that did not see any ML usage until ∼2020.

2.5 Exploring the gender gap

Finally, we will show how the map can be used to ex-
plore and better understand social disparities in biomed-
ical publishing such as the extent and distribution of the
well-known gender imbalance in academic authorship (Fi-
lardo et al., 2016; Larivière et al., 2013; Shen et al., 2018;
Dworkin et al., 2020; Bendels et al., 2018). We used the
first name (where available) of the first and the last au-
thor of every PubMed paper to infer their gender using
the gender tool (Blevins and Mullen, 2015). The gender
inference is only approximate, as some first names may
have been absent in the training data and some other
names are inherently gender-ambiguous (see Methods).
Still, this procedure allowed us to obtain inferred gen-
ders for 40.7% of all papers. Among those papers, 42.4%
of first authors and 29.1% of last authors were female.
While some academic fields, such as mathematics and
physics, tend to prefer alphabetic ordering of the authors,
in biomedicine the first author is usually the trainee (PhD
student or postdoc) who did the the practical hands-on
project work and the last author is the supervisor or prin-

cipal investigator.

Unsurprisingly, coloring the embedding by gender
showed that female authors were not equally distributed
across the biomedical publishing landscape (Figure 5a,b).
First and last female authors were most frequent in the
lower right corner of the embedding, covering topics like
nursing, education, and psychology. Only here we found
the map to be visually indicative of a large proportion
of female senior authors. In contrast, engineering-related
disciplines were predominantly male, as well as some med-
ical specialties such as surgery.

There was substantial heterogeneity of gender ratios
within some of the individual disciplines, and our fine-
grained map allowed us to zoom in further. For example,
in healthcare (overall 49.6% female first authors), there
were male- and female-dominated regions in the map.
One of the more male-dominated clusters (33.9% female)
focused on financial management while one of the more
female ones (68.1% female) — on patient care (Figure 5c).
In education (58.6% female authors), female authors dom-
inated research on nursing training whereas male authors
were more frequent in research on medical training (Fig-
ure 5d). In surgery, only 24.4% of the first authors were
female, but this fraction increased to 61.1% in the cluster
of papers on veterinary surgery (Figure 5e). This agrees
with veterinary medicine being a predominantly female
discipline (52.2% in total, Figure 5g). Importantly, these
details may be lost when averaging across a priori la-
bels, while the embedding can suggest the relevant level
of granularity.
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Figure 4: Machine learning papers. (a) Papers coloured according to various statistical and machine learning methods
mentioned in their abstracts. Abbreviations: principal component analysis (PCA), random forest (RF), deep learning (DL),
convolutional neural network (CNN), support vector machine (SVM), dimensionality reduction (DR), neural networks (NN),
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containing ‘machine learning’ phrase in their abstracts, grouped into 12 clusters that we manually labeled. (c) Percentage of
papers mentioning ‘machine learning’ in their abstracts across time for different disciplines. Points: yearly percentages. Smooth
curves and 95% confidence intervals were obtained using generalized additive models (see Methods).

Analyzing the gender ratios across time, we found that
the fraction of female authors steadily increased with time
(Figure 5f), with first and last authors being 47.2% and
34.4% female in 2021. We found a delay of ∼20 years
between the first and the last author curves, suggesting
that it takes more than one academic generation for the
differences in gender bias to propagate from mentees to
mentors.

Looking at individual disciplines, we found that the
fraction of female first authors increased with time in all
of them (Figure 5g), even in disciplines where this frac-
tion was already high, such as education (increased from
55% female in 2005 to 60% in 2020). This increase also
happened in male-dominated fields such as computation,
physics, or surgery (increase from 15–20% to 25%). No-
tably, the female proportion in material sciences showed
only a modest increase while nursing, the most female-
dominated discipline across all our labels (80.4%) even
showed a moderate decrease.

2.6 Retracted papers highlight suspicious
literature

We identified 11,756 retracted papers with intact ab-
stracts (not containing words like “retracted” or “with-
drawn”; see Methods) in our dataset. These papers were
not distributed uniformly over the 2D map (Figure 6)
but instead concentrated in several specific areas, in par-
ticular on top of the map, covering research on cancer-
related drugs, marker genes, and microRNA. These areas
are known targets of paper mills (Byrne and Labbé, 2017;
Byrne et al., 2019; Candal-Pedreira et al., 2022), which
are for-profit organizations that produce fraudulent re-
search papers and sell the authorship.

Our map is based solely on textual similarity between

abstracts. This suggests that non-retracted papers from
the regions with high concentration of retracted papers
may require an investigation, as their abstracts are similar
to the ones from paper mill products. We considered a re-
gion with particularly high fraction (48/443) of retracted
papers (second inset in Figure 6) and randomly selected
25 non-retracted papers for manual inspection. They had
similar title format (variations of “MicroRNA-X does Y
by targeting Z in osteosarcoma”), paper structure, and
figure style, and 24/25 of them had authors affiliated with
Chinese hospitals — features that are often shared by pa-
per mill products (Byrne, 2019; Byrne and Christopher,
2020; Else and Van Noorden, 2021; Zhao et al., 2021;
Candal-Pedreira et al., 2022). Even though none of this
guarantees that these papers are fraudulent, our results
suggest that the 2D map can be used to highlight papers
requiring further editorial investigation. Moreover, if ad-
ditional paper mills are discovered in the future, our map
will help to highlight literature clusters requiring further
scrutiny.

3 Discussion

We developed a two-dimensional atlas of the biomedical
literature based on the PubMed collection of 21 M pa-
per abstracts using a transformer-based language model
(PubMedBERT) and a neighbor embedding visualization
(t-SNE) tailored to handle large document libraries. We
used this atlas as an exploration tool to study the biomed-
ical research landscape, generating hypotheses that we
later confirmed using the original high-dimensional data.
Using five distinct examples — the emergence of the
Covid-19 literature, the evolution of the neuroscience dis-
cipline, the uptake of machine learning, the gender imbal-
ance, and the concentration of retracted fraudulent pa-

6

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2023. ; https://doi.org/10.1101/2023.04.10.536208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.10.536208
http://creativecommons.org/licenses/by-nc-nd/4.0/


First author
gender

c
d

e

a

male
female
unknown gender
unknown name

Last author
gender

b

financial
management

patient care

c
Healthcare

medical
training

nursing
training

d
Education

veterinary
surgery

e
Surgery

1960 1980 2000 2020
0

10

20

30

40

50

Fe
m

al
e 

au
th

or
s 

(%
)

first author
last author

f

2005 2010 2015 2020
10

20

30

40

50

60

70

80

90

Fe
m

al
e 

fir
st

 a
ut

ho
rs

 (%
)

Nursing
Gynecology
Nutrition
Education
Psychology
Veterinary
Psychiatry
Healthcare
Neuroscience
Material
Engineering
Bioinformatics
Surgery
Physics
Computation
Optics

g

Figure 5: Gender bias in academic authorship. (a) Papers coloured by the inferred gender of their first authors. (b) Papers
coloured by the inferred gender of their last authors. (c–e) Regions of the map showing within-label heterogeneity in the
distribution of first authors’ gender: in healthcare (c), education (d), and surgery (e). Only papers belonging to those labels are
shown. (f) Fraction of female first and last authors across time. The amount of available first names increased dramatically
after 2003 (Figure S1c). (g) Fraction of female first authors across time for different disciplines. Smooth curves and confidence
intervals in panels (f,g) were obtained using generalized additive models (see Methods).

pers — we argued that two-dimensional visualizations of
text corpora can help uncover aspects of the data that
other analysis methods may fail to reveal.

We also developed an interactive web version of the
embedding (https://static.nomic.ai/pubmed.html)
based on the deepscatter library (Nomic AI, 2022) that
allows to navigate the atlas, zoom, and search by title
or journal name. In deepscatter, individual points are
loaded on demand when zooming-in, like when navigat-
ing geographical maps in the browser.

Neighbor embedding methods like t-SNE have known
limitations. For the datasets of our size, the few clos-
est neighbors in the two-dimensional embedding space
are typically different from the neighbors in the high-
dimensional BERT representation (Table 1). This makes
our map suboptimal for finding the most similar pa-
pers to a given query paper, and other tools, like con-
ventional (Google Scholar, PubMed) or citation-based
(connectedpapers.com) search engines, may be more ap-

propriate for this task. Instead, our map is useful for nav-
igating the literature on the scale of narrow and focused
scientific topics. Neighbor embedding algorithms can mis-
represent the global organization of the data (Wattenberg
et al., 2016; Kobak and Berens, 2019; Böhm et al., 2022).
We used methods designed to mitigate this issue (Kobak
and Berens, 2019; Kobak and Linderman, 2021; González-
Márquez et al., 2022), and indeed, found that related re-
search areas were located close to each other.

Our atlas provides the most detailed visualization of
the biomedical literature landscape to date. Previously,
PubMed abstracts were clustered based on textual bag-
of-words similarity and citation information, and the
clusters were displayed using a two-dimensional embed-
ding (Boyack et al., 2020). Their map exhibits simi-
lar large-scale organization, but only shows 29,000 clus-
ters, so our map is almost three orders of magnitude
more detailed. The BioBERT model was previously ap-
plied to the PubMed dataset to extract information on
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Retracted
papers

Figure 6: Retracted papers group together. All re-
tracted papers with intact abstracts (11,756) are highlighted
in black, plotted on top of the non-retracted papers. First
inset corresponds to one of the regions with higher density of
retracted papers (3.8%), covering research on cancer-related
drugs, marker genes, and microRNA. Second inset corresponds
to a subregion with a particularly high fraction of retracted
papers (10.8%), the one we used for manual inspection.

biomedical concepts, such as proteins or drugs (Xu et al.,
2020). Previous work on visualizing large text corpora
includes Schmidt (2018) and González-Márquez et al.
(2022). Both were based on bag-of-words representations
of the data. Here we showed that BERT-based models
outperform TF-IDF for representing scientific abstracts.

An alternative approach to visualizing collections of
academic works is to use information on citations as a
measure of similarity, as opposed to semantic or tex-
tual similarity. For example, paperscape.org visual-
izes 2.2 M papers from the arXiv preprint server using
a force-directed layout of the citation graph. Similarly,
opensyllabus.org uses node2vec (Grover and Leskovec,
2016) and UMAP to visualize 1.1 M texts based on their
co-appearance in the US college syllabi. Similar approach
was used by Noichl (2021) to visualize 68,000 articles on
philosophy based on their reference lists. Here we based
our embedding on the abstract texts alone, because cita-
tion information may not be easily available for all articles
in the PubMed dataset. The functionality of our inter-
active web version is similar to opensyllabus.org and
paperscape.org, but we successfully display one order
of magnitude more points.

We achieved the best representation of the PubMed ab-
stracts using the PubMedBERT model. As the progress
in the field of language models is currently very fast,
it is likely that a better representation may soon be-
come available. One promising approach could be to
train sentence-level models such as SBERT (Reimers and
Gurevych, 2019) on the biomedical text corpus. Another
active avenue of research is fine-tuning BERT models us-
ing contrastive learning (Gao et al., 2021; Liu et al., 2021)
and/or using citation graphs (Cohan et al., 2020; Osten-
dorff et al., 2022). While we found that these models

were outperformed by PubMedBERT, similar methods
(Yasunaga et al., 2022) could be used to fine-tune the
PubMedBERT model itself, potentially improving its rep-
resentation quality further. Finally, larger generative lan-
guage models such as recently developed BioGPT (Luo
et al., 2022) or BioMedLM (Stanford CRFM and Mo-
saicML, 2022) can possibly lead to better representations
as well.

In conclusion, we suggested a novel approach for visu-
alizing large document libraries, and demonstrated that
it can facilitate data exploration and help generate novel
insights.

4 Methods

4.1 PubMed dataset

We downloaded the complete PubMed database (295 GB)
as XML files using the bulk download service (www.nlm.
nih.gov/databases/download/pubmed_medline.html).
PubMed releases a new snapshot of their database
every year; they call it a ‘baseline’. In our previous
work (González-Márquez et al., 2022) we used the
2020 baseline (files called pubmed21n0001.xml.gz to
1062.xml.gz, download date: 26.01.2021). In this work,
we supplemented them with the additional files from
the 2021 baseline (files called pubmed22n1062.xml.gz

to 1114.xml.gz, download date: 27.04.2022). After the
analysis was completed, we realized that our dataset had
0.07% duplicate papers; they should not have had any
noticeable influence on the reported results.

We used the Python xml package to extract PubMed
ID, title, abstract, language, journal title, ISSN, publica-
tion date, and author names of all 33.4 M papers. We
filtered out all 4.7 M non-English papers, 10.8 M papers
with empty abstracts, 0.3 M papers with abstracts shorter
than 250 or longer than 4000 symbols (Figures S1, S7),
and 27 thousand papers with unfinished abstracts. Papers
with unfinished abstracts needed to be excluded because
otherwise they were grouped together in the BERT repre-
sentation, creating artifact clusters in the embedding. We
defined unfinished abstracts as abstracts not ending with
a period, a question mark, or an exclamation mark. Some
abstracts ended with a phrase “(ABSTRACT TRUN-
CATED AT ... WORDS)” with a specific number in-
stead of ‘...’. We removed all such phrases and analyzed
the remaining abstracts as usual, even though they did
not contain the entire text of the original abstracts. This
left 20,687,150 papers for further analysis.

This collection contains papers from the years 1808–
2022. MEDLINE, the largest component of PubMed,
started its record in 1966 and later included some note-
worthy earlier papers. Therefore, the majority (99.8%)
of the PubMed papers are post-1970 (Figure S1c). There
are only few papers from 2022 in our dataset.
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4.2 Label assignment

We labeled the dataset by selecting 38 keywords contained
in journal titles that reflected the general topic of the pa-
per. We based our choice of keywords on lists of medical
specialties and life science branches that appeared fre-
quently in the journal titles in our dataset. The 38 terms
are: anesthesiology, biochemistry, bioinformatics, cancer,
cardiology, chemistry, computation, dermatology, ecol-
ogy, education, engineering, environment, ethics, genet-
ics, gynecology, healthcare, immunology, infectious, ma-
terial, microbiology, neurology, neuroscience, nursing, nu-
trition, ophthalmology, optics, pathology, pediatric, phar-
macology, physics, physiology, psychiatry, psychology, ra-
diology, rehabilitation, surgery, veterinary, and virology.

Papers were assigned a label if their journal title con-
tained that term, either capitalized or not, and were left
unlabeled otherwise. Journal titles containing more than
one term were assigned randomly to one of them. This
resulted in 7,123,706 labeled papers (34.4%).

Our journal-based labels do not constitute the ground
truth for the topic of each paper, and so the highest possi-
ble classification accuracy is likely well below 100%. Nev-
ertheless, we reasoned that the higher the classification
accuracy, the better the embedding, and found this met-
ric to be useful to compare different representations (Ta-
bles 1, 3).

4.3 BERT-based models

We used PubMedBERT (Gu et al., 2021) to obtain a nu-
merical representation of each abstract. Specifically, we
used the HuggingFace’s transformers library and the
publicly released PubMedBERT model. PubMedBERT
is a Transformer-based language model trained in 2020
on PubMed abstracts and full-text articles from PubMed
Central.

In pilot experiments, we compared performance of eight
BERT variants: the original BERT (Devlin et al., 2019),
SciBERT (Beltagy et al., 2019), BioBERT (Lee et al.,
2020), PubMedBERT (Gu et al., 2021), SBERT (Reimers
and Gurevych, 2019), SPECTER (Cohan et al., 2020),
SimCSE (Gao et al., 2021), and SciNCL (Ostendorff et al.,
2022). The exact HuggingFace models that we used:

• bert-base-uncased

• allenai/scibert scivocab uncased

• dmis-lab/biobert-v1.1

• microsoft/BiomedNLP-PubMedBERT-base-

uncased-abstract-fulltext

• sentence-transformers/all-mpnet-base-v2

• allenai/specter

• malteos/scincl

• princeton-nlp/unsup-simcse-bert-base-

uncased

All of these models have the same architecture (bert-
base; 110M parameters) but were trained and/or fine-
tuned on different data. The original BERT was trained

Table 3: kNN accuracy of different BERT-based models.
This comparison used a subset of the data (training set size:
990,000 labeled papers; test set size: 10,000 labeled papers).
For comparison, the kNN accuracy values for the TF-IDF and
SVD (d = 300) representations measured on the same subset
were 61.0% and 54.8% respectively.

Average [CLS] [SEP]

BERT 57.1% 50.4% 53.4%
SciBERT 62.1% 57.0% 60.9%
BioBERT 64.0% 62.7% 65.0%
PubMedBERT 64.4% 60.4% 67.7%

SBERT 64.5% 60.7% 62.2%
SPECTER 64.6% 63.9% 64.7%
SciNCL 65.9% 64.6% 64.6%
SimCSE 57.0% 53.2% 52.1%

on a corpus of books and text from Wikipedia. SciBERT
was trained on a corpus of scientific articles from differ-
ent disciplines. BioBERT fine-tuned the original BERT
on PubMed abstracts and full-text articles from PubMed-
Central. PubMedBERT was trained on the same data
from scratch (and its vocabulary was constructed from
PubMed data, whereas BioBERT used BERT’s vocabu-
lary).

The other four models were fine-tuned to produce sen-
tence embeddings instead of word embeddings, i.e. to
generate a single vector representation of the entire in-
put text (we treated each entire abstract as one single
‘sentence’ when providing it to these models). SBERT
fine-tuned BERT using a corpus of similar sentences and
paragraphs; the specific model that we used was obtained
via fine-tuning MPNet (Song et al., 2020). According
to SBERT’s authors, this is currently the most power-
ful generic SBERT model; note that their training proce-
dure has evolved since the original approach described in
Reimers and Gurevych (2019). SPECTER and SciNCL,
both fine-tuned the SciBERT model using contrastive loss
functions based on the citation graph. SimCSE fine-tuned
the original BERT using a contrastive loss function be-
tween the sentence representations obtained with two dif-
ferent dropout patterns, using Wikipedia texts.

For this pilot experiment, we used a subset of our data
(n = 1,000,000 labeled papers; 990,000 were used as a
training set and 10,000 as a test set) to measure kNN
accuracy (k = 10) of each of these models, and obtained
the highest accuracy with PubMedBERT (see Table 3).
This made sense as PubMedBERT’s training data largely
overlapped with our dataset. We found that SBERT per-
formed better than BERT, but did not reach the level of
PubMedBERT on our task. SimCSE did not outperform
the original BERT in our benchmark. SPECTER and
SciNCL outperformed SciBERT, suggesting that citation
information can be helpful for training scientific language
models. Still, both models performed worse than Pub-
MedBERT on our task.

Furthermore, we compared kNN accuracy after t-SNE
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Table 4: kNN accuracy of t-SNE representations of different
BERT-based models. The same experimental setup as in Ta-
ble 3. For comparison, the accuracy of t-SNE of the TF-IDF
representation (after SVD) was 49.9%.

Average [CLS] [SEP]

BERT 46.0% 36.3% 40.6%
SciBERT 52.3% 43.4% 48.8%
BioBERT 54.7% 51.1% 56.5%
PubMedBERT 53.2% 45.5% 60.8%

SBERT 60.2% 56.3% 56.7%
SPECTER 58.4% 59.2% 59.3%
SciNCL 60.7% 59.1% 59.4%
SimCSE 46.9% 42.4% 40.3%

between different BERT models (Figure S8), and again
obtained the best results with PubMedBERT (Table 4).
The performance of SciNCL here was only 0.1% lower.
We used the same settings for t-SNE as described below,
but ran it with the default number of iterations (750).

Each abstract gets split into a sequence of tokens,
and PubMedBERT represents each token in a 768-
dimensional latent space. PubMedBERT’s maximum in-
put length is 512 tokens and longer abstracts are auto-
matically truncated at 512 tokens (this corresponds to
roughly 300–400 words, and ∼98% of all abstracts were
shorter than 512 tokens). We are interested in a single
768-dimensional representation of each abstract, rather
than 512 of them. For this, we compared several ap-
proaches commonly used in the literature: using the rep-
resentation of the initial [CLS] token, the trailing [SEP]

token, and averaging the representations of all tokens (De-
vlin et al., 2019; Reimers and Gurevych, 2019; Beltagy
et al., 2019). Using the [SEP] token yielded the highest
kNN accuracy in our pilot experiments (Table 3), so we
adopted this approach.

Note that sentence transformers were originally trained
to optimize one specific representation, e.g. SBERT
uses the average representation across all tokens as its
sentence-level output, while SPECTER uses the [CLS]

token. For consistency, in Table 3 we report the perfor-
mance of all three representations for each model. SBERT
implementation (sentence-transformers library) nor-
malizes its output to have norm 1. In Table 3 we re-
port the accuracy without this normalization (64.5%), as
obtained using the transformers library; with normal-
ization, the accuracy changed by less than 0.1%.

Su et al. (2021) argued that whitening BERT repre-
sentation can lead to a strongly improved performance
on some benchmarks. We tried whitening the PubMed-
BERT representation, but only observed a decrease in
the kNN accuracy. For this experiment, we used a test
set of 500 labeled papers, and compared PubMedBERT
without any transformations, after centering, and after
whitening, using both Euclidean metric and the cosine
metric, following Su et al. (2021). We obtained the best
results using the raw PubMedBERT representation (Ta-

Table 5: kNN accuracy of label prediction using different
transformations of the PubMedBERT representation and two
different metrics for finding nearest neighbors. This experi-
ment used test set size 500, smaller than in Table 1.

Euclidean Cosine

Raw 67.8% 67.8%
Centered 67.8% 67.4%
Whitened 64.2% 65.4%

ble 5). Our conclusion is that whitening does not improve
the kNN graph of the PubMedBERT representation.

In the end, our entire collection of abstracts is repre-
sented as a 20,687,150 × 768 dense matrix.

4.4 TF-IDF representation

In our prior work (González-Márquez et al., 2022), we
used the bag-of-words representation of PubMed ab-
stracts and compared several different normalization ap-
proaches. We obtained the highest kNN accuracy using
the TF-IDF (term frequency inverse document frequency)
representation (Jones, 1972) with log-scaling, as defined
in the scikit-learn implementation (version 0.24.1):

Xij = (1 + lnCij) ·
(

1 + ln
1 + n

1 +
∑

k(Ckj > 0)

)
if Cij > 0 and Xij = 0 otherwise. Here n is the total
number of abstracts and Cij are word counts, i.e. the
number of times word j occurs in abstract i.

The resulting dataset is a 20,687,150 × 4,679,130
sparse matrix (with 0.0023% non-zero elements), where
4,679,130 is the total number of unique words in all ab-
stracts.

This matrix is too large to use in t-SNE directly,
so for computational convenience we used truncated
SVD (sklearn.decomposition.TruncatedSVD with al-

gorithm=‘arpack’) to reduce dimensionality to 300, the
largest dimensionality we could obtain given our RAM
resources. Note that we did not use SVD when using
the BERT representation and worked directly with the
768-dimensional representation.

4.5 t-SNE

We used the openTSNE (version 0.6.0) implementation
(Poličar et al., 2019) of t-SNE (van der Maaten and Hin-
ton, 2008) to reduce dimensionality from 768 (for the
BERT representation) or 300 (for the TF-IDF representa-
tion) to d = 2. OpenTSNE is a Python reimplementation
of the FIt-SNE (Linderman et al., 2019) algorithm.

We ran t-SNE following the procedure established in
our prior work (González-Márquez et al., 2022): using
uniform affinities (on the approximate kNN graph with
k = 10) instead of perplexity-based affinities, early ex-
aggeration annealing instead of the abrupt switch of the
early exaggeration value, and extended optimization for
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2250 iterations instead of the default 750 (250 iterations
for the early exaggeration annealing, followed by 2000 it-
erations without exaggeration). We did not use any ‘late’
exaggeration after the early exaggeration phase. All other
parameters were kept at default values, including PCA
initialization and learning rate set to n/12, where n is the
sample size. In our previous work we showed that this vi-
sualization approach outperformed UMAP (version 0.5.1)
(McInnes et al., 2018) on PubMed data in TF-IDF repre-
sentation in terms of both kNN recall and kNN accuracy
(González-Márquez et al., 2022).

The t-SNE embeddings of a PubMed subset containing
1 million papers (Figure S8, Table 4) used the default
number of iterations (750).

The embeddings based on the TF-IDF and PubMed-
BERT representation showed similar large-scale organi-
zation. As t-SNE loss function is unaffected by rotations
and/or sign flips, we flipped the x and/or y coordinates
of the TF-IDF t-SNE embedding to match its orientation
to the PubMedBERT t-SNE embedding. The same was
done for the embeddings shown in Figure S8.

4.6 Performance metrics

All kNN-based metrics were based on k = 10 exact near-
est neighbors, obtained using the NearestNeighbors and
KNeighborsClassifier classes from scikit-learn (version
1.0.2) using algorithm=‘brute’ and n jobs=-1 (Pe-
dregosa et al., 2011).

To predict each test paper’s label, kNN classifier takes
the majority label among the paper’s nearest neighbors in
the training set. To measure the accuracy, the classifier
was trained on all labeled papers excluding a random test
set of labeled papers. The test set size was 5000 for the
high-dimensional representations and 10000 for the two-
dimensional ones. The chance-level kNN accuracy was
obtained using the DummyClassifier from scikit-learn
with strategy=‘stratified’, and test set size 10000.

To predict each test paper’s publication year, we took
the average publication year of the paper’s nearest neigh-
bors in the training set. To measure the root-mean-
squared error (RMSE), we used the training set consist-
ing of all papers excluding a random test set. The test
set size was 5000 for the high-dimensional representations
and 10000 for the two-dimensional ones. The chance-level
root-mean-squared error (RMSE) was calculated by draw-
ing 10 random papers instead of nearest neighbors, for a
test set of 5000 papers.

We define kNN recall as the average size of the over-
lap between k nearest neighbors in the high-dimensional
space and k nearest neighbors in the low-dimensional
space. We averaged the size of the overlap across a ran-
dom set of 10000 papers for the BERT representation, and
5000 papers for the TF-IDF representation. The kNN re-
call value reported in Table 1 for the TF-IDF representa-
tion measures the recall of the original TF-IDF neighbors
(0.7%); the recall of the neighbors from the SVD space
(which was used for t-SNE) was 1.5%.

Isolatedness metric was defined as the average fraction
of k nearest neighbors belonging to the same corpus. We
used a random subset of 5000 papers from each corpus to
estimate the isolatedness. The regions from Table 2 were
selected as follows. The HIV/AIDS set contained all pa-
pers with ‘HIV’ or ‘AIDS’ words (upper case or lower
case) appearing in the abstract. The influenza set con-
tained all papers with the word ‘influenza’ in the abstract
(capitalized or not). Similarly, meta-analysis set was ob-
tained using the word ‘meta-analysis’. The virology and
ophthalmology sets correspond to the journal-based labels
(see above).

4.7 Covid-related papers

We considered a paper Covid-related if it contained at
least one of the following terms in its abstract: ‘covid-
19’, ‘COVID-19’, ‘Covid-19’, ‘CoViD-19’, ‘2019-nCoV’,
‘SARS-CoV-2’, ‘coronavirus disease 2019’, ‘Coronavirus
disease 2019’. Our dataset included 132,802 Covid-related
papers.

We selected 27 frequent terms contained in Covid-
related paper titles to highlight different subregions of the
Covid cluster. The terms were: antibody, anxiety, cancer,
children, clinical, epidemic, healthcare, immune, impli-
cations, mental, mortality, outbreak, pediatric, pneumo-
nia, population, psychological, respiratory, social, strate-
gies, students, surgery, symptoms, therapy, transmission,
treatment, vaccine, and workers. Papers were assigned
a label if their title contained that term, either capital-
ized or not. Paper titles containing more than one term
were assigned randomly to one of them. This resulted
in 35,874 labeled Covid-related papers: 27.0% from the
total amount of Covid-related papers and 45.6% of the
Covid-related papers from the main Covid cluster in the
embedding.

4.8 Generalized additive models

We used generalized additive models (GAMs) to obtain
smooth trends for several of our analyses across time
(Figures 3c, 4c, 5c–d). We used the LinearGAM (GAM
with the Gaussian error distribution and the identity link
function) and the LogisticGAM (GAM with the binomial
error distribution and the logit link function) from the
pyGAM Python library (version 0.8.0) (Servén and Brum-
mitt, 2018). In all cases, we excluded papers published in
2022, since we only had very few of them (as we used the
2021 baseline of the PubMed dataset, see above). Linear
GAMs (with n splines=6) were used for Figure 3c, and
logistic GAMs (with n splines=12) were used for Fig-
ures 4c and 5c–d. All GAMs had the publication year as
the only predictor.

In all cases, we used the gridsearch() function to es-
timate the optimal smoothing (lambda) parameter using
cross-validation. To obtain the smooth curves shown in
the plots, we predicted the dependent value on a grid
of publication years. The confidence intervals were ob-
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tained using the confidenceintervals() function from
the same package.

In Figure 3c, the response variable was kNN overlap
of a neuroscience paper with the target discipline. For
each discipline, the input data was a set of 500 randomly
chosen neuroscience papers for each year in 1975–2021.
If the total number of neuroscience papers for a given
year was less than 500, all of them were taken for the
analysis. The kNN overlap values of individual papers
were calculated using k = 10 nearest neighbors obtained
with the NearestNeighbors class.

In Figure 4c, the binary response variable was whether
a paper contained ‘machine learning’ in its abstract. For
each discipline, the input data were all 2010–2021 papers.

In Figure 5c–d, the binary response variable was
whether the paper’s first or last author was female (as
inferred by the gender tool, see below). The input data
in all cases were all papers with gender information from
1960–2021.

4.9 Gender prediction

We extracted authors’ first names from the XML tag
ForeName that should in principle only contain the first
name. However, we observed that sometimes it contained
the full name. For that reason, we always took the first
word of the ForeName tag contents (after replacing hy-
phens with spaces) as the author’s first name. This re-
duced some combined first names (such as Eva-Maria or
Jose Maria) to their initial word (Eva; Jose). In many
cases, mostly in older papers, the only available informa-
tion about the first name was an initial. As it is not pos-
sible to infer gender from an initial, we discarded all ex-
tracted first names with length 1. In the end we obtained
13,429,169 first names of first authors (64.9% of all pa-
pers) and 13,189,271 first names of last authors (63.8%),
almost only from 1960–2022.

We used the R package gender (Blevins and Mullen,
2015) (version 0.6.0) to infer authors’ genders. This pack-
age uses a historical approach that takes into account how
naming practices have changed over time, e.g., Leslie used
to be a male name in the early XX century but later has
been mainly used as a female name. For each first/last
author, we provided gender with the name and the pub-
lication year, and obtained the inferred gender together
with a confidence measure.

The gender package offers predictions based on dif-
ferent training databases. We used the 1930–2012 So-
cial Security Administration data from United States
(method=‘ssa’). For the papers published before 1930
we fixed the year to 1930 and for the papers published af-
ter 2012, we fixed it to 2012. The SSA data do not contain
information on names that are not common in the USA,
and we only obtained inferred genders for 8,363,116 first
authors (62.3% of available first names) and 8,468,165
last authors (63.1% of available last names). Out of
all inferred genders, 3,543,592 first authors (42.4%) and
2,464,882 last authors (29.1%) were female.

Importantly, our gender inference is only approximate
(Blevins and Mullen, 2015). The inference model has
clear limitations, including limited US-based training
data and state-imposed binary genders. Moreover, some
first names are inherently gender-ambiguous. However,
the distribution of inferred genders over biomedical fields
and the pattern of changes over the last decades matched
what is known about the gender imbalance in academia,
suggesting that inferred genders were sufficiently accurate
for our purposes.

4.10 Retracted papers

We obtained PMIDs of papers classified in PubMed
as retracted (13,569) using PubMed web interface on
19.04.2023. Of those, 11,998 were present in our map
(the rest were either filtered out in our pipeline or not
included in the 2021 baseline dataset we used). To make
sure that retracted papers were not grouping together in
the BERT space because their abstract had been modified
to indicate a retraction, we excluded from consideration
all retracted papers containing the words “retracted”, “re-
traction”, “withdrawn”, or “withdrawal” in their abstract
(242 papers). The remaining retracted papers (11,756)
had intact original abstracts and are shown in Figure 6.

There was one small island at the bottom of the
map containing retraction notices (they have indepen-
dent PubMed entries with separate PMIDs) as well as
corrigenda and errata, which were not filtered out by our
length cutoffs. Many of the 242 retracted papers with
post-retraction modified abstracts were also located there.

4.11 Runtimes

Computations were performed on a machine with 384 GB
of RAM and Intel Xeon Gold 6226R processor (16 multi-
threaded 2.90 GHz CPU cores) and on a machine with
512 GB of RAM and Intel Xeon E5-2630 v4 processor (10
multi-threaded 2.20 GHz CPU cores). BERT embeddings
were calculated using an NVIDIA TITAN Xp GPU with
12.8 GB of RAM.

Parsing the XML files took 10 hours, computing the
PubMedBERT embeddings took 74 hours, running t-SNE
took 8 hours. More details are given in Table 6. We used
exact nearest neighbors for all kNN-based quality metrics,
so evaluation of the metrics took longer than computing
the embedding. In total, it took around 8 days to compute
all the reported metrics (Table 6).
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Table 6: Runtimes for different analyses.

Step Time

Parsing XML 10 h
PubMedBERT representation 74 h
TF-IDF representation 1 h
Truncated SVD of TF-IDF 4 h

t-SNE affinities for PubMedBERT 101 min
t-SNE affinities for TF-IDF 78 min
t-SNE optimization, 750 iter. 126 min
t-SNE optimization, 2250 iter. 390 min

kNNs for 1k papers, BERT 32 min
kNNs for 1k papers, BERT labeled 7 min
kNNs for 1k papers, TF-IDF 150 min
kNNs for 1k papers, TF-IDF labeled 12 min
kNNs for 1k papers, t-SNE 7 min
kNNs for 1k papers, t-SNE labeled 2 min
Table 1 ∼35 h
Table 2 ∼91 h
Figure 3c ∼20 h
Table 3 (BERT computations) ∼30 h
Table 4 ∼7 h
Table 5 ∼20 min
All GAMs ∼30 min
Gender prediction 6 min

Data and code availability

The analysis code is available at https://github.com/

berenslab/pubmed-landscape.

We made publicly available a processed version of our
dataset: a csv.zip file (20,687,150 papers, 1.3 GB) in-
cluding PMID, title, journal name, publication year, em-
bedding x and y coordinates, our label, and our color
used in Figure 1a. We also included two additional files:
the raw abstracts (csv.zip file, 9.5 GB), and the 768-
dimensional PubMedBERT embeddings of the abstracts
(NumPy array in float16 precision, 31.8 GB). They can
all be downloaded from https://zenodo.org/record/

7695389.
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between publications from China describing single gene
knockdown experiments in human cancer cell lines. Sci-
entometrics, 110(3):1471–1493, 2017.

Jennifer A Byrne, Natalie Grima, Amanda Capes-Davis,
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A Appendix

A.1 Supplementary Tables

Table S1: Percentage of abstracts mentioning various machine learning methods (as in Figure 4a) in each region of the embedding
with high fraction of abstracts mentioning ‘machine learning’ (Figure 4b). Percentages above 4% in bold. Rows ordered by the
number of papers in the region. Columns ordered by the average percentage across regions. Abbreviations as in Figure 4.

# Region NN Clustering DL SVM CNN PCA RF LR DR FA

1 EEG signals 6.1 1.7 1.9 3.3 2.1 1.1 0.8 0.8 0.4 0.2
2 Sequencing 1.5 5.8 1.0 0.9 0.7 0.4 0.6 0.3 0.3 0.1
3 Image segmentation 9.5 2.4 7.3 2.5 7.6 0.9 1.0 0.5 0.2 0.1
4 ML algorithms 14.7 5.7 4.3 2.9 5.1 1.1 0.6 0.5 0.9 0.2
5 Mass spectometry 1.8 1.2 0.2 1.5 0.2 4.9 0.4 1.1 0.2 0.5
6 Healthcare data 1.7 0.8 1.6 0.6 0.6 0.0 0.2 0.0 0.0 0.0
7 Cancer biomarkers 0.5 4.9 0.2 1.0 0.1 1.1 0.8 0.3 0.1 0.1
8 Protein structure 5.5 3.5 1.9 4.6 1.0 0.7 1.7 1.4 0.3 0.1
9 Computational chemistry 1.9 0.4 0.3 0.1 0.2 0.1 0.1 0.2 0.1 0.0
10 Tumor imaging 3.3 1.2 2.8 3.6 2.0 0.7 2.6 1.3 0.3 0.1
11 Microbiome 0.1 2.9 0.0 0.2 0.0 1.2 1.5 0.9 0.0 0.1
12 Covid-19 tweets 1.5 2.1 1.9 0.7 0.4 0.2 0.8 0.6 0.0 0.0

A.2 Supplementary Figures
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Figure S1: Summary of the PubMed dataset. (a) Distribution of the abstract length in characters. For the distribution of
the abstract length over the embedding, see Figure S7. Papers with abstracts shorter than 250 characters were filtered out (see
Methods). (b) Distribution of the abstract length in words. (c) The total number of papers per year, the number of available
first/last authors’ first names per year, and the number of inferred first/last author genders per year. The amount of available
first names increased dramatically after 2003, when PubMed began incorporating more detailed author information into their
database (97.4% of available first names are post-2003).
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"interestingly"a "for the first time"b "little is known"c

"hypothesis"d "experiment"e "theory"f

"clinical"g "observational"h "?"i

Figure S2: Distribution of some terms and phrases across the biomedical literature. All panels show the embedding
based on the PubMedBERT representation, highlighting papers containing particular terms in their abstracts. (a) ‘interestingly’,
(b) ‘for the first time’. Two black islands stand out in the periphery of the embedding: the one in the bottom contains articles
reporting new species (‘species nova’) and the one on the left contains articles reporting novel chemical compounds isolated from
living organisms. (c) ‘little is known’, (d) ‘hypothesis’, (e) ‘experiment’, (f) ‘theory’, (g) ‘clinical’, (h) ‘observational’, (i) ‘?’
(question mark).
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Figure S3: Distribution of reported sample sizes and p-values across the biomedical landscape. (a) Embedding
coloured by the sample size reported in the abstract. We used the regular expression n\s?=\s?(\d+) to extract the reported
sample sizes. If an abstract contained several reported sample sizes, we took the first one. Color scale on the log scale, dark:
n = 1; light: n ≥ 1000. Papers that did not contain this regular expression in their abstract are not displayed. (b) Papers
reporting p-values in their abstracts (containing ‘p=’ or ‘p<’ strings, with or without space after ‘p’) are shown in black.
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Figure S4: 2D embedding based on the TF-IDF representation of the PubMed dataset. (a) Coloured using labels
based on journal titles. Unlabeled papers are shown in gray and are displayed in the background. The TF-IDF-based embedding
was flipped to orient it similarly to the BERT-based embedding (Figure 1). (b) Coloured by publication year (dark: 1970 and
earlier; light: 2021).
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BERTa TF-IDFb

Figure S5: Fine cluster structure in the PubMed embeddings. All points shown in gray to emphasize the cluster struc-
ture. (a) The embedding based on the PubMedBERT representation. (b) The embedding based on the TF-IDF representation.

BERTa TF-IDFb

Covid-19
HIV/AIDS
Meta-analysis

Figure S6: Isolated subcorpora in the PubMed embeddings. Three sets of papers analyzed in Table 2 (Covid-19,
HIV/AIDS, meta-analysis) highlighted in both embeddings. (a) PubMedBERT-based embedding. (b) TF-IDF-based embedding.
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Figure S7: Distribution of abstract and title lengths across the biomedical literature. Both panels show the
embedding based on the PubMedBERT representation of the PubMed dataset. (a) Coloured by the length of the abstract (dark:
235 characters; light: 1750 characters or more). (b) Coloured by the length of the title (dark: 50 characters or less; light: 125
characters or more).

20

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2023. ; https://doi.org/10.1101/2023.04.10.536208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.10.536208
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

TF-IDF: 61.0
SVD: 54.8
t-SNE: 49.9

TF-IDF b

BERT: 57.1
t-SNE: 46.0

BERT Average c

BERT: 62.1
t-SNE: 52.3

SciBERT Average

d

BERT: 65.0
t-SNE: 56.5

BioBERT [SEP] e

BERT: 67.7
t-SNE: 60.8

PubMedBERT [SEP] f
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Figure S8: t-SNE embeddings of a subset of the PubMed dataset based on different representations. Subset size:
1,000,000 labeled papers. For each BERT-based model, we chose the two-dimensional embedding based on the representation
(average, [CLS], or [SEP] token) with the highest kNN accuracy, see Table 4. The kNN accuracies for the high-dimensional and
two-dimensional representations are shown in the corner of each panel. The embeddings were flipped to orient them similarly to the
embedding of the full dataset (Figure 1). (a) TF-IDF (using SVD), (b) BERT, (c) SciBERT, (d) BioBERT, (e) PubMedBERT,
(f) SBERT, (g) SPECTER, (h) SciNCL, (i) SimCSE.
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